
1

High Performance Delay Monitoring
for SRv6 Based SD-WANs

Carmine Scarpitta∗†, Giulio Sidoretti∗†, Andrea Mayer∗†, Stefano Salsano∗†,
Ahmed Abdelsalam§, Clarence Filsfils§

∗University of Rome Tor Vergata, †CNIT, §Cisco Systems

Abstract—Software-Defined Wide Area Networks (SD-WANs)
are used to provide services to enterprises with geographically
dispersed locations in a flexible and efficient way. We focus
on SD-WAN services based on the Segment Routing over IPv6
(SRv6) technology. Performance Monitoring solutions are needed
in SD-WANs to detect performance degradation and outages, and
optimize network operations.

In this paper, we describe a high performance solution for
end-to-end delay monitoring for SRv6 based SD-WAN services.
The proposed solution leverages the Simple Two-way Active
Measurement Protocol (STAMP) to monitor the delay of an
SRv6 path between two nodes called STAMP Session-Sender
and Session-Reflector. We describe three implementations of
the STAMP Session-Sender and Session-Reflector for a Linux
software router and compare their performance. In particular,
two implementations are based on user space processing and
one is based on eBPF. The results show that the eBPF-based
implementation outperforms the user space implementations and
has a negligible impact on the forwarding capacity of the Linux
software router.

Index Terms—SD-WAN, Software Defined WAN, Performance
Measurement, Segment Routing, SRv6, Delay Monitoring.

I. INTRODUCTION

IT is common for enterprises to have multiple data cen-
ters and branch offices spread over large geographical

areas. The reference scenario is shown in Fig. 1. Traditional
Wide Area Networks for enterprises were based on static
interconnections of remote sites. With the advent of cloud
computing, many enterprises moved their applications to cloud
systems. Traditional Wide Area Networks (WANs) started to
exhibit limitations because they were not designed for cloud
systems. First, traditional WANs do not provide the desired
level of flexibility to users. Extending traditional WANs and
adding new services require human intervention and are time
consuming. Moreover, traditional WANs do not support cloud
ecosystems natively. To provide access to cloud applications,
traditional WANs typically require backhauling all traffic to
a data center. Then, from the data center, the traffic is sent
to the cloud. Software-Defined Wide Area Networking (SD-
WAN) is a paradigm that aims at overcoming the limitations of
traditional WANs. SD-WAN uses a software-defined approach
to control the network and build the interconnections among
the different locations. An SD-WAN builds interconnections
among users and applications hosted on clouds or remote
branches by leveraging any combination of transport services.

Over the years, many SD-WAN solutions have been pro-
posed. Most SD-WAN solutions are commercial, such as Cisco

Fig. 1: Enterprise WAN reference scenario.

SD-WAN [1]. The Google B4 WAN [2] [3] is a proprietary
SD-WAN solution that connects Google’s data centers across
the world. B4 relies on a hybrid Software Defined Networking
(SDN) approach: the WAN sites are interconnected using tra-
ditional routing protocols, an SDN-based Traffic Engineering
service runs on top of the network to maximize links utilization
and perform load balancing, OpenFlow is used to control and
program the switches. FlexiWAN [4] was the first open source
solution. It uses Virtual Extensible LAN (VXLAN) [5] tunnels
to establish the SD-WAN interconnections. In our previous
work [6], we presented an open-source SD-WAN solution
called EveryWAN, which is capable of using Segment Routing
over IPv6 (SRv6) to establish the SD-WAN interconnections.
To the best of our knowledge, EveryWAN is the first open-
source solution to leverage SRv6 technology to create SD-
WAN services. EveryWAN is based on Linux networking and
can be deployed on software routers located at the edge of an
SD-WAN.

In fact, software routers can play a role in SD-WAN
scenarios, thanks to their flexibility, complementing hardware-
based solutions. For example, they can be easily deployed in
virtualized environments in cloud and data center scenarios as
VNFs (Virtual Network Functions) as shown in Fig. 1. For
this reason, we believe that it is fundamental to work on the
design and implementation of open-source SD-WAN solutions
suitable for software routers.

An important function to be executed in wide area net-
works is Performance Monitoring (PM). PM allows network
operators to detect failures and outages and assess network
performance. Effective network monitoring is essential, and
new tools and protocols have been designed accordingly for

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3300151

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2

SDN-based networks [7]. Important application scenarios in
which we can benefit from network monitoring are SLA-
assurance in SD-WANs and Enterprise networks, Internet of
Things (IoT) [8] and security [9].

In this paper, we focus on the delay monitoring of SRv6
networks. We consider a number of research and technological
questions:

• Is it possible to design an effective solution for delay
monitoring of SRv6 networks based on current Internet
Engineering Task Force (IETF) standards and work-in-
progress Internet drafts?

• Can we implement the solution in a working open-source
prototype based on Linux software routers?

• What is the impact of the delay monitoring solutions
on the forwarding capacity of software routers? Can we
implement delay monitoring with negligible impact on
forwarding performance?

The main novel contributions are as follows:
• Realization of a High Performance End-to-End Delay

Monitoring solution for SRv6 networks compliant with
available standards and Internet drafts;

• Design and implementation of a gRPC Remote Procedure
Call (gRPC) [10] Southbound interface to control the
SRv6 nodes;

• Implementation of two user space solutions and of a
kernel solution based on eBPF (extended Berkeley Packet
Filter) [11];

• Evaluation of the performance degradation introduced by
the Delay Monitoring solution and comparison between
the two user space and the eBPF-based implementations.

This paper is organized as follows. In Section II, we present
an introduction to the SRv6 technology and its main use cases.
Section III presents how SRv6 technology can be used to
realize SD-WAN services. In Section IV, we introduce Every-
WAN, the SD-WAN prototype that we have extended. Section
V presents our Delay Monitoring solution. The implementa-
tions are discussed in Section VI. In Section VII, we show
how we integrated our performance measurement solution in
EveryWAN to measure the delay of Virtual Private Network
(VPN) services. In Section VIII, we present a performance
evaluation and comparison of the implementations. In Section
IX we present the related works. Finally, Section X concludes
the paper.

II. SRV6 TECHNOLOGY

Segment Routing (SR) is a routing technology based on the
loose source routing paradigm ([12], [13]). It allows a source
node to steer a packet through a list of instructions called
segments. A segment can represent a topological instruction
(e.g., forward the packet via a specific nexthop) or a function
to be applied to the packet (e.g., execute an operation on the
packet). A segment is identified by an identifier known as
Segment ID (SID). The list of SIDs of a packet, called Segment
List or SID List, is carried in the packet header. SR can
be implemented using either Multiprotocol Label Switching
(MPLS) or IPv6 as data plane technology. In MPLS Segment
Routing (SR-MPLS) [14], the SIDs are encoded as MPLS

Fig. 2: SRv6 example network scenario.

labels. The Segment List is encoded as a stack of labels. In
Segment Routing over IPv6 (SRv6), the SIDs are encoded
as IPv6 addresses. The Segment List is carried in an IPv6
Extension Header called Segment Routing Header (SRH) [15].
A set of standardized SRv6 functions is presented in [16]. In
this paper, we focus on SRv6.

Fig. 2 shows an example of an SRv6 network scenario. The
gray cloud represents an SRv6 domain. An ingress node pro-
cesses the packets entering the SRv6 domain and encapsulates
each received packet in an outer IPv6 header with an SRH.
In the example, the SRH carries a SID List containing three
SIDs. The first two SIDs represent the two waypoints that the
packets should traverse before reaching the destination. The
ingress node forwards the encapsulated packets towards the
first waypoint. The path to reach the waypoint is decided by
the traditional routing protocol (e.g., IS-IS or OSPF). The first
waypoint forwards the packet toward the second waypoint,
which in turn forwards the packet toward the egress node,
identified by the third SID in the segment list. The third SID
is also used in the egress node to determine the operation
to be performed. In this case, the egress node performs a
decapsulation operation (i.e., removes the outer IPv6 header
which contains the SRH) and forwards the packets to the
destination. It is also possible to use two different SIDs instead
of the third single one: a SID to reach the egress node and
another SID to identify the operation to be performed, but this
is less efficient as four SIDs instead of three would be carried
in the Segment List.

The SRv6 technology has been proposed in the recent past
and has raised great interest in academia and industry. Since
then, its development has progressed very rapidly. Today,
SRv6 is supported in many hardware deployments [17] and
software routers such as the Linux kernel and the Vector Packet
Processor (VPP) [18]. The Linux kernel has supported SRv6
packet generation and forwarding capabilities since version
4.10 (released in February 2017). Later, it has been extended
to support many of the SRv6 behaviors described in [16].

SRv6 enables many use cases such as overlay Virtual
Private Networks (VPNs) [19], Traffic Engineering [20], Fast
Rerouting [20], and Service Function Chaining (SFC) [21].
An overview of SRv6 implementation and deployment status
is available at [22] and [17]. The Research on Open SRv6
Ecosystem (ROSE) project [23] aims to build a Linux-based
Open Ecosystem for SRv6. It tackles multiple aspects of the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3300151

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3

Fig. 3: SD-WAN service scenario.

