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Abstract—Wide Area Network (WAN) research benefits from
the availability of realistic network topologies, e. g., as input to
simulations, emulators, or testbeds. With the rise of Machine
Learning (ML) and particularly Deep Learning (DL) methods,
this demand for topologies, which can be used as training data, is
greater than ever. However, public datasets are limited, thus, it is
promising to generate synthetic graphs with realistic properties
based on real topologies for the augmentation of existing data
sets. As the generation of synthetic graphs has been in the focus
of researchers of various application fields since several decades,
we have a variety of traditional model-dependent and model-
independent graph generators at hand, as well as DL-based
approaches, such as Generative Adversarial Networks (GANs).
In this work, we adapt and evaluate these existing generators
for the WAN use case, i. e., for generating synthetic WANs with
realistic geographical distances between nodes. We investigate two
approaches to improve edge weight assignments: a hierarchical
graph synthesis approach, which divides the synthesis into local
clusters, as well as sophisticated attributed sampling. Finally, we
compare the similarity of synthetic and real WAN topologies and
discuss the suitability of the generators for data augmentation in
the WAN use case. For this, we utilize theoretical graph metrics,
as well as practical, communication network-centric performance
metrics, obtained via OMNeT++ simulation.

Index Terms—Wide Area Networks (WAN), Generative Ad-
versarial Networks (GAN), Graph Generation, Network Perfor-
mance, Network Simulation.

I. INTRODUCTION

Graphs are an important concept in many research areas, and
their topology often has decisive impact on the studied sys-
tems, whether it is the communication flow in social networks,
the composition of chemical molecules, or the architecture of
computer networks. For the latter, the network topology has a
big impact on research for Wide Area Networks (WAN), such
as the controller placement in Software-defined Networking
(SDN), the gateway placement in Long Range Wide Area
Networks (LoRaWANs), or the prediction of Key Performance
Indicators (KPIs), such as round-trip times (RTTs) and net-
work load. Researchers often resort to testbeds, simulations,
or emulators for parameter studies, and thus, require realistic
network topologies to obtain meaningful results.

Several public datasets exist, such as the Internet Topology
Zoo (ITZ) [1] or the Survivable fixed telecommunication
Network Design library (SNDlib) [2], containing over 250
and 25 different network topologies, respectively. However, as
the size of these datasets is limited, researchers already have
expressed the concern that the zoo is too small for their field of

application [3], and resorted to simple algorithmic approaches
to create new data points [4].

Another possibility to obtain realistic network topologies is
to use model-based graph generators, such as Barabási–Albert
(BA) [5], Erdős–Rényi (ER) [6], and Watts-Strogatz (WS) [7],
which can produce topologies with desired properties. In
combination with small sets of realistic network topologies,
the addition of synthetic network topologies with realistic
properties allows for data augmentation, which is especially
beneficial for Machine Learning (ML)-based approaches [8].
Besides data augmentation, the synthesis of network graphs
may also serve as a privacy mechanism, as organizations or
enterprises may be hesitant to publish information about their
network topology, as tomography-based topology inference
poses a crucial threat to communication networks [9]. Still,
these algorithmic approaches may not always yield optimal
results and show room for improvement [4], as the layout of
computer networks does not adhere to any general model [1].

However, in recent years, more sophisticated and model-
agnostic ways to synthesize networks have arisen. Instead of
conforming to an underlying model, these approaches take
information from the real network as input, e. g., the joint
degree distribution (JDD) [10], and try to replicate the real
network as close as possible. Similarly, Deep Learning (DL)-
based approaches such as Generative Adversarial Networks
(GANs) [11] are also model-agnostic. They use presented
information and obfuscate it to synthesize new data.

Summarizing, research on graph generation presents us with
model-dependent, model-independent, and DL-based graph
generation. However, it is unclear, which graph generation
is best suited for WAN research. The complexity of WAN
generation lies in the geographical distances of links, as these
distances directly influence a network’s performance, and the
weights are not easily interchangeable, i. e., we cannot switch
the weight of a link connecting two continents with the weight
of an edge connecting two cities, as it would drastically
influence graph metrics and consequently also performance
metrics, such as the RTT. Thus, the goal of this paper is to
evaluate the vastly different approaches with respect to the
WAN use case and discuss their pros and cons. To the best of
our knowledge, there exists no work on synthesizing WANs by
adopting and comparing traditional as well as DL approaches.
The main contributions of this paper are:

1) We evaluate graph generation approaches for the WAN
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Fig. 1: Graphical abstract of this work, highlighted chapters
depict the main part.

problem, comparing the similarity of synthetic and real
network topologies via theoretical graph metrics as well
as practical performance metrics.

2) We study both unweighted and weighted graphs, for
which the latter contain additional link attributes, such
as the geographical distance of the WAN nodes.

3) We investigate two approaches to improve edge weight
assignments: a hierarchical graph synthesis approach,
which divides the synthesis into local clusters, as well
as sophisticated attributed sampling.

4) We publish our code and generated networks [12], [13].
The remainder of this work is structured as depicted in

Figure 1. Firstly, in Section II, we give background informa-
tion about network topologies, algorithmic graph generators,
GANs, and graph/performance metrics, while Section III out-
lines related work. In Section IV, we specify the methodol-
ogy, e. g., utilized networks, graph generators, and metrics.
We then evaluate the generators’ capability to synthesize
unweighted network topologies similar to the real networks in
Section V, whereas Section VI adapts the initial approach to
generate weighted graphs, representing WANs. In Section VII
we simulate the networks to analyze load- and delay-based
performance metrics. Sections VIII and IX investigate ap-
proaches to improve edge weight assignments: sophisticated
attribute sampling and a hierarchical graph synthesis approach.
Section X highlights the respective (dis)advantages of the
studied approaches. Lastly, we summarize our findings and
provide an outlook for future work in Section XI.

This work is an extended version of our recently published
paper [14]. In detail, we add an evaluation of more practical
load- and delay-based performance metrics in addition to the
theoretical graph metrics for both existing approaches (naı̈ve,
hierarchical). In addition to the two existing approaches, we
also investigate a completely new approach to improve the as-
signment of weighted edges: sophisticated attribute sampling.
To analyze the performance metrics, we simulate the networks
via OMNeT++ to mimic a software-defined WAN (SD-WAN),
resulting in 148, 000 simulation runs, equating to 2.8 years of
real-world time. Last but not least, we extend on related work
and background information as well as adding a more detailed
insight into to the hierarchical approach.

TABLE I: Utilized notations, adapted from Faez et al. [16].

Notation Description

V Node (or vertex) set of a graph.
E Edge (or link) set of a graph.
G A graph, G = (V,E).
n Number of nodes, n = |V |
m Number of edges, m = |E|

N(v) Neighbour set of a node v ∈ V
e(v1, v2) The edge e connecting the node v1 to a node v2.

spu(v1, v2) Shortest unweighted path from a node v1 to a node v2.
spw(v1, v2) Shortest weighted path from a node v1 to a node v2.

deg(v) Degree of a node v.

II. BACKGROUND

In this section, we briefly outline characteristics of WANs.
Furthermore, we discuss the possibility of creating synthetic
networks via algorithmic and DL-based approaches. Lastly, we
discuss graph and performance metrics, which may be used
for graph/network analysis.

WANs. Computer networks can be generally divided into
different categories, e. g., regarding their geographical distri-
bution and functionality. The main characteristic of WANs
compared to other computer networks are long(er) links be-
tween the comprising nodes, e. g., intercontinental or cross-
country connections, having great impact on the performance
metrics like the RTT. WAN generation is more complex
compared to computer networks where there is no such big
variance, as a misplacement of such a long link may have
great impact on the metrics. As identified by Knight et al. [1]
the layout of such computer networks is not conforming to
any common guidelines, thus, showing great diversity in their
design and differing greatly from other networks, such as
social networks [15]. We interpret a WAN as a Graph G, where
intermediary devices such as routers and switches depict the
nodes V , and links between those devices depict the edges E.
Table I illustrates common notations used in this paper.

