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Abstract—The edge computing paradigm brings cloud capa-
bilities close to the clients. Leveraging the edge’s capabilities
can improve video streaming services by employing the storage
capacity and processing power at the edge for caching and
transcoding tasks, respectively, resulting in video streaming
services with higher quality and lower latency. In this paper,
we propose CD-LwTE, a Cost- and Delay-aware Light-weight
Transcoding approach at the Edge, in the context of HTTP
Adaptive Streaming (HAS). The encoding of a video segment re-
quires computationally intensive search processes. The main idea
of CD-LwTE is to store the optimal search results as metadata for
each bitrate of video segments and reuse it at the edge servers
to reduce the required time and computational resources for
transcoding. Aiming at minimizing the cost and delay of Video-
on-Demand (VoD) services, we formulate the problem of selecting
an optimal policy for serving segment requests at the edge server,
including (i) storing at the edge server, (ii) transcoding from a
higher bitrate at the edge server, and (iii) fetching from the
origin or a CDN server, as a Binary Linear Programming (BLP)
model. As a result, CD-LwTE stores the popular video segments
at the edge and serves the unpopular ones by transcoding using
metadata or fetching from the origin/CDN server. In this way,
in addition to the significant reduction in bandwidth and storage
costs, the transcoding time of a requested segment is remarkably
decreased by utilizing its corresponding metadata. Moreover, we
prove the proposed BLP model is an NP-hard problem and
propose two heuristic algorithms to mitigate the time complexity
of CD-LwTE. We investigate the performance of CD-LwTE in
comprehensive scenarios with various video contents, encoding
software, encoding settings, and available resources at the edge.
The experimental results show that our approach (i) reduces the
transcoding time by up to 97%, (ii) decreases the streaming cost,
including storage, computation, and bandwidth costs, by up to
75%, and (iii) reduces delay by up to 48% compared to state-
of-the-art approaches.

Index Terms—Video streaming, transcoding, video on demand,
edge computing, network function virtualization (NFV).

I. INTRODUCTION

A. Motivation

In HAS, a video is divided into short intervals known as
video segments, and they are provided at multiple representa-
tions. Different representations embody different quality levels
of a segment, potentially at different spatial resolutions, and
are encoded at different bitrates. As for our approach, the
bitrate is the most relevant characteristic of a representation,
we will mostly use the term bitrate to denote a representation
throughout this paper. Since a video is offered in different
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bitrates (representations) for each segment, a client can choose
for each segment the most compatible representation accord-
ing to the device properties and currently available network
bandwidth and, thus, adapt the video playout to dynamically
changing network conditions.

The edge computing paradigm brings storage and compu-
tation capabilities close to the clients, enabling more efficient
video streaming. Leveraging the storage capacity at the edge
allows for caching the popular segments/bitrates at the edge
to serve clients’ requests with minimum latency. Although
storage devices come with enormous capacities and lower
prices nowadays, considering the massive amount of videos
and storage limitations on the edge servers, it is impossible
to store all segments/bitrates at an edge server. Moreover, it
incurs high overhead in storage to keep all segments/bitrates,
especially for those video segments/bitrates that are rarely
requested. Cha et al. [1] showed that video requests fol-
low a long-tail access pattern, and only a small fraction of
videos are popular. Popular videos account for almost 80%
of the total views, while other videos receive few requests.
Considering this fact, some papers like [2]–[7] proposed
transcoding-enabled adaptive video streaming by storing the
popular segments/bitrates at the edge server. They store only
the highest bitrate of unpopular segments and prepare the
remaining bitrates through transcoding processes. In other
words, when a client requests a popular segment/bitrate, it
will be served immediately from the edge’s storage, which
imposes storage cost. In contrast, a request for an unpopular
segment/bitrate will be served by transcoding from a higher
bitrate to the desired one, which results in computation cost.
However, transcoding is inherently a computationally-intensive
and time-consuming process, imposing significant cost and
delay.

B. Challenges and Contributions

In our previous work [5], we intended to answer the fol-
lowing questions: (i) How to design a light-weight transcoding
method at the edge? (ii) How the proposed transcoding method
can be cost-effective at the edge? For the first research
question, we introduced a novel technique for transcoding
called Light-weight Transcoding at the Edge (LwTE), moti-
vated by the aforementioned issues. In the direction of the
second research question, in [5], we formulated the problem
of selecting a policy, i.e., store and transcode, for each seg-
ment/bitrate under unlimited available resources at the edge.
The results proved the LwTE’s feasibility and cost-efficiency
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compared to the conventional and state-of-the-art methods for
simple, yet practical scenarios. However, it suffers from the
following issues: (i) considering unrealistic assumptions like
unlimited available resources at the edge server; (ii) ignoring
the impact of serving delay; (iii) insufficient investigation of
the LwTE’s performance from the encoding aspect; (iv) the
lack of comparison with various video compression standards.

To address the above issues, in this study, we extend
our investigation in [5] by proposing Cost- and Delay-
aware Light-weight Transcoding at the Edge (CD-LwTE) as a
more comprehensive and realistic approach. To evaluate CD-
LwTE’s performance in a more realistic situation, we relax
some assumptions of [5] by adding resource constraints at the
edge and considering a new policy, i.e., the fetch policy, for
serving the requests at the edge. In the same direction, we also
add serving delay to the objective of selecting a policy for each
segment/bitrate, aiming to minimize the total cost and serving
delay. From the encoding aspect, we extend the method of
extracting metadata by adding more optimal decisions, such
as the TU partitioning structure and motion vectors, to the
metadata to further decrease transcoding time at the edge.
Moreover, we extend our experiments on the encoding aspect
of LwTE by considering video content complexity, segment
duration, encoding software, encoding setting, and processing
power. Therefore, the main contributions of this paper are as
follows:
• We propose a framework to serve the clients’ requests

at the edge server with limited resources by selecting a
suitable policy including store, transcode, and fetch for
each segment/bitrate, and react to changing clients’ request
patterns and available resources at the edge server.

• We formulate the problem of minimizing the total cost,
including storage, computation, and bandwidth costs, and
requests’ serving delay as a Binary Linear Programming
(BLP) model and prove its NP-hardness.

• To mitigate the time complexity of the proposed BLP model,
we introduce two heuristic algorithms of polynomial time
complexity that achieve close performance to the BLP one
in our simulations.

• We add more optimal decisions to the metadata to further
decrease the transcoding time at the edge. The evaluation
results indicate that the transcoding time is decreased by up
to 97%.

• We investigate various content-dependent parameters like
video content complexity and segment length on CD-
LwTE’s performance.

• We compare the performance with conventional transcod-
ing (without using metadata) using both AVC/H.264 and
HEVC/H.265 video compression standards in various en-
coding settings and processing power profiles.

• We compare CD-LwTE with the state-of-the-art approaches.
The results indicate that CD-LwTE compared with the state-
of-the-art approaches reduces the streaming cost and delay
by up to 75% and 48%, respectively.

C. Paper Organization
The remainder of the paper is organized as follows. Sec-

tion II highlights related work. CD-LwTE is described in

Section III and evaluated in Section IV. Section V concludes
the paper and outlines future work.

II. RELATED WORK

Leveraging edge capabilities to deliver videos efficiently is
widely used in video streaming applications. We classify these
approaches into the following categories based on the em-
ployed approach and cost function: (i) resource provisioning
and (ii) transcoding optimization.