SRv6 technology, including the Data Plane, Control Plane,
SRv6 host networking stack, integration with applications,
and integration with Cloud/Data Center Infrastructures. ROSE
comprises several sub-projects which are the foundation of the
work presented here.

III. SD-WAN SERVICES BASED ON SRV6

In the UCSS project1 (User Controlled SD-WAN Services
with Performance Monitoring over GÉANT) [25] we designed,
implemented and deployed SD-WAN services based on the
SRv6 technology.

An SD-WAN can offer different services. We focus on the
Network Slicing service. The reference scenario is shown in
Fig. 3. Network Slicing allows customers to create different
logical instances of virtual networks over the WAN connec-
tions. It is also possible to use different WAN providers for the
different slices. In this way, multiple applications can run in
isolation over the WAN and different service levels can be used
for the different slices. Among the different types of slicing,
we focus on Routed End-to-End Slices. A Routed End-to-End
Slice is an implementation of a Layer 3 VPN (L3VPN), in
which the devices attached to the SD-WAN Edges belong to
different broadcast domains. The SD-WAN Edge routers act
as gateways to route traffic between these broadcast domains.

In our terminology, a Slice (or Local Slice) is a portion
of the customer network where users or applications are
located. Each Local Slice is terminated in an SD-WAN Edge
router. The SD-WAN Edge router forwards the traffic of the
connected Local Slice to an egress SD-WAN Edge router. The
interconnections between two different SD-WAN Edge routers
are realized by using a set of Tunnels (also called Overlays).
The Overlay, together with the Local Slices, forms the so-
called End-to-End Slice (E2E Slice). Several technologies can
be used to realize an Overlay. We focus on SRv6-based
Overlays. Fig. 4 shows the reference scenario for the SD-
WAN service based on SRv6 technology. An ingress SD-WAN
Edge router receives IP packets from a customer source host. It
classifies and associates each incoming packet with a specific
End-to-End Network Slice according to various criteria, such
as the incoming interface, the source IP address, or the
protocol. After the classification, the ingress SD-WAN Edge

1part of the GÉANT Innovation Programme [24]

router performs a lookup in its Forwarding Information Base
(FIB) to discover the SD-WAN egress Edge router attached to
the destination host. Then, the ingress SD-WAN Edge router
applies the H.Encaps behavior described in [16] to the packet.
This behavior steers the packet into an SRv6 Policy. Steering
is realized by encapsulating the IP packet into an outer IPv6
header that contains an SRH. The SRH carries two SIDs. The
first SID represents an instruction to deliver the packet to the
egress SD-WAN Edge router. The second SID is an End.DT6
instruction. End.DT6 forces the egress router to strip the outer
IPv6+SRH header and deliver the original packet to the correct
Slice.

In SD-WAN solutions, the SD-WAN Edge routers are
deployed in all the locations where the SD-WAN interconnec-
tions need to be established. An SD-WAN controller manages
and programs the SD-WAN Edge routers. Depending on the
location and the characteristics of the SD-WAN Edge routers,
three scenarios are possible:

1) the SD-WAN Edge routers are located within the provider
network and are under the network operator’s control;

2) the SD-WAN Edge routers are outside the provider
network, and they have no control over the transport
services;

3) the SD-WAN Edge routers are outside the provider net-
work but can interact with the provider network to deploy
the SD-WAN services.

We focus on Scenario 2. The SRv6-based SD-WAN services
were deployed in scenarios where SD-WAN Edge routers do
not interact with the provider networks. We have deployed
several SD-WAN Edge routers as Virtual Machines (VMs)
across Europe. These SD-WAN Edge routers were located in
different kinds of networks, like university campus networks,
NRENs (National Research and Education Networks), and
commercial provider networks. We analyzed and classified the
IPv6/SRv6 connectivity between these VMs and introduced
the concept of SRv6 Transparency. SRv6 Transparency is the
ability of an IPv6 network to carry SRv6 traffic. Several factors
can reduce the SRv6 Transparency of a network, such as
firewalls that block IPv6 packets carrying an SRH. We found
different SRv6 Transparency levels in the networks that we
considered. We have shown that it is possible to configure the
SRv6-based SD-WAN services, taking into account the SRv6
Transparency level of the network providing IPv6 connectivity
and we have practically deployed SD-WAN services across
operational networks over the Internet. An in-depth discussion
of the SRv6 Transparency problem and the configuration of
SRv6-based SD-WAN services can be found in the UCSS
report [25].

A great advantage of SRv6 technology is that minimal
extensions are needed to support scenarios in which the SD-
WAN router is part of the provider network or can interact
with it. For example, a useful service is an overlay with
traffic engineering in the underlay transport network. If the
SD-WAN router is under the control of the transport network
operator, the SD-WAN controller can provide an extended SID
list that at the same time implements the SD-WAN service
and provides control over the path in the underlay network

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3300151

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4

Fig. 4: SD-WAN service scenario based on SRv6.

Fig. 5: EveryWAN Architecture.

according to traffic engineering considerations.

IV. THE EVERYWAN ARCHITECTURE

EveryWAN [6] is an open-source SD-WAN prototype based
on Linux networking. Fig. 5 shows the EveryWAN architec-
ture. At the lowest level, we have the SD-WAN Edge routers
called EveryEdge routers. The EveryEdge routers take care of
the interconnections among all the sites. EveryEdge routers
can be deployed as Virtual Network Functions (VNFs) over

a Linux OS in the sites to be interconnected. An SD-WAN
Controller, called EveryEdgeOS, manages all the EveryEdge
routers through an API based on the gRPC Remote Proce-
dure Call (gRPC) protocol. gRPC [10] is a high-performance
RPC (Remote Procedure Call) framework that was initially
developed by Google and is now maintained and supported by
an active community of developers. EveryEdgeOS deals with
many configuration and management aspects of the EveryEdge
routers, ranging from their initial registration, authentication,
and configuration to the activation of the policies that im-
plement the SD-WAN services. On top of the controller,
there is an SD-WAN Orchestrator named EveryBOSS, which
automates the deployment of the EveryEdge routers and SD-
WAN services. The orchestrator also offers a GUI that allows
the customers to configure the EveryEdge routers and manage
the SD-WAN services. The EveryEdgeOS and the EveryBOSS
orchestrator can run either in a self-managed private cloud or
in a public cloud.

The EveryEdge router comprises several open-source com-
ponents installed on a general-purpose Linux distribution (e.g.,
Ubuntu Server). It uses Linux networking capabilities to
forward the traffic. A component called EveryEdgeManager
offers a Southbound API that is used by the EveryEdgeOS
controller to program and configure the router. Through the
Southboud API, the controller can send commands to the
EveryEdge router (e.g., install a specific route or set the
IP address of a network interface). The EveryEdgeManager
translates the received commands into lower-level actions.
Then, it sends these actions to the Linux kernel using the open-
source pyroute2 [26] library. Pyroute2 is a Python package that
provides a programming interface for network configuration
and management on Linux systems. Pyroute uses the Netlink

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3300151

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



5

protocol, which is a mechanism for communication between
the kernel and user-space processes. A detailed description of
the EveryEdge router architecture can be found in [6].

The main service offered by EveryWAN is Network Slicing
(described in Section III), which allows customers to create
End-to-End Slices among the remote sites. The EveryEdge
router receives ingress IP packets over the customer-facing
interfaces, i.e., the Local interfaces (LAN). It classifies and
associates each packet with a particular End-to-End Network
Slice. To perform the classification, the EveryEdge leverages
the Virtual Routing and Forwarding (VRF) technology offered
by the Linux kernel. VRFs provide the ability to create
isolated virtual routing and forwarding domains. Each VRF
serves a particular slice. Each customer-facing interface in the
EveryEdge router is mapped to a slice and enslaved to the VRF
that serves that slice. Based on the destination IP address, the
EveryEdge router forwards the packets associated with a slice
to the remote EveryEdge routers over the WAN interfaces.

A transport technology ensures that the network delivers
the packets to the remote EveryEdge router. EveryWAN sup-
ports two transport technologies: VXLAN [5] and SRv6. In
this work, we only consider SRv6. To transmit the packets
using SRv6, the EveryEdge routers use the H.Encaps and
the End.DT4/End.DT6 behaviors as depicted in Fig. 4 and
discussed in the previous section.

A detailed description of the EveryWAN architecture can
be found in the white paper [27].