Algorithmic Graph Generators. As available data for WAN
topologies is exhaustible, generating more networks is desir-
able. Model-dependent graph generators typically have one
or more input parameter via which the model generation can
be controlled, and do not need any information about the
real network, that we are trying to replicate. Nevertheless,
the parameters need to be configured properly and may not
be universally applicable. Thus, throughout the years, more
sophisticated, model-agnostic approaches emerged. Instead
of being configurable via input parameters, the generators
take explicit information about the network we are trying to
replicate, which they then try to match as close as possible.
This type of generation is often coupled with graph sampling
to approximate characteristics of larger networks.

GANs. With the rise of DL, approaches such as GANs [11]
– widely used for image generation – have also been adapted
for many other applications such as topology generation.
Generally, a GAN consists of two neural networks (NNs),
namely the discriminator and the generator. The generator is
responsible for synthesizing fake data samples and thus tries
to trick the discriminator. It starts off with random noise and
then iteratively improves its output, whereas the discriminator
is fed real data as well as the synthesized samples from the
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generator and tries to classify them correctly. GANs can be
seen as a zero-sum game between those two actors, where
the discriminator tries to minimize the so-called loss, which
represents the discriminator’s ability to distinguish between
real and fake data. The generator tries to maximize this loss.
By simply taking a graph’s adjacency matrix as input for the
GAN, we can easily utilize existing approaches for GAN-
based data generation, as both images and adjacency matrices
are also basically just n× n matrices.

Graph Metrics. Many graph metrics can be calculated and
compared between real and synthesized networks. Usually,
most graph metrics are based on the shortest paths in the
network or the node degree [17], and may be node- or graph-
based, i. e., consist of multiple values for all nodes, or just one
for the whole graph. The closer the metrics for the synthesized
samples are, the better the reconstruction is. However, as al-
ready observed by Bojchevski et al. [18], perfectly replicating
a network is not the goal, as otherwise one could just copy
the existing data point in the dataset, without performing any
sort of network synthesis. Thus, while we want the generated
networks on average to have similar graph metrics to the real
network, variations in the metrics are still desired.

Performance Metrics. The aforementioned static graph met-
rics compare the generated topologies on a more theoretical
level. Thus, it is unclear how such a synthesized WAN would
perform on a more practical level with regards to performance
metrics, which may potentially be more complex as they model
dynamic processes [17]. In communication networks, many
performance metrics are delay- or workload-based, e. g., RTT
and throughput, respectively. Performance and graph metrics
often correlate, e. g., the RTT may increase if there are more
nodes between sender and receiver. Consequentially, while
similar graph metrics can potentially depict a decent base for
synthesized networks, it is important to also evaluate their
performance for a specific use case.

SDN. In this paper, we evaluate the performance metrics
of the synthetic networks for the use case of SDN, more
precisely, SD-WANs. Due to the ever increasing complexity of
communication networks, SDN emerged as a design paradigm
to increase the flexibility and manageability of communication
systems [19], [20] by separating the control plane from the
data plane. Here, the network’s intelligence resides in a central
controlling entity, i. e., the SDN controller, which may pose a
scalability and elasticity issue due to being a potential perfor-
mance bottleneck and single point of failure. Thus, evaluating
more SDN-specific performance metrics such as the controller
load is of great interest. However, access to large scale SDN-
enabled networks, including compatible hardware, is limited
[21], [22]. Frameworks such as the OpenFlow OMNeT++
Suite (OOS) [23] have emerged, enabling simulation of a
variety of network topologies in an SDN context.

III. RELATED WORK

In this section, we give an overview of related work con-
cerning graph generation, and discuss which approaches we
adopt for the WAN synthesis.

Algorithmic Graph Generation. First approaches to synthe-
size networks via algorithmic generators date back decades.

One of the most well-known and simplest approach is the
Erdős-Rényi (ER) model [6], where a graph is simply con-
structed by defining a probability, that an edge between two
nodes is created. As the rather random structure of ER graphs
may not be fitting, alternatives are the Barabási-Albert (BA)
model [5], which models a preferential attachment of nodes
by creating hubs, or the Watts-Strogatz (WS) model [7], which
starts off with a (chord) ring structure and then randomly
rewires edges. Clearly, all of these models make underlying
assumptions about the graphs, which may only be applicable in
specific cases. We decide to evaluate ER, BA, and WS models,
as they are cheap and simple models, can potentially pose a
very easy solution to our problems, and are still prevalent in
current literature [24].

Research on graph synthesis nowadays has shifted to a
more model-agnostic way of modeling graphs. The 2K+-
framework [10] is a state-of-the-art approach of such a model-
agnostic approach. Given explicit information such as a joint
degree matrix (JDM), the algorithm tries to construct a graph
that matches this information as close as possible. We decide to
pick 2K graphs as well, as they depict an up-to-date approach,
that has been constantly extended in recent years. It adds a
more complex/sophisticated way to generate graphs compared
to the previous, model-based approach.

The above approaches are mainly geared towards social
networks and have been tested thoroughly in this field of
application. The goal of this work is to investigate these
approaches in the context of WANs by providing an extensive
analysis of weighted and unweighted graph metrics.

Deep Graph Generation. An alternative to algorithmic
approaches is DL-based graph generation. Generally, DL-
based generative models can be divided into two types,
namely implicit and explicit models [25]. The latter directly
samples/learns from the (estimated) probability distribution,
while the former learns how to sample from the distribution,
without directly modeling it [16], [25]. Popular examples for
the two approaches are GANs and Variational Autoencoders
(VAEs) [26], respectively. In this work, we decide to inves-
tigate the more implicit approach of GAN-based topology
generation, as it complements the more explicit approach of
the previous 2K algorithm. This DL-based graph generation
depicts the most complex, but also most flexible approach of
our comparison.

As showcased by Faez et al. [16], research for such deep
graph generators mainly focuses on chemical and bioinformat-
ics [27], [28], social structures [18], [29]–[31], or synthetic
datasets [30], [31], created by ER, WS, and others. In this
paper, we adopt some techniques from other application fields
to evaluate for our use case of WAN generation. Specifically,
we take inspiration from Tavakoli et al. [32] for the general
approach, and Liu et al. [33] for the hierarchical synthesis.
Though, our methodology drastically varies in terms of utilized
GAN architecture or utilized clustering/community detection
algorithms in the hierarchical case. Both works focus on social
and/or synthetic datasets. WANs differ from networks in other
research areas, as the works mainly zero in on unweighted
graphs (possibly associated categorical node attributes). To the
best of our knowledge, there exists no work on synthesizing
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WANs via DL-based approaches, as well as a comparison with
traditional approaches.

Graph vs Performance Metrics. As the aforementioned
literature does not zero in on synthesizing communication
networks, they also draw no comparison with regards to
network performance between real and synthetic networks,
and consequently do not relate graph and performance metrics.
However, other works illustrate the importance of this relation-
ship, e. g., relating the network topology to SDN performance
prediction [4], [34], TSN latency assignments [35], network
resilience [36], or Quality of Service (QoS) [37]. Thus, in
this paper, we also investigate performance metrics of the
synthetic networks in addition to the graph metrics to quantify
the quality of the network generation.

IV. METHODOLOGY

In this section, we firstly outline the chosen networks we
utilize in our studies. Secondly, we explain the chosen network
generators and their configuration. We proceed by defining the
graph metrics we use for comparing synthetic networks to the
real network. Lastly, we conclude this section by explaining
the simulation setup and performance metrics.