A. Resource Provisioning

Zhao et al. [4] formulated a model to minimize stor-
age and computation costs for VoD by considering segment
popularity and a weighted transcoding graph, which shows
the transcoding cost for each representation from the higher
representations in the representation set. Their formulation,
however, did not take into account any resource constraints. To
minimize the backhaul network cost, Tran et al. [2] modeled
the collaborative joint caching and transcoding problem as
an Integer Linear Program (ILP). To mitigate the proposed
model’s time complexity and impractical overheads, they
presented an online algorithm to determine cache placement
and video scheduling decisions. They extended their work
to minimize the expected video retrieval delay [3]. Gao et
al. [8] addressed resource provisioning issues for transcoding
in cloud platforms to maximize financial profit. They presented
a two-timescale stochastic optimization algorithm to provision
resources and schedule tasks. The authors employed an open-
source cloud transcoding system called Morph to implement
and evaluate the proposed algorithm. Jia et al. [9] formulated
joint optimization for caching, transcoding, and bandwidth
consumption in 5G mobile networks with mobile edge com-
puting. However, they did not consider the delay imposed by
these policies. [10] tried to improve the users’ QoS in terms of
delivered video quality and end-to-end latency for live stream-
ing by employing transcoding at the edge of the network. The
problem is formulated as a Markov Decision Process (MDP)
by considering wireless network characteristics and available
resources at the edge server. Transcoding-enabled caching in
the Radio Access Network (RAN) to improve the network’s
video capacity has been introduced in [11].

Zhang et al. [12] proposed a model to serve the clients’
requests by video caching, transcoding, and fetching from
the origin server, aiming at minimizing the average serving
delay. They formulated the problem as a mixed-integer bi-
linear problem by considering resource constraints, i.e., stor-
age, computation, and bandwidth, at the edge server. [13]
formulated transcoding-enabled caching at the edge to max-
imize the video provider’s profit without knowing the video
requests’ pattern. Bilal et al. [14] introduced a collaborative
joint caching and transcoding model using the X2 network
interface [15] for sharing video data among multiple caches
to minimize backhaul traffic, serving delay, and CDN cost.
Lee et al. [16] presented a model aimed at reducing the
transcoding power consumption at the edge servers by tak-
ing into account video quality factors. [17] formulated the
problem of serving clients’ requests by selecting a policy,
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including caching and transcoding at the edge and fetching
from the origin server as a two-stage Stochastic Mixed-Integer
Programming (SMIP) model to minimize the total energy
consumption. Ref. [18] employs SDN, edge computing, and
NFV capabilities to propose an SDN-based framework named
S2VC. It aims to maximize QoE and QoE fairness in SVC-
based HTTP adaptive streaming. The authors formulate the
problem of determining the optimal bitrate and data paths for
delivering the requested segments as a MILP model. Ref. [19],
[20] leverage SDN and NFV capabilities to determine bitrate
adaptation and flow paths for the client requests. Tashtarian et
al. [21] propose HxL3, an architecture for low latency and QoE
guarantee in Low latency Live (L3) streaming at the global
Internet scale. It addresses different issues where transport
protocols like TCP experience poor bandwidth and the E2E
delivery path between endpoints is long. The authors provide
a practical implementation of the proposed solution, and real-
world experiments over the Internet show the advantage of
HxL3 over its competitors in improving QoE for a given target
latency. Erfanian et al. [22], [23] introduced OSCAR as a
framework for real-time streaming. OSCAR serves clients’
requests by minimizing bandwidth usage and transcoding
costs. After aggregating requests at the edge servers, OSCAR
transfers the highest requested bitrate from the origin server to
the optimal set of Point of Presence (PoP) nodes. After that,
virtual transcoders hosted at PoP nodes transcode the highest
requested bitrate to those requested by clients. Finally, these
bitrates are transferred to the edge servers and corresponding
clients, respectively.

B. Transcoding Optimization

Jin et al. [24] introduced a partial transcoding approach at
the edge servers. They proposed storing the full representation
set for a few popular videos, keeping the highest bitrate
for the rest, and preparing the other bitrates on demand by
utilizing on-the-fly transcoding. They formulated the problem
to minimize the total cost, including storage, transcoding, and
bandwidth costs. Gao et al. [7] employed a partial transcoding
method based on user viewing patterns in the cloud. Wang et
al. [25] proposed an algorithm to determine edge servers for
transcoding operations to improve perceived quality by clients.
A distributed platform at the edge named Federated-Fog Deliv-
ery Network (F-FDN) has been introduced in [26]. Intending
to minimize video streaming latency, F-FDN stores only one
bitrate of non-popular videos and leverages the edge server
computing power to provide requested bitrates at the edge. [27]
introduced some policies for on-the-fly transcoding to improve
transcoding efficiency. Li et al. [28] compared the impact
of transcoding and bitrate-aware caching on consumers’ QoE
through various experiments across different bandwidth pat-
terns, cache capacities, and popularity skewness. The authors
of [29] investigated the main issues for video transcoding and
formulated resource provisioning for transcoding in the cloud
and caching in the network to minimize resource consumption
and QoE loss. Li et al. [30] analyzed the transcoding perfor-
mance for different types of cloud virtual machines in terms of
transcoding time. Based upon the findings and by considering

the cost of each virtual machine type, they also introduced a
model to measure the suitability of each type of cloud virtual
machine for transcoding.

In our previous work, we employed the edge comput-
ing and Network Function Virtualization (NFV) paradigms
to propose a novel technique for transcoding called Light-
weight Transcoding at the Edge (LwTE) [5]. LwTE extracts
some metadata during the encoding process and reuses it in
the transcoding processes at the edge server to reduce the
transcoding times and computational costs. It is worth noting
that LwTE can be applied to most of the discussed approaches
to improve their performance. Ref. [31] investigates the cost
efficiency of LwTE in the context of live video streaming. It
utilizes the proposed light-weight transcoding approach at the
edge to save bandwidth in the backhaul network, which may
become a bottleneck in live video streaming. In the current
paper, we extend our investigations by studying LwTE’s per-
formance from new aspects and relaxing some assumptions
of [5]. In fact, aiming to minimize the cost and delay of VoD
services, we proposed a new efficient and comprehensive BLP
model by employing lightweight transcoding to serve clients’
requests at the edge server. Moreover, we propose two heuristic
algorithms to mitigate the time complexity of the BLP model.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. General Architecture

The edge computing paradigm provides storage and compu-
tation capabilities closer to clients, resulting in a lower latency
than the cloud. By employing edge resources, we propose a
novel architecture to serve clients’ requests by determining an
appropriate solution, which is defined as applying a set of
policies (i.e., store, transcode and fetch) at the network edge
resulting in a reduction of the overall adaptive streaming cost
and delay. As depicted in Fig. 1, the proposed architecture
consists of three entities named (i) origin server, (ii) edge
servers, and (iii) HAS players. The origin server fragments a
high-quality video into short-duration parts named segments.
Each segment is encoded at various bitrates, yielding a bitrate
ladder (representation set). We extract some encoding features,
i.e., metadata, during the encoding process for reuse at the
edge server to avoid brute-force search in the transcoding
processes and consequently reduce the transcoding times at the
edge server. Note that extracting metadata during the encoding
process introduces no overhead, i.e., computation and delay,
to the system.

A HAS player requests segments with desired bitrates,
i.e., resolution/quality, based on the client’s parameters, e.g.,
network condition and device properties. Each edge server pro-
vides computation, storage, and networking capabilities to sup-
port context-aware and delay-sensitive applications close to the
clients. This paper employs the edge server for both caching
(i.e., video storage) and processing (i.e., video transcoding).
The proposed system for the edge server is deployed as a
Virtual Network Function (VNF) and acts as a Virtual Reverse
Proxy (VRP). The VRP is responsible for receiving the HAS
players’ requests, preparing the requested segments in desired
bitrates, and finally sending them to the HAS players. The
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Figure 1: CD-LwTE architecture.

