
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024 2569

Increasing Resilience of SD-WAN by Distributing
the Control Plane [Extended Version]

Friedrich Altheide , Simon Buttgereit , and Michael Rossberg , Member, IEEE

Abstract—Modern WAN interconnects utilize SD-WAN to
automatically respond to network changes and improve link
utilization, latency, and availability. Therefore, they incorporate
controllers with a centralized view, which collect network state
from managed gateways, calculate suitable forwarding actions,
and distribute them accordingly. However, this limits the robust-
ness and availability of the network control plane, especially in
the event of node or partial network outages. In this paper,
we propose a distributed and highly robust SD-WAN control
plane without any central or regional controller. Our solution can
handle arbitrary device failures as well as network partitioning.
The distributed forwarding decisions are based on user-defined,
dynamically evaluated path cost functions, and consider not
only path quality but also quality fluctuations. The evaluation
shows that our approach can handle several thousand SD-
WAN gateways and hundreds of network policies in terms of
computation. Further, the communication overhead introduced
due to its distributed architecture is discussed and shown to be
negligible compared to a central approach. This paper is an
extended version of our work published in 2023. It introduces
novel insights, including an in-depth analysis of the information
transmitted between sites, a new strategy for policy deployment,
a discussion as well as a detailed analysis of approaches that
reduce communication bandwidth, and the introduction of a
method for grouping multiple flows without the need for explicit
coordination.

Index Terms—SD-WAN, SDN, robustness, distributed systems.

I. INTRODUCTION

TO ENABLE per-application-based traffic engineering,
modern networks are continuously monitored to auto-

matically react to network changes e.g., by adapting the
routes of flows inside the controlled network. This improves
the per-flow throughput, end-to-end latency, and ultimately,
experienced quality. The presumably most common technique
to achieve such an automatic, fine-grained traffic control is
Software Defined Networking (SDN). When used between
remote locations connected over one or more Wide Area
Network (WAN), it is referred to as Software Defined WAN
(SD-WAN).

Manuscript received 15 December 2023; revised 23 February 2024;
accepted 16 March 2024. Date of publication 19 April 2024; date of current
version 12 July 2024. The associate editor coordinating the review of this
article and approving it for publication was X. Fu. (Corresponding author:
Simon Buttgereit.)

Friedrich Altheide is with the CTO Office, Secunet Security Networks AG,
45138 Essen, Germany (e-mail: friedrich.altheide@secunet.com).

Simon Buttgereit and Michael Rossberg are with the Telematics and
Computer Networks Group, Technische Universität Ilmenau, 98693 Ilmenau,
Germany (e-mail: simon.buttgereit@tu-ilmenau.de; michael.rossberg@
tu-ilmenau.de).

Digital Object Identifier 10.1109/TNSM.2024.3386962

In general, SD-WAN comprises of centralized SD-WAN
controllers, programmed with abstract policies, which decide
where to route traffic. Each policy defines how different
traffic should be handled between the SD-WAN gateways
under the management of the controller (see Fig. 1), and can
be updated if requirements change. Based on these global
policies, SD-WAN controllers select a connection suitable
for a specific traffic flow. In some cases, it also initiates
the establishment of connections between the gateways. In
this context, a connection typically refers to an end-to-end
association between two gateways, which can be established
through a variety of means such as a VPN tunnel or an
MPLS label path, combined with a unique connection ID. To
make qualified decisions where to route flows based on the
current network state, the controller regularly acquires network
topology information from the managed SD-WAN gateways.
This information is obtained either by querying the gateways
or by proactively receiving relevant data, such as the currently
established tunnels and their properties, e.g., latency, error
rate, or current usage, but also device-specific information like
the current utilization of the gateway or its WAN uplinks.
Once a decision is made, corresponding forwarding rules are
sent to the SD-WAN gateways, which realize the forwarding
decisions.