V. STAMP DELAY MONITORING FOR SRV6
In this section, we present the proposed End-to-End Delay

Monitoring solution for SRv6 networks based on the Sim-
ple Two-Way Active Measurement Protocol (STAMP) [28].
STAMP enables the measurement of several performance
metrics, including packet loss, delay, and jitter. It supports
both one-way and round-trip measurements in IP networks.
RFC 8762 [28] defines the base functionalities of STAMP
and describes the format of the packets that collect and carry
measurement data. RFC 8972 [29] introduces the STAMP
Session IDentifier (SSID) and defines optional STAMP ex-
tensions that enhance the STAMP base functions. The drafts
[30] and [31] present general guidelines for measuring various
performance metrics in SR networks using STAMP. In the
following subsections, we present a solution based on STAMP
to measure the end-to-end delay of SRv6 paths. Note that,
in general, the applicability of the STAMP protocol goes
beyond Segment Routing and SRv6 as it can be integrated into
monitoring tools and applications to evaluate the performance
metric of any kind of network.

Fig. 6 shows our STAMP reference scenario. We use a
STAMP Session to measure the end-to-end delay on an SRv6
path between two nodes called STAMP Session-Sender and
Session-Reflector. For delay measurements to be meaningful,
the Session-Sender and Session-Reflector clocks must be syn-
chronized2. RFC 8762 does not envisage any particular ap-

2Clock synchronization mechanisms are out of scope for this paper, we
assume that the clocks are synchronized. Depending on the required precision,
software synchronization mechanisms like NTP [32] or hardware assisted
mechanisms (typically based on GPS [33]) can be used.

Fig. 6: STAMP reference scenario.

(a) STAMP Session-Sender Test Packet.

(b) STAMP Session-Reflector Test Packet.

Fig. 7: STAMP Test Packets defined in [29].

proach to configure and manage the STAMP Session-Sender,
Session-Reflector, and the STAMP Session, which can be
achieved in different ways, such as using a Command Line
Interface (CLI) or an SDN controller. The proposed solution
leverages an SDN controller to manage the STAMP Ses-
sion and configure the STAMP Session-Sender and Session-
Reflector. The public documentation of our delay monitoring
solution with links to code repositories is available in [34].

A. Data Plane Protocol

A STAMP session measures the end-to-end delay on a
given SRv6 path between two nodes, the STAMP Session-
Sender and Session-Reflector. A STAMP session consists of a
bidirectional packet exchange between the STAMP Session-
Sender and the Session-Reflector. Each STAMP session is
identified by a unique 16-bit nonzero unsigned integer called
STAMP Session IDentifier (SSID).

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3300151

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6

The STAMP Session-Sender transmits a STAMP Session-
Sender test packet to the STAMP Session-Reflector. The test
packet is an IPv6/UDP packet sent to the STAMP UDP port
of the Session-Reflector. By default, the STAMP Session-
Reflector uses the UDP port 862. The SDN controller can
set a different port during the configuration of the STAMP
Session-Reflector. The STAMP Session-Sender test packet is
transmitted on the same path as the data traffic flow under
measurement to measure the delay experienced by the data
traffic flow. To enforce the path, the STAMP Session-Sender
adds an SRH to the IPv6 header. The SRH contains the
SID List that encodes the path under measurement from the
STAMP Session-Sender to the Session-Reflector. The test
packet carries the payload shown in Fig. 7a. The Sequence
Number field contains a 32-bit unsigned integer. It starts at
zero and is incremented by one with each sent packet. The
Timestamp field carries the time when the Session-Sender sent
the test packet. In the rest of this section, we refer to this
timestamp as T1 (see Fig. 8). RFC 8762 specifies two different
timestamp formats: Network Time Protocol (NTP) [32] and
the IEEE 1588v2 Precision Time Protocol (PTP) [35], both
using 64 bits. By default, the STAMP Session-Sender uses
NTP as timestamp format, as specified in RFC 8762. The SDN
controller can select a different timestamp format during the
STAMP Session-Sender or STAMP Session configuration.

The SSID (STAMP Session IDentifier) field contains the
SSID of the STAMP Session to which the test packet belongs.
It associates the STAMP Session-Sender test packet with the
corresponding STAMP Session. The remaining 28 bytes (224
bits) are set to zero (Must-Be-Zero or MBZ field). The content
of STAMP Session-Reflector test packet is larger than the
content of a STAMP Session-Sender test packet. The MBZ
field makes the size of the Session-Sender test packet equal
to the size of the Session-Reflector test packet.

Following the SRv6 path under measurement, the test packet
is delivered to the Session-Reflector. The Session-Reflector
receives the STAMP Session-Sender test packet and verifies
it. If the packet is valid and the SSID corresponds to an active
STAMP Session, the Session-Reflector creates and sends a
STAMP Session-Reflector test packet to the STAMP UDP
port of the Session-Sender. The STAMP Session-Reflector
test packet carries the payload depicted in Fig. 7b. Bytes
24-33 contain an exact copy of the STAMP Session-Sender
test packet. The Sequence Number field contains a 32-bit
unsigned integer. The STAMP Session-Reflector can work
in two modes: i) stateless mode; ii) stateful mode. In the
stateless mode, the STAMP Session-Reflector reuses the same
Sequence Number value contained in the STAMP Session-
Sender test packet. In the stateful mode, the STAMP Session-
Reflector maintains a counter for the transmitted packets. The
Receive Timestamp field contains the time when the Session-
Reflector received the Session-Sender test packet, denoted as
T2 (see Fig. 8). The Timestamp field contains the time when
the Session-Reflector starts transmitting the Session-Reflector
test packet, denoted as T3. The SSID 16-bit field contains the
STAMP Session IDentifier and allows the STAMP Session-
Sender to associate the received STAMP Session-Reflector
packets with the correct STAMP Session. The Session-Sender

Fig. 8: STAMP time diagram.

TTL is a copy of the Hop Limit field of the IPv6 header
contained in the received STAMP Session-Sender test packet.
The MBZ fields are used to achieve an alignment on a four-
byte boundary. The Session-Reflector test packet is transmitted
on the same path as the data traffic flow under measurement
to measure the delay experienced by the data traffic flow. This
can be the same path as the Session-Sender test packet or a
different path. The draft [30] defines a TLV called Return Path
TLV that allows the Session-Sender to request the Session-
Reflector to transmit the Session-Reflector test packet on a
specific path. However, we do not use the Return Path TLV
in our solution. We leverage the SDN controller to set up
the return path as part of the STAMP Session configuration.
Before sending the STAMP Session-Reflector test packet, the
Session-Reflector adds an SRH to the IPv6 header to enforce
the return path. The SRH contains a SID List that encodes the
path under measurement from the STAMP Session-Reflector
to the Session-Sender.

Following the path specified in the SID List, the STAMP
Session-Reflector test packet is delivered to the Session-
Sender. The Session-Sender verifies the packet and validates
the SSID. If the SSID corresponds to an active STAMP
Session, it generates a new timestamp T4, which is the
time when the Session-Sender received the Session-Reflector
test packet. The Session-Sender collects the three timestamps
from the session reflector test packet and adds T4 creating a
measurement record (T1, T2, T3, T4) that is stored locally. The
generated records need to be sent to the SDN controller for
post-processing, as it will be discussed later. Considering its
role in the processing of the STAMP test packets coming back
from the Session-Reflector, we can refer to the Session-Sender
as the final Collector of the STAMP test packets.

B. Configuration and Management

We have defined the API offered by the STAMP Session-
Sender and by the STAMP Session-Reflector to the SDN
controller for the configuration of the STAMP measurement
service. The configuration involves setting various parameters,
including the STAMP UDP port, the network interfaces on
which the STAMP Session-Sender/Session-Reflector expects
to receive the STAMP Test packets, and the source IPv6
address to be used in the STAMP Test packets. The controller
can also create and manage the STAMP Sessions using the API
exposed by the STAMP Session-Sender/Session-Reflector. In
particular, to create a STAMP Session, the SDN controller
must provide the following parameters: 1) the SSID of the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3300151

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



7

Fig. 9: STAMP control protocol.

STAMP Session; 2) the SID List of the path under mea-
surement; 3) the interval between two consecutive STAMP
Test packets; 4) the source IPv6 address of the STAMP Test
packets; 5) the authentication mode (i.e., unauthenticated or
authenticated); 6) the timestamp format (i.e., NTP or PTPv2);
7) the delay measurement mode (i.e., one-way or two-way);
8) the IP address of the STAMP Session-Reflector; 9) the
STAMP UDP port of the STAMP Session-Sender and Session-
Reflector; 10) the Session-Reflector mode (i.e., stateful or
stateless). Fig. 9 shows the interaction of the SDN controller
with the STAMP Session-Sender and Session-Reflector re-
quired to create a STAMP Session.

C. Data Collection

The STAMP Session-Sender and STAMP Session-Reflector
exchange STAMP Test packets containing the timestamps
required to compute the delay. The STAMP Session-Sender
collects all the timestamps. The SDN controller can interact
with the Session-Sender to fetch the timestamps. In general,
there are two approaches the SDN controller can use to fetch
the timestamps: polling mode and notification mode. In polling
mode, the controller periodically polls the Session-Sender to
gather the collected timestamps. In notification mode, the
Session-Sender will “push” the information toward the SDN
controller, either by sending the single measurement records
or aggregating a set of measurement records in a single
notification. In our solution we have implemented the polling
mode.

