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Abstract—Virtualized Radio Access Networks (vRANs) are
fully configurable and can be implemented at a low cost over
commodity platforms to enable network management flexibil-
ity. In this paper, a novel vRAN reconfiguration problem is
formulated to jointly reconfigure the functional splits of the
base stations (BSs), locations of the virtualized central units
(vCUs) and distributed units (vDUs), their resources, and the
routing for each BS data flow. The objective is to minimize the
long-term total network operation cost while adapting to the
varying traffic demands and resource availability. In the first step,
testbed measurements are performed to study the relationship
between the traffic demands and computing resources, which
reveals high variance and depends on the platform and its
load. Consequently, finding the perfect model of the underlying
system is non-trivial. Therefore, to solve the proposed problem, a
deep reinforcement learning (RL)-based framework is proposed
and developed using model-free RL approaches. Moreover, the
problem consists of multiple BSs sharing the same resources,
which results in a multi-dimensional discrete action space and
leads to a combinatorial number of possible actions. To overcome
this curse of dimensionality, action branching architecture, which
is an action decomposition method with a shared decision module
followed by neural network is combined with Dueling Double
Deep Q-network (D3QN) algorithm. Simulations are carried
out using an O-RAN compliant model and real traces of the
testbed. Our numerical results show that the proposed framework
successfully learns the optimal policy that adaptively selects the
vRAN configurations, where its learning convergence can be
further expedited through transfer learning even in different
vRAN systems. It also offers significant cost savings by up to
59% of a static benchmark, 35% of Deep Deterministic Policy
Gradient with discretization, and 76% of non-branching D3QN.

Index Terms—Radio access networks (RANs), network vir-
tualization, O-RAN, orchestration, deep reinforcement learning,
D3QN, action branching

I. INTRODUCTION

A. Motivation

Virtualization has become one of the most promising tech-
nologies for accommodating the increased service demands
with diverse requirements at a reasonable cost in cellular
networks [1]. The latest effort of this idea is virtualizing the
radio access networks (vRANs) by replacing the hardware-
based legacy RANs with softwarized RANs [2]–[4]. Incorpo-
rated with Open RAN, vRANs can be fully configurable and
deployed across heterogeneous platforms such as commodity
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servers and small embedded devices. Another exciting feature
of vRANs is that it enables the baseband functions (BBU) of
each base station (BS) to be disaggregated, hosted at the virtu-
alized distributed units (vDUs) and central units (vCUs), and
executed as virtual machine (VM) instances or light-weight
containers over geo-distributed locations. This paradigm shift
brings unprecedented flexibility to RAN operations, mitigates
vendor lock-in, offers fast deployment and potentially reduces
operational expenses [4]. Therefore, it is not surprising that
many standardization bodies envision the virtualization for
their future RANs, such as O-RAN [5] and 5G+ RAN [6].

Nevertheless, the expansive deployment of vRANs is still
hindered by complex configuration options, which intro-
duce new network management challenges in deploying cost-
efficient vRAN configurations while serving the traffic de-
mands. In particular, the operators need to decide the func-
tional splits of the BSs to determine which BS functions are
deployed at the vDUs and which are at the vCUs. Each choice
of these splits has a different delay requirement, consumes
different computing resources for the vDUs/vCUs, and gen-
erates a different data load over the xHaul links1. Moreover,
the vDUs/vCUs are executed on top of commodity platforms
as VM instances or containers; hence, the operators need to
allocate the virtualized resources (e.g., CPUs, memory) for
them. There are also several candidate deployment locations
for each vDU/vCU, possibly with different hosting machines,
and this creates the placement problem in determining their
optimal locations and platforms. At the same time, each
placement location is associated with different eligible routing
paths to transfer the data flow of the BSs, which incur
particular delays and costs. Consequently, these issues create
a challenging coupling among the BS splits, placement and
allocated resources for the vDUs/vCUs, and routing for each
BS data flow.

Meanwhile, the suitability of the vRAN configurations is
highly affected by the network properties such as traffic
demands and resource availability (e.g., computing and xHaul
link capacity) [7], which might change over time, often in an
unpredictable fashion2. Thus, deploying static configurations
for a long time might result in resource overprovisioning
or even declined traffic demands. Resource overprovisioning
occurs when the allocated resources are higher than the actual

1The paths connecting a core network (EPC) to vCUs, vCUs to vDUs,
and vDUs to radio units (RUs) are defined as backhaul (BH), midhaul (MH),
fronthaul (FH), respectively, and the integration of these elements is called
Crosshaul/xHaul transport network.

2This is particularly common for resource availability/costs in shared
infrastructures or traffic and channel conditions in small cell networks [8].
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resource utilization. The declined demands can be triggered by
insufficient allocated resources (underprovisioning) and con-
straint violation. And these can render substantial performance
degradation and high operating expenditures. Therefore, it is
essential to dynamically select the vRAN configurations to
adapt to varying traffic demands and resource availability.

On the other hand, orchestrating the dynamic configurations
of vRANs is a non-trivial endeavor. The reconfiguration de-
cisions must be enforced before the actual traffic demands of
the BSs are observed. Albeit reconfiguring the vRAN system
at runtime is practically possible [9], it might also induce
additional costs and disrupt network operations during the live
migration of the VM instances. Consequently, any reconfigura-
tion activity needs to be performed prudently to ensure that it
is beneficial both in terms of cost and performance. However,
designing such an intelligent approach also has technical issues
since the software-based vRAN system substantially differs
from hardware-based legacy RANs. The takeaway from our
testbed measurements (details in Sec. V) and prior experi-
mental studies (cf., [10], [11]) is that, unlike legacy RANs,
the underlying system of vRANs is complex, poly-parametric
and has platform-dependent performance. Hence, adopting
traditional control policies, which needs perfect knowledge of
the underlying system to model and solve the problems, is
unrealistic in practice.

Motivated by the challenges above and our measurement
insights (details in Sec. V), we propose and study a fresh
vRAN reconfiguration problem, where it jointly reconfigures
the splits of the BSs, resources and locations of the vDUs
and vCUs, and the routing of each BS data flow to minimize
the long-term total network operation cost. The key idea is
to model this problem as reinforcement learning (RL) and
develop a learning-based framework, namely Learning-based
Automated Reconfiguration for vRANs (LARV), to solve the
problem with minimal assumptions about the system.

B. Contributions and Methodology

We firstly build a prototype implementing the centralized-
RAN (C-RAN) system using software-based srsRAN [12] in
two different platforms to collect measurements regarding the
relations between traffic demands and resource utilization.
The findings reveal that the relations vary with the demands
and, importantly, have high variance and dependence on the
platform, platform load3, and many latent factors. These
inhibit adopting general assumptions of the underlying system
(e.g., linear) and traditional mathematical tool-based policies.
Then, we propose a new cost model accounting for resource
overprovisioning, instantiation and reconfiguration, and the
declined traffic demands, representing the virtualized resource
management in vRANs. This model also considers different
computing and routing costs for each split and platform
location. Further, we model our vRAN system following the
latest proposal of O-RAN architecture [5]. We consider a
vRAN system with multiple BSs and define its operation as

3The relations heavily rely on the types of platforms that host the BBU. It
also depends on platform load (e.g., when vRAN workload shares the same
platform with other applications or workloads such as edge computing, data
analytics, etc.); see Sec. V and [10], [13], [14] for details.

a time-slotted system, where each slot has arbitrary incoming
traffic demands and resource availability. At each time slot,
LARV takes an action that selects the vRAN configurations,
then reconfigures the system when the selected are different
from the last configurations or preserves them if the selected
configurations are the same. LARV expects to receive a reward
signal from the system that assesses the quality of each
selected action. This sequential decision-making is formulated
as Markov decision process (MDP), which is also an RL
problem.

In our solution, LARV is developed using model-free RL
with deep neural network architecture. LARV considers the
vRAN system as a black-box environment and does not
make any particular assumptions about the underlying system
state and state transition probability distribution. Since the
formulated RL problem has a semi-continuous state space
and discrete action space, we propose a Dueling Double
Deep Q-network (D3QN)-based approach [15], in which the
learning step is based on Double Q-learning [16]. However,
the system has multiple BSs that share the same resources
with highly coupled configuration decisions. As a result, the
RL formulation renders a multi-dimensional action space,
which exhibits combinatorial growth of the number of possible
actions. In order to overcome the curse dimensionality, the
proposed D3QN is incorporated with action branching [17],
an action decomposition method that decomposes the multi-
dimension action into sub-actions and utilizes shared decision
module followed by neural network branches. However, the
initial action branching proposed in [17] focused on sub-
actions with the same dimensional size, which can not be
directly applied to our problem. Here, we adapt it; hence each
sub-action dimension can vary but still exhibits a linear growth
of the total neural network outputs (estimated actions) with the
increase of action dimensionality while maintaining the shared
decision.