A. Chosen Networks
We pick four networks from the ITZ, which are depicted in

Figure 2, as they cover topologies with varying characteristics.
In detail, we utilize a subset of the ITZ provided by Gray
et al. [34], [38] where networks from the original ITZ in
.graphml format have been transformed into a more readable
format, e. g., given longitudes and latitudes have already
been converted to physical distances, hyper-edges have been
resolved, or nodes with no location or connection have been
removed. Thus, any description of these networks adheres to
the conversion of Gray et al. Note that some connections
initially have a weight of zero, which we set to one (minimum
weight), to make them distinguishable from non-connections.

a) BREN: The first network is the Bulgarian Research
and Education Network (BREN), connecting various Bulgarian
universities, representing the network in the ITZ subset with
the largest number of links, with m = 107 and n = 27. It
has a peculiar layout, with inter-meshed clusters, and thus
is particularly interesting to investigate. Again, we want so
emphasize on the importance of geographical distances of
links in a WAN, as the (in)correct inference of those weights
may drastically influence a network’s performance. Placing
one of the longer links in the fully-meshed clusters here will
skew the average path delay.

b) BtNorthAmerica: Next, we also choose the network
with the second most links, drastically decreased to m = 70
and n = 33. It depicts a network distributed throughout the
whole continent of North America, thus spanning a wider
geographical range than BREN, while also being structurally
different with a more random layout.

c) GÉANT: The third network we choose is GÉANT as it
represents a medium network with a close to median amount of
links with m = 38 and n = 27 (median is 38.5 links). GÉANT
is the collaboration of various European National Research and
Education Networks (NRENs), connecting them, including the
previously introduced BREN.

(a) BREN (b) BtNorthAmerica

(c) GÉANT (d) GtsSlovakia

Fig. 2: The chosen WANs from the ITZ – red links ( ) depict
small geographical distances (in relation to the respective
maximum distance), yellow links ( ) bigger ones.

Fig. 3: BREN, BtNorthAmerica, GÉANT, and GtsSlovakia as
images (left to right), top: as BW, bottom: as RGB.

d) GtsSlovakia: Lastly, we choose an even sparser net-
work as our fourth option, namely GtsSlovakia with m = 30
and n = 28. Note that we specifically do not opt for the net-
work with minimum links here, which would be GtsCzechRe-
public, as this network is mostly path-like. Instead we choose
a network with a more characteristic network design, as it fits
the general model idea of one of the traditional generators, and
we find that an in-depth discussion is more appropriate. We
will, however, briefly discuss the results for GtsCzechRepublic
in the evaluation as well for the sake of consistency.

B. Network Generators

Before synthesizing networks, we have to decide on a set
of network generators and configure them in a fair way. In the
following, we adhere to the nomenclature of NetworkX [41],
which we use for the algorithmic generators.

a) ER: To configure the ER-model, we may only influ-
ence the output via the pER parameter, depicting the proba-
bility that a specific edge is constructed between two nodes.
Thus, the number of expected edges is

(
n
2

)
· pER edges, as

in a fully connected graph there are
(
n
2

)
= n(n−1)

2 edges.
Therefore, we configure pER as follows to match a network
(on average) with m edges: pER = 2m

n(n−1) . As it may occur
that the generated graph is disconnected, we rewire the graph
by adding a random edge between the largest component and
smaller components/isolated nodes, and then capping an edge
in the graph for every added edge while ensuring connectivity.

b) BA: To configure the BA-model, we may only change
the output via the mBA parameter, representing the number
of other nodes a newly added node is connected to, when
generating the network. On average, a node in the BA-model
has a degree of 2 ·mBA [42, p. 432], i. e., n ·mBA expected
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Fig. 4: Architecture of the utilized Deep Convolutional GAN (DCGAN) [39], [40].

edges for an undirected graph. Therefore, we configure mBA

to match a network (as close as possible) with m edges as
follows: mBA =

⌊
m
n

⌉
. Since mBA has to be an integer, we

round it to the nearest integer. Here, the output is always
connected, thus no need for rewiring.

c) WS: To configure the WS-model, we may change two
parameters, i. e., the number of nearest-neighbours kWS a node
initially connects to, and the probability pWS that an initial
edge is rewired. While the parameter kWS actually influences
the total number of edges, pWS only affects the rewiring. As
each node is connected to its kWS closest neighbours, the
average node degree is also kWS , meaning kWS ·n

2 edges in
the network. To model a network with close complexity to a
network with m edges, we configure: kWS =

⌊
2m
n

⌉
.

As the node is connected to kWS nodes only if kWS is
even, and kWS−1 if it is odd, we also distinguish between the
calculated kWS and an alternative k∗WS = kWS+1 and choose
the better fit of both. Lastly, the higher pWS is configured, the
more chaotic the graph gets, so we set pWS = 0.2, to retain
the possible ring-like structure, as a totally randomly generated
graph is already covered by the ER-model. Similarly to ER,
we will rewire the graph in the same manner, if the output is
not fully connected.

d) 2K: Compared to the three previous classical model-
based graph generators, 2K-graphs [10] are a state-of-the-art
approach for graph synthesis. Instead of adhering to a general
underlying model that we need to configure, the algorithm
takes the joint-degree distribution (JDD) of the graph as input.
In detail, the algorithm takes the joint degree matrix (JDM)
as input, where the element in the i-th row and j-th column
depicts the number of nodes of degree i attached to nodes
of degree j. The core idea of the algorithm is to start with
each node having stubs which edges can be connected to,
reflecting the degree of that node. Edges are then iteratively
added to the graph to match the given JDD. Thus, instead
of making assumptions about some sort of graph model, 2K
directly infers information about the network to be generated,
in this case the JDD. Again, we will rewire the graph as before,
if the output is not fully connected.

e) GAN: In the following, we explain the setup of the
GAN-based approach. As this is more complex, we subdivide
this into three parts, namely input, architecture, and output.

Input. As mentioned in the previous section, we utilize a
network’s unweighted and weighted adjacency matrix for the
GAN approach, which we can interpret as images as illustrated
in Figure 3. The top row illustrates the four networks from
Figure 2 as simple black-and-white (BW) images, where a
black pixel indicates that there is a link between nodes.

Similarly, the bottom row depicts the topologies as red-green-
blue (RGB) images, where a black pixel with RGB-channels
(0, 0, 0) depicts no connection, and the gradient from yellow
to red depicts a connection with varying min/max-normalized
geographical distances and analogous color-coding to the
networks in Figure 2, i. e., RGB-color channels of (1, i, 0) with
i ∈ [0, 1]. Similar GAN input has been proven useful in other
use cases, such as dynamic link prediction [43]. Though, we
deliberately utilize a second color channel instead of utilizing
the full spectrum of the greyscale, as otherwise a lower value
would indicate a less important link, but in our scenario every
link is equally important, independently from the geographical
distance. In other words, the red color channel is a binary
value, which simply states the existence of a link, whereas
the green color channel is a continuous value, depicting the
geographical distance. We do not utilize the blue color channel
of images and thus omit it. In the future, this channel may be
used to encode bandwidths or other WAN properties. Also,
note that we are not restricted to only three color channels,
though we choose this analogy for the sake of explainability.

As proposed by Tavakoli et al. [32], we feed the GAN
10,000 permutation matrices of the original network. In other
words, we randomly relabel the node ordering, which results
in different adjacency matrices/images, while still representing
the same network. Thus, we are able to generate new networks
with only one original network.

Architecture. Figure 4 illustrates the architecture of our
utilized GAN. The architecture is adapted from [39], designed
to synthesize images of numbers from 0 to 9, and implemented
in TensorFlow. As the image size and overall task complexity
is similar to our use case, we reuse this architecture and
adapt it. In detail, we parameterize the architecture to take any
size of input, as well as adding color-channels, as the initial
architecture is only designed for BW images. Additionally,
we make the discriminator and generator symmetrical, which
is not the case in the original, where the generator has an
extra convolutional layer. For BW images, we remove this
additional layer from the generator, and for RGB images we
add an additional layer to the discriminator as well, as BW
images are less complex than RGB images.