The centralized view enables the programming of complex
network behaviors with relatively simple and comprehensive
network programs, which are executed on the controller.
Today’s widely deployed SD-WAN solutions offer compar-
atively simple, automatic, flexible, and fine-grained traffic
control to optimize routing, both per network flow, but also on
a more global scale. But to retain reactivity to link failures or
overload situations, a permanent connection to (some kind of)
centralized controller is required. Although it is common to
deploy multiple controllers to enhance availability within an
SD-WAN infrastructure, they can still pose a neuralgic point,
particularly in scenarios involving partial network partitioning.
Firstly, the deployed SDN controllers may not be able to
exchange state appropriately due to high latency, packet
errors, or reachability/connectivity issues. Secondly, WAN
partitioning may result in SDN devices losing connectivity
to all controllers, making them incapable of responding to
new events such as topology modifications. Consequently, the
robustness and availability of the network control plane are
decreased significantly.

Based on the foundational SDN requirements outlined by
Stallings [2] and the fundamental observations about Internet
routing by Paxson [3], we state that a solution for an automatic,

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0000-7267-1573
https://orcid.org/0009-0004-5184-7866
https://orcid.org/0009-0002-0749-5336

2570 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

fine granular SD-WAN traffic control should support the
implementation of global network policies on a global and
local scale and facilitate:

(F1) decisions based on the current Quality of Service
(QoS) properties of the used WAN connections,

(F2) flexible packet matching,
(F3) symmetric traffic flows, e.g., to ease network trou-

bleshooting [3], or to cope with Network Address
Translation (NAT) and stateful firewalling,

(F4) load balancing traffic across multiple gateways of a
single site (gateway cluster),

(F5) high availability support, e.g., clusters with geo-
redundancy, as well as

(F6) simple firewalling (blocking of flows).
Furthermore, a solution should be:

(N1) highly available,
(N2) robust against network failures and partitioning as

well as arbitrary node failures,
(N3) reactive towards network changes, yet provide stable

end-to-end connections,
(N4) be able to handle thousands of SD-WAN gateways,
(N5) offer a high flexibility for an administrator, yet still

be comprehensible and
(N6) should be independent of any kind of exposed infras-

tructure.
Unlike existing solutions, this paper presents an SD-WAN

architecture that satisfies the stated requirements by com-
pletely distributing the control plane onto all SD-WAN
gateways.

By dividing global network policies into gateway-local
policies and selecting WAN connections based on user-
defined cost function values, as well as estimations of value
fluctuations, we achieve highly robust and available traffic
engineering that remains responsive even in the event of device
and network failures.

This paper is an extended version of our work published
in [1] and is organized as follows: The subsequent sec-
tion presents the current state of the art. Compared to [1] it
is extended by specifying the information exchanged between
the different SDN components. Sections III and IV describe
new methods of consequently distributing the SD-WAN con-
trol plane and how to program such a distributed system.
Section III is extended by describing a fundamental policy
deployment strategy, while Section IV additionally dis-
cusses approaches that reduce the communication bandwidth.
Furthermore, it also introduces methods for grouping multiple
flows without the need for explicit coordination. Following,
in Section V the proposed architecture is evaluated, extending
the original paper with a more detailed analysis of the
required bandwidth. The paper closes with a conclusion and
a description of possible future work.

II. RELATED WORK & BACKGROUND

One solution to overcome the described issues result-
ing from a centralized architecture could be the use of
well-established distributed routing protocols. The Border
Gateway Protocol (BGP) is the major routing protocol for

Fig. 1. A centralized SD-WAN infrastructure decides how to route traffic
between the different single-gateway and cluster sites. Any connectivity issue
between an SD-WAN gateway and the controller or the different controllers
results in reactivity issues of the control plane. Thus, the robustness of the
control plane is quite limited.

large networks. It offers exceptional scalability, availability,
and robustness by avoiding the need for a central instance.
Further, BGP supports flexible parameterization to differen-
tiate paths through a network. Yet, aside from destination
prefixes, it is not capable of routing fine granular traf-
fic flows over different paths without sacrificing scalability.
Additionally, BGP does not natively support the representation
of bandwidths or latency in its parameters, making it unable
to automatically optimize these network characteristics. To
achieve more flexibility, distributed routing protocols can be
extended by a central coordinator. Fibbing [4] is such a hybrid
approach, allowing a central entity to influence unmodified
Open Shortest Path First (OSPF) routers by introducing fake
links and nodes [4]. While this approach is very promising in
regards to its robustness, the steering granularity still cannot
match SDN.