We conduct a battery of tests using an O-RAN compli-
ant model and real traces collected from the testbed. We
evaluate the training behavior and long-term total network
cost during online operation under various scenarios. Our
numerical results reveal that LARV successfully learns the
optimal policy to select an action that controls the vRAN
configurations, where its learning convergence can be accel-
erated via transfer learning even in different vRAN systems.
Moreover, LARV offers considerable cost savings by up to
59% of a static benchmark, 35% of Deep Deterministic Policy
Gradient (DDPG) with discretization, and 76% of distributed
non-branching D3QN. Our contributions can be summarized:

• We propose and study a new vRAN reconfiguration
problem, where it jointly reconfigures splits of the BSs,
resources and locations of the vDUs/vCUs, routing for
each BS flow.

• We carefully model our vRAN system based on the
latest proposals of O-RAN architecture and propose a
comprehensive cost model. The model takes resource
overprovisioning, instantiation and reconfiguration and
the declined demands costs into account. It also captures
platform/split-dependent computing and routing costs.
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• We develop a learning-based framework to solve the
proposed vRAN reconfiguration problem. It is tailored
from D3QN and an action branching architecture to tackle
the multi-dimensional and large action space inherited
from our RL problem with linear growth of the neural
network outputs.

• We conduct extensive trace-driven simulations and ana-
lyze the performance of LARV under various scenarios
during the training process and online operation.

The rest of this paper is organized as follows. Sec. II
discusses our contributions with respect to prior works. In
Sec. III, the architecture background and model used for our
vRAN system are presented. The reconfiguration problem is
also formulated in this section, including the raised trade-
offs. In Sec. IV, we discuss how to design the proposed
learning algorithm. The detailed experiment setups, testbed
measurement insights, and simulation results are presented in
Sec. V. Finally, our paper is concluded in Sec. VI.

II. RELATED WORK

Recent works have studied various vRAN orchestration
problems, and we can classify them into i) those that rely
on models to optimize the configurations and ii) model-
free approaches that utilize offline training data and iii) RL
methods. The examples of the first point include [18], [19] that
optimize the vRAN functional splits with multi-access edge
computing (MEC) services, [7] that considers the functional
split problem with multiple servers for hosting the vCUs, and
[20] that further expands it to several candidate servers to
place the vCUs/vDUs. Albeit they have optimized various
configurations in vRANs, they aimed for offline network
designs, and the implication of varying conditions from traf-
fic demands and resource availability is still not examined.
The studies of model-based approaches that consider varying
conditions include altering the functional splits at runtime to
maximize the users’ throughput [21] and revenue [22] and
to minimize inter-cell interference and FH utilization [23].
Another example in [24] aimed to control radio/computing
scheduling to maximize the served traffic subject to a BS
computing capacity. However, they [21]–[24] still did not
study where to place and how much the allocated resources
are for the vDUs/vCUs, although these configurations play
crucial role in a vRAN system. Moreover, such model-based
approaches can be impractical as they heavily rely on fine-
tuning models for specific scenarios and underlying system
assumptions. And a vRAN system is network and platform-
dependent, where the models can be unknown in practice.

On the other hand, model-free approaches employing ma-
chine learning (ML) have been increasingly popular in tack-
ling complex problems in mobile networks. Particularly, ap-
proaches that employ function approximation of performance
metrics, e.g., via neural networks, can offer satisfactory per-
formance amidst many unknown system parameters [25]. For
instance, the authors in [26] have developed a deep supervised
learning framework for allocating radio resources and func-
tional split for each user. Such supervised learning can deliver
well-achieved performance as long as there are high-quality
labeled datasets, e.g., optimal labels. However, the optimal

labels are often not be available in vRAN problems. Hence,
those that do not require labeled datasets, such as contextual
bandit and full RL formulations, can be leveraged. The authors
in [10] have tailored a deep learning-based framework to
solve the contextual bandit problem of managing the interplay
between computing and radio resources. The other contextual
bandits in [11] and [27] utilize a data-efficient algorithm,
Bayesian online learning for an energy-aware BS in a vRAN
system. These approaches offer remarkable performance with
the condition that the current context observation must not
be affected by the previous actions, i.e., it only includes
exogenous parameters.

Otherwise, a full RL formulation is required when the
current observation, e.g., state, is influenced by the previous
actions. Recent work in [28] has brought the importance
of a model-free RL formulation by utilizing Q-learning and
SARSA algorithms to optimize the functional split selections
for an energy-efficient O-RAN. However, when the state-
action space of the RL problem is large, such approaches
become inefficient. Therefore, a deep RL paradigm can be
utilized to tackle such issue by using neural network architec-
ture to approximate the state-action function. Some interest-
ing examples are [29] and [30] that have developed xApps
for controlling RAN slicing, scheduling and online model
training using the Proximal Policy Optimization algorithm.
In [31], the authors also have solved the functional split
problem by proposing a chain rule-based stochastic policy and
approximate it with sequence-to-sequence model. Our recent
work in [32] has proposed an RL-based framework using a
combination of Deep Q-Network (DQN) and a regressor to
dynamically reconfigure the functional split and its required
computing resources. However, it was still limited to a single
BS and did not include computing and link resource sharing
among the BSs.

Although the mentioned works have solved various adaptive
vRAN orchestration problems, they mainly focused on con-
trolling functional splits (e.g., [21]–[24], [28]), RAN slicing
(e.g., [29], [30]) and radio/computing scheduling (e.g., [10],
[11], [26]–[30]). On the other hand, the joint reconfigura-
tion between functional splits of the BSs, the virtualized
resource allocation and placement for the vCUs/vDUs over
geo-distributed cloud platforms, and the routing, along with
the impacts of altering such configurations at runtime, are
hitherto unexplored. Here, we aim to fill a gap by tackling
this reconfiguration problem using model-free RL that makes
minimal assumptions about the system. Since the problem
also consists of multiple BSs with highly coupled configu-
rations, the RL formulation renders a dimensional explosion
in the state space and action space, making the available
vRAN orchestration frameworks unsuitable. To solve this
challenging dimensionality issue, we develop LARV, a novel
vRAN orchestration framework based on deep RL, from the
incorporation of action branching with D3QN.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Background and Model

We model our vRAN system following the latest proposals
of O-RAN architecture [5], where the high-level architecture is
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Fig. 1: O-RAN compliant system architecture adopted in our model.

illustrated in Fig. 1. The model adopts O-RAN key principles
that include disaggregation, virtualization, open interfaces, and
intelligent control [33]. The protocol stacks (or functions) of
each BS can be disaggregated through the functional split
and, further, virtualized as the vCU and vDU (connected
to an RU). Hence, a BS corresponds to 4G eNodeB or 5G
gNodeB comprising a vCU, vDU, and RU. The vCU and
vDU can be executed as VM instances or containers across
geo-distributed edge cloud infrastructures, which may share
with other workloads. Then, the intelligent control is realized
through RAN Intelligent Controllers (RICs), which can run
routine optimization and orchestration through closed-loop
control. O-RAN has specified two RICs: i) Non-Real-Time
(Non-RT) RIC and ii) Near-Real-Time (Near-RT) RIC. The
Non-RT RIC, which integrates with the network orchestrator,
operates on a time scale longer than 1 s, while the Near-
RT RIC operates with a time scale between 10 ms and 1s.
The Non-RT RIC supports applications, called rApps, that
support RAN optimization and operations such as policy
guidance, configuration management, etc. While the Near-RT
RIC includes applications called xApps that can be used to
perform radio resource management. Then, LARV is to be
implemented in the learning agent as an rApp in the Non-
RT RIC in the system orchestrator of O-RAN and enforces
a policy at every period of n = 1, ..., N to control the
reconfigurations of BSs. The optimal policy at every time n
depends on the input observation (state), which is provided at
the beginning of each period by the BSs via the O1 interface.

Next, we illustrate the functional split options used in our
model in Fig. 2 and present their requirements in Table I.
As suggested by O-RAN [5], we consider Option 7.x (O7)
and Option 8 (O8) for the Low Layer Split (LLS) between
the vDU and RU. The High Layer Split (HLS) between the
vCU and vDU can use Option 2 (O2), which is currently
the most feasible split to be implemented. We also consider
Option 4 (O4) and Option 6 (O6), which have been well
standardized [5], [6] and experimentally validated [21], to
encourage further RAN flexibility. Therefore, following HLS
and LLS, we denote four choices of functional splits: Split 1
(S1) implements O2 for the HLS and O7 for the LLS; Split
2 (S2) uses O4 for the HLS and O7 for the LLS; Split 3
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Fig. 2: The functional splits applied in our vRAN model. S1, S2
and S3 are envisioned in O-RAN architecture proposals, while S4
are legacy C-RAN.

Split Point Load Max Delay Req.

O1 RRC - PDCP λ 4 10 ms
O2∗ PDCP - High RLC λ 4 10 ms
O3 High RLC - Low RLC λ 4 10 ms
O4∗ Low RLC - High MAC λ 4 1 ms
O5 High MAC - Low MAC λ 4 1 ms
O6∗ Low MAC - High PHY 1.02λ+0.5 4.13 0.25 ms
O7† High PHY - Low PHY 10.1 10.1 0.25 ms
O8† Low PHY - RF 157.3 157.3 0.25 ms

Note: ∗ is applied options for HLS and † is applied options for LLS.
The data load is in Gbps.