When the measurements records are available to the SDN
controller, it can compute the delay of the direct path dd (i.e.,
the path from the Session-Sender to the Session-Reflector) and
return path dr (i.e., the path from the Session-Reflector to the
Session-Sender):

dd = T2 − T1 (1)

dr = T4 − T3 (2)

where T1, T2, T3, and T4 are the four timestamps defined
in Section V-A, dd and dr are the delay of the direct path and
return path, respectively. Of course, the clocks of the Session-
Sender and of the Session-Receiver must be synchronized and
the accuracy of this delay estimates dd and dr depends on the
accuracy of the clock synchronization.

VI. STAMP FOR SRV6: ROUTER IMPLEMENTATIONS

We have realized an open source prototype of the proposed
STAMP for SRv6 solution, see [36]. In this section we de-
scribe the implementation of the router functionality (Session-
Sender and Session-Reflector), in section VII we focus on the
SDN Controller and Orchestrator.

The main Data Plane tasks of the Session-Sender (described
in Section V) are the following: i) generate and send STAMP
Session-Sender Test packets to the STAMP Session-Reflector;
ii) receive STAMP Session-Reflector Test packets from the
Session-Reflector and collect the timestamps. Concerning the
STAMP Session-Reflector, its main Data Plane tasks are: i)
receive STAMP Session-Sender Test packets from the Session-
Sender; ii) send a STAMP Session-Reflector Test packet to the
Session-Sender for each received STAMP Test packet. The
Session-Reflector is implemented in its stateless version. In
the Control Plane, both the Session-Sender and the Session-
Reflector interact with the SDN controller by offering an API
(see subsection VI-A).

As for the Data Plane, we have implemented three versions
of the Session-Sender and Session-Reflector with the goal of
improving their performance: two User Space implementations
(referred to as basic and optimized, see subsection VI-B) and a
Kernel Space implementation based on the extended Berkeley
Packet Filter (eBPF) framework [11], see subsection VI-C.
We evaluate and compare the performance of the different
implementations in Section VIII.

A. Control Plane functionalities

Both the STAMP Session-Sender and Session-Reflector
expose a Southbound API that allows an SDN controller to
create/start/stop/destroy a STAMP Session and fetch the results
of a STAMP Session. This API follows the design ideas
discussed in Section V. We decided to extend the Southbound
API proposed in [37], based on the gRPC protocol [10].
The implementation of our Southbound interface is open-
source and available at [36]. The Southbound API supports
the following operations:

• Init provides the global configuration parameters (i.e.,
the parameters common to all the STAMP Sessions) to
the STAMP Session-Sender and Session-Reflector.

• Reset resets the configuration parameters and stops the
packet sniffer.

• CreateStampSession prepares the STAMP Session-
Sender/Session-Reflector to run a STAMP Session and
send/receive the STAMP Test packets. In the Sesssion-
Sender, a queue is allocated to store the received mea-
surement results.

• StartStampSession and StopStampSession
take care of starting and stopping a STAMP Session,

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3300151

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8

respectively. When a session is started in the Session-
Sender, a thread is activated that periodically sends
STAMP Session-Sender Test packets to the Session-
Reflector.

• DestroyStampSession removes a STAMP Session
and deallocates all the related data structures.

• GetStampSessionResults allows the controller to
fetch the measurement results (i.e., the timestamps)
collected by the STAMP Session-Sender. This RPC is
supported only by the Session-Sender as the Session-
Reflector does not collect any information during the
STAMP Session.

A more detailed description of the Southbound interface can
be found in [38].

B. User Space Implementations for Data Plane

In this subsection, we describe our user-space implemen-
tations of the STAMP Session-Sender and Session-Reflector,
compliant with RFC 8762 [28], RFC 8972 [29], and draft
[31]. The implementations are based on Scapy [39], a packet
manipulation library written in Python, Scapy provides a
programming abstraction to generate and send network packets
as well as to receive and decode them. Several protocols
are already supported by Scapy and it can be extended to
support new protocols. We have developed a first STAMP
implementation (referred to as basic) and then designed an
improved version (referred to as optimized). Hereafter, we
first describe the basic Scapy user space implementation and
then we discuss how we have tackled its performance issues
with the optimized implementation. Our implementations are
available as open-source at [36].

The Session-Sender and Session-Reflector leverage the
Scapy library to generate the STAMP Test packets. When we
started our work, the latest release of Scapy (version 2.4.5)
did not implement the RFC 8762 (STAMP). Scapy modular
design allows developers to define new protocol layers easily.
We have added the support for both STAMP Session-Sender
and STAMP Session-Reflector Test packets in unauthenticated
mode. Our contribution has been accepted and merged in the
mainstream distribution of Scapy, adding the support of the
STAMP protocol. Both the Session-Sender Test packet and
Session-Reflector Test packet are compliant with the formats
defined in RFC 8962 and described in Section V. The STAMP
Test packets contain the timestamps used to compute the delay.
As discussed in Section V, STAMP can support two timestamp
formats: NTP and PTPv2. Our current implementation only
supports NTP timestamps.

After generating the STAMP Test packets, the Session-
Sender and the Session-Reflector use the Scapy library to send
the packets on the outgoing network interface. In particular,
before sending a STAMP Test packet, the Session-Sender adds
an UDP header and an IPv6+SRH header to the packet. The
UDP header contains the STAMP port of the Session-Reflector
as destination port. The SRH contains the Segment List of
the path under measurement (i.e., the path from the Session-
Sender to the Session-Reflector). The Session-Reflector per-
forms the specular operations adding the proper UDP header

and IPv6+SRH header to send the packet to the Session-
Sender. Then, the Session-Sender and the Session-Reflector
pass the packet to an L3RawSocket6. The L3RawSocket6
is a Scapy socket built on top of a AF_INET6/SOCK_RAW
Linux socket. The Linux kernel adds a Layer 2 header and
sends the packet to the destination (i.e., the Session-Reflector
or the Session-Sender) according to the usual L2/L3 rules.

Both the Session-Sender and the Session-Reflector need
to process the incoming STAMP Test packets. The Session-
Reflector receives the STAMP Session-Sender Test packets
from the Session-Sender and it has to reply to these packet by
adding the proper timestamps. The STAMP Session-Sender
receives STAMP Session-Reflector Test packets from the
Session-Reflector and processes them, acting as a measure-
ment data collector.

The Session-Sender and the Session-Reflector run a
dedicated thread to capture, validate and process the
STAMP Session Test packets. To capture the incoming
STAMP Test packets, the basic implementation of Session-
Sender uses a Scapy AsyncSniffer. The AsyncSniffer
captures all the incoming packets received on a given
interface and passes the captured packets to a user space
callback named stamp_reply_packet_received.
This callback drops any non-STAMP Test packet and
processes only the valid STAMP Test packets. Since
stamp_reply_packet_received operates in user
space, calling it for each received packet can have a big
impact on the CPU usage. In order to reduce the impact on the
CPU usage, it is important to reduce the number of packets
processed by the stamp_reply_packet_received.
In our implementation, we attach a BPF filter to the
AsyncSniffer. This filter allows the AsyncSniffer to
capture only the STAMP Test packets by filtering
non-STAMP Test packets at kernel level. Thus,
stamp_reply_packet_received is invoked only
when a STAMP Test packet is received. For each captured
STAMP Test packet, stamp_reply_packet_received
performs several validation checks. If the packet passes all the
validation checks, the Session-Sender extracts the timestamps
and collects them in a FIFO queue. The controller periodically
can send a GetStampSessionResults command to
fetch the latest results from the Session-Sender. The results
are kept in the FIFO queue until they are fetched, then they
are permanently removed from the queue.

The basic implementation of the Session-Reflector performs
similar operations to capture STAMP Session-Sender Test
packets and send STAMP Session-Reflector Test packets.

During our performance evaluation, we found that the basic
Scapy solution exhibited very poor performance.

As explained previously, the basic implementation
relies on the Scapy AsyncSniffer to capture the
STAMP Test packets. AsyncSniffer is implemented
using a Linux AF_PACKET/SOCK_RAW socket. An
AF_PACKET/SOCK_RAW socket captures all the packets
received on a given interface. The capture process of a plain
AF_PACKET socket is very inefficient, because it uses very
limited buffers and requires a system call to capture each
packet.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3300151

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9

The second bottleneck of the basic implementation is related
to the process of building and dissecting the STAMP Test
packets. The Session-Sender periodically generates and sends
STAMP Test packets to the Session-Reflector. Generating a
STAMP Test packet involves several operations, such as build-
ing each layer, filling each header with the proper information,
stick all the layers together, and computing the checksum. We
found that repeating this sequence of operations for building
each packet to be transmitted is very expensive.