To support a fine-grained traffic control while overcoming
the described issues of SDN, a common approach is to deploy
distributed controllers. The simplest design is the usage of
a clustered controller infrastructure with common state being
synchronized between the elements. Every SDN device is
assigned to one controller [5]. This assignment can either be
static or dynamic to support automatic load-balancing between
the cluster elements [6], [7]. If synchronization between the
controllers is done with some kind of consent protocol such
as Paxos [8] the number of cluster nodes and latency among
them, as well as the number of consensuses required [9]
become a limiting factor. To limit this problem, some SDN
controllers use eventual consistency [10], yet the amount of
data to synchronize becomes enormous for a large number
of SDN controllers. While horizontal clustering improves the
availability of the cluster itself, the reactivity of the controlled
network remains limited when gateways cannot reach the
controllers due to network issues. Hence, clusters are typically
distributed among different regions to compensate regional

ALTHEIDE et al.: INCREASING RESILIENCE OF SD-WAN BY DISTRIBUTING THE CONTROL PLANE 2571

TABLE I
RELEVANT INFORMATION REQUIRED FOR A DECIDING ENTITY

network outages [11], [12]. While this improves the availabil-
ity, it also introduces additional latency to the synchronization
messages, thus limits the scalability.

This limitation can be lifted by using a hierarchical con-
troller design [13], [14], [15], which splits the network in
several independent network regions. Each region is managed
by its own independent regional controller. To steer traffic
between regions, a global controller is introduced. Hence,
failures of a regional controller do not affect other regions.
Although this design seems promising and offers good scala-
bility, it suffers from availability issues as the routing between
regions cannot adapt to network changes, e.g., high link
utilization and changed error rates, once the global controller
becomes unreachable. Consequently, connectivity problems
between controllers can result in inter-regional network par-
titions. Additionally, depending on the sizes of the regions,
outages of regional controllers may still have a substantial
impact.

Background on network statistics: As outlined before,
deciding instances (the SD-WAN controllers) always have to
acquire the current network state to make qualified decisions.
In a scenario with a single controller, all gateways must
send information about their established connections and
gateway-specific information to the controller. Table I lists
and categorizes these based on how often they must be
transmitted and if there are collected per connection, uplink,
policy, or per device. Note that, depending on the concrete
scenario the required information may vary. Some information
only needs to be sent once, e.g., during the establishment of
a connection, while other information requires transmission
upon change or at regular intervals. Some data describes
characteristics of the gateway itself, yet the majority of the
information concerns the status of uplinks or the established
connections. It is worth noting that in scenarios with regional
controllers, the decision-making process would only require
data about the connections within their specific region. Yet,
inter-regional information is usually relayed by the regional
controllers. Subsequently, the regional controllers receive all
data and selectively send information pertaining the inter-
region connections to the central controllers. Additionally,
it has become common practice to periodically retrieve
information about the currently deployed flow rules for reasons
of robustness. The controller subsequently sends flow rules,

Fig. 2. SD-WAN controller elements (green) are placed on each gateway
and coordinate their decisions on whether and how to route/distribute network
traffic between their sites.

connection establishment requests (e.g., in form of a tunnel),
and, depending on the used southbound protocol, statistic
requests to the gateways.