Output. As the GAN may produce samples, where the entry
in the matrix is not exactly binary, i. e., to represent whether
an edge exists between two nodes or not, but is a real number
between 0 and 1, we need to postprocess the output. For this,
we model the probability p(i, j) that there is an edge e(i, j)
in the postprocessed adjacency matrix, i. e., post[i][j] = 1,
as a Bernoulli distribution with p(i, j) = pre[i][j]+pre[j][i]

2
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depending on pre[i][j], which is the corresponding entry of
the preliminary adjacency matrix that was synthesized by
the GAN. In other words, if the GAN is confident, that
e(i, j) exists, the edge is more likely to persist through the
postprocessing. Note that the adjacency matrix for undirected
graphs is symmetrical with respect to the diagonal axis, thus
we take into account two entries in the above calculation. If
we synthesize weighted topologies and have decided on the
existence of a link via the first color channel, we choose as
link weight the average of the two symmetrical entries of the
raw GAN output in the second color channel. Lastly, as for the
previous algorithms, the GAN can also produce disconnected
graphs, so we again proceed in the same manner.

C. Graph Metrics

To compare the synthesized networks to the real networks,
we need to decide on a set of graph metrics. For this,
we choose graph metrics that have proven to be useful
in the context of communication networks, such as Time-
Sensitive Networking (TSN) [35], SDN-enabled performance
prediction [4], LoRaWAN gateway placement [44], SDN
controller placement [45], or Virtualized Network Function
(VNF) placement [46]. Thus, our graph metrics consist of
the Betweenness Centrality (BC), Closeness Centrality (CC),
and Degree Centrality (DC). For all metrics, we compute the
unweighted version, as well as their weighted version with
respect to the geographical distances.

The (unweighted) BC of a node is the fraction of shortest
paths, that a node is contained in, and is computed as follows:

BCu(v1) =
∑

v1 ̸=v2 ̸=v3

|{spu(v2, v3)|v1 ∈ spu(v2, v3)}|
|spu(v2, v3)|

The weighted BC is computed analogously, with the
weighted shortest paths spw(v2, v3) as basis. The (unweighted)
CC of node is the reciprocal of the sum of the shortest path
lengths to all other nodes, and is computed as follows:

CCu(v1) =
|V |∑

v2∈V |spu(v1, v2)|

Again, the weighted CC is computed analogously, with
the weighted shortest paths spw(v1, v2) as basis. Lastly, the
(unweighted) DC is the (normalized) degree of a node:

DCu(v1) =
deg(v1)

|V | − 1

As there is no universally accepted definition of a weighted
DC, we define it as the sum of all outgoing edge weights:

DistΣ(v1) = DCw(v1) =
∑
v2∈V

w(e(v1, v2))

D. Network Simulation

After specifying the topological metrics which are solely
based on the network layout, we also collect performance
metrics of SD-WANs. For this, we resort to a simulation-based
approach and utilize the OMNeT++-based OOS.

OOS. The OOS has been a popular tool in the past and
recent target for extensions for simulating SDN-enabled net-
works for use cases such as performance prediction [4], [34]

or intrusion detection [47]. At its core, the OOS provides us
with an implementation of OpenFlow-enabled [48] controllers
and switches. As described in the original OOS paper [23]
and its implementation [49], the OOS simulates the NOX-
MT [50] controller, a multi-threaded extension of the NOX
controller [51]. The SDN controller is equipped with a re-
alistic set of functionality, including topology discovery via
Link Layer Discovery Protocol (LLDP) messages, forwarding
mechanisms, and Address Resolution Protocol (ARP) proxy.
Adding to the traffic caused by the aforementioned controller
applications, the main traffic source are end-devices/hosts
connected to the switches, based on the StandardHost from
the INET [52] framework in conjunction with a modified
version of the PingApp, also from INET. To ensure statistical
robustness, each network (generated and real) is simulated four
times, each repetition reflecting a 10min timespan.

Performance Metrics. In contrast to the graph metrics, per-
formance metrics are collected during operation/after deploy-
ment of the network. As many popular performance metrics
are either load- or delay-based, we pick a representative of
both categories. The first performance metric we utilize is the
load of the SDN controller. The controller load is calculated
by the OOS in B

s on a timeslot-basis at a granularity of 1 s.
The second performance metric we evaluate is the RTT,

taking into account various latencies such as queuing and
service times at the switches and controllers, the possible
stalling when waiting for a controller response, and trans-
mission and propagation delays between nodes. The INET
framework equips the user with a tool to easily record the
RTT by providing the mentioned PingApp module.

V. SYNTHESIS OF UNWEIGHTED TOPOLOGIES

In this section, we examine a total of 1,000 synthesized
networks for each of the five generators and compare the
chosen graph metrics to the real networks. We start off by
providing an objective description of the results, and conclude
this section with a subjective interpretation. Note that for
the GAN, as we sample random permutation matrices and
generally GANs tend to oscillate [53], we generate these 1k
networks from ten different seeds to obtain robust results.

1) BREN: Figure 5a depicts the results for the BREN
network. On top, the average BC, CC, and DC of the synthetic
BREN-like networks are shown, with the red dashed line
showing the real value of BREN. On bottom, the average
Kolmogorov-Smirnov (KS) distance between the distribution
of the metric in the synthetic networks and in the real network
is illustrated. The whiskers indicate the standard deviation
of the KS metric. For the average BC and CC, it becomes
apparent that the legacy generators are not able to capture the
average centrality with their generated networks. This is due to
the peculiar structure of BREN, as it contains one big cluster
of fully meshed nodes, as well as some smaller clusters. The
DC, however, is captured on average perfectly for WS and
ER. However, this is expected, as we optimized all generators
to have the same, or as similar as possible, number of links
as the real network. 2K and the GAN are able to capture
all three centrality metrics for the average generated network.
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Fig. 5: Unweighted synthesis for the four networks; red dashed line ( ) depicts the metrics of the corresponding real network.

The main difference between both here is the variance of
generated networks, which is especially obvious for the DC.
Looking at the more distribution-focused KS distances, the
higher variance of the generated networks of the GAN is also
reflected there, with 2K possessing the best fits on average,
for the BC and DC, and CC being similar to that of the GAN.

2) BtNorthAmerica: Figure 5b depicts the results for Bt-
NorthAmerica in the same fashion as before. Generally, all
generators perform very similar – even the legacy ones –
as the network is less structured and simply capturing a
fitting number of links is more sufficient compared to BREN.
However, none of the generators is quite able to catch the
average BC and CC and all are slightly off. Again, 2K
expresses low variance in the generated networks, especially
for the DC, whereas GAN and ER are more deviating from
the mean. In this scenario, the GAN acts very similar to ER
in terms of average performance and induced variance.

3) GÉANT: Figure 5c depicts the results for GÉANT in
the same fashion as before. 2K produces again the best
fitting networks on average, however, with very low variances.
Similar to BtNorthAmerica, GAN and ER perform similarly,
as GÉANT, too, is a more random network. Thus, BA and WS
do not capture the three centrality metrics, especially obvious
for the DC. A look at the KS distances confirms this, which
also shows that GAN has a slight advantage over ER.

4) GtsSlovakia: Figure 5d depicts the results for GtsSlo-
vakia in the same fashion as before. Again, 2K creates net-
works close the original network, but with very low variance.
BA performs second best here, as the star-shaped topology
adheres to the underlying model of BA well. It becomes also

apparent, that GAN is better at approximating the real network
than a random generator, i. e., the ER-model, thus depicting a
definite advantage over the traditional algorithms.

5) Discussion: Generally, 2K approximates the real net-
work closest. Though, as we potentially want to utilize the
topology synthesis for data augmentation, we do not require
exact replicas of the input, which we anyways already have in
the dataset. This is especially obvious for the DC, where the
2K-generated networks show zero variance. So, if we perform
analyses where this centrality metric is an important KPI, we
do not obtain additional variance in the data, as the DC directly
relates to the JDM, which 2K is trying to duplicate.