Therefore, we designed an improved implementation of the
STAMP Session-Sender that mitigates the above described
performance issues. We refer to this improved version as
optimized. This implementation uses the PACKET_MMAP
[40] socket option. PACKET_MMAP improves the capture
process by using a circular buffer mapped in user space that
can be used to send and receive packets. This buffer is shared
between the kernel and our user space application. A shared
buffer between the kernel and the user also has the advantage
of minimizing packet copies. When a packet arrives, the kernel
stores the packet in the buffer. Since the buffer is shared
between the kernel and our user space STAMP application,
the application can read the packet without issuing any system
call.

In order to fix the inefficiencies in the sending procedures,
we observed that packets sent in the context of a STAMP
Session are very similar to each other. Most of the packet
fields are equal for each packet in a STAMP Session. These
fields include the SSID, the Segment List, the source and
destination IP addresses, and the UDP ports. Few fields need
to be changed, such as the timestamp fields and the sequence
number contained in the STAMP Test packets. Instead of
generating a new packet for each STAMP packet to be sent,
the optimized implementation of the Session-Sender allocates a
STAMP Session-Sender Test packet when the STAMP Session
is created (CreateStampSession operation). When a new
packet needs to be sent, the Session-Sender only changes the
variable fields of the packet (e.g., the timestamps and the
sequence number). Then it computes the UDP checksum and
sends the packet to the Session-Reflector. In this way, we avoid
the overhead related to generating a new STAMP Test packet
from scratch. To further improve performance, we save the
STAMP Test packet as a bytes array instead of a Python object.
In this way, we avoid the overhead due to converting the packet
from Python representation to a bytes array before sending it
on the network. We also optimized the logic used to parse the
received packets. For each received STAMP Session-Reflector
Test packet, Scapy performs the so-called packet dissection,
i.e., it reads the bytes of the packet and builds a Python object
to represent the packet. Then, it collects the timestamps from
the packet. In the optimized solution we bypassed the Scapy
dissector and we extract the timestamps directly from the bytes
representation of the packets.

As for the Session-Reflector, its optimized implementation
improves the efficiency of the basic version using the same
approaches that we have discussed for the Session-Sender.

The optimized versions of the Session-Sender and Session-
Reflector STAMP implementation have been integrated in the
EveryWAN prototype as described in Sec. VII.

C. eBPF Implementation for Data Plane

eBPF [11] is a Linux technology that can be used to
accelerate network packet processing. With eBPF it is possible
to deploy programs in kernel space and in a sandboxed
environment, without having to write ad-hoc kernel modules
or change the kernel code. eBPF can offer high performance
to specific packet processing tasks. We designed and imple-
mented a proof-of-concept eBPF implementation with the goal
to assess its performance.

Our eBPF deployment is based on the HIKe / eCLAT [41]
[42] framework. HIKe (Heal, Improve and desKill eBPF) is a
virtual machine abstraction for eBPF. It makes it possible to
chain multiple eBPF programs in a larger and more complex
program. eCLAT (eBPF Chains Language And Toolset) is a
python-like language and programming framework. Its scripts
compile to HIKe chains, providing a high-level, simpler lan-
guage that can be used to compose complex eBPF programs
in a modular fashion.

Algorithm 1 HIKe chain high level structure for STAMP
Session-Reflector.

if packet is STAMP then
process headers for layers 2, 3, 4
compute UDP checksum
cross connect to layer 2 interface

else
pass packet to kernel

end if

The high-level pseudocode 1 shows the structure of the
HIKe chain for the STAMP Session-Reflector. The chain is
attached to the eXpress Data Path (XDP) hook on the desired
interface and the entire processing is performed without letting
the packet enter the Linux kernel networking stack. The first
eBPF program filters only STAMP Test packets, everything
else is passed to the kernel without further processing. The
chain then manipulates the STAMP fields adding the new
timestamps. Then, the address/port fields in MAC, IPv6 and
UDP headers are changed before forwarding the packet. Lastly,
the UDP checksum is recalculated and the packet is forwarded
on the desired interface.

The Collector implementation is simpler because the packet
does not need to be forwarded. The chain comprises a filter so
that only STAMP packets are processed, while other packets
are sent to the kernel networking stack. Then we have the
actual Collector eBPF program. It parses the STAMP payload
of the packet and extracts the timestamps. The extracted times-
tamp records are written inside an eBPF map, accessible from
the userspace, so that it is possible to read the measurements.

The code for the eBPF implementation can be found in the
repository [43]. The deployment and configuration of the eBPF
implementation is not integrated in the EveryWAN prototype.
The configuration is performed manually as the eBPF proof-
of-concept implementation is only used for the performance
experiments described in section VIII.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3300151

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10

Fig. 10: Delay monitoring through the EveryWAN GUI.

VII. DELAY MONITORING THROUGH EVERYWAN
CONTROLLER

We integrated the delay monitoring in the EveryWAN
prototype. As explained in the EveryWAN white paper [27],
the EveryEdgeOS controller exposes a Northbound API that
allows users to configure the EveryEdge routers and deploy
the SD-WAN services. We integrated the STAMP-based delay
monitoring capabilities into EveryEdge routers and extended
the EveryEdgeOS controller to support STAMP operations.
We also extended the Northbound API to offer the basic
operations to create, control, and destroy the STAMP Sessions.
Furthermore, we added a section to EveryGUI where users
can monitor in real time the delay of the deployed SRv6-
based VPNs. The result of a measurement session presented
on EveryGUI is shown in Fig. 10. In the x-axis there is the
time in which each measure is performed. Delays are reported
on the y-axis. The observed variability of the delay is due to
the random fluctuation of background traffic. A walkthrough
documentation showing the use of delay monitoring in Every-
WAN is available in [34].

In addition to the instant delays, the controller also com-
putes the average delay for both the direct and return paths.
The average delay is updated using the Welford online algo-
rithm [44] [45] whenever new dd,new and dr,new values are
available:

dd,avg = dd,avg +
dd,new − dd,avg

N
(3)

dr,avg = dr,avg +
dr,new − dr,avg

N
(4)

where dd,avg is the average delay of the direct path, dr,avg
is the average delay of the return path, N is the number of
collected delays, and dd,new and dr,new are the new delay
values of the direct path and return path, respectively.

VIII. EXPERIMENTS AND RESULTS

In this section, we describe the testbed and the methodology
used to assess the performance of our STAMP implemen-
tations, and we present a comparison between the different
implementations.

A. Testbed and Performance Evaluation Methodology

To evaluate the performance of our three implementations,
we have deployed a testbed according to RFC 2544 [46],

Fig. 11: Performance Evaluation Testbed on Cloudlab.

which provides a methodology to benchmark network devices.
The testbed (shown in Fig. 11) includes two nodes: Traffic
Generator (TG) and System Under Test (SUT). We have
deployed our testbed in the Wisconsin cluster of CloudLab
[47], a platform dedicated to scientific research on the future
of cloud computing. The testbed nodes (TG and SUT) are bare
metal servers equipped with two Intel E5-2630 v3 processors
with 16 cores (hyper-threaded) clocked at 2.40GHz, 128 GB
of RAM, and two Intel 82599ES 10-Gigabit network interface
cards. The TG and SUT nodes are physically connected to the
same switch. The two NICs ensure back-to-back connectivity
between the two nodes. The logical topology is shown in
Fig. 11. On the TG node, we installed TRex [48], an open
source traffic generator powered by DPDK [49]. The SUT
node runs an Ubuntu 20.04 LTS Linux distribution with Linux
kernel release 5.13 and hosts our STAMP implementations. To
control Linux networking capabilities (e.g., network interfaces,
routing, and SRv6 behaviors), we installed the 5.13 release
of the iproute2 [50] suite. We also installed ethtool 5.13
to configure the hardware capabilities of the NIC, such as
offloading [51].

To perform the experiments, we used SRPerf [52], a per-
formance evaluation framework for software and hardware
implementations of SRv6. SRPerf orchestrates and automates
the execution of the experiments using the TRex Python
automation libraries [53]. It interacts with the TRex generator
installed on the TG node. The TG generates packets using
the TRex traffic generator and sends them to the SUT. The
SUT processes the received packets. The TG evaluates the
maximum throughput that can be processed by the SUT.
SRPerf supports different throughput measurements, such as
No-Drop Rate (NDR), Partial Drop Rate (PDR), and Maximum
Receive Rate (MRR). In our experiments, we used the Partial
Drop Rate at a 0.5% drop ratio (in short, PDR@0.5%) as
throughput measurement, which is defined as the maximum
packet rate at which the packet drop ratio is less than or
equal to 0.5%. For further details on this metric and how it is
evaluated by the SRPerf tools, we refer to [52].