VRP serves the incoming requested segments through the
following modules:

• Request Collector Module (RCM): This module is re-
sponsible for collecting the players’ requests. The incom-
ing requests are held on until the Request Handler Module
prepares the requested segments/bitrates. After that, the
RCM sends the requested segments/bitrates to the players.
Moreover, upon receiving a request, the RCM updates the
Monitoring Module.

• Request Handler Module (RHM): The RHM is responsi-
ble for serving the requested segments/bitrates using the
following policies:
– Store: This policy stores the popular segments/bitrates

in the available storage at the edge server and replies
to the incoming requests for them immediately from
the edge server. Employing this policy introduces no
delay for serving the requested segments/bitrates.

– Transcode: This policy leverages the available compu-
tation resources at the edge server to prepare requested
segments/bitrates by transcoding them from a higher
bitrate. Therefore, the transcode policy introduces serv-
ing delay. Note that we need to store the metadata in
case of using the LwTE approach for transcoding. How-
ever, the size of the metadata is very small compared
to the corresponding video data.

– Fetch: This policy serves the incoming requests by
fetching the requested segments/bitrates from the ori-
gin/CDN server. The fetch policy imposes bandwidth
cost and puts pressure on the backhaul network. More-
over, the fetch policy introduces a serving delay equal
to the required time for fetching the requested seg-
ment/bitrate from the origin/CDN server, which may
fluctuate due to varying traffic in the backhaul network.

• Optimizer Module (OM): This module determines an
appropriate policy for each segment/bitrate by consid-
ering the parameters provided by the Monitoring Mod-
ule, such as the number of incoming requests, seg-
ments’/bitrates’ popularities (request probabilities), and
available resources at the edge server for a time slot. The
details of the OM are described in Sec. III-C.

• Monitoring Module (MM): The MM keeps the status of
the resources, i.e., storage, computation, and bandwidth at
the edge server. Moreover, it tracks the players’ behavior
by storing the statistics of the incoming requests, in-

cluding the segments’/bitrates’ popularities. The solution
determined by the OM depends on the input param-
eters, such as the number of incoming requests, seg-
ments’/bitrates’ popularities (request probabilities), and
available resources at the edge server. Thus, in case of
non-trivial changes in each of the input parameters, i.e.,
exceeding given thresholds, the MM triggers the OM
to determine a new solution. For example, the OM is
triggered to find a new solution when the number of
requests arriving at the edge server exceeds a given
threshold.

B. Metadata Extraction

Video compression standards are deploying more sophisti-
cated tools compared to their predecessors to reduce the encod-
ing bitrates at the same level of video quality. This improve-
ment, however, comes at the cost of increased time complexity.
For example, HEVC/H.265 compared to AVC/H.264 achieves
50% bitrate savings when encoding videos at the same video
quality. In HEVC/H.265 [32], video frames are divided into
fixed-size blocks named CTUs with the size of 64×64 pixels.
Each CTU is then subdivided recursively into 85 Coding Units
(CUs), including one 64× 64 pixels CU, four 32× 32 pixels
CUs, sixteen 16× 16 pixels CUs, and sixty four 8× 8 pixels
CUs. Each CU is also subdivided into Prediction Units (PUs).
Each PU is then predicted from the previously encoded blocks
and the prediction residuals are transformed into Transform
Units (TUs) and the optimal TU size is selected after another
exhaustive search. To predict each PU, in inter-coding mode,
motion estimation [33] is used to find the best-matched block
to reduce the residual errors. Fig. 2 shows an example of an
optimal CTU partitioning into CUs after an exhaustive search.

Since the search process is very time-consuming and takes
the majority of encoding time, we store the optimal decisions,
including CU, PU, and TU partitioning and motion vectors as
metadata, to avoid the same search process at the edge servers.
The size of metadata compared to its corresponding video data
is very small and leveraging it in the transcoding process at
the edge results in a significant transcoding time reduction due
to skipping unnecessary search processes.

C. Proposed BLP Optimization Model

The OM should determine a solution for serving requests
for a time slot with a given duration of θ seconds regarding the
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Figure 2: Each CTU is divided into CUs with different sizes and after an exhaustive search processes the optimal search decision is made.

Table I: Notations.

Notation Description
Input Parameters

P, p Set of possible policies p, including store, fetch,
and transcode, to treat the requests arriving at
the edge server

V Set of available videos
S, Si, si,j Set of segments of V , where each segment set Si

includes all segments of video i and si,j ∈ Si

indicates the jth segment of video i
K, k Set of k available bitrates

∆S ,∆P ,∆B Storage cost per byte per θ seconds,
computation cost per CPU core per second, and
bandwidth cost per byte per second, respectively

ωi,j
r ,ω̄i,j

r Size of segment si,j in bitrate r and size of
corresponding metadata, respectively

Ri,j
r Required resources (i.e., CPU time in seconds) for

transcoding segment si,j into requested bitrate r
from a higher bitrate

F (i, j, r) Probability function indicating the request
probability for bitrate r of segment si.j

δS , δP , δB Total available storage, computation, and
bandwidth resources during θ seconds, respectively

ξi,jr , ψi,j
r Required time for fetching bitrate r of segment si,j

and transcoding time for providing bitrate r of
segment si,j from its higher bitrate, respectively

ρ Number of requests arriving at the server during
θ seconds

Variables
xi,jr,p A binary variable where xi,jr,p = 1 indicates policy

p is selected for serving an incoming request for
bitrate r of segment si,j

proposed architecture and defined policies. Let P be the set
of defined policies {store, transcode, fetch} to be applied
on the set of all segments, denoted by S = {S1, S2, ..., Sv},
of v videos in set V , where Si = {si,1, si,2, ..., si,l} consists
of all segments of video i ∈ V . Moreover, suppose each si,j
is produced in k different bitrates at the origin server. In the
following, we propose a BLP model to provide a cost- and
delay-aware solution which satisfies the following constraints
(refer to Table I for notations):

Policy constraints: In the first group of constraints, we

define two constraints to select the policy for each seg-
ment/bitrate. Let xi,jr,p be a binary variable, where xi,jr,p = 1
indicates that policy p is selected for serving an incoming
request for bitrate r ∈ K of segment si,j ∈ Si in video i ∈ V ,
otherwise xi,jr,p = 0. The first constraint forces the OM to opt
for only one policy for each segment/bitrate:∑
p∈P

xi,jr,p = 1, ∀i ∈ V, j ∈ Si, r ∈ K (1)

Since a higher bitrate representation is required for transcod-
ing, the second constraint guarantees the existence of a similar
segment with a higher bitrate in the case of serving the
request with the transcode policy. Thus, by setting two policies
q = transcode and p = store, we have:

xi,jr,q ≤
∑
b>r

xi,jb,p, ∀i ∈ V, j ∈ Si, b, r ∈ K (2)

Resource constraints: In this group of constraints, the cost
of using resources (i.e., processing, storage, and bandwidth)
associated with the selected policies are considered. Moreover,
applying policies that exceed the available amount of resources
should be prevented. The cost of transcoding the given bitrate
r of segment si,j is obtained by multiplying the number of
requests for that bitrate by the cost of transcoding. The number
of requests is the total number of requests (ρ) multiplied by
the request probability of bitrate r of segment si,j denoted as
F (i, j, r), which is based on the Zipf distribution model [34].