TABLE I: The functional split options and their requirements based
on 3GPP nomenclature when the traffic demand is λ Gbps. The
requirements are tailored by following settings: 100 MHz bandwidth,
256 QAM, 32 antenna ports and 8 MIMO layers. The achievable data
rate is up to 4 Gbps.

(S3) adopts O6 for the HLS and O7 for the LLS; and Split 4
(S4) is the legacy C-RAN system, which implements Option
8 (O8), i.e., all the BS functions are executed as an integrated
vDU/vCU except RF functions (at the RU). We define a set
of these four possible splits as I = {S1,S2,S3,S4}.

We consider a vRAN system with K BSs, where the
functions of each BS-k can be disaggregated and hosted at
vCU-k, vDU-k and RU-k. The vDUs are executed at far-
edge cloud servers (FSs) while the vCUs are at edge cloud
servers (ESs)4. We model a packet-based vRAN as a graph
of G = (V, E), where the set of physical nodes V includes
the subsets: K = {1, ...,K} of RUs, L = {1, ..., L} of FSs,
M = {1, ...,M} of ESs, EPC (index 0), and routers. These
nodes are connected through a set of links E , where each link
(i, j) ∈ E has a data transfer capacity cij (Gbps). We denote
Pk as a set of paths connecting EPC to RU-k and consider
the data flow for each BS is unsplittable. We focus on the
downlink, but it is not limited and can easily be extended for
uplink. The data flow for each BS will be transferred from
EPC to RU-k through a path p := {(0, i1), (i1, i2), ..., (ik, k) :
(i, j) ∈ E} ∈ Pk. Since this path might pass through FSs

4FSs are the candidate platforms and locations to execute VM instances of
the vDUs. Similarly, ESs are the candidate platforms and locations for the
vCUs. We also consider ESs for the candidate platforms to host an integrated
vDU/vCU in C-RAN. ESs are typically located at more centralized locations,
while FSs are co-located or near the RUs.

4
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Descriptions Notations

The traffic demand (split) of BS-k λn
k (ink )

Allocated flavors (actual resource utilization) for vDU-k/vCU-k xn
k/y

n
k (x̂n

k/ŷ
n
k )

Locations of vDU-k and vCU-k znk , ζnk
Maximum computing capacity of FS-l and ES-m Hl, Ĥm

A connecting path of EPC→ES-m, ES-m→FS-l, ES-m→RU-k, FS-l→RU-k p0m, pml, pmk, plk
Incurred delay of path p0m, pml, pmk, plk dp0m , dpml , dpmk , dplk
HLS and LLS delay requirement for split i dHi , dLi
The routing for BS-k p ∈ Pk

Data flow with split i via routing p ∈ Pk (FH, MH , BH) (rFH,n
p,i , rMH,n

p,i , rBH,n
p,i )

TABLE II: Key variables and parameters used in our model.

FS1

FS2 FS3

ES1

RU1
RU3 RU4

EPC

ES2

RU5

RU6

RU2

BS-1 Flow BS-3 FlowBS-2 Flow

vDU1

vDU3

vDUs

vDUs

VM/Container Server

vDUs

vCU2

vCU1

vCU3

vCUs

Fig. 3: The functions of each BS can be split between the vCU,
vDU and RU. For BS-1, vDU-1 and vCU-1 are executed at FS-1 and
ES-1, respectively. However, BS-2 implements C-RAN (S4); hence,
the integrated vDU/vCU are executed only at ES-1 (e.g., links to and
instances at FSs are not activated). Then, vDU-3 and vCU-3 of BS-3
are hosted at FS-2 and ES-2, respectively.

and ESs before reaching each RU, let us denote p0m, pml,
pmk, and plk as a path connecting EPC→ES-m, ES-m→FS-
l, ES-m→RU-k, and FS-l→RU-k, respectively. Based on the
selected split, the data flow of each BS-k passes through
p := p0m ∪ pml ∪ plk ∈ Pk (EPC → ES-m → FS-l → RU-k)
if activating S1, S2 and S3. Otherwise (e.g., S4/C-RAN), the
flow passes through p := p0m ∪ pmk ∈ Pk (EPC → ES-m →
RU-k without using FSs). Each path has a total delay defined
as dp, dp0m

, dpml
, dpmk

and dplk
; and they must respect the

delay requirements of the split as described in Table I. We
compute each p0m, pml, pmk and plk with the shortest path
method. Fig. 3 shows an example of our model.

We use the term flavor5 to define the available choices
for allocating the virtualized computing resources. Let us
introduce X as a set of available flavors for the vDUs and
vCUs. Then, we select a flavor xk ∈ X and yk ∈ X
that determine the reserved resources for each vDU-k (in

5This term is carried out from OpenStack (https://www.openstack.org/) to
reserve the amount of virtual CPU, memory, and storage capacity for a VM
instance. This term is typically used to calculate the billing units to charge the
amount of monetary cost. Similar terms are also used in other cloud services
such as AWS and Azure. Here, we focus on the CPU resources as they are
the most affected performance by the traffic demands.

FSs) and vCU-k (in ESs). Each FS-l has physical computing
capacity Hl, respectively Ĥm for ES-m, which bound the
aggregate allocated resources (accordingly, the flavors that can
be selected) of the vDUs and vCUs for each location. The key
notations used in our model are summarized in Table II.

B. Problem Formulation

We model the vRAN operation as a time-slotted system.
Given an incoming sequence of possibly-different traffic de-
mands and resource availability, we aim to design a policy
(strategy) of an agent that controls the vRAN configurations
at each time slot, which includes the splits of the BSs, flavors
and locations of vDUs and vCUs, and the routing for each BS
data flow, to minimize the long-term total network operation
cost. This sequential decision problem is formulated as MDP,
specified by a tuple {S,A, P, r}. At every time slot n, the
agent observes a state from the state space sn ∈ S , then
takes an action that selects the vRAN configurations from the
action space an ∈ A. Following each enforced action, the
agent expects to receive a reward signal r(sn, an) as feedback
from the environment (vRAN system). Since the state may not
be stationary, we define P (sn+1|sn, an) as the state transition
probability that maps a state-action pair at time step n into the
distribution of next states. And we take no assumption about
it. The formulated problem is also naturally an RL problem,
and we describe it as follow.

1) Action: We introduce in := {ink ∈ I : k ∈ K} as
control variables to select the functional splits that decide
which functions of the BSs to be placed at the vDUs and
vCUs. The selection of the flavors that allocates the resources
for the vDUs and vCUs is determined using control variables
xn := {xnk ∈ X : k ∈ K} and yn := {ynk ∈ X : k ∈ K},
respectively. We can determine the locations of vDUs over
FSs and vCUs over ESs by zn := {znk ∈ L : k ∈ K}
and ζn := {ζnk ∈ M : k ∈ K}. The routing paths to
transferred the data flow of each BS is selected through
variables pn := {pn ∈ Pk : k ∈ K}. Since routing variable
pn ∈ Pk depends on the placement of the vDU and vCU, we
can determine p := {p0m ∪ pml ∪ pmk ∪ plk} ∈ Pk directly
from ink , z

n
k and ζnk . For instance, if BS-5 with in5 := S1

decides zn5 := 1 and ζn5 := 2, then the selected path becomes
p := {p0,2∪p2,1∪Ø∪p1,5}∈P5 with the transferred data flow
EPC→ES-2→FS-1→RU-5. Therefore, we can treat pn ∈ Pk

5
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as part of the environment. Then, we formalize the action at
time slot n as:

an={in, xn, yn, zn, ζn}∈A, A :={I×X 2×L×M}|K|,
(1)

where this action is taken from the action space A of a
finite set that includes all possible pairs of the reconfiguration
control decisions from all the BSs.

2) State: The state observation at each time slot n of the
RL problem consists of (i) The incoming traffic demands of
the BSs λn := {λnk ∈ R+ : k ∈ K} (Gbps); (ii) the previous
deployed splits in−1 := {in−1

k ∈ I : k ∈ K}; (iii) the previous
allocated resources (flavors) for the vDUs xn−1 := {xn−1

k ∈
X : k ∈ K} and (iv) vCUs yn−1 := {yn−1

k ∈ X : k ∈ K};
and (v) the previous deployed locations of each vDU-k over
FS zn−1 := {zn−1

k ∈ L : k ∈ K} and (v) each vCU-k over ES
ζn−1 := {ζn−1

k ∈ M : k ∈ K}. It provides time dynamic of
our variable interests: (i) the demand that needs to be served
by each BS; (ii) the current active splits of the BSs; (iii) the
availability of resources for each vDU and (iv) vCU; and (v)
the availability to execute each vDU at FS and (vi) each vCU at
ES. Then, the state observation at time slot n can be denoted:

sn := {λn, in−1, xn−1, yn−1, zn−1, ζn−1} ∈ S,
S := {R× I × X 2 × L×M}|K|. (2)

The state space S is semi-continuous because it contains
continuous parameters λnk ∈ R+,∀k ∈ K from the traffic
demands. It is exogenous parameter, i.e., it is not affected
by the action, but it provides contextual information about
the users’ needs. The other points are discrete parameters
and provide the network state information, which are highly
affected by the deployed configurations from the last action.
This state information is provided as input to the learning
agent through the O1 interface. The state can be extended to
other relevant key performance measurements; however, the
state space of the RL problem also expands.