Our experiment is meant to evaluate the processing perfor-
mance of the SD-WAN edge router, represented by the SUT
in Fig. 11. In particular, our goal is to evaluate the impact
of STAMP measurement procedures on the packet processing
capabilities of a Linux software router. As a reference, we
consider the scenario in which the router is only processing

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3300151

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



11

regular data packets, then we intermix regular data packets
with STAMP measurement packets in different percentages.

For the processing of regular data packets, we consider
an SRv6 ingress node that performs packet encapsulation:
it receives IPv6 packets and applies the H.Encaps behavior
to encapsulate the packets in an outer IPv6+SRH packet.
Therefore, in our baseline scenario the TG generates IPv6
packets, the SUT receives the packets on one interface, per-
forms the encapsulation, and forwards the packets on the
second interface.

For the processing of the STAMP measurement packets, we
have considered two cases:

1) the SUT is configured as a STAMP Session-Reflector, it
receives STAMP Session-Sender Test packets, processes
them, and for each STAMP Test packet it sends a STAMP
Session-Reflector Test packet to the TG;

2) the SUT is configured as a STAMP Session-Sender, it
receives STAMP Session-Reflector Test packets, extracts,
and collects the timestamps from the packets, performing
the role of the Collector.

The impact of STAMP measurements is evaluated by chang-
ing the fraction of STAMP packets and measuring the packet
processing capacity using the PDR@0.5% metric. When the
SUT acts as a Session-Reflector (case 1), the methodology to
evaluate the packet drop ratio described above can be applied
easily, as both the data packets and the STAMP test packets
are forwarded back by the SUT towards the TG (the data
packets are encapsulated, the STAMP packets are processed
and properly updated). To evaluate the packet drop ratio, the
TG simply compares the number of transmitted and received
packets in an experiment session (summing up the data and
STAMP test packets). On the other hand, when the SUT acts
as a Session-Sender/Collector (case 2), it does not forward
the received STAMP test packets back to the TG, because it
receives the STAMP packets and produces the measurement
records. Therefore, the TG cannot simply count the packets
transmitted back by the SUT to evaluate the packet drop ratio.
In fact, the number of packets correctly processed by the SUT
corresponds to the sum of data packets that are forwarded back
and of the STAMP test packets that are properly processed by
the SUT (i.e., by collecting the STAMP measurement metrics).
A STAMP packet that is not processed by the SUT must
count as a dropped packet. Therefore, the TG must retrieve
the counter of processed STAMP packets from the router
under test after each experiment session. To solve this problem,
we have designed and implemented a gRPC based API. The
SUT/router acts as a gRPC server, whereas a gRPC client in
the TG queries the server after each experiment session and
retrieves the number of processed STAMP packets. In this way,
the TG can sum up this number with the number of received
data packets and can properly evaluate the packet drop ratio.

To run the performance experiments, a careful configuration
of the SUT node is needed because we need to saturate
the capacity of a CPU to measure the PDR@0.5% metric.
Therefore, we need that all tasks of our interest are executed
by the selected CPU and we need to avoid that any other
task is executed in the same CPU. A detailed discussion on
these aspects can be found in the Appendix of [38]. A walk-

Fig. 12: Collector throughput, only data traffic.

Fig. 13: Reflector throughput, only data traffic.

through documentation of how to setup the testbed and run
the experiment is available in [34].

B. Performance analysis

We report several experiments to evaluate the impact of
our Session-Sender and Session-Reflector implementations on
the user traffic. First, we evaluate the forwarding capability in
the scenario with only data traffic (no STAMP test packets)
without running any STAMP implementation. We consider this
throughput as our baseline. Then, we run the Session-Sender
or the Session-Reflector on the SUT and we evaluate the
maximum achievable throughput for different combinations of
data and STAMP test packets using our three different STAMP
implementations.

The forwarding capacity of the node is measured using the
PDR@0.5% metric as discussed in the previous subsection.
The results reported in Figs. 12-16 are always the average of
10 evaluations (every single evaluation is carried out using the
SRPerf tool [52]). We do not report error bars with confidence
intervals in our figures, as we obtained stable results and the
95% confidence intervals are so close to the average that they
are not noticeable. The tables with the detailed results are
reported in the Appendix of [38].

The comparison among the STAMP Session-
Sender/Collector implementations is shown in Fig. 12, where
Scapy and ScapyOpt denote the basic and optimized Scapy
implementations, respectively. Scapy denotes the basic Scapy

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3300151

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



12

(a) Collector. (b) Reflector.

Fig. 14: Throughput, only STAMP traffic.

The Scapy implementations suffer a 10.4% performance
degradation compared to the baseline performance. This
performance degradation is due to the fact that even if there
are no STAMP Test packets to be processed, the Session-
Sender still has to look at all the incoming packets to capture
the STAMP Test packets. This operation is very efficient, as it
is executed in kernel mode. Both user space implementations
have the same performance (≈925 kpps). The reason lies in
the fact that even if the two implementations differ greatly in
the processing of STAMP Test packets, the mechanisms used
to filter the STAMP Test packets are the same. Thus, when
there is only data traffic, the two implementations exhibit
the same performance degradation. The packet rate of the
eBPF-based implementation (≈1016 kpps) is higher than the
two user space implementations. This is due to the fact that
the HIKe eBPF chain contains a more efficient eBPF filter
with respect to the filter of the user space implementation.
Since this test is performed without STAMP packets, the
performance is only affected by the filter that the packet
traverses before being sent to the kernel networking stack.
The performance drop of the eBPF-based implementation
with respect to the baseline is 1.6%.

The STAMP Session-Reflector implementations exhibit the
same behavior when processing only data traffic. A compari-
son among the Session-Reflector implementations is shown in
Fig. 13.

We evaluated the PDR@0.5% in the opposite scenario in
which there is only measurement traffic (i.e., only STAMP
Test packets). The results are shown in Fig. 14.

Regarding the Session-Reflector (shown in Fig. 14a), the
basic implementation reaches a packet rate of ≈1.06 kpps,
which is much lower than the other two implementations. As
discussed in Section VI, the reasons for this poor performance
are related to the inefficiency of the Scapy AsyncSniffer and
the high overhead of the Scapy builder and dissector. In the
optimized implementation, we mitigated these issues. This
allows the Session-Sender to reach an higher packet rate,
≈85.8 kpps. The performance of eBPF-based implementation
is much higher (≈2995 kpps). The reason is that eBPF
performs all the processing in kernel space, while optimized
is a user space solution.

Concerning the performance of the Session-Reflector
(shown in Fig. 14b), we observe the same trend (Fig. 14b). The

Fig. 15: Collector throughput.

Fig. 16: Reflector throughput.

basic implementation reaches a packet rate of ≈470 pps, which
is lower than the packet rates of the optimized (≈35.3 kpps)
and eBPF-based implementation (≈2179 kpps). The perfor-
mance of the Session-Sender is always better than the Session-
Reflector. The reason is that the Session-Sender processing
is less expensive than the Session-Reflector processing. For
each received STAMP Session-Reflector packet, the Session-
Sender must collect and store the timestamps. Instead, when
the Session-Reflector receives a STAMP Session-Sender Test
packet, it must generate a STAMP Session-Reflector Test
packet and forward the packet towards the Session-Sender.
These operations are much more expensive than storing the
timestamps.

Clearly, the scenario described above with only measure-
ment traffic is unrealistic. We only use it to assess and compare
the performance of the different implementations. In real
scenarios, the measurement traffic (i.e., STAMP) is a small
fraction of the overall traffic and will never reach 100% link
capacity. For this reason, we analysed the performance con-
sidering different fraction of STAMP measurement packets.

Fig. 15 shows the maximum achievable throughput for the
Session-Sender, varying the fraction of STAMP measurement
packets. The basic implementation starts at ≈927.8 kpps at 0%
STAMP, drops to ≈641.3 kpps (at 0.05% STAMP) and ≈20.3
kpps (at 5% STAMP), and then it continues to slowly drop to
≈1.06 kpps (100% STAMP). The throughput of the optimized
implementation starts at ≈924.5 kpps and remains stable until
the measurement traffic is 0.1% of the total traffic. The packet
rate of the eBPF-based implementation starts at ≈1015.9 kpps
when there is no measurement traffic (i.e., no STAMP packets)
and it remains almost stable until the measurement traffic is
10% of the total traffic. Then, we observe a trend in contrast
with the two user space implementations. The performance
goes up to ≈1152.1 kpps when the measurement traffic is
20% of the total traffic and reaches ≈2994.9 kpps when the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3300151

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



13

measurement traffic is 100%.
The reason why the eBPF implementation starts with a

higher throughput (PDR@0.5%) when the STAMP traffic is
low, is that its BPF filter used to select the STAMP traffic
is lighter than the one used by the Scapy implementations.
When the percentage of STAMP traffic is very low, it does
not affect the overall performance and the filtering is the only
factor that plays a role. When the STAMP traffic increases, the
throughput of the eBPF implementation increases because the
STAMP packets are not sent to the kernel networking stack
and they are processed faster by our eBPF program than the
SRv6 packets that the kernel is encapsulating. On the other
hand, the Scapy implementations process the STAMP packets
in the user space, hence the performance is reduced when the
fraction of STAMP packets increases.