Thus, in the case of applying the transcoding policy, the
total processing cost (CP ) is defined as follows:

CP :
∑
i∈V

∑
j∈Si

∑
r∈K

xi,jr,p × ρ× F (i, j, r)︸ ︷︷ ︸
number of requests

×∆P ×Ri,j
r︸ ︷︷ ︸

transcoding cost

,

where policy p = transcode, ∆P is the computation cost
per CPU core per second, and Ri,j

r is the required resources
(i.e., CPU time in seconds) for transcoding segment si,j into
the requested bitrate r from a higher bitrate.

The following constraint guarantees the required computa-
tion resources do not exceed the available ones (denoted by
δP ):
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∑
i∈V

∑
j∈Si

∑
r∈K

xi,jr,p × ρ× F (i, j, r)×Ri,j
r ≤ δP , (3)

where p = transcode. We similarly define the total fetch
cost (bandwidth cost) in the case of applying the fetch policy
(i.e., p = fetch) during θ seconds as follows:

CB :
∑
i∈V

∑
j∈Si

∑
r∈K

xi,jr,p × ρ× F (i, j, r)︸ ︷︷ ︸
number of requests

×∆B × ωi,j
r︸ ︷︷ ︸

bandwidth cost

,

where ∆B and ωi,j
r are the bandwidth cost per byte per

second and the size of bitrate r of segment si,j , respectively.
The total bandwidth usage during θ seconds should be less or
equal to the available one, denoted by δB:∑
i∈V

∑
j∈Si

∑
r∈K

xi,jr,p × ρ× F (i, j, r)× ωi,j
r ≤ δB, (4)

In our problem formulation, the storage cost, denoted by
CS , includes the following two items: (i) storing segments
downloaded by applying the store policy and (ii) storing
the corresponding metadata to serve some requests using the
transcode policy. Thus, let ω̄i,j

r be the size of the corre-
sponding metadata for transcoding segment si,j from a higher
bitrate to the requested bitrate r. Therefore, the maximum total
storage cost is obtained as follows:

CS :
∑
i∈V

∑
j∈Si

∑
r∈K

∆S × ( xi,jr,p × ωi,j
r︸ ︷︷ ︸

required storage for bitrate

+ xi,jr,q × ω̄i,j
r︸ ︷︷ ︸

required storage for metadata

),

where ∆S denotes the storage cost per byte per θ seconds, and
p and q indicate applying the store and transcode policies,
respectively. Moreover, we should limit the amount of storage
consumption to the available one (denoted by δS ):∑
i∈V

∑
j∈Si

∑
r∈K

(xi,jr,p × ωi,j
r + xi,jr,q × ω̄i,j

r ) ≤ δS (5)

Delay model: As mentioned earlier, we aim at serving
requests with the minimum total cost and delay. Here, we
should measure the serving delay with regard to the selected
policies. Thus, we formulate the total serving delay, namely
D, for two policies p = fetch and q = transcode as follows:

D :
∑
i∈V

∑
j∈Si

∑
r∈K

(xi,jr,p × ξi,jr︸ ︷︷ ︸
fetching delay

+ xi,jr,q × ψi,j
r︸ ︷︷ ︸

transcoding delay

),

where ξi,jr and ψi,j
r are the required time for fetching bitrate

r of segment si,j and transcoding of bitrate r of segment si,j
from a higher bitrate, respectively.

Optimization problem: Finally, the BLP model is intro-
duced as follows:

Minimize
α(CP + CB + CS)

C?
+

(1− α)D
D?

(6)

s.t. Equations (1)− (5)

vars. : xi,jr,x ∈ {0, 1}

where 0 ≤ α ≤ 1 is the weight coefficient to set desirable
priorities for (i) the total serving cost (i.e., computation,
bandwidth, and storage costs) and (ii) the total serving delay

D. Since the total serving cost and delay have different
dimensions, we normalize them by dividing them by the
maximum cost and serving delay denoted by C? and D?,
respectively. To measure C?, we run the BLP model with
α = 0 to achieve the minimum serving delay. Note that with
α = 0, the model selects appropriate policies which minimize
delay and disregard serving costs. Similarly, we set α = 1 to
measure D?. The obtained C? and D? are then used to run the
model for different values of α. It’s worth mentioning that we
need to compute C? and D? for a fixed number of video sets
only once.

Theorem 1: The problem of selecting an optimal policy, i.e.,
store, transcode, and fetch for video segments/bitrates to serve
clients’ requests with the minimum cost and delay under edge
resource constraints, i.e., storage, computation, and bandwidth,
is an NP-hard problem.
Proof: To show that a problem is NP-hard, we need to
reduce an already proven NP-hard problem to the addressed
problem [35], [36]. To this end, let us assume a simple case of
the problem that only a limited amount of storage capacity is
available at the edge. Moreover, let us consider wi and vi as
the size of segment/bitrate i and the gained value for selecting
segment/bitrate i (i.e., request probability), respectively. Now,
by assuming M as the maximum available storage capacity at
the edge, we aim to maximize the sum of profit, i.e.,

∑
vi.

Therefore, the problem can be reduced to the NP-hard 0-1
knapsack problem in polynomial time.

D. Heuristic Algorithms

To mitigate the proposed BLP model’s time complexity, we
introduce the following two heuristic algorithms: (i) the Fine-
Grained and (ii) the Coarse-Grained heuristic algorithms,
named FGH and CGH, respectively. The main idea behind
the proposed FGH algorithm is to sort segments/bitrates by
their popularity and then select the right policy for each
segment/bitrate separately by considering the available re-
sources at the edge. In CGH, we diminish the search space
by partitioning all segments/bitrates into a limited number of
clusters.

Algorithm 1 FGH algorithm
Input: Resources, Items, Tr
1: Items ← Sort(Items)
2: curTr ← 0
3: param.res ← Resources
4: param.startItem ← 0
5: rsTemp.totalObj ← ∞
6: checkpoints, result ← CostFunc( Items, rsTemp.totalObj,
param, Tr, Tr[curTr] )

7: rsTemp.totalObj ← result.totalObj
8: while rsTemp.totalObj ≤ result.totalObj && curTr < len(Tr)

do
9: curTr ← curTr+1

10: cpTemp, rsTemp ← CostFunc( Items, result.totalObj,
checkpoints[curTr], Tr, Tr[curTr] )

11: if rsTemp.totalObj ≤ result.totalObj then
12: result ← rsTemp
13: end if
14: end while
15: return result
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Figure 3: (a) A simple example of the proposed FGH algorithm and (b) an illustrating example of clusters and sub-clusters.

Algorithm 2 CostFunc()
Input: Items, maxObj, initParam, Tr, threshold
1: resources ← initParam.res
2: si ← initParam.startItem
3: result ← initParam.result
4: inx ← len(Tr)
5: for all i ∈ Items[si :] do
6: rr[0]← ω[i] {index 0 for store policy}
7: rr[1]← ρ× F [i]×R[i] {index 1 for transcode policy}
8: rr[2]← ρ× F [i]× ω[i] {index 2 index for fetch policy}
9: cost[0]← ∆S × rr[0]

10: cost[1]← ∆P × rr[1] + ω̄[i]×∆S
11: cost[2]← ∆B × rr[2]
12: delay[0] ← 0
13: delay[1] ← ξ[i]
14: delay[2] ← ψ[i]
15: sp ← −1, so ← ∞
16: for j = 0, 1, 2 do
17: obj[j] ← α × cost[j] / max(cost) + (1 − α) × delay[j] /

max(delay)
18: if (obj[j] ≤ so) and (

(j=0 and resources[0]− rr[0] > threshold) or
(j=1 and FindHS(results,i) > i and resources[1]− rr[1] > 0
and resources[0] - ω̄[i] >0) or
(j=2 and resources[2]− rr[2] > 0)) then