3) Reward & Policy: Our reward function is calculated
from the incurred total network operating cost. The source
of monetary costs comes from the computing cost to execute
the BS functions, the virtualized resource management costs
and the routing cost.

The needs of computing cost of each BS-k to host its
functions at the RU-k, vDU-k (in the FS) and vCU-k (in the
ES) are denoted as:

fRU(ŵ
n
k ), fFS(x̂

n), and fES(ŷ
n
k ), (3)

where fRU(.), fFS(.) and fES(.) are the cost functions to
charge the utilized computing processing at the RU6, FS and
ES, respectively. These cost functions translate the actual
computing resource utilization of the RUs ŵn := {ŵn

k ∈
R : k ∈ K}, vDUs x̂n := {x̂nk ∈ R : k ∈ K} and vCUs
ŷn := {ŷnk ∈ R : k ∈ K} into monetary units ($). The
actual resource utilization of each RU, vDU and vCU is highly
affected by the split and demand at the BS. Hence, we define

6RUs are the radio hardware units; hence we do not allocate resources for
RU. Instead, the computing cost of the RUs is incurred from processing the
LP/RF functions, where their processing cost is demand/split dependent.

Overprovisioning

Underprovisioning

Reconfiguration

Instantiation

Virtualized resource management for vDU-k

Fig. 4: An example of virtualized resource management model for
vDU-k.

ψ : (λnk , i
n
k ) 7→ (ŵn

k , x̂
n
k , ŷ

n
k ) as a function to map inputs of

the split and traffic demand of the BS into the actual resource
utilization at the RU, vDU and vCU. This function represents
the actual computing behavior in the vRAN system, and we
characterize it through traces from the testbed measurements.
Further, we consider that cost functions fRU(.), fFS(.) and
fES(.) to be proportional with their input, e.g., fFS(v) := κRUv,
fFS(v) := κFSv and fES(v) := κESv, where κRU ($/unit),
κFS ($/unit) and κES($/unit) are the estimated computing
processing fees per core unit capacity at the RUs, FSs and
ESs, respectively.

In vRANs, the vDUs and vCUs are virtualized on the FSs
and ESs, respectively. Therefore, the virtualized resources of
the vDUs and vCUs can be dynamically allocated to obtain
cost-efficient network operations. However, reconfiguring such
resources might lead to additional costs. Meanwhile, the allo-
cated resources xnk and ynk might differ to the actual resource
utilization of x̂nk and ŷnk , which can create unwanted resource
overprovisioning or declined demands. Motivated by resource
management in network slicing [34], we propose a cost model
capturing such behaviors in vRANs. This model is illustrated
in Fig. 4 and described as follows.

(i) Overprovisioning: If the allocated resources are higher than
their actual utilization, the operators pay more expenses and
miss the opportunity to share their unused resources for other
workloads. Such resources are instantiated and reserved for
no purpose, which can be more profitable to be allocated for
other workloads (e.g., video analytics) to increase the global
system efficiency. This overprovisioning cost at time slot n for
BS-k is defined as:

fO
(
max(0, xnk − x̂nk ) + max(0, ynk − ŷnk )

)
, (4)

where fO(.) is a cost function for resource overprovisioning.
This function is proportional with the input, e.g. fO(v) :=κOv,
where κO is the estimated fee for one unit capacity ($/unit).

(ii) Declined service demands: The declined demands can
occur when there exists an insufficient resource allocation or
constraint violation, which triggers service level agreement
(SLA) violation and monetary compensation. For instance,
the constraint violation can happen when the total allocated
resources of the vDUs exceed FS capacity:

fD

(
max

(
0,

∑
k∈K

xnk1=l(z
n
k )−Hl

))
, ∀l ∈ L, (5)
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the total allocated resources of the vCUs exceed ES capacity:

fD

(
max

(
0,

∑
k∈K

ynk1=m(ζnk )− Ĥm

))
, ∀m ∈M, (6)

and the incurred delay does not meet the requirement:

fD
(
max(0,dpml

− dHi , dplk
− dLi ,

dpmk
− 0.25)

)
,∀m ∈M,∀l ∈ L, (7)

where dHi and dLi are the delay requirement of split i for the
HLS and LLS, respectively, as defined in Table I. In addition
to the constraint violation, an insufficient allocation for each
vDU and vCU can cause declined service demands, and we
define this as:

fD
(
max(0, x̂nk − xnk , ŷnk − ynk )

)
. (8)

The function fD(.) captures the monetary compensation that
the operators have to pay for violating the SLA. This function
is assumed to be proportional with the input, e.g. fD(v) :=κDv,
where κD is the estimated fee for declined demands in one unit
capacity ($/unit).
(iii) Instantiation and Reconfiguration: The operators may de-
cide to instantiate new resources or reconfigure their network
settings to reduce resource overprovisioning and declined
demands and adapt to the varying traffic demands and resource
availability. However, instantiating and reconfiguring such
resources (e.g., VMs) induce capital expenses, and we define
it as:

fI
(
max(0, xnk − xn−1

k ) + max(0, ynk − yn−1
k )

)
, (9)

fR

((
|xnk − xn−1

k |+ |ynk − yn−1
k |

)
+(

xnk1 ̸=zn−1
k

(znk ) + ynk1 ̸=ζn−1
k

(ζnk )
))
, (10)

where fI(.) and fR(.) are the cost functions for resource
instantiation and reconfiguration. Eq. (9) captures the amount
of instantiating additional resources for the vDU and vCU,
which might arise due to migrating additional resources to
serve the vRAN workload, and this results in indirect overhead
expenses such as the increase of power consumption [34].
Then, the first term in (10) captures the reconfiguration cost
initiated from migration activities for altering the splits and
flavors (resizing resources). Such activities raise overhead
costs from the migrated resources, measured from the dif-
ference between the current and the previous resources [9],
[34]. For instance, altering the splits requires creating new
BS functions while maintaining the old migrated functions to
keep active [9]. Resizing the VMs’ resources also initiates a
price of management delay [35] as it needs time for migrating
(and bootstrapping) the computing resources, load balancing
and steering the network load7. The second term in (10)
captures the reconfiguration cost for migrating the vDU and
vCU instances to other FS and ES locations. In this case,
the whole resources of vDU and vCU instances are affected,

7We have calculated the incurred time for resizing a VM instance in CSC
cPouta (https://www.csc.fi/) cloud computing platform, and it takes around
25 seconds. Modern software architecture such as Kubernetes also requires
several seconds to executing new pods [34].

and the attached routing paths need to be recomputed with
the new FS and ES locations. In our evaluation, fI(.) and
fR(.) are proportional to the input, e.g., fI(v) := κIv and
fR(v) := κRv, where κI ($/unit) is the estimated cost for
resource instantiation and κR ($/unit) is for reconfiguration.
If reconfiguring the system does not incur any overhead cost,
we can set κR = 0, otherwise κR > 0.

O-RAN has encouraged adopting an open interface between
the vCUs, vDUs and RUs [5], resulting in sharing the xHaul
links among the BSs. In addition, S1, S2, S3 and S4 generate
different data loads depending on the selected split as seen in
Table I. Hence, the cost for reserving bandwidth and routing
the data flow through the xHaul links are also different. The
routing cost for each BS-k can be denoted as:

fH

( ∑
p∈Pk

(
rFH,n
p,i

∑
l∈L

1=zn
k
(l)

+ rMH,n
p,i

∑
m∈M

1=ζn
k
(m) + rBH,n

p,i

))
, (11)

where rFH,n
p,i , rMH,n

p,i , rBH,n
p,i are the incurred data loads over

FH, MH and BH at time slot n from using path p, serving
traffic demand λ, and deploying split-i. The indicator 1=zn

k
(l)

activates if vDU-k is placed at FS-l and 1=ζn
k
(m) activates if

vCU-k is hosted at ES-m. Then, fH(.) is the cost function for
bandwidth reservation to transfer data load through the xHaul
links, and this cost function is proportional with the input, e.g.,
fH(v) := κpHv, where κpH ($/Gbps/Km) is the estimated fee for
reserving bandwidth for path p per Gbps/Km.