The Session-Reflector throughput for different value of
the percentage of STAMP measurement packets is shown
in Fig. 16. The results for the three implementations are
consistent with what we have discussed for the Session-
Sender/Collector implementation. For high value of the per-
centage of STAMP traffic, it can be noted that the performance
is slightly lower, this is because the Session-Reflector sends
back the STAMP measurement packets. Apparently, this is
heavier than storing the STAMP measurement records as done
by the Session-Sender/Collector.

IX. RELATED WORKS

Several solutions have been proposed for performance mon-
itoring in a network. Some of them like Nagios [54] and
Zabbix [55] focus on the monitoring of network devices. Other
solutions like Ceilometer [56] target cloud environments. Con-
cerning SDN, several solutions have been proposed. OpenNet-
Mon [57] is a framework to measure throughput, delay, and
packet loss in OpenFlow networks. A monitoring framework
for SDN Virtual Networks is proposed in [58]. Other solutions
for OpenFlow networks can be found in [59] and [60]. [7]
proposes a review of the monitoring techniques used in SDN.

Internet Engineering Task Force (IETF) worked on the
standardization of a protocol to measure the performance of
IP and MPLS networks. This protocol is defined in RFC
4656 [61] and it is called One-Way Active Measurement
Protocol (OWAMP). OWAMP only focused on the one-way
performance metrics, such as one-way delay and one-way
packet loss. Another protocol was defined later, called Two-
Way Active Measurement Protocol (TWAMP). TWAMP (de-
fined in RFC 5357 [62]) introduced the two-way measure-
ments. RFC 5357 defines both the test protocol (i.e., the
format of the messages exchanged to collect the measures)
and the control protocol (i.e., the protocol used to setup
the parameters required by the measurement session). RFC
8762 [28] introduces a new protocol, known as Simple Two-
Way Active Measurement Protocol (STAMP). RFC 8972 [29]
proposes optional extensions, such as TLV (Type-Length-
Value) coding to specify the Return Path. Later on, the STAMP
protocol has been extended to support SR networks (both SR-
MPLS and SRv6) [31]. This solution can measure metrics
like delay or packet loss of a SRv6 path. The measurement

mechanism is based on packets exchanged on the SRv6 path
under measurement. These packets carry information used to
compute the performance.

In [63], the authors described a per-flow packet loss mea-
surement solution based on the alternate marking method
called PF-PLM. They also proposed and compared two dif-
ferent implementations of the proposed solution, realized by
extending Netfilter/Xtables and IP set Linux frameworks,
respectively. In our previous work [64], we proposed an
open source solution for Performance Monitoring of SRv6
networks, called SRv6-PM. SRv6-PM includes a cloud-native
infrastructure that supports ingestion, processing, storage and
visualization of PM data. We also provided an implementation
based on the eBPF framework. Both works focused on packet
loss monitoring.

An open source implementation of TWAMP and TWAMP
light (STAMP) called twampy is available in [65]. Twampy
has been released by a Nokia team with the goal of providing
functional validation of the TWAMP implementation on Nokia
devices. Twampy is coded in Python, running in user-space,
and it does not support SRv6.

In [66], the authors described SRA, a user space implemen-
tation of the SRv6 data plane based on AF XDP. The proposed
solution supports a custom SRv6 behavior called End.DM
which enables the measurement of the delay in SRv6 networks.
SRA collects the timestamps in each node of the SRv6 path.
Our solution does not implement an SRv6 dataplane, it only
implements the STAMP protocol and leaves the SRv6 packets
to the Linux kernel. Moreover, STAMP is focused on the
end-to-end delay, so it is not necessary to record all the
intermediate nodes timestamps.

X. CONCLUSION

In this paper, we proposed a solution to support the de-
lay monitoring of SRv6 SD-WAN services. Our solution is
based on the STAMP protocol and its extensions to support
performance measurements in SRv6 networks, currently under
discussion in the IETF. The main components of the solution
are the STAMP Session-Sender and Session-Reflector which
run in the SRv6 routers and perform the delay monitoring
operations in the data plane. These data plane components
need to be configured to execute the monitoring procedures.
We defined and implemented an API that allows an SDN
controller to interact with the Session-Sender and Session-
Reflector. We integrated the proposed solution in EveryWAN,
an SD-WAN open source prototype. Therefore, we deployed
and tested a complete open source framework for delay
monitoring of SRv6 based SD-WANs. In this respect, we have
given a positive answer to the first two research and techno-
logical questions outlined in the introduction: i) the proposed
approach based on IETF standards and current Internet drafts
is an effective solution for delay monitoring of SRv6 networks;
ii) we were able to implement the Delay Monitoring in an open
source prototype based on Linux software routers, covering
both the data plane aspects and the control plane aspects.

Then, we have addressed the research questions related to
the performance impact of delay monitoring procedures on

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3300151

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



14

a Linux software router. We have implemented the proposed
solution in three different versions and executed a number of
performance experiments to evaluate and compare the three
implementations. We have started with a naive user space
implementation of STAMP based delay monitoring, but we
realized that its performance was poor, with a high reduction
of the forwarding capacity of the software router. We have
optimized the user space implementation, achieving an ac-
ceptable performance impact. In particular, with the optimized
user space implementation the impact is acceptable when the
fraction of measurement packets is kept within reasonable
limits (e.g. less than 0.1%). We think that these limits will
not be exceeded under practical operational conditions, as
the number of measurement packets will always be a small
fraction of the data traffic. Therefore, we have integrated the
optimized user space implementation in our open source SD-
WAN framework, which now offers a running prototype of
the delay monitoring solution. We further considered a third
implementation, based on the Linux eBPF technology. This
proof-of-concept implementation providee a positive answer
to question about the feasibility of delay monitoring in SD-
WANs with negligible impact on the forwarding capability of
a Linux software router.

ACKNOWLEDGMENT

This work has received funding from the Cisco University
Research Program, from Europeand Union under the GÉANT
Innovation Programme and under the Italian National Recov-
ery and Resilience Plan (NRRP) of NextGenerationEU, part-
nership on “Telecommunications of the Future” (PE00000001
- program “RESTART”).

REFERENCES

[1] Cisco SD-WAN. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/enterprise-networks/sd-
wan/index.html

[2] S. Jain et al., “B4: Experience with a globally-deployed software defined
wan,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, p. 3–14, aug
2013. [Online]. Available: https://doi.org/10.1145/2534169.2486019

[3] C.-Y. Hong et al., “B4 and after: Managing hierarchy, partitioning, and
asymmetry for availability and scale in google’s software-defined wan,”
in Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, ser. SIGCOMM ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 74–87. [Online].
Available: https://doi.org/10.1145/3230543.3230545

[4] flexiWAN. [Online]. Available: https://flexiwan.com/
[5] M. Mahalingam et al., “Virtual eXtensible Local Area Network

(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks
over Layer 3 Networks,” RFC 7348, Aug. 2014. [Online]. Available:
https://www.rfc-editor.org/info/rfc7348

[6] C. Scarpitta et al., “Everywan- an open source sd-wan solution,” in 2021
International Conference on Electrical, Computer, Communications and
Mechatronics Engineering (ICECCME), 2021, pp. 1–7.

[7] P.-W. Tsai et al., “Network monitoring in software-defined networking:
A review,” IEEE Systems Journal, vol. 12, no. 4, pp. 3958–3969, 2018.

[8] W. Bekri, R. Jmal, and L. C. Fourati, “Softwarized internet of things
network monitoring,” IEEE Systems Journal, vol. 15, no. 1, pp. 826–834,
2021.

[9] V. R. Kebande, N. M. Karie, and R. A. Ikuesan, “Real-time
monitoring as a supplementary security component of vigilantism in
modern network environments,” International Journal of Information
Technology, vol. 13, no. 1, pp. 5–17, dec 2020. [Online]. Available:
https://doi.org/10.1007/s41870-020-00585-8

[10] gRPC - A high performance, open source universal RPC framework.
[Online]. Available: https://grpc.io/

[11] “ebpf,” https://ebpf.io/, accessed: 2022-09-08.
[12] C. Filsfils et al., “The segment routing architecture,” in 2015 IEEE

Global Communications Conference (GLOBECOM), 2015, pp. 1–6.
[13] C. Filsfils et al., “Segment Routing Architecture,” RFC 8402, Jul.

2018. [Online]. Available: https://www.rfc-editor.org/info/rfc8402
[14] X. Xu et al., “MPLS Segment Routing over IP,” RFC 8663, Dec. 2019.