19: sp ← j
20: so ← obj[j]
21: end if
22: end for
23: result[i] ← sp
24: result.totalObj ← result.totalObj + obj[sp]
25: result.totalCost ← result.totalCost + cost[sp]
26: result.totalDelay ← result.totalDelay + delay[sp]
27: resources[sp] ← res[sp] - rr[sp]
28: if sp = 1 then
29: resources[sp] ← resources[0] - ω̄[i]
30: end if
31: if result.totalObj > maxObj then
32: break
33: end if
34: if resources[0] > Tr[inx] and resources[0]−ω(i+1) ≤ Tr[inx]

then
35: checkpoints[inx].startItem ← i
36: checkpoints[inx].result ← result
37: checkpoints[inx].res ← resources
38: inx ← inx− 1
39: end if
40: end for
41: return checkpoints, result

Assume that we have a small storage capacity compared
with the given video set, and the number of arriving requests
is high. In this scenario, the observation is that the proposed
approaches first select the store policy for segments/bitrates as

it results in a reasonable cost value. When the storage capacity
is over, the only feasible option is the fetch policy since
there is no storage capacity left to store bitrates and metadata
for applying the store and transcode policies, respectively. In
this scenario, allocating a part of the storage capacity to the
transcode policy, i.e., for storing required metadata may lead
to a better solution. Therefore, we divide the storage capacity
into two parts in both proposed heuristic algorithms. The first
part denoted as PA, is used for keeping both segments/bitrates
and metadata for store and transcode policies, respectively.
The second part, denoted as PB , is exclusively allocated to
the transcode policy to store the required metadata to perform
transcoding tasks. Thus, determining a threshold/boundary
point between PA and PB is an important task for the
proposed heuristic algorithms. We first present the details of
the FGH algorithm.

1) FGH Algorithm: Inspired by the dynamic programming
approach, we introduce the FGH algorithm in two sub-
algorithms. The main body of the FGH algorithm, which
is depicted in Alg. 1, determines a solution by considering
various thresholds between PA and PB values. The input
parameters Resources, Items, and Tr for Alg. 1 indicate the
available resources (i.e., storage, computation, and bandwidth
at the edge), an array of all segments/bitrates, and given l
number storage thresholds between PA and PB , respectively.
It is worth mentioning that a fine-granular step in selecting
the storage threshold results in a more efficient solution;
however, it introduces a higher execution time. In this study,
we empirically select the number of thresholds between PA

and PB .

In the FGH algorithm, segments/bitrates in the set Items
are first sorted based on their popularity. The CostFunc()
function, described in the sub-algorithm Alg. 2, is then called
to determine (i) the policy for each segment/bitrate in Items
and (ii) checkpoints when PB = 0, i.e., all storage is allocated
to PA. The set checkpoints has l elements that is equal
to the number of thresholds between PA and PB ( i.e., Tr
set in Alg. 2). Each element in the set checkpoints (i.e.,
checkpoints[t] where 0 ≤ t < l ) comprises the information
related to the threshold t including: (i) the selected policies, (ii)
available resources, (iii) total cost, (iv) delay, and (v) starting
points. The set checkpoints is used to skip determining policy
for Items that are still in PA in the next iterations of calling
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CostFunc() (while loop in Alg. 1). In each iteration, the
allocated storage to PB is increased, based on the given values
on Tr set, resulting in a lower storage for PA. The iteration
is stopped if the total objective is increased or all the given
thresholds between PA and PB are probed.

We clarify the FGH algorithm by an example illustrated
in Fig. 3 (a), where FGH should determine the solution for
serving arriving requests for 60 segments/bitrates in Items.
In Fig. 3 (a), the orange, blue, and green rectangles show the
store, transcode, and fetch policies, respectively.

In the first iteration, the policy set for all segments/bitrates
(Items) are determined by calling the CostFunc() function.
For segments/bitrates 1 to 47, store or transcode policy is
selected, while for segments/bitrates 48 to 60 the fetch policy
is selected. The information related to all thresholds are then
stored in the checkpoints set (Tr[0] to Tr[4]). In the next
iteration, the allocated storage for PB is increased. Since
segments/bitrates 1 to 37 are still in PA after increasing size
of PB , their policies are remained unchanged and CostFunc()
is called only for segments/bitrates 38 to 60. Similarly, in the
next iteration, CostFunc() is called for segments/bitrates 31
to 60 and it is skipped for segments/bitrates 1 to 30 because
they are still in PA. Since the total objective for Iteration III is
higher than its previous iteration (Iteration II), the algorithm
is stopped and returns the selected policy set in Iteration II as
the final policy set.

The average time complexity of the Sort function in Alg. 1
is O(n× log(n)) where n is the number of segments/bitrates
in Items. In the worst case, the while loop in Alg. 1 calls
the CostFunc() function l times. The time complexity of
CostFunc() is O(n) in the worst case (see Alg. 2). Thus,
FGH’s time complexity is O(n × log(n) + l × n), which
is a function of the input parameters, i.e., the number of
segments/bitrates. Although FGH’s time complexity is poly-
nomial, scaling up the problem, i.e., the given video set,
increases its execution time. To mitigate this issue, in the
following, we introduce the second heuristic algorithm CGH,
with much lower time complexity in each iteration. However,
CGH imposes a preprocessing step to prepare some input
parameters.

2) CGH Algorithm: Based on the obtained results of the
proposed FGH algorithm, we found there is a correlation
between the selected policies and segments’/bitrates’ pop-
ularity and size. In other words, segments with a similar
popularity/size got an identical policy. Thus, the second heuris-
tic algorithm (CGH) groups segments/bitrates into a limited
number of clusters and sub-clusters, based on their popularity
and bitrate, respectively. The CGH algorithm then determines

Algorithm 3 Clustering function
Input: Items,m,btSteps
1: cl ← KmeansClustring(Items, m)
2: for all i in cl do
3: c ← i.cluster
4: b ← Findsubcluster(i, btSteps)
5: clusters[c, b].count ← +1
6: clusters[c, b].probability ← + i.probability
7: end for
8: return clusters

Algorithm 4 CGH algorithm
Input: Resources,clusters,Tr
1: clusters ← Sort(clusters)
2: curTr ← 0
3: param.res ← Resources
4: param.startCluster ← 0
5: rsTemp.totalObj ← ∞
6: checkpoints, result ← CostFunc( clusters, rsTemp.totalObj,
param, , Tr, Tr[′curTr′] )

7: rsTemp.totalObj ← result.totalObj
8: while rsTemp.totalObj ≤ result.totalObj and curTr < l do
9: curTr ← curTr+1

10: cpTemp, rsTemp ← CostFunc( clusters, result.totalObj,
checkpoints[curTr], Tr, Tr[curTr] )

11: if rsTemp.totalObj ≤ result.totalObj then
12: result ← rsTemp
13: end if
14: end while
15: return result

the policy for each sub-cluster to serve incoming requests.
The CGH algorithm consists of two sub-algorithms: In the
first sub-algorithm, we perform some preprocessing operations
(clustering) to prepare inputs for the main algorithm (second
sub-algorithm). All segments/bitrates in the given video set
are partitioned into a given number of clusters based on
their popularity by the clustering sub-algorithm (Alg. 3).
Segments/bitrates in each cluster are then split into a given
number of sub-clusters according to their bitrates.