Let suppose Jn(an, sn) :=
∑

k∈K fRU(.)+fFS(.)+fES(.)+
fO(.)+ fD(.)+ fI(.)+ fR(.)+ fH(.) is the total operation cost
for all the BSs accounted from (3)-(11). Then, we define the
reward8:

r(an, sn) := −Jn(an, sn). (12)

Then, our aim is to design an optimal policy that maps the
input state observation into action π∗(s) : S 7→ A , which
minimizes the long-term total operation cost over period of
time. Such a policy can be formulated through maximizing
the long-term reward:

π∗ := argmaxEπ

[ N∑
τ=0

γτrτ+n|π
]
, (13)

where E
[∑N

τ=0 γ
τrτ+n

]
is the expected long-term accumu-

lated reward starting at time slot τ . The discount factor γ is
strictly set to γ = 1 during the online operation, corresponding
to a non-discounted reward that represents the actual cost;
otherwise, γ∈(0, 1].

C. Trade-offs

The above problem is intricate for many reasons. We discuss
the trade-offs and non-triviality that arise as follow.

8Our study focuses on network operation cost minimization, but our frame-
work can be extended to other or multiple objectives, such as maximizing
the vRAN performance (e.g., centralization degree). In this case, we can
use weighting parameters that determine the relative importance between the
objectives (e.g., cost and performance).

7
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(i) From S1 to S4, the operators can gain a lower compu-
tational cost and high-performance operations through func-
tion centralization. However, it also has a tighter constraint
requirement and induces a higher transferred data load through
the xHaul links. A higher data load means a more expensive
routing cost. In addition to the splits, the required resources
for the vDUs and vCUs are highly affected by traffic demands
and resource availability, which might change absurdly. These
also affect the placement of the vDUs and vCUs over FSs and
ESs. The association and routing paths are also different for
each placement location.

(ii) Using a static policy and finding the best configurations
by foreseeing the future peak traffic may reduce the overhead
costs due to reconfiguration activities. However, it might
produce significant resource overprovisioning. Such unused
resources can be profitable if the operators can efficiently
manage and share with other workloads. Predicting the future
peak traffic might also be inaccurate, which might not result
in the best configurations.

(iii) By dynamically reconfiguring the vRAN settings at
every time slot, the operators can obtain the best configurations
at a time; hence, the risks of resource overprovisioning and
declined demands can be reduced. However, every reconfig-
uration activity produces overhead costs, which may lead to
costly long-term network operations. Moreover, the reconfig-
uration decisions are made before the actual traffic demand
is observed; therefore, finding the optimal decisions at every
time slot is challenging and might be unfeasible in practice.

(iv) The reconfiguration decisions in our vRAN system are
highly affected by the traffic demands and resource utilization.
However, their relations are complex, depending on many
factors such as traffic demand, computing platform, radio
scheduler, etc, which also hinder general assumptions (e.g.,
linear) to model the computing resource’s behavior, rendering
traditional control policies inefficient for our vRAN reconfig-
uration problem.

(v) Points (i)-(iv) emphasize the need for intelligent re-
configuration decisions with minimal assumptions about the
underlying system. A deep RL paradigm can be suitable to
handle such challenges. However, the formulated RL problem
has a huge state space and multi-dimensional action space
because the vRAN system consists of multiple BSs sharing the
same network resources with highly coupled configuration de-
cisions. These challenges make conventional deep RL discrete
action space algorithms such as deep Q learning inefficient.

Given the formulated RL problem and trade-offs above, we
present how to design the solution that solves the problem
efficiently in the next section.

IV. LARV LEARNING ALGORITHM

LARV leverages a model-free RL paradigm, which consid-
ers the vRAN system as a black-box environment and does not
take any assumption about the system state and state transition
probability distribution. However, finding the optimal policy of
the agent is non-trivial as the formulated RL problem has the
semi-continuous state space and the multi-dimensional action
space, which make the state-action space extremely large. The
large state space can be addressed using D3QN [15], where

this approach is also naturally designed for discrete action.
However, we need to tackle the issue of the multi-dimensional
action space, which makes the number of estimated actions
grow combinatorially with the number of BSs and configura-
tion decisions. In order to address this curse dimensionality, we
incorporate action branching [17] with D3QN to compress the
number of estimated actions. Through this approach, the multi-
dimensions of the action can be distributed across individual
network branches while maintaining a shared decision module
among them to encode a latent representation of the input
state and enable coordination among the branches. In contrast
to traditional discrete-action deep RL algorithms, this action
decomposition method exhibits a linear growth of the total
network outputs with increasing action dimensionality.

A. D3QN to Address the Large State Space

The objective of our RL agent is to learn the optimal policy
π∗ defined in (13). As the problem has a large state space
and the expected output is a discrete action, we can utilize an
off-policy RL algorithm by using D3QN to approximate the
action-value function (Q-function) and Double Q-learning for
the learning step.

We define the optimal action-value function Q∗(s, a) as the
maximum expected reward for observing certain sequences s
after following some policies π and taking some actions a
as: Q∗(s, a) := maxπ E[

∑∞
τ γrτ+n|sn = s, an = a]. If we

know the optimal value Q∗(s′, a′) of the sequence at the next
time slot s′ for all possible actions a′, we can identify the
optimal policy π∗, which is to select action a′ that maximizes
the expected value r + γQ∗(s′, a′): Q∗(s, a) := Es∼E [r +
γmaxa′ Q∗(s′, a′)|s′, a′]. In the value iteration method, the
action-value function can converge to the optimality when
the iteration number reaches near infinity; however, it is
impractical. Therefore, a function approximator such as a
neural network can be applied to estimate the action-value
function. The estimated action-value function parameterized
by a neural network (Q-network) with weights θ is denoted
as: Q(s, a; θ) ≈ Q(s, a). Then, the Q-network is trained by
minimization of a loss function:

L(θ) := Es,a,r,s′∼D
[
u−Q(s, a; θ)

]
, (14)

where the transition {s, a, r, s′} is collected through random
sampling (minibatches) from stored experience data D, and u
is the Temporal Difference (TD) target. In DQN [36], the TD
target is computed by:

uDQN := Es′∼S [r + γmax Q̃(s′, a′; θ̃)], (15)

where Q̃(s′, a′; θ̃) is the target network parameterized by
weights θ̃. The design of TD-target in (15) often causes an
overestimate to the actual action-value. Thus, we apply Double
DQN (DDQN) [16] to overcome this issue by modifying the
TD target into:

uDDQN := Es′∼S [r + γQ̃(s′, argmax
a′

Q(s′, a′; θ); θ̃)]. (16)

When the RL problem has a large action space, such as
in our vRAN problem, it might not require estimating the
value for certain states, i.e., avoiding unnecessary estimation of
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redundant and low-value actions. Thus, we apply the Dueling
architecture [15] to DDQN (called D3QN) by separating the
Q-network into two streams of state-value and advantage,
which are then combined through an aggregating layer to
produce an estimate of the action-value function. Lets denote
V (s; θ) and A(s, a; θ) as the estimated state-value function
and advantage function, respectively; then, the action-value
function at the output layer can be computed as:

Q(s, a; θ) := V (s; θ) +A(s, a; θ)− 1

|A|
∑
a′

A(s, a′; θ).

(17)

By explicitly separating the Q network into two estimators,
D3QN can learn which states are valuable without requiring
to learn the impact of every action for each state. Hence, it
can effectively achieve a high-quality policy for a large state
space. However, in addition to a large state space, our vRAN
problem produces a multi-dimensional discrete action space.
It drives the number of estimated Q values in (17) to grow
combinatorially with the number of configuration decisions
and BSs. Next, we present how we incorporate an action
branching architecture with D3QN to compress the number
of estimated Q values in our vRAN problem.

B. Action Compression Using Action Branching

Let us define Ck := {ik, xk, yk, zk, ζk} as a set that
includes all the reconfiguration control variables of BS-k.
Then, we denote the sub-action akc,∀c ∈ Ck,∀k ∈ K, to
represent the c-th reconfiguration control variables of BS-k,
i.e., a11 := i1, a12 := x1, ..., aKCK

:= ζK ; and Ck :=
|Ck|,∀k ∈ K. Hence, we can rewrite the action in (1) by
a := {akc : c ∈ Ck, k ∈ K}. Each of sub-actions also takes
values from a finite set of the sub-action space Akc ⊆ A
that describes the c-th reconfiguration control space of BS-
k, i.e., Ak1 := I,Ak2 := X , ...,AkCK

:= M,∀k ∈ K. As
the RL agent controls K BSs, and each BS has Ck sub-
actions; then, the number of Q-values to be estimated turn
to

∏K
k=1

∏Ck

c=1 |Akc|. By incorporating action branching, the
number of Q-values to be estimated can be compressed to∑K

k=1

∑Ck

c=1 |Akc|. The initial action branching in [17] has
successfully tackled problems with the discretized continuous
action space. However, its performance is still not validated
in the problem where the action space is naturally multi-
dimensional. Moreover, it assumes that all of the sub-action
spaces have the same dimensional size, i.e., |A11| = |A12| =
... = |AKCK

|. Hence, we can not directly utilize it as the size
of the sub-action space of the reconfiguration control variables
in our vRAN problem varies. We adopt the action branching
paradigm suited to our problem and describe it as follows.