[Online]. Available: https://www.rfc-editor.org/info/rfc8663
[15] C. Filsfils et al., “IPv6 Segment Routing Header (SRH),” RFC 8754,

Mar. 2020. [Online]. Available: https://www.rfc-editor.org/info/rfc8754
[16] C. Filsfils et al., “Segment Routing over IPv6 (SRv6) Network

Programming,” RFC 8986, Feb. 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc8986

[17] S. Matsushima et al., “SRv6 Implementation and Deployment
Status,” Internet Engineering Task Force, Internet-Draft draft-
matsushima-spring-srv6-deployment-status-15, Apr. 2022, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-
matsushima-spring-srv6-deployment-status-15

[18] What is VPP? [Online]. Available: https://wiki.fd.io/view/VPP
[19] G. Dawra et al., “SRv6 BGP based Overlay Services,”

Internet Engineering Task Force, Internet-Draft draft-ietf-bess-srv6-
services-15, Mar. 2022, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-bess-srv6-services/15/

[20] S. Previdi et al., “Source Packet Routing in Networking (SPRING)
Problem Statement and Requirements,” RFC 7855, May 2016. [Online].
Available: https://www.rfc-editor.org/info/rfc7855

[21] C. Li et al., “A Framework for Constructing Service
Function Chaining Systems Based on Segment Routing,” Internet
Engineering Task Force, Internet-Draft draft-li-spring-sr-sfc-control-
plane-framework-06, Apr. 2022, work in Progress. [Online].
Available: https://datatracker.ietf.org/doc/draft-li-spring-sr-sfc-control-
plane-framework/06/

[22] P. L. Ventre et al., “Segment routing: A comprehensive survey of
research activities, standardization efforts, and implementation results,”
IEEE Communications Surveys Tutorials, vol. 23, no. 1, pp. 182–221,
2021.

[23] ROSE Project. [Online]. Available: https://netgroup.github.io/rose/
[24] Innovation Programme - GÉANT Community. [On-

line]. Available: https://community.geant.org/community-programme-
portfolio/innovation-programme/

[25] User Controlled SD-WAN Services with Performance Monitoring
over GÉANT report. [Online]. Available: https://github.com/everywan-
io/everywan-io.github.io/raw/master/docs/everywan-ucss-report-v01.pdf

[26] Svinota. (1999) Pyroue2. [Online]. Available:
https://github.com/svinota/pyroute2

[27] EveryWAN white paper. [Online]. Avail-
able: https://github.com/everywan-io/everywan-
io.github.io/raw/master/docs/EveryWAN-WhitePaper-v1.pdf

[28] G. Mirsky et al., “Simple Two-Way Active Measurement Protocol,”
RFC 8762, Mar. 2020. [Online]. Available: https://www.rfc-
editor.org/info/rfc8762

[29] G. Mirsky et al., “Simple Two-Way Active Measurement Protocol
Optional Extensions,” RFC 8972, Jan. 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc8972

[30] R. Gandhi et al., “Simple TWAMP (STAMP) Extensions for
Segment Routing Networks,” Internet Engineering Task Force, Internet-
Draft draft-ietf-ippm-stamp-srpm-03, Feb. 2022, work in Progress.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-ippm-
stamp-srpm-03

[31] R. Gandhi et al., “Performance Measurement Using Simple
TWAMP (STAMP) for Segment Routing Networks,” Internet
Engineering Task Force, Internet-Draft draft-ietf-spring-stamp-
srpm-03, Feb. 2022, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-spring-stamp-srpm-03

[32] J. Martin et al., “Network Time Protocol Version 4: Protocol and
Algorithms Specification,” RFC 5905, Jun. 2010. [Online]. Available:
https://www.rfc-editor.org/info/rfc5905

[33] “[a guide to gps ntp servers for network time synchronization],”
https://timetoolsltd.com/gps/gps-ntp-server/, accessed: 2023-07-07.

[34] SRv6 Delay Monitoring Home Page. [Online]. Available:
https://netgroup.github.io/srv6-delay-mon/

[35] “IEEE standard for a precision clock synchronization protocol for
networked measurement and control systems.” [Online]. Available:
https://doi.org/10.1109/ieeestd.2008.4579760

[36] SRv6 Delay Monitoring Code Repository. [Online]. Available:
https://github.com/everywan-io/srv6pm-delay-measurement

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3300151

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



15

[37] P. L. Ventre et al., “Sdn architecture and southbound apis for ipv6
segment routing enabled wide area networks,” IEEE Transactions on
Network and Service Management, vol. 15, no. 4, pp. 1378–1392, 2018.

[38] C. Scarpitta et al. (2022) High Performance Delay Monitoring for
SRv6 Based SD-WANs. arXiv preprint arXiv:2212.12627. [Online].
Available: https://arxiv.org/pdf/2212.12627

[39] Scapy - Packet crafting for Python2 and Python3. [Online]. Available:
https://scapy.net/

[40] Packet MMAP. [Online]. Available:
https://www.kernel.org/doc/html/latest/networking/packet_mmap.html

[41] “Hike/eclat,” https://hike-eclat.readthedocs.io/en/latest/, accessed: 2022-
09-08.

[42] A. Mayer et al., “eBPF Programming Made Easy with eCLAT,” in 2022
18th International Conference on Network and Service Management
(CNSM), 2022, pp. 28–36.

[43] G. Sidoretti and S. Salsano. HIKe package STAMP. [Online]. Available:
https://github.com/netgroup/hikepkg-stamp

[44] B. P. Welford, “Note on a method for calculating corrected sums of
squares and products,” Technometrics, vol. 4, no. 3, pp. 419–420, 1962.
[Online]. Available: http://www.jstor.org/stable/1266577

[45] Algorithms for calculating variance. [Online]. Available:
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance

[46] “Benchmarking Methodology for Network Interconnect Devices,”
RFC 2544, Mar. 1999. [Online]. Available: https://www.rfc-
editor.org/info/rfc2544

[47] CloudLab home page. [Online]. Available: https://www.cloudlab.us/
[48] TRex realistic traffic generator. [Online]. Available: https://trex-

tgn.cisco.com/
[49] DPDK. [Online]. Available: https://www.dpdk.org/
[50] Linux Foundation Wiki - iproute2. [Online]. Available:

https://wiki.linuxfoundation.org/networking/iproute2
[51] ethtool - Linux man page. [Online]. Available:

https://linux.die.net/man/8/ethtool
[52] A. Abdelsalam et al., “Srperf: A performance evaluation framework

for ipv6 segment routing,” IEEE Transactions on Network and Service
Management, vol. 18, no. 2, pp. 2320–2333, 2021.

[53] TRex Stateless Python API. [Online]. Available: https://trex-
tgn.cisco.com/trex/doc/cp_stl_docs/index.html

[54] “Nagios it infrastructure monitoring,” https://www.nagios.org/, accessed:
2022-08-04.

[55] “Zabbix monitoring everything,” https://www.zabbix.com/, accessed:
2022-08-04.

[56] “Openstack celiometer,” https://docs.openstack.org/ceilometer/latest/,
accessed: 2022-08-04.

[57] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon:
Network monitoring in openflow software-defined networks,” in 2014
IEEE Network Operations and Management Symposium (NOMS), 2014,
pp. 1–8.

[58] G. Yang et al., “Network monitoring for sdn virtual networks,” in IEEE
INFOCOM 2020 - IEEE Conference on Computer Communications,
2020, pp. 1261–1270.

[59] W. Queiroz, M. A. Capretz, and M. Dantas, “An approach for sdn
traffic monitoring based on big data techniques,” Journal of Network
and Computer Applications, vol. 131, pp. 28–39, 2019.

[60] R. B. Santos, T. R. Ribeiro, and C. de AC César, “A network monitor
and controller using only openflow,” in 2015 Latin American Network
Operations and Management Symposium (LANOMS). IEEE, 2015, pp.
9–16.

[61] S. Shalunov, B. Teitelbaum, et. al, “A One-way Active Measurement
Protocol (OWAMP),” IETF RFC 4656, Sep. 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4656

[62] K. Hedayat, R. Krzanowski, et al., “A Two-Way Active Measurement
Protocol (TWAMP),” IETF RFC 5357, Sep. 2006. [Online]. Available:
https://tools.ietf.org/html/rfc5357

[63] P. Loreti et al., “Implementation of accurate per-flow packet loss
monitoring in segment routing over ipv6 networks,” in 2020 IEEE 21st
International Conference on High Performance Switching and Routing
(HPSR), 2020, pp. 1–8.

[64] P. Loreti et al., “Srv6-pm: A cloud-native architecture for performance
monitoring of srv6 networks,” IEEE Transactions on Network and
Service Management, vol. 18, no. 1, pp. 611–626, 2021.

[65] “Python tools for twamp and twamp light,”
https://github.com/nokia/twampy, 2017, accessed: 2023-07-05.

[66] B. Zhao et al., “Sra: Leveraging af_xdp for programmable network
functions with ipv6 segment routing,” in 2022 IEEE 47th Conference
on Local Computer Networks (LCN), 2022, pp. 455–462.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3300151

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