In the first line of Alg. 3, by employing the K-means algo-
rithm [37] in the KmeansClustering() function, we partition
segments/bitrates in Items into m clusters based on their
popularity (i.e., request probability), in such a way that the
sum of squared Euclidean distances to each cluster mean is
minimized. The for loop (lines 2-7) puts the segments/bitrates
in each cluster i ∈ cl into some sub-clusters based on the
given bitrates in btSteps. Fig. 3 (b) shows a simple illustration
of segments/bitrates partitioned into m clusters where each
cluster consists of up to r sub-clusters. Assuming the seg-
ments’/bitrates’ popularity follows a long-tail access pattern,
after sorting the clusters by request probability, the first
clusters cover a wider request probability range. Moreover,
some sub-clusters may remain empty, i.e., no segments/bitrates
are assigned onto them, due to request probability and bitrate
distribution model. We use the “Kmeans1d” Python mod-
ule [38] for our implementation that leverages a dynamic
programming algorithm with O(m × n + n × log(n)) time
complexity where n and m are the number of segments/bitrates
in Items and the given number of clusters, respectively.
The time complexity of the sub-clustering (Alg. 3, lines 2-
7) is O(n). Thus the whole time complexity of the first sub-
algorithm is O(n+m× n+ n× log(n)).

Similar to Alg. 1, in the main CGH algorithm (Alg. 4), we
find a near-optimal solution and storage threshold. However,
Alg. 4 determines the policy for each sub-cluster in clusters
instead of each segment/bitrate. Note that the input parameter
clusters is provided by Alg. 3. In line 1, we sort the input set
clusters based on the popularity attribute in O(x × log(x))
time, where x denotes the number of sub-clusters and equals
x = m × r. Then the proposed algorithm (Alg. 4) calls
the CostFunc() function l times (the number of threshold
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values in Tr) in the worst case (lines 8-14). The CostFunc()
function determines the solution for each sub-cluster; thus,
its time complexity is O(x) in the worst case, in which all
sub-clusters have at least one segment/bitrate. So the time
complexity of Alg. 4 is agnostic to the video set size and
equals O(x × log(x) + l × x), which is much lower than
FGH’s time complexity since l and x are relatively small
numbers. Note that we set clusters as an input for CostFunc()
(Alg. 2) instead of Items and determine the suitable policy
for each sub-cluster. It is worth mentioning that Alg. 3 is
called only one time in the system initialization process
and is kept updated by the MM. It means that, in case of
insertion/evacuation of a segment/bitrate, we need to update
the count and probability attributes in the corresponding sub-
cluster. When the OM is triggered, we need to call only Alg. 4
for determining an appropriate solution.

IV. PERFORMANCE EVALUATION

A. Evaluation Setup
To evaluate the proposed approach, we transcode videos at

30 fps to the full set of bitrates {r1, r2, ..., r12} according
to [39] using the HEVC/H.265 open-source encoder x265
version 3.4, where r1 and r12 have the highest and lowest
bitrate/quality, respectively. The “medium” encoder preset is
used as the default; however, we investigate the performance
of CD-LwTE under different presets. To consider the impact of
the video content on the transcoding time and, consequently,
the proposed algorithm, we perform the transcoding for var-
ious sequences with different complexities (i.e., “easy to en-
code” and “hard to encode”) at different segment lengths (i.e.,
four and six seconds). We also cover various video lengths,
ranging from 2 to 120 minutes. Our experiments assume that
the number of source videos and the video popularity will
remain unchanged, and clients can request any bitrate of a
segment from the bitrate ladder. For simplicity, we also assume
that the access probability of each video is known in advance
and follows a Zipf-like distribution [34]. The probability of
requesting each segment/bitrate is calculated based on [5].

The storage, computation, and bandwidth costs are 0.024$
per GB per month, 0.029$ per CPU per hour, and 0.12$ per
GB, respectively [40]. In our experiments, we measure the
results for a time slot with a one-hour duration (θ = 3600
seconds). Transcoding operations are performed on Amazon
EC2 instances. We use c5.2xlarge as the default instance
type [40], but repeat our experiments on various Amazon EC2
instances to investigate the performance of CD-LwTE with
different computation power profiles, i.e., CPU cores and
RAM. In our simulation, we set the bandwidth between the
origin/CDN server and the edge server to 1 Gbps. The storage
capacity at the edge server is set to 1 TB. The edge server
is equipped with four CPU cores and a c5.2xlarge Amazon
EC2 instance. Moreover, we consider 50 equal size steps, i.e.,
Tr in Alg. 1 and Alg. 3, from 0% to 50% of the storage,
for allocating storage capacity to the transcode policy. The
number of clusters (m) and number of sub-clusters in each
cluster (r) in Alg. 3 are set to 200 and 12, respectively.
Furthermore, we set the default value of coefficient parameter
α in Eq. 6 to 0.5.

We evaluate the performance of CD-LwTE in six scenar-
ios. In scenario I, we investigate the performance of CD-
LwTE for different transcoding aspects. In scenario II, the
performance gaps between the proposed BLP model and the
proposed heuristic algorithms are measured in terms of cost,
average serving delay, and execution time. In scenario III, we
evaluate the performance of the proposed heuristic algorithms
for different numbers of requests and videos. Scenario IV
examines the performance of the proposed heuristic algorithms
for various storage profiles. In scenario V, we explore the
performance of the proposed heuristic algorithms for various
weight coefficient values. In the last scenario, we compare the
performance of the heuristic algorithms with state-of-the-art
approaches in terms of total cost and average serving delay.

B. Scenario I

Advanced Video Coding (AVC) [41], or H.264, is widely
used in the industry due to its low transcoding time.
HEVC/H.265 [42], the successor of AVC, shows higher com-
pression efficiency but higher transcoding time compared to
the AVC standard. The transcoding time is more crucial at
the edge as the processing resources are limited. However,
by leveraging metadata, CD-LwTE results in a significant
reduction of transcoding time.

We compare the compression efficiency of AVC/H.264
using the x264 open-source encoder to HEVC/H.265 using
the x265 open-source encoder employing metadata (LwTE)
and without use of metadata (x265). Fig. 4 (a) and Fig. 4 (c)
show compression efficiency of the above-mentioned methods
for both medium and veryslow presets for the ParkRunning3
and FoodMarket4 video sequences, respectively. Note that
use of metadata impacts only transcoding time, not com-
pression efficiency. Therefore, the compression efficiency of
x265 and LwTE (without and with metadata, respectively)
remains the same; consequently, only one of them (LwTE)
is plotted. LwTE (x265) yields bitrate savings of 48% and
52% to maintain the same PSNR as compared to x264, for
ParkRunning3 and FoodMarket4, respectively.

In Fig. 4 (b) and Fig. 4 (d), the transcoding times of x264,
x265, and LwTE for both medium and veryslow presets are
compared for the ParkRunning3 and FoodMarket4 sequences,
respectively. It is seen that employing the metadata signifi-
cantly reduces the transcoding times of x265, even to lower
times than for x264. For example, for veryslow and medium
presets, the transcoding time of LwTE is, on average, 87%
and 48% less than x264, respectively.