We use the common state s defined in (2) and common
state-value V (s). The value of sub-action akc at common state
s with the corresponding sub-action advantage Akc(s, akc)
becomes:

Qkc(s, akc) := V (s) +
(
Akc(s, akc)

− 1

|Akc|
∑

a′
kc∈Akc

Akc(s, a
′
kc)

)
. (18)

Then, the TD target is set similar to (16) to avoid maximization
bias, except it uses an average of all the dimensions of the
sub-actions as follows:

u :=r+γ
1

K

K∑
k=1

1

Ck

Ck∑
c=1

Q̃kc

(
s′, argmax

akc′∈Akc

Qkc(s
′, a′kc)

)
,

(19)

where Q̃kc is the target network. Then, the loss function can
be computed as:

L(θ) :=Es,a,r,s′∼D
[ 1
K

K∑
k=1

1

Ck

Ck∑
c=1

[ukc−Qkc(s, akc; θ)]
]
.

(20)

The action a to be taken for all the BSs is selected based
on ϵ-greedy, where the agent chooses a random action with
probability ϵ or compute:

a :=
[
argmaxQk1(s, ak1′)

a′
k1

, ..., argmaxQKCK
(s, aKC′

K
)

a′
KC

]
(21)

with probability 1− ϵ.

C. Neural Network Architecture and Learning Algorithm

Fig. 5 illustrates the Q-network architecture of branching
D3QN Qθ, parameterized by weights θ and applied in LARV.
This network is constructed from an input layer, a shared
representation segment comprising hidden layers, a state value
network, and neural network branches. The input layer (Linear
layer with ReLU activation) receives the common state obser-
vation s and has the size of |s|. The shared representation
segment is built from two fully connected Linear layers with
ReLU activation, connected to neural network branches and
state value function network. We use a Linear layer for
the common state value network. Then, the neural network
branches have a total of

∑K
k=1 Ck branches corresponding to

the number of control decision variables (sub-actions). Each
branch aims to produce the sub-action value Qkc(s, akc) by
taking consideration of the common state value V (s) and
sub-action advantages Akc(s, akc) as described in (18). Each
branch has an output layer (an aggregation layer from the state
value and sub-action advantages) with the size of |Akc|.

Further, we summarize the learning process of LARV in
Algorithm 1. Firstly, the replay buffer memory D and the
Q-network Qθ (Fig. 5) are initialized, where the Q-network
initialization can be from random or pretrained weights (Step
1). Then, the weights of the Q-network Qθ are copied to
the target network Q̃θ̃ (Step 2). At the beginning of each
episode (or trial during the training), the state observation s1

is reset with initial values, where these values are assigned
from λ1 := {λ1k ∈ R+ : k ∈ K}, i0 := {i0k = S1 : k ∈ K} ,
x0 := {x0k = max(X ) : k ∈ K}, y0 := {y0k = max(X ) :
k ∈ K} , z0 := {z0k = random(X ) : k ∈ K} and
ζ0 := {ζ0k = random(X ) : k ∈ K} (Step 4). Then, at
every time slot n, given the state observation sn, an action
an := {ankc : c ∈ Ck, k ∈ K} is selected randomly with
probability ϵ, otherwise it is computed using (21) (Step 6).
Then, the routing p := p0m ∪ pml ∪ plk ∈ Pk : k ∈ K can
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Fig. 5: The Q-network architecture built following D3QN with action branching.

Algorithm 1: LARV Learning Algorithm

1 Initialize: Replay memory D with a fixed buffer size,
Q-network Qθ (Fig. 5) with random or pretraining
weights θ.

2 Clone Q-network Qθ to target network Q̃θ̃ with
weights θ̃ ← θ.

3 for Each episode e = 1.., E do
4 Reset state of all the BSs

s1 := {λ1, i0, x0, y0, z0, ζ0}.
5 for Each time slot n = 1..., N do
6 Select an action an := {ankc : c ∈ Ck, k ∈ K}

randomly with probability ϵ, otherwise
compute an by using (21).

7 Determine the routing p ∈ Pk,∀k ∈ K using
in, zn and ζn obtained from an.

8 Enforce an and p ∈ Pk,∀k ∈ K to all the BSs
and compute the total cost Jn.

9 Collect the reward rn based on (12).
10 Set sn+1 ← sn with the current observation.
11 Store the experience D ←

{
sn, an, rn, sn+1

}
.

12 Sample minibatch of experiences from D.
13 Compute TD target u using (19) if not done,

otherwise u := rn.
14 Perform a gradient descent method to the loss

function L(θ) in (20) w.r.t θ.
15 Update target network Q̃θ̃ ← Qθ every n̂ steps.
16 end
17 end

be selected through in, zn, and ζn obtained from the selected
action since these variables determine the hosting servers for
the vDUs and vCUs, and hence the destination server for
each data flow (Step 7). After all the control variables are
determined, they are enforced to all the BSs as the vRAN
configurations at time slot n. As a result of the deployed
configurations, LARV expects to receive the total operation
cost J(an, sn) (Step 8). Based on this cost, the reward
r(an, sn) signal at time n can be computed by (12) (Step 9).
The state is updated with the current observation sn+1 ← sn

(Step 10). Then, the agent’s experience is stored in replay
memory D ←

{
sn, an, rn, sn+1

}
(Step 11) and the memory

D is sampled randomly (Step 12). Further, the TD target of
branching D3QN is computed with (19). Once the TD-target
is obtained, we can proceed to calculate the loss function L(θ)
using (20) (Step 13). The goal of this learning process is to
minimize this loss function with regards to weights θ, and we
rely on Adam optimizer [37] to perform stochastic gradient
descent. Mostly, the target network is frozen, but it is updated
every n̂ by using the Q-network weights (Step 15).

V. RESULTS AND DISCUSSION

In this section, we perform trace-driven simulations using
real traces collected from our testbed to evaluate the perfor-
mance of LARV under various scenarios during the training
process and online operation.

A. Experimental Setup

We built a bespoke testbed to collect measurements used
to evaluate LARV under realistic conditions. We utilize the
software-based srsRAN [12], where each entity is virtualized
using container-based virtualization from Docker. The radio
interfaces of the BS (e.g., RU) and user are emulated via
ZMQ. The srsENB acts as a BBU of the BS. To deal with
functional split, we use prior studies that divide the computing
consumptions of LP, HP, LM, HM, LR, HR, and PD functions
to yield 48%, 17%, 7%, 7%, 0.5%, 0.5%, 10%, 10% of
the total BBU, respectively, cf. [18], [20]. We deploy the
virtualized entities in Platform A (CSC cPouta hpc.5.16core
with max. 16 vCPU) and Platform B (PC AMD Ryzen 7 PRO
4750U with max. 16 CPU threads). We use these computing
specifications for Reference Core (RC), i.e., 1 RC translates to
1 CPU thread and 1 vCPU. The virtualized resource of each
container can be controlled through –cpus, which allows us to
set a capacity limit and isolate each container resource. We
set an initial resource reservation for srsENB with 10 RCs.
In our measurements, the traffic demand follows a Poisson-
generated user datagram protocol with a peak data rate is 36.6
Mbps (SISO 10 MHz LTE).

In our simulations, the traffic demands follow the Milan
network datasets from Telecom Italia [38], where each time
slot has 10 minutes time interval. This interval is also aligned
with the capabilities of current Virtual Infrastructure Managers
(VIMs). Moreover, LARV selects an action from the incoming
state information (e.g., by passing forward through the Q
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(a) (b)

Fig. 6: The network graph representation for (a) N1 and (b) N2.
The green, blue, red, and black dots represent the RUs, FSs, ESs and
EPC, respectively.

network) at each time slot, and it can be performed within
a second in our test, which is suitable for real-time operation.
The Milan datasets consist of mixed traffic, including calls,
sms, and the internet. We filtered the datasets and utilized
internet traffic (mobile broadband). Although it was recorded
in 2013 (dominated by 4G traffic), it is still relevant for 5G
network evaluation since it captures users’ demand behavior
comprehensively (e.g., the day, night, weekend, city center,
etc.). Considering the limitations of our testbed and the diffi-
culty in capturing the computing behavior of the Milan traffic
in a tractable model, we utilize a deep neural network9 to map
the Milan traffic demands into the actual resource utilization,
trained using our collected measurements.

We consider a realistic MEC-based Milan topology (N1)
[39] and a synthetic topology (N2) generated using the
Waxman algorithm [40], and their graph representation is
illustrated in Fig. 6. N2 has parameters of link probability
(0.5) and edge length control (0.1). A vRAN system in N1
and N2 consists of 1 EPC, 4 ESs, 8 FSs and 8 RUs (default),
where the routers are co-located with each node10. Per link’s
latency, capacity, and weights of N1 and N2 vary from 0
to 0.1 ms, 30 Gbps to 160 Gbps, and 0 to 0.1. We have
Hl = 20 RCs,∀l ∈ L and Ĥm = 100 RCs,∀m ∈ M. We
set the available flavors with |X | = 16 for Platform A and
Platform B, which translate to {0, 1, ..., 14, 15} RCs of the
computing resources. Then, we define two vRAN systems in
which we utilize Platform A with N1 (VR1) and Platform B
with N2 (VR2).