GANs illustrate a viable alternative by inducing more vari-
ance as they do not rely on explicit information, while still be-
ing able to appropriately capture the original network metrics
on average. Hence, it expresses variation in all of the chosen
centrality metrics, including the DC, perfectly capturing the
DC on average in most scenarios, even though it was only
implicitly trained to do so. Though, the currently showcased
GAN approach still leaves room for improvement. By feeding
the GAN permutations of the real network, it is mainly able
to maintain network characteristics, that persist throughout
the node relabeling, e. g., star-like topologies or full meshs.
When investigating topologies such as GtsCzechRepublic (as
mentioned earlier), which consists of a more tree-, path-, or
ring-like structure, the GAN may encounter inaccuracies, as
the topology is optically not distinguishable from a randomly
meshed network after permutating the node labels.

Lastly, the legacy generators perform well in selected sce-
narios, e. g., for more chaotic graphs ER is sufficient, and for
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Fig. 6: Weighted synthesis for the four networks; red dashed line ( ) depicts the metrics of the corresponding real network.

star-like graphs BA performs well. Though, as each of those
legacy algorithms has an underlying model it adheres to, none
of them depict a general solution. Additionally, BA and WS
show zero variance in the DC, as the number of links is fixed
per design, while the average node degree of ER follows a
Binomial distribution, thus showing more deviation.

VI. SYNTHESIS OF WEIGHTED TOPOLOGIES

After examining the synthesis of unweighted topologies, we
focus on more use case-specific attributes in the following,
namely the synthesis of weighted topologies, where the weight
depicts the actual geographical distances of two nodes in a
WAN, e. g., two switches/routers in different cities. For this,
we examine the four networks as in the previous section, with
respect to the weighted equivalents of the centrality metrics.

As the model-based generators generally showed inferior
performance, we only focus on 2K- and GAN-generated net-
works for the remainder of this work. Note that both methods
only generate unweighted graphs, so we generate a weighted
graph by sampling the real weights onto the generated net-
works, which we call 2K and GANBW , respectively. However,
for GAN, there is the additional possibility to generate the
weights natively, i. e., via the previously shown color channels.
Thus, we also investigate this much more implicit weighted
network synthesis which does not expect any explicit infor-
mation about the network, called GANRGB . Figure 6 depicts
the average centrality metrics for the generated networks in
comparison to the original four networks.

1) BREN: In Figure 6a, we see the results for BREN as
a box plot. For the BC, we see that GANBW performs best,
as the GAN in the previous section achieved the best fitting
results for the average BC, and simply sampling real distances
has an advantage over the implicit approach of GANRGB .
However, this also showcases a GAN’s capability of just
implicitly inferring the geographical distances, as GANRGB

performs similar to 2K.
Furthermore, the results for the CC illustrate further advan-

tages of the GANRGB . While all approaches are far off the real
average (note the logarithmic y-axis), GANRGB performs bet-
ter than both of the explicitly sampled approaches. As BREN
consists of clusters with smaller distances which are connected
via longer links, the wrong placement of these longer links is

detrimental and influences the weighted graph metrics. Thus,
GANRGB is at least capable of placing these links not in
middle of these clusters, while the other approaches do not
make any differentiation when placing weights.

Lastly, as we sample geographical distances for 2K and
GANBW directly from the real weights, it is expected that we
achieve a perfect fit on average. While GANRGB performs not
as perfect as GANBW , it still approximates the real network
sufficiently by only implicitly inferring the weights.

2) BtNorthAmerica: Figure 6b illustrates the results for
the weighted topology synthesis for BtNorthAmerica. Overall,
2K and GANBW perform very similar, with both GANs
expressing slightly higher value ranges. Note that the variance
of GANBW of the weighted DC is slightly higher than 2K,
even though both approaches sample from the same weights,
as we defined the weighted DC as the sum of all edge weights
connected to a single node, which is directly influenced by the
number of links, which in return has a greater variance for the
GAN, as seen in the previous section. As depicted in the previ-
ous section, though, the metrics of BtNorthAmerica are more
difficult to replicate by the algorithms, which becomes also
apparent for the weighted metrics here. GANRGB performs
worse for the CC as it predicts the edge weights implicitly,
however, especially for the BC and DC, the performance
approaches the two sampled versions.

3) GÉANT: Figure 6c depicts the results for GÉANT. We
see comparable trends to BtNorthAmerica, with GANRGB

performing slightly worse. However, the algorithms generally
are better at approximating the real values. Additionally, we
can observe a trade-off between 2K and GANBW , where 2K
is able to match the BC better, and GANBW matches the CC
better. Again, the GAN-based approaches also express slightly
more variance.

4) GtsSlovakia: Lastly, Figure 6d illustrates the results for
GtsSlovakia. We see an identical trend compared to GÉANT
concerning the trade-off for the BC and the CC, and a similar
trend concerning the value ranges of the generated networks.

5) Discussion: The analysis of the weighted topologies
showcases, that 2K and GANBW , as expected, perform
slightly better than GANRGB , as they explicitly infer infor-
mation about the edge weights. However, it also illustrates
that GANRGB is capable of implicitly inferring the weights
appropriately, though it has a slight tendency to underestimate
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Fig. 7: Performance metrics for the four networks; red dashed
line ( ) depicts the metrics of the corresponding real network.

the distances compared to the real values, which directly
correlates to overestimating the closeness. Although, in case
of BREN even outperforms the other two approaches for the
CC. Additionally, there seems to be a trade-off between 2K
and GANBW , where 2K is generally better at approximating
the BC, and GANBW is a better match for the CC, which can
be seen when investigating GÉANT and GtsSlovakia. Lastly,
we also observe that the correct placement of edge weights is
important, as it can drastically change weighted metrics, which
have great influence on the actual performance of a computer
network, which we examine in the next section.

VII. SIMULATING THE NETWORKS

After investigating more theoretical graph metrics, this
section aims at a more practical application of the synthe-
sized networks by porting the topologies into the OMNeT++
simulator and running simulations in an SDN environment to
analyze dynamic performance metrics. For 1,000 generated
networks, three generators, four real-world WAN topologies,
and four repetitions each this results in 4·1, 000·3·4 = 48, 000
simulation runs, equating to a real-world time of over 333
days. For both the RTT and controller load we investigate
the average value. We also include the maximum controller
load, but leave out the maximum RTT for sake of brevity. The
results for average and maximum RTT showed similar trends,
just on a different value scale.

1) BREN: Figure 7a shows the results for the simulated
perfomance metrics for BREN as a boxplot. For the average
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Fig. 8: Correlations of performance metrics and weighted +
unweighted graph metrics for all four networks.

load at the controller, all three approaches approximate the
load appropriately, with 2K being slightly closer on average.
The controller load directly correlates to the betweenness
centrality, since a higher betweenness centrality of a node –
an OpenFlow switch in our WAN simulation – means that a
node is contained in many shortest paths. Thus, the refreshing
rate of flow table entries is higher, increasing the hit ratio,
and ultimately decreasing the amount of relayed traffic. As
both the 2K- and GAN-generated networks depicted a similar
betweenness to the real networks, this also shows here.

For the RTT, however, all approaches show great deviations
from the actual performance, directly negatively correlated to
the weighted closeness metric, as the closer nodes to each
other are, the lower the RTT is. Again, as GANRGB is at
least capable of placing the longer links not directly into the
highly meshed clusters, it performs better than the other two
approaches (note the logarithmic y-axis again, similar to the
analysis of the weighted CC).

Lastly, the maximum controller load is on average perfectly
approximated for all approaches. The maximum controller
load is mostly dominated by the LLDP messages, which are
sent out in regular intervals. As the switches are instructed
to send out such a discovery message to every neighbouring
switch, this directly correlates to the node degree. Noticeably,
2K even shows little variation for this performance metric, as
the node degree in each generated network is the same.

2) BtNorthAmerica: The results for BtNorthAmerica are
shown in Figure 7b. Similar to before, all approaches ap-
proximate the average controller load appropriately. This time,
the GAN-based approaches are slightly closer on average,
however. While the RTT of the synthetic networks is generally
closer than for BREN, it still suffers from similar problems.
Lastly, the maximum load is on average again closely approx-
imated by all approaches, with 2K showing little variance.