To compare the size of the metadata to its correspond-
ing video segment representation, we plot the bitrate of the
metadata relative to its corresponding segment bitrate for
the entire bitrate ladder, i.e., {r2, ..., r12}, for 4-sec. and
6-sec. segments in Fig. 5 (a) and Fig. 5 (c), respectively.
The relative bitrate of each representation was obtained by
averaging the relative bitrates of five video sequences, namely,
ParkRunning3, FoodMarket4, Maples, Basketball, and
Bunny. The maximum and minimum relative bitrates were
also added to the plots. Roughly 70% to 80% bitrate (storage)
saving is obtained by replacing the segment/bitrate video data
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(a) (b) (c) (d)

Figure 4: Compression efficiency of x264 and x265 (without metadata) and x265 with metadata employed (LwTE) for (a) ParkRunning3 and
(c) FoodMarket4 sequences and medium and veryslow presets. Note that x265 and LwTE have the same compression efficiency. Transcoding
times of x264, x265, and LwTE for (b) ParkRunning3 and (d) FoodMarket4 sequences and medium and veryslow presets.
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Figure 5: Average bitrates of metadata relative to its corresponding representations for (a) 4-sec. and (c) 6-sec. segments. Average transcoding
times of “x265 with metadata ” relative to “x265 without metadata” for (b) 4-sec. and (d) 6-sec. segments.
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Figure 6: Average relative transcoding times over five sequences for (a) 4-sec. segments and the veryslow preset, (b) 4-sec. segments and the
medium preset, (c) 6-sec. segments and the veryslow preset, (d) 6-sec. segments and the medium preset, on different AWS EC2 instances.

with its corresponding metadata in particular for high- and
mid-bitrate representations, which consume much more stor-
age space than the low-bitrate representations, where 50% to
70% bitrate saving is achieved. The transcoding times of “x265
with metadata” relative to “x265 without metadata” for 4-
sec. and 6-sec. segments are shown in Fig. 5 (b) and Fig. 5 (d),
respectively. The relative transcoding times were also obtained
by averaging over the above-mentioned sequences, and the
maximum and minimum relative times were added to the plots.
The use of metadata results in more than 97% transcoding time
saving for the veryslow preset and approximately 70% for the
medium preset.

We also evaluate the impact of running encoders on different
AWS instances with different numbers of CPU cores and
RAM profiles, namely, c5.2xlarge, c5.4xlarge, c5.9xlarge, and
c5.12xlarge. Fig. 6 shows the relative transcoding times for
different presets and instances averaged over the five above-
mentioned sequences. Transcoding on the c5.2xlarge instance
yields the highest transcoding time saving.

C. Scenario II

This scenario compares the proposed approaches (FGH,
CGH, and BLP model) based on the cost and average serving
delay for different α values to illustrate the performance dif-
ferences and the impact of weight coefficient values (Fig. 7(a)
and (b)). To this, we set the available storage at the edge δS=
500 GB, computation resource δP = 8 CPU cores, |V | = 50,
ρ = 5 k, and α = {0, 0.2, 0.5, 0.8, 1}. CPLEX [43] is employed
as a solver to run the proposed BLP model in Python. How-
ever, CPLEX could determine the solution only for limited
video sets in a reasonable time due to the high time complexity.
Note that the serving delay is introduced by applying the fetch
and transcode policies when serving segment/bitrate requests.
The serving delay for the segments/bitrates with the store
policy is zero since the incoming requests are served from the
edge cache server. Thus, the average serving delay is defined
as the average of the introduced delays by various policies
(i.e., including store policy with zero delays) for serving the
incoming requests to the edge. To minimize the delay, the
proposed approaches select the store policy as much as the
storage capacity constraint allows. Moreover, the cost metric
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shows the total cost of serving arriving requests at the edge
server during a time slot, including storage, computation, and
bandwidth costs (C in Eq. 6). Selecting an appropriate policy
for minimizing the total cost mainly depends on the number of
incoming requests (i.e., ρ×F (i, j, r)). Obviously, for the pop-
ular segments/bitrates, the store policy is a better option than
other policies. However, for the unpopular ones, the proposed
approaches must select one of the transcode or fetch policies
based on resource constraints and the number of incoming
requests to each segment/bitrate. We have comprehensively
investigated the problem of determining the boundary point
between popular and unpopular segments/bitrates in [5].

As illustrated in Fig. 7(a) and Fig. 7(b), the BLP has higher
sensitivity to α values than the FGH and CGH algorithms
due to its fine granular nature for determining the solution.
By setting α = 0, the proposed approaches try to minimize
the serving delay; thus, they select the store policy for the
segments/bitrates as much as possible (i.e., considering the
storage capacity). That is, they result in the highest cost and
the minimum average serving delay at α = 0 (see Fig. 7(a)
and (b)). By increasing to α = 0.2, there is almost no change
in the proposed schemes’ cost and average serving delay.
For α = 0.5, decreasing the total cost has more priority for
our schemes; therefore, they reduce the total cost, resulting
in a rise in the measured average serving delay. Although
FGH and CGH outperform the BLP model in terms of cost
at this point, their average serving delay values are much
higher than that of the BLP model. That is, the BLP model
determines the optimal solution for all segments/bitrates in the
video set while the FGH and CGH algorithms specify a near-
optimal solution for each segment/bitrate and each sub-cluster,
respectively; this leads to a sub-optimal solution overall but
quite close to the BLP model for the whole video set. For
α = 1, BLP shows the minimum cost while its average serving
delay is higher than that of the FGH algorithm.

To measure the execution time for the proposed ap-
proaches, we run them with various video sets |V |=
(5, 10, 20, 50, 10, 500, 1000, 5000). As depicted in Fig. 7(c),
the BLP model suffers from high time complexity, and its
execution time increases exponentially with increasing the
video set size. On the other hand, the FGH algorithm re-
sults in almost a linear growth in the execution time when
increasing the size of the video set. CGH outperforms the other
approaches significantly in terms of execution time, showing
very small growth with increasing video set size. Note that
the CPLEX solver could not determine the solution for video
sets with more than 50 sequences in the given time frame, i.e.,
in less than a time slot duration (one hour). However, we run
the BLP model for the video set with 100 sequences, and as
it is depicted in Fig. 7(c), the execution time lasts for around
23 hours. Thus, we do not measure BLP’s performance with
bigger video sets; therefore, there are no values for the BLP
model for these video set sizes.

D. Scenario III

As mentioned earlier, some input parameters, like the num-
ber of arriving requests, are time-varying and unknown in ad-

vance. The MM tracks the state of input parameters like avail-
able resources, incoming requests rate, and segments’/bitrates’
popularities and triggers the OM to find a new solution in
case of non-trivial changes in the input parameters. In this
scenario, we investigate the proposed heuristic algorithms’
performance for input parameters, including video set size and
the numbers of arriving requests in terms of storage allocation,
average serving delay, cost per time slot, and percentage of
segments/bitrates and requests served by each policy. In this
direction, we take into account various video set sizes (100,
500, 1000, and 5000 sequences) and numbers of arriving
requests (ρ = {5 k, 10 k, 50 k, 100 k, 150 k}) per time slot (one
hour).

It is obvious from Fig. 8 that the proposed algorithms show
quite similar performance on these metrics.

Fig. 8(a) and Fig. 8(b) illustrate the average serving delay
and serving cost for the proposed algorithms, respectively,
where both rise sharply by increasing the video set. For
|V | = 100, the FGH and CGH algorithms utilize the storage
capacity at 61% to 71% and 62% to 68% for various ρ values,
respectively, while they serve only 33% to 40% and 33% to
42% of segments/bitrates by the store policy (Fig. 8(c)). In
the case of |V | ≥ 500, both proposed algorithms fully utilize
the available storage capacity; thus, they have to serve more
segments/bitrates and consequently more incoming requests
by the transcode and fetch policies with higher serving
delay and cost (see Fig. 8 (c)–(d)). This means that by taking
into account the segments’/bitrates’ popularity, applying the
store policy on all segments/bitrates is not a cost-efficient
solution. Moreover, as there is sufficient storage capacity when
increasing the ρ value, the proposed approaches store more
segments/bitrates, which results in a significant reduction in
the average serving delay while the total cost increases slightly
(|V | = 100 in Fig. 8 (a)–(b)). On the other hand, in the case of
|V | > 100, the proposed approaches consume all the available
storage to minimize the cost function (Eq. 6). However, the
cost rises sharply when increasing the number of arriving
requests (ρ) while the average serving delay remains almost
steady. As depicted in Fig. 8 (c)–(d), by storing a small portion
of segments/bitrates, mainly for |V | > 100, the proposed
algorithms can serve the majority of incoming requests that
stem from the long-tail access pattern.