We set the computing processing fee (per CPU usage) at the
RU with κRU:=1 RC−1 [18]. A single ES can serve up to 8
FSs, and a single FS can handle as high as 8 RUs. Therefore,
we set κFS := 0.5κRU and κES := 0.5κFS (c.f. [41, Fig. 6a]
with ≈ 10 BSs) by taking into account the processing gain
from centralization (i.e., computational processing cost is less
by centralizing more functions and executing them in a higher
computing platform). Then, with regards to prior study in [34],
we set the coefficient fee for resource overprovisioning with
κO := 1 RC−1 and declined demands with κD := 5 RC−1.

9It is constructed from an input, an output and three hidden layers with the
sizes of 128, 64 and 16. We use Adam optimizer [37] with learning rate is
set to 5×10−5, mini-batch with the size of 128 and MSE loss function, then
train it with 200 epochs.

10The datasets for N1 and N2 initially do not specify which nodes are for
EPC, ESs, FSs, and RUs. We followed an intuitive approach by selecting them
from the highest network degree.

Parameters Default value

Number of ESs (M ) 4
Number of FSs (L) 8
Number of RUs (K) 8
FS computing capacity (Hl) 20 RCs
ES computing capacity (Ĥm) 100 RCs
The set of flavors (X ) {0, 1, 2, ..., 15} RCs
Overprovisioning fee (κO) 1 RC−1

Declined demand fee (κD) 5 RC−1

Reconfiguration fee (κR) 0.1 RC−1

Instantiation fee (κI) 0.1 RC−1

Processing fee at ES (κES) 0.25 RC−1

Processing fee at FS (κFS) 0.5 RC−1

Processing fee at RU (κRU) 1 RC−1

Bandwidth (routing) fee (κH) 1 Gbps−1/Km
Time horizon (N ) for 1 episode 144 time slots
Epsilon start and end (ϵmax, ϵmin) (1, 0.015)
Learning rate 0.0001
Batch size 128

TABLE III: Experimental setup; see Sec. V-A for description.

It is common that the penalty due to the declined demands
incurs a higher cost. We also set the default coefficient for the
reconfiguration fee lower with κR = 0.1 RC−1 to account
for the typically relatively lower cost per unit of resource
reconfiguration [34]. Then, we set κI := κR (see Sec. III) and
κH := 1 Gbps−1/Km (e.g., the fee for reserving 1 Gbps/Km
routing bandwidth is the same as a processing fee at RU).

The Q-network of branching D3QN has an input layer with
size of |s|, hidden layers (the architecture and size are provided
in Fig. 5), and

∑K
k=1 Ck branches. Each branch has an output

with size of |Akc|. The target network is updated every 500
time slots. The batch size is set with 128 and the replay buffer
has a capacity of 106. Our exploration and exploitation strategy
is based on ϵ-greedy, where we set ϵmax = 1 at the beginning
of episode, then it exponentially decays to ϵmin = 0.015. We
use Adam optimizer [37] with learning rate is set to 0.0001
and (20) for the loss function. The time horizon for a single
episodic training is one day (N = 144 time slots) and the online
operation starts on the second day with a default duration
of two days (N = 288 time slots). Table III summarizes
the default experimental setups used in our evaluation. The
datasets in this work will be released online11.

Further, we compare LARV with several benchmarks as
follows.

• The best static with 100% provisioning (BSP): It knows
exactly the peak future traffic demand of each BS and
utilizes them to find the best static joint action via
an exhaustive search. It can be defined as: πBSP :=
argmina

∑K
k J i

k(a), where i = argmaxn λ
n
k . Further,

it is used to normalized the monetary costs in the online
operation evaluations.

• DDPG with discretization: Since the state space and
action space of the RL problem are extremely large,
the traditional discrete RL algorithm may not perform
efficiently. A continuous RL algorithms such as DDPG
[42] can address extremely large state-action space, but

11https://github.com/fahriwm/larv datasets
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Fig. 7: a) Traffic variation within two days from Milan datasets [38] and b) collected measurement results over Platform A and c) Platform
B. The resource utilization is presented in a reference core (RC), which translates to 1 virtual CPU/thread.
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Fig. 8: The convergence of LARV under various reconfiguration fees in a) VR1 and b) VR2.

they are not designed for a discrete action. Hence, we
relax the discrete action (1) into a continuous action.
Then, when the output of DDPG is determined, we
estimate it to the nearest discrete value. We also modify
the output activation function with a Sigmoid function as
each action needs to be a positive value.

• Multi-agent of D3QN (MDQ): It is a non-branching
D3QN. To deal with multi-dimensional action space,
in every BS, each reconfiguration control works as a
separate agent, i.e., the decision of each split, resource,
and location is controlled by a different agent, that
works collaboratively to maximize the common reward
in (12). In total, MDQ has

∑K
k=1 Ck agents. The agents

that represent control variables in the same BS share a
common state observation.

B. Measurement Insight

Fig. 7a illustrates an example of the traffic demand of a BS
in the Milan datasets [38]. It shows a significant difference
between the peak and lowest traffic demand by up to 92% in
a single day. Moreover, the traffic variation might vary from
day to day (e.g., weekdays, weekends). Figs. 7b and 7c show
that the traffic demand highly affects the resource utilization
of the BBU. These findings motivate us to implement the

dynamic configurations to adapt such traffic and resource
variations to achieve cost-effective operations. Figs. 7b and
7c also demonstrate that the relations between traffic demand
and resource utilization have high variance, where we found
a significant degree of spread on the resource utilization.
Moreover, these relations are platform-dependent performance
(e.g., hanging on the hosting platforms and platform load).
For example, although they indicate not strongly linear in
Platform A and B, the resulting Pearson coefficient is different
with 0.513 and 0.654, respectively. Also, albeit the BBU has
been reserved with the same resources, Fig. 7c shows that
the BBU utilization of Platform B is higher than Platform A.
Such platform-dependent performance is also found in [10] for
uplink, where the computing behavior of vRANs is identified
depending on many latent factors.

C. Performance during Training Process

1) Training Convergence: Fig. 8 illustrates the convergence
behavior of LARV over various reconfiguration coefficient
fees in VR1 and VR2. At the beginning of episodes, LARV
has a higher probability of utilizing a random policy for
exploration. As a result, LARV produces a high long-term
total operation cost over all the reconfiguration fees in VR1
and VR2. However, after some episodes, LARV successfully
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Fig. 9: The incurred cost from declined service demands (average per
BS) in VR1 and VR2. The cost is diminishing as the training goes,
and it eventually reaches to near zero (e.g., after 400 episodes).

learns the optimal policy, starts to act greedily with a high
probability, and convergences to the best policy the agent can
learn. Moreover, we found a similar trend in LARV’s behavior,
where it manages to converge to some cost values after 400
episodes, albeit it learns over different reconfiguration fees and
vRAN systems.

Fig. 8 also shows that using a random policy in vRAN
reconfiguration problem must be avoided as it yields in costly
long-term cost. In VR1, our findings reveal that LARV can
save the costs by up to to 78.14%, 79.0%, 80.76% and 83.2%
over κR = 0.05, κR = 0.1, κR = 0.5 and κR = 1, respectively,
compared to a random policy. Such significant cost savings by
LARV also appear in VR2, where LARV can save the cost as
high as 75.79%. The cost savings of LARV also increase when
the reconfiguration fee is more expensive (e.g., κR = 0.05 to
κR = 1).

2) Declined Demands: Fig 9 shows that LARV can reduce
the incurred cost due to declined demands after several training
episodes both in VR1 and VR2. The declined demand cost
appears in almost every episode at the beginning of training
episodes. The main reason is that LARV mostly chooses
random actions for exploration, rendering a very high number
of declined service demands and, at the same time, producing a
very expensive cost. Note that the declined demands contribute
a significantly more expensive cost as its coefficient fee is
much higher than others. As the training continues, LARV
optimizes its weights based on the reward feedback and suc-
cessfully diminishes the declined demand cost. After around
400 episodes, the incurred cost at each episode becomes
smaller and less frequent, eventually reaching almost zero (or
zero). Following the decrease of this cost, at the same time,
the accumulated total operation cost (see Fig. 8) is also greatly
diminished.

3) Transfer Learning: To assess the generalization of
LARV over heterogeneous vRAN systems, we study the
benefits of utilizing a transfer learning paradigm (”w/ trans-
fer”) compared to learning from scratch (”w/o transfer”). In
particular, we leverage our pre-trained neural network weights
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Fig. 10: Training convergence in VR2. Using transfer learning
paradigm (”w/ transfer”), which is leveraged from pretraining weights
in VR1, can achieve similar performance and faster convergence
compared to without transfer learning (”w/o transfer”).