3) GÉANT: The results for GÉANT are shown in Figure 7c.
The three approaches all reasonably replicate the behavior of
the average controller load, with 2K having a slight advantage.
The RTT of the synthetic network is closest approximated by
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distances/edge weights and
the underlying topology for
all four networks.

GANBW , and works generally better than for the other two
networks. Thus, we can see the aforementioned trade-off also
when investigating the performance metrics. The observations
regarding the variance are seen here as well, especially visible
for the maximum controller load, again.

4) GtsSlovakia: The results for GtsSlovakia are shown in
Figure 7d. We see an identical trend compared to GÉANT,
i. e., we observe the trade-off between 2K and GAN-based
approaches again, as well as the differences in variation for
the approaches.

5) Discussion: The analysis of the performance metrics
shows that an adequate replication of the graph metrics pro-
vides a robust basis for more practical use cases. The graph and
performance metrics are highly correlated, i. e., the average
load relates strongest to the BC, the average RTT to the CC,
and the maximum load to the DC. Figure 8 investigates this
further by depicting the correlation of the chosen performance
and graph metrics for all three synthesis approaches of all
four networks. Generally, both load-based metrics are more
correlated to the unweighted graph metrics and also show a
strong correlation to all three of them, whereas the RTT is
mostly influenced by the weighted CC. Interestingly, the RTT
shows only a weak to moderate correlation to the weighted
DC, i. e., the sum of the adjacent edge weights. The figure also
shows that the unweighted DC for the 2K-generated networks
cannot be calculated for all networks besides BREN, which
again emphasizes on the fact that the generated networks all
have the same value for this centrality. Thus, when utilizing
such networks, e. g., as an augmentation for ML input, it may
undermine the importance of the metric.

While a close replication of graph metrics benefits the
performance metrics, closer graph metrics do not automatically
equate to more accurate performance metrics, e. g., in case of
BREN the GAN-based approach approximated the BC and
CC slightly better than 2K, but the load-based performance
metrics where more accurate for 2K. The reverse is true for
BtNorthAmerica.

Lastly, the GANRGB-generated networks are able to hold
up with the 2K- and GANBW -generated networks by only
inferring the edge weights implicitly. Though, we still see
the aforementioned necessity of a correct placement of edge
weights, especially visible for BREN.

VIII. SOPHISTICATED ATTRIBUTE SAMPLING

In this section, we want to examine a more sophisticated
way of sampling the weights onto the generated networks,
instead of just drawing the weights uniformly. The rationale
behind this is the fact that the weight of the edge is correlated
to the actual unweighted topology, e. g., in our context a link
with a long distance might connect two local areas, and as
long links are expensive, there may be few redundant links,
resulting in the link being contained in many paths from
one local area to another. Similar ideas have been shown
to be fruitful in the social network context [10], [54] with
node attributes, utilizing node-based graph metrics, e. g., node
degrees or joint degrees. We want to sample link attributes,
and not many useful edge-based centrality metrics exist.

1) Edge-based Graph Metrics: One of the few available
metrics to compute for an edge is the edge betweenness
centrality (EBC). Similar to the node BC, the (unweighted)
EBC of an edge is the fraction of shortest paths, that the edge
is contained in, and is computed as follows:

EBCu(e(v1, v2)) =
∑

v3 ̸=v4

|{spu(v3, v4)|e(v1, v2) ∈ spu(v3, v4)}|
|spu(v3, v4)|

So, compared to the node BC, it also includes direct
connections that traverse the edge. Note that the weighted EBC
is computed analogously, but is not utilized here, as we are
merely interested in the underlying layout to be able to sample
the weights.

2) Line Graphs: Even though there might not be many
edge-based graph metrics, we can still utilize node-based
metrics by using line graphs (LGs). The concept behind LGs
is illustrated in Figure 9, depicting a transformation from the
edges of the original graph (OG) into the nodes of the LG. An
edge between the nodes of the LG is created if there exists a
node in the OG, that is connected to the two corresponding
edges. A practical application in our context can be seen in
Figure 10 with the example of BREN. When executing this
transformation, we can also propagate the edge attributes of
the OG to node attributes in the LG, e. g., the geographical
distance is now a node attribute instead of an edge attribute,
indicated by the colors in Figures 9 and 10. This allows us
to calculate node-based centrality metrics, e. g., we opt to
utilize the node-based centralities BC, CC, and DC, again,
in addition to the EBC. To avoid confusion with the graph
metrics we use as a quality measure, henceforth we will adhere
to the sampling bases as OG-EBC, LG-BC, LG-CC, and LG-
DC, which also reflects if the metric was calculated on the
OG or the LG. Figure 11 depicts the correlation between the
edge weights of the previously investigated networks and the
four unweighted centralities, illustrating at least a moderate
monotonic relationship.

3) Attribute Sampling: Calculating the four aforementioned
centrality metrics now allows to perform attribute sampling
with them as a basis, i. e., we construct a joint probability ma-
trix P (W,C) of edge weights W and centrality metric C from
the real network. As the synthesized networks may express
other centrality values than the original network and since
the metrics are continuous, we apply binning to discretize the
values, i. e., we perform a parameter study and bin the possible
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Fig. 12: Comparison of weight attribute sampling methods for generated BREN-like topologies; red dashed line ( ) depicts
the metrics of BREN itself, magenta solid line ( ) depicts the metrics (avg.) of the GANRGB-generated networks.

2K BW

3.00

3.50

4.00

3.62
3.73

A
v
g.

L
oa
d
[K

B
/s
]

2K BW

1.00

10.00

1.75

5.78

A
v
g.

R
T
T

[m
s]

# Bins
1 2 4 8 16 32 64 128

# Bins
1 2 4 8 16 32 64 128

2K BW

15.00

20.00

30.00

35.00

25.60

M
ax

.
L
oa
d
[K

B
/s
]

Fig. 13: Performance metrics with LG-DC as sampling base;
red dashed line ( ) depicts BREN itself, magenta solid line
( ) depicts GANRGB-generated networks.

value range of the centralities into 1, 2, 4, 8, 16, 32, 64, and
128 bins. Smaller amounts of bins decrease the chance that a
bin is empty, at the cost of accuracy, e. g., in case of a single
bin we practically sample from a uniform distribution, again.
To assign weights to the synthetic networks, we may now
compute the respective centrality metric for each edge and
can utilize the matrix to look up the conditional probabilities
instead of a uniform distribution. For example, if an edge in
the synthetic network has a centrality of c, we can utilize
the conditional probability P (W |C = c). This allows us
to assign weights to edges that express similar structural
characteristics compared to the real network. As we generally
have sparse networks with few redundant links, the chance that
a bin is empty is non-negligible. Thus, we set up a fallback
mechanism, i. e., if all probabilities for a given centrality
are 0, we look for the closest non-empty bin and utilize its
probabilities.

4) Case Study: We study the approach of attribute sampling
with BREN, as here the correct weight placement is the
most crucial, and investigate weighted graph metrics and
corresponding performance metrics.

Graph Metrics. Figure 12a illustrates the resulting weighted
graph metrics of the sampling approach for all four investi-
gated centralities as sampling basis for 2K and varying bin
sizes. As the GANRGB-based approach already infers edge
weights implicitly, the solid magenta line additionally depicts
the performance of GANRGB from the previous section. As
mentioned, the use of only a single bin essentially equates to
the random sampling to grant a baseline.

For the weighted BC, we generally see a decrease in

accuracy for all four sampling bases when more bins are
utilized, with the LG-DC-based sampling decreasing the least.
In contrast, for the weighted CC a vast improvement can be
seen for all sampling bases. Though, OG-EBC and LG-DC
seem to be more stable with respect to outliers, as for LG-
BC and especially LG-CC the mean and median values are
diverging drastically. Lastly, for the weighted DC, all sampling
bases besides LG-CC are fitting with LG-DC being on point
for all bin amounts. Consequently, LG-DC seems to be an
appropriate attribute sampling base for the 2K-based approach,
which is inline with the idea of the 2K algorithm, as it is based
on the (joint) node degrees anyways.