It is obvious that selecting an appropriate policy for each
segment/bitrate is dependent on various parameters (i.e., cost
and delay in the current study), environment constraints (i.e.,
available storage, computation, and bandwidth resources), and
access frequency/probability (see Section III-C). For example,
for |V | = 100 the proposed algorithms do not fully utilize the
storage capacity. Likewise, the rate of serving by the transcode
policy that relies on different parameters, does not show
desirable performance. For example, the store policy is useful
for popular segments/bitrates (i.e., high access rate) while
the transcode and fetch policies are suitable for unpopular
ones. In this scenario, the proposed algorithms mainly select
the transcode policy to serve a limited number of incoming
requests for |V | > 100 while the transcoding rate decreases
with increasing the number of incoming requests.
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E. Scenario IV

In this scenario, we study the performance of the proposed
heuristic algorithms for various storage profiles, i.e., storage
capacity, in terms of resource utilization, average serving
delay, cost, and percentage of segments/bitrates and requests
served by each policy. We set the available storage at the edge
δS = {500GB, 1TB, 1.5TB, 2TB, 3TB}. Moreover, the
computation resource δP is set to 8 CPU cores. We measure
the CD-LwTE performance for |V | = 1000 and various ρ
values. The proposed algorithms consume all the available
storage capacity for all values of ρ and δS . The FGH algorithm
consumes more computation resources and results in higher
values in terms of average serving delay (Table II). Fig. 9

(a) shows the cost. It is obvious that by increasing the storage
capacity, the values obtained for the average serving delay and
cost reduce significantly since more requests can be served
using the store policy (Fig. 9 (b)). In fact, Fig. 9 (b) shows
that in case of limited storage capacity at the edge, employing
the transcoding policy results in cost and delay reduction.
However, in case of sufficient storage capacity at the edge
and lower ρ values e.g., δS = 3TB and ρ ≤ 10 k, the
efficient approach is to serve part of the arriving requests by
the transcode policy.
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F. Scenario V

In the last scenario, we compare the performance of the
proposed heuristic algorithms in terms of cost, cache hit ratio,
and bandwidth utilization in the backhaul network with the
following state-of-the-art approaches:

• APCP [2]: This approach serves the incoming re-
quests through the store, transcode, and fetch policies
w.r.t. minimizing the serving delay in the cost function.

• CoCache: This approach is a simplified version of the
proposed algorithm in [3] that does not consider the
transcode policy. In fact, CoCache tries to minimize
the serving delay by selecting the store policy on the
segments/bitrates as much as possible, then applies the
fetch policy on the rest.

• PartialCache [4]: This approach minimizes the cost by
applying the store and transcode policies on seg-
ments/bitrates until the available storage and computation
resources are fully utilized. After that, it serves the
remaining segments/bitrates with the fetch policy.

• PartialCache (x264): The state-of-the-art approaches
listed above use the x265 encoder in a conventional
manner, i.e., without metadata for transcoding. Aiming
at comparing the performance of the proposed heuristic
algorithms with state-of-the-art approaches employing the

Table II: Performance of the proposed CD-LwTE approaches for
different storage size in terms of average serving delay (ms).

ρ
δS Alg. 5k 10k 50k 100k 150k

FGH 429 429 429 429 429500 GB CGH 386 386 0.21 386 386
FGH 230 230 230 230 2301 TB CGH 203 203 203 203 203
FGH 132 132 132 132 1321.5 TB CGH 111 111 111 111 111
FGH 76 76 76 76 762 TB CGH 58 60 60 60 60
FGH 25 24 24 24 243 TB CGH 22 17 18 18 18

x264 encoder as a fast and widely use encoder in the
industry, we measure PartialCache’s performance when
using the x264 encoder. For fair comparisons, we encode
the considered videos with the same quality as x265 does,
by using the x264 encoder. As expected and illustrated
in Fig. 4, the videos encoded using x264 come up with
around 50% higher bitrate and transcoding time at the
same quality of x265.

Note that all the considered state-of-the-art approaches de-
termine the policy by taking into account the segments/bitrates
list sorted by popularity, ρ, and the available resources at the
edge server as the input parameters. We define the cache hit
ratio as the fraction of requests that can be served either from
the local storage at the edge server or by transcoding from a
higher bitrate. As depicted in Fig. 10 (a), the CGH algorithm
results in the best cost for ρ ≤ 10 k, and reduces the cost up to
75% compared with state-of-the-art approaches for ρ = 10 k.
The FGH algorithm achieves the best cost for ρ > 10 k;
however, the CGH algorithm has the second best cost and
surpasses the other approaches for ρ > 10 k. On the other
hand, the FGH algorithm outperforms all other approaches in
terms of average serving delay for ρ ≤ 10 k (i.e., reduces the
average serving delay up to 48%) , while the CGH algorithm
has the best average serving delay for ρ > 10 k (see Fig. 10
(b)). Moreover, the CGH and FGH algorithms show the best
performance in terms of the cache hit ratio for ρ ≤ 10 k and
ρ > 10 k, respectively (see Fig. 10 (c)). Among the studied
state-of-the-art approaches, PartialCache shows better perfor-
mance in terms of cost (Fig. 10 (a)). However, it results in the
worst performance in terms of cost, average serving delay,
and cache hit ratio when employing the x264 encoder for
performing the transcoding operations (PartialCache (x264)).
In terms of average serving delay, the APCP and CoCache
approaches have the best cost values, following the proposed
CD-LwTE algorithms (Fig. 10 (b)). However, PartialCache
shows better performance on cache hit ratio than the other
state-of-the-art approaches (Fig. 10 (c)).
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Figure 10: Performance of the proposed CD-LwTE approaches com-
pared with state-of-the-art approaches in terms of (a) cost, (b) average
serving delay, and (c) cache hit ratio, for various ρ values.

V. CONCLUSION AND FUTURE WORK

In this study, we extend the investigations of our previous
work [5] by proposing CD-LwTE, a Cost- and Delay-aware
Light-weight Transcoding approach at the Edge, in the context
of HTTP Adaptive Streaming. CD-LwTE stores the optimal
search results of the encoding process as metadata for each
bitrate of a video segment and employs it at the edge servers to
avoid brute force search in the transcoding processes, aiming
at reducing the transcoding cost. We formulate the problem of
selecting an optimal policy for serving segment/bitrate requests
at the edge server for VoD services, including (i) storing
at the edge server, (ii) transcoding from a higher bitrate at
the edge server, and (iii) fetching from the origin or a CDN
server, as a Binary Linear Programming (BLP) model with
the cost function of minimizing the cost and delay. Indeed,
CD-LwTE stores the popular segments/bitrates at the edge
and serves the unpopular ones by transcoding, employing the
metadata, or fetching from the origin/CDN server. Moreover,
we prove the proposed BLP model is an NP-hard problem
and propose two heuristic algorithms to mitigate the high time
complexity of the BLP model. We investigate the performance
of CD-LwTE in comprehensive scenarios with various video
contents, encoders, encoding settings, and available resources
at the edge. The experimental results show that our approach
(i) reduces the transcoding time by up to 97%, (ii) decreases
the streaming cost, including storage, computation, and band-
width costs, by up to 75%, and (iii) reduces delay by up to
48% compared to state-of-the-art approaches. The future work
direction is to devise an online approach by leveraging the
reinforcement learning method.
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