(trained in VR1) for initializing the other neural network
weights in different vRAN systems (e.g., in VR2). It is worth
noting that the system parameters and platforms in VR1
and VR2 are different. Hence, this evaluation aims to study
the possibility of reusing the existing models for the other
vRAN systems, which might expedite the convergence and
widespread deployment of LARV. We use the same default
hyperparameter (defined in Sec. V-A), except we encourage
less exploration for ”w/ transfer” by modifying ϵmax = 1 to
ϵmax = 0.1.

Fig. 10 depicts that LARV ”w/ transfer” successfully con-
verges to the similar value with ”w/o transfer” in VR2, albeit
the pre-trained weights are leveraged from a different vRAN
system (VR1). Moreover, ”w/ transfer” can speed up the train-
ing convergence with similar performance as ”w/o transfer”
even though the pre-training is conducted not in the same
platform, where it starts to converge after around 150 episodes.
In transfer learning, a pre-trained model is utilized. And when
a pre-trained model is available, the gained knowledge of this
already trained model can be transferred among different but
similar (e.g., correlated) environments and contexts, which
in our case are VR1 and VR2. Such a transfer knowledge
paradigm can expedite the learning convergence and allow
the reuse of existing pre-trained models across different but
related vRAN systems (i.e., have correlations with the training
environment/context).

4) Action Space Compression: Following the simulation
setup, each BS has sub-action sizes with |I| = 4, |X | = 16,
|L| = 8 and |M| = 4, and we have |K| = 8. Hence, the
number of Q values to be estimated is originally around
1.32× 1036. LARV turns such a combinatorial explosion into
a linear increase; hence, the number of estimated Q values
becomes 384.

D. Performance during Online Operation

1) Selected actions: Fig. 11 illustrates how LARV success-
fullys controls the configurations of BS-1 reacting to the traffic
variations and resource availability over different reconfigura-
tion fees. Instead of minimizing the incurred cost at each slot,
LARV’s objective is to minimize the cost in the long run.
As shown in Fig. 11b, LARV performs 133× reconfiguration
activities when κR = 0.05. However, this activity becomes less
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Fig. 11: The selected actions over different reconfiguration fees and traffic demand variations at BS-1 during online operation (2 days).

frequent with the increase of reconfiguration fee, where there
are only 33× reconfiguration activities. For the functional split
(i), LARV mostly selects S1 (more decentralized functions)
when the traffic of BS-1 is low, and it adjusts the split decision
to S3 (more centralized functions) as the traffic increases.
In S3, the transferred data flow over HLS is equal to the
traffic demand with 500 Mbps of additional signaling overhead
(λ+0.5 Gbps); hence, LARV does not suggest implementing it
in low traffic for such high overhead. However, when the traffic
is elevated, i.e., the signaling does not significantly contribute
to the data flow and routing cost, LARV tends to choose
S3, considering the benefits of function centralization. This
behavior appears in both κR = 0.05 and κR = 1, though the
number of reconfigurations differs, where the reconfiguration
is more often for κR = 0.05. Further, the other results suggest
that the allocated resources and the placement locations for
vDUs and vCUs vary for different reconfiguration fees. For
instance, the allocated resource of the vDU (x) in κR = 1 is
larger than in κR = 0.05, even during the traffic is low, as
LARV needs to accommodate the less frequent reconfigura-
tions and more decentralized functions (it mostly implements
S1). LARV also directly allocates a higher resource of the
vCU (y) to avoid numerous reconfigurations when κR = 1.
Moreover, LARV decides to rarely reconfigure the vDU (z)
and vCU (ζ) locations or even does not reconfigure them when
the fee is costly (κR = 1), as altering such configurations
requires migrating all the resources to the new places, which
can trigger significantly expensive reconfiguration cost.

2) The Number of BSs: We evaluate LARV over a different
number of the BSs in the vRAN system and present it in
Fig. 12a. The number of BSs significantly influences the

size of the state space and action space of the RL problem.
In general, all the RL approaches outperform BSP when
K = 1, where LARV becomes the most cost-effective by
saving the cost up to 59%. However, when the number of
BSs in the vRAN system becomes more prominent, the size
of the action space, state space, and the number of possible
actions grow combinatorially. By adopting action branching,
LARV successfully deals with such a combinatorial growth
with a linear increase, rendering well-achieved performance,
as shown in Fig. 12a. And it brings LARV to be the least
degraded performance, where the cost savings of LARV is
more than 39% of BSP. In contrast to LARV, MDQ utilizes
a distributed multi-agent system. When the number of BSs
increases, the number of agents of MDQ also increases, and
this makes the performance of MDQ deteriorate compared to
the centralized learning approaches. Moreover, albeit DDPG
can deal with discrete action space through discretization of
continuous action, the performance is still far from LARV.
Unlike LARV, which is naturally designed for large discrete
action space, DDPG can lose its learning effectiveness due to
discretization.

3) Time horizon setting: Fig. 12b visualizes the perfor-
mance of LARV compared to the benchmarks over various
time horizon settings, ranging from 7 days to 28 days. We
found that LARV becomes the most cost-effective approach
by having the cheapest long-term total cost. The performance
of LARV also remains stable, albeit in varying conditions
(demands and resource availability). Compared to BSP, the
cost-savings of LARV can be as high as 39%. LARV updates
the vRAN configurations prudently, adapting to the varying
conditions and considering the long-term cost, while BSP
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Fig. 12: Performance during the online operation in VR1. The presented monetary costs are normalized to BSP.

follows static policy by using future traffic information. This
finding clearly emphasizes the importance of dynamic recon-
figuration in vRANs. Moreover, LARV also outperforms RL
benchmarks, where it saves the long-term total cost by up
to 10% of DDPG and 75% MDQ. Compared to continuous
space and non-branching state-of-the-art deep RL approaches,
this gain shows the effectiveness of LARV through branching
of D3QN in solving a large state space and multi-dimensional
action space of the vRAN reconfiguration problem.

4) Reconfiguration fees: We analyze the impact of various
reconfiguration fees (κR) on the cost savings that LARV
can achieve. Fig. 12c shows that LARV can successfully
provide well-achieve performance in both cheap and expen-
sive reconfiguration fees. It also shows that the increase in
reconfiguration fee slightly affects the performance of LARV
while it significantly degrades DDPG. DDPG is proposed for
continuous action, and the performance can be deteriorated
due to discretization when the problem has discrete action
space, such as arising in our problem. In general, compared to
DDPG, the cost savings of LARV increase as the fee gets more
expensive, where the gains of LARV rise from 10% to as high
as 35% (κR = 1). Moreover, the cost savings of LARV remain
stable compared to BSP and MDQ at around 35-39% and 62-
76%, respectively. These findings emphasize that reconfiguring
the vRAN system is beneficial, but we need to carefully design
the RL algorithm suited to the vRAN problem.

5) Overprovisioning fees: We study the effect of differ-
ent overprovisioning coefficient fees to the performance of
LARV. As seen from Fig. 12d, when the overprovisioning

fee gets costly, all the RL approaches’ performance increases
correspond to the static policy, where LARV becomes the
best approach among them. LARV can save the costs from
23% (κO = 0.05) to 49% compared to BSP (κO = 1).
These results highlight the need for reconfiguring prudently
the vRAN system at runtime, particularly when the resources
are valuable and the price of wasting such resources is high,
making the static policy economically unviable for long-term
operations.

VI. CONCULUSION

In this paper, we have proposed LARV that jointly recon-
figures the functional splits of the BSs, the resources and
placements of vDUs and vCUs, and the routing for each BS
flow. The objective of LARV is to minimize the long-term
total operation cost while adapting to the possibly-varying
traffic demands and resource availability. In particular, we
have analyzed the relations between the traffic demands and
resource utilization in the vRAN system, which renders their
relations have high variance and dependence on platform and
platform load. We also have formulated a comprehensive cost
model capturing the impacts of resource overprovisioning, in-
stantiation and reconfiguration and the declined demands. We
have developed LARV using a model-free deep RL paradigm
to solve the sequential decision-making problem. The agent’s
neural network is developed using a combination of D3QN
and action branching to tackle the large state space and multi-
dimensional action space. We also have conducted a series
of trace-driven evaluations during the training process and
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online operation. The numerical results have shown that LARV
successfully learns the optimal policy, where its learning
convergence can be expedited through transfer learning even in
different vRAN systems. Moreover, LARV offers considerable
cost savings by up to 59% of the static benchmark, 35%
of DDPG with discretization, and 76% of a distributed non-
branching D3QN solution.

The proposed framework in this paper has been evaluated
in a realistic simulated vRAN system based on collected
testbed traces and network datasets. However, it has not been
implemented in a real live network due to the limitation of
the current testbed setup, i.e., it could not support several
functional splits and the geographical location of the servers.
In the future, implementing the framework and evaluating
its performance in a real live network setup would be an
interesting study.
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