Analogously, Figure 12b illustrates the weighted graph met-
rics for the GANBW -based approach. Similarly, the accuracy
for the weighted BC also decreases here for all sampling bases,
though, the decrease is not as severe. For the weighted CC the
trend is also similar to the 2K approach, as for all bases the
metrics get closer. However, only LG-DC provides a robust
base. Lastly, the weighted DC, however, diverges drastically
for LG-DC and LG-CC as base the more bins are used. This
may be a result of the fact, that the GAN obfuscates BREN
more, i. e., while 2K keeps the big cluster of nodes isolated, the
GAN may add extra edges here. To balance these extra edges
out, they also need to have similar weights like the edge that
initially connects the cluster to the rest of the network.

Performance Metrics. To investigate the effect of the at-
tribute sampling on the performance metrics, Figure 13 illus-
trates the results, adding another 1, 000 · 2 · 8 · 4 = 64, 000
simulation runs, for two generators, eight bin numbers and
four repetitions for all 1, 000 generated topologies, equating
to a real-world time of over 444 days. For brevity’s sake, we
limit ourselves to the results with LG-DC as sampling base.

For the average controller load, the influence of the number
of bins is only marginal. In this scenario, the controller load
is mainly influenced by the unweighted BC. As mentioned
earlier, the BC directly relates to the flow table hit ratio, which
is a major part of the traffic relayed to the controller. As the
utilized routing algorithm here is based on the shortest paths
with respect to the amount of hops, the distance between the
nodes is not as important. The main difference between 2K
and GAN is the value range. For the RTT, we see a major
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archical synthesis.

improvement, in direct relation to the weighted CC. While
GAN performs more accurate than 2K here, this may look
different for a different sampling base, e. g., OG-EBC is also
a suitable option for 2K. Interestingly, even though the GAN
samples in sum higher distances onto the link compared to the
original approach, this actually helps balancing out the RTT, as
no shortcut via a short link into the cluster can be taken now,
as explained earlier. Lastly, the maximum controller load is not
influenced by binning, as it is mainly related to the number of
links, not their weight/distance, and was perfectly replicated
in the original approach anyway.

Discussion. The analysis of sophisticated attribute sampling
shows that it can depict an effective way of combating the
problem we have encountered with the weighted CC. Though,
it may come at the cost of a slight degradation of other graph
metrics, as seen with the weighted BC and partly with the DC.
In our case we did not see a negative influence on the actual
performance metrics. However, this may vary dependent on the
context/setup, e. g., using a latency-based routing algorithm
instead of a hop-based one. The approach works well if
there is some sort of relationship between edge weights and
edge centralities. This relation does not necessarily have to
be monotonic, i. e., show a correlation, but can map the
weights and centralities in other ways (e. g., odd/even degrees
=∧ high/low weights). For BREN, OG-EBC and LG-DC show
the highest correlation to the edge weights, both are most
stable for 2K, and LG-DC for GAN. Lastly, while the attribute
sampling may be a feasible way to generate weights in a
postprocessing step for 2K and GANBW , it defeats the purpose
of using the implicit approach of GANRGB .

IX. HIERARCHICAL TOPOLOGY SYNTHESIS

In this section, we want to test another approach that also
may help GANRGB improving edge weight assignments, thus,
in a more implicit manner. Here, we start by dividing the
topology into different clusters, and then proceed with the
same methodology as in the original approach for the result-
ing clusters. Though, we lower the amount of permutation
matrices fed into the GAN to 5,000, as the clusters are much
smaller than the whole topology. The core idea is depicted in
Figure 14. We distinguish between local and global parts of
the network, thus, by augmenting these parts separately, we
shift the weight assignment towards the desired direction.

1) Spectral Clustering: Spectral clustering is an unsuper-
vised ML-algorithm highly suitable for graphs, which takes
as input a similarity matrix to cluster a graph. This type
of clustering is especially useful here, as we only have
our distances as features, so it is basically a 1D clustering,
rendering traditional methods such as k-means inapplicable.

The similarity matrix can be computed via the given physi-
cal distances of nodes. By computing the weighted shortest

(a) Two clusters. (b) Three clusters. (c) Four clusters.

Fig. 15: BREN after applying spectral clustering; magenta
outline ( ) depicts nodes/edges contained in the global view,
other colors/shapes represent local views.
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Fig. 16: Hierarchical synthesis of BREN; red dashed line ( )
depicts the metrics of BREN itself.

paths between all node pairs, we interpret these distances
as a measure of dissimilarity. We convert the corresponding
dissimilarity matrix D into a similarity matrix S, by first
normalizing D via min/max-normalization, and then define
S = 1−Dnorm. We cluster S with sklearn’s implementation,
and set the number i of clusters to 2, 3, and 4, and call the
clusters Cj local views, with edges Elocalj and nodes Vlocalj

with cluster IDs j ∈ [0, i):

Vlocalj = {v ∈ Cj}

Elocalj = {e(v1, v2) ∈ E|v1 ∈ Cj ∩ v2 ∈ Cj}

The local views are connected via the residual edges not
contained in the clusters, which we call the global view, with
edges Eglobal and nodes Vglobal:

Vglobal = {v1 ∈ Cj |∃v2 ∈ N(v1) ∩ v2 /∈ Cj} ∀j

Eglobal = {e(v1, v2) ∈ E|v1 ∈ Cj ∩ v2 ∈ Ck ∩ j ̸= k} ∀j, k

2) Case Study: Again, for our evaluation of the hierarchical
graph synthesis we focus on BREN, as here the challenge of
placing the edge weights correctly was the most difficult. The
resulting clusters are illustrated in Figure 15.

Graph Metrics. Figure 16a illustrates the results for the
graph metrics of the hierarchical synthesis for the naı̈ve
approach with one cluster, as well as three different amounts
of local views. For the weighted BC, we observe that the
approximation first slightly improves for more clusters, but
then worsens again for both GAN-based approaches, and
introduces no further benefit for 2K. As we create several
clusters, we also introduce overhead as we have to merge the
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TABLE II: Pros and cons of the various graph generation approaches.

2K GAN BA, ER & WS

+ Close approximation of all networks/metrics + Flexible, i. e., no fixation on specific metrics + Very simple and fast algorithms
+ Fast computation, no training needed + Native support of weights/distances + No explicit network information neededPro

+ Close approximation for most networks/metrics + Work well if the underlying model fits

− Fixation of metrics, e. g., joint degrees − Struggles with permutation dependency − Optimal parameters varying
− No support for weight synthesis − Training needed (> 1 hour) − No support for weight synthesisCon

− Complex post-/preprocessing and configuration − Possible fixation of metrics, e. g., links

TABLE III: Pros and cons for improving weight assignments.

Attribute Sampling Hierarchical Synthesis

+ Fast and simple + Implicit inference possiblePro
+ Flexible sampling bases + (Potentially) controllable variance

− Only explicit inference − Varying parameter settingsCon − Struggles with sparsity − Merging overhead

partial views again, potentially influencing the graph metrics
negatively, when we make the clusters too fine-grained.

For the weighted CC, on the contrary, we see a drastic
improvement for the approximation for all approaches. As we
cluster the network into local views and a global view, we
more or less force the generators to place the longer distances
at plausible locations. Both GAN-based approaches are able
to match the CC the most accurate for four clusters here.

For the DC, we see that the clustering reduces the value
range, as we narrow down the problem and thus remove some
of the inference work with this preprocessing. Though, the
GAN still has a slight tendency to underestimate the distances
as seen before. Naturally, the smaller the views are, the more
probable it is that the GAN will produce a perfect (partial)
fit, as the search space is limited, the variety in possible
permutation matrices is low, and thus it will produce a valid
sample more likely. In conjunction with this lack of input
diversity, it is observable that small views are more prone
to mode collapse, i. e., produce potentially convincing/high
quality samples of limited output variety [55], another reason
for reduced variance.

Performance Metrics. Figure 16b illustrates the results for
the performance metrics, adding another 1, 000 · 3 · 4 · 3 =
36, 000 simulation runs, for three generators, three additional
cluster sizes and four repetitions for all 1, 000 generated
topologies, equating to 250 days.

For the average controller load, we see a slight improvement
in accuracy compared to the original approach with one clus-
ter, especially for the GAN-based approaches. This is interest-
ing, as the BC generally worsened, and in previous analyses
this usually directly resulted in the controller load also being
less accurate. Thus, we also investigated the unweighted BC,
but it shows a similar trend to its weighted counterpart. The
replication of the RTT improves drastically the more clusters
are utilized, directly related to the CC. Lastly, the maximum
controller load mainly changes its value range, especially for
four local views and both GAN-approaches, as in the four
cluster approach the big cluster of BREN is perfectly isolated
now. As observed many times, the 2K approach shows little
variance here, independent from the number of clusters.

Discussion. The analysis of the hierarchical synthesis shows
that it is also an effective way of tackling the synthesis

of the weighted CC for BREN. Similar to the sophisticated
attribute sampling though, this might also come at the cost of
a slightly decreased accuracy for the BC, but this time, the
DC can be preserved for all approaches. Also similar to the
sophisticated attribute sampling, the effect of this trade-off on
the performance metrics is mostly marginal, even if some of
the graph metrics diverge. This approach works best if there
are distinguishable clusters in the network, e. g., somewhat
isolated, possibly more inter-meshed parts of the networks
with low distances, that are connected to other parts via
few redundant links. Lastly, this approach is also fitting for
GANRGB , thus performing a more implicit inference.

X. DISCUSSION

As we have performed several analyses, we summarize
the main pro and cons for each algorithm observed in those
analyses in Table II. 2K is generally very close in the approx-
imation of the real networks, and compared to GANs a fast
algorithmic approach, that is still being extended. Though, it
takes as input explicit information about the network, which it
tries to replicate perfectly, resulting in no variation for metrics
such as the DC. This possibly renders it less suitable for data
augmentation tasks, where the DC is a parameter we want
to investigate. Furthermore, there is no support for weighted
graphs or other edge attributes.

GANs depict a DL-based approach and are highly flexible,
as they only infer the information implicitly and thus also show
variation for, e. g., the DC, while still being able to match it
appropriately. GANs also support the weight synthesis natively
by utilizing the color channels, and possible allow for even
more attributes, such as bandwidth, to be encoded into the
input. However, as we fed the GAN permutations of the real
matrix, some information, e. g., long paths or ring structures
may be lost. GANs are complex, thus need a training time,
more processing, and are sensitive to configure.

The legacy algorithms are very simple approaches which do
not infer any information explicitly. We also observe that they
perform decently, if the underlying model is fitting. However,
the algorithms have one or more parameters that need to be
configured, and sometimes cannot be configured appropriately
at all. They also support no weight synthesis and similar to
2K, for some algorithms we also have a fixation on metrics,
e .g., for BA and WS we fixate the number of edges.

Furthermore, we have also investigated two potential ap-
proaches to enhance the assignment of edge weights for
weighted graphs, both showing promising results and sum-
marized in Table III. Sophisticated attribute sampling is a fast
and simple approach to assign the edge weights in a more
sensible manner than just uniformly sampling by utilizing
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joint probabilities. Many metrics can be chosen as sampling
bases and easily switched out. Though, this approach generally
samples weights from the real network, thus, does not infer
them implicitly. The sampling may potentially be problematic,
as WANs are generally sparser networks, possibly resulting in
many zero entries in the joint probability matrix.

A more implicit approach is the hierarchical synthesis. By
dividing the network into local and global views, we enforce
the weight assignment this way. By choosing the granularity
via the number of clusters, we can potentially control the
variance to a certain degree. Though, due to the clustering
we may end up with clusters of greatly varying sizes that
all possibly need different parameter settings for the GAN-
based approaches. Lastly, as we divide the generation task into
several subtasks, we need to puzzle these parts together again,
resulting in merging overhead and room for inaccuracies.

XI. CONCLUSION

The synthetic generation of graphs dates back decades and
has been a focus of researchers in various fields of application
since then. Related work presents us with model-dependent,
model-independent, and Deep Learning (DL)-based graph
generators, which all have their respective advantages. As
public datasets are limited, this paper compared different
methods for synthetic graph generation in the context of data
augmentation for Wide Area Networks (WANs) research, by
comparing the synthetic networks on the basis of theoretical
graph metrics, as well as more practical performance metrics
in the context of software-defined networks. For the latter, we
simulated almost three years of real-world time to conduct
our analyses. The results illustrate that while algorithmic
graph generators approximate the original networks closely,
by fixating explicitly on a metric, they potentially do not
introduce enough desired variance for some of the metrics.
Generative Adversarial Networks (GANs), on the other hand,
do not infer any information explicitly, while still being able to
appropriately match the real networks. However, there is still
room for improvement, as GANs were not able to capture
all characteristics of the chosen networks. In addition to a
naı̈ve graph generation, we also explored more sophisticated
measures via attribute sampling and hierarchical synthesis to
genete graph weights more appropriately.

In the future, we aim to broaden the scale of our evaluations
by augmenting a multitude of networks instead of in-depth
analyses of single networks. This allows us to apply Machine
Learning (ML)-based tasks, e. g, performance prediction, and
enables investigations of which generation methods yield a
benefit for enriching a data set and/or what amount of variance
is desired/needed. Additionally, we aim to enhance the GAN
approach by employing punishments/rewards to the loss func-
tion or the generator/discriminator itself, e. g., punishing the
generator if it creates disconnected graphs or other undesired
properties, already been shown to be fruitful in other research
areas [27]. We may also extend our research to more DL-based
graph generation methods, such as Variational Autoencoders
(VAEs) or Reinforcement Learning (RL)-based strategies.
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[6] P. Erdös and A. Rényi, “On the evolution of random graphs,” in The Structure and
Dynamics of Networks. Princeton University Press, 2011, pp. 38–82.

[7] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,”
Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[8] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for
deep learning,” Journal of big data, vol. 6, no. 1, pp. 1–48, 2019.

[9] T. Hou, T. Wang, Z. Lu, and Y. Liu, “Combating adversarial network topology
inference by proactive topology obfuscation,” IEEE/ACM Transactions on Net-
working, vol. 29, no. 6, pp. 2779–2792, 2021.

[10] B. Tillman, A. Markopoulou, M. Gjoka, and C. T. Butt, “2k+ graph construction
framework: Targeting joint degree matrix and beyond,” IEEE/ACM Transactions
on Networking, vol. 27, no. 2, pp. 591–606, 2019.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications
of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[12] “Base code,” https://github.com/lsinfo3/cnsm2022-wan-topology-synthesis, [On-
line; accessed 05-July-2023].

[13] “Extended code,” https://github.com/lsinfo3/tnsm2023-wan-topology-synthesis,
[Online; accessed 05-July-2023].

[14] K. Dietz, M. Seufert, and T. Hoßfeld, “Comparing traditional and GAN-based ap-
proaches for the synthesis of wide area network topologies,” in 18th International
Conference on Network and Service Management (CNSM), Thessaloniki, Greece,
Oct. 2022.

[15] M. E. Newman and J. Park, “Why social networks are different from other types
of networks,” Physical review E, vol. 68, no. 3, p. 036122, 2003.

[16] F. Faez, Y. Ommi, M. S. Baghshah, and H. R. Rabiee, “Deep graph generators:
A survey,” IEEE Access, vol. 9, pp. 106 675–106 702, 2021.

[17] J. M. Hernández and P. Van Mieghem, “Classification of graph metrics,” Delft
University of Technology: Mekelweg, The Netherlands, pp. 1–20, 2011.
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