III. DISTRIBUTING THE SD-WAN CONTROL PLANE

In this work, we propose to fully distribute the control plane
and thus the decision process into the distributed SD-WAN
gateways (see Fig. 2). These distributed entities must then
coordinate how to route flows while achieving scalability
and minimizing the control overhead. The entire concept is
designed to function without the need for any kind of external
instance. It ensures that any pair of sites that is able to
communicate, e.g., by establishing a connection between its
SD-WAN gateways, directly coordinates their respective intra-
site traffic. Hence, a failure of one site or its gateways only
affects connections with or within that site, while other sites
are unaffected and can still realize their network policies. But,
to achieve high availability (A) and partition tolerance (P),
it may be necessary to sacrifice strong consistency (C) as
explained by the CAP theorem [16]. Consequently, protocols
such as Paxos [8], are not suitable under all conditions. Instead,
we employ the method of eventual consistency [17], which
ensures that the entire network converges to a consensus
on how to handle network traffic. This means that, after a
network failure, any discrepancies or conflicts that arose will
be resolved over time, and the network will be configured with
a homogeneous view.

A. Distributed Global Network Policies

A global SD-WAN policy typically comprises a traffic
description and an objective.

1) The traffic description defines the flow that is described
by the policy. It is typically based on the packet headers
and can contain multiple conjunctive or disjunctive
matching criteria, e.g., HTTPS traffic (usually identified
by TCP port 443 or 8443) tagged with VLAN ID 20.

2) The objective describes how to handle the traffic flow
defined by the traffic description. In the context of
SD-WAN the objective determines whether matched

2572 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

packets should be dropped (firewalling) or the desired
quality of the used connection.

Implementing such a global policy in a distributed manner
by coordinating decisions among a potentially large number
of gateways can be complex and may not scale well if
done improperly. In existing SD-WAN solutions, this problem
is typically avoided as central SD-WAN controllers have
global knowledge of network topology and state. While a
centralized instance may be necessary for some complex
SD-WAN policies to coordinate all decisions, it is not required
for the majority. This is because SD-WAN policies usually
involve paths between at most two sites, which means that
coordination on routing decisions can be limited to the two
sites alone. Global policies that relate solely to traffic within
a single site can be managed within that specific site but fall
outside the scope of this work. Note that we assume that
the IP ranges of the site-local networks of different SD-WAN
gateways are disjoint unless they connect the same site in form
of a cluster (more details follow).

To describe policies that are limited to one pair of sites we
introduce the term inter-site policy. A global network policy
is transformed into multiple inter-site policies, each describing
a specific flow between exactly two sites or more precisely
between two subnets (see Fig. 3). Limiting each inter-site
policy to exactly one subnet at each site simplifies selecting
a connection for an inter-site policy, as different connections
to the same remote site may announce different local subnets
(clustering). Without this limitation, some policies may not
be feasible (details in Section IV-C). Consequently, a global
policy encompassing multiple subnets of a pair of sites is
split into multiple independent inter-site policies each with
one source and one destination subnet. This approach enables
local decision-making by SD-WAN gateways (details follow
in Section III-B).

The transformation of a global policy into multiple
inter-site policies can be executed by a centralized manage-
ment/monitoring component, a local administration tool, or
even the gateway itself. Implementing this transformation in
the gateway allows for the distribution of global policies
between gateways without involving a third party. An admin-
istrator could create a global policy, transfer it to a single
gateway, and as long as the network is unpartitioned, the
policy may propagate to all gateways. While this approach can
distribute policies, its design necessitates additional memory
on the gateways to store all network policies. Further, there has
to be a method of handling conflicts between different policy
revisions. The following rules implement a relatively basic
approach (more sophisticated approaches can be considered):

R1 Every policy can be identified by a deterministic ID,
e.g., the hash of the traffic description and policy.

R2 The current policy configuration of a gateway is called
policy set and represented by the IDs of all configured
policies along with a set counter.

R3 If a gateway receives a policy set, it checks if the
received is newer than the currently configured one,
e.g., by comparing a set counter. If it is, it checks for
unknown policy IDs within the new set, requests the
appropriate policies from the remote gateway, switches

Fig. 3. Global policy is transformed into three inter-site policies between
each pair of sites/networks.

to the new policy set, and further distributes the new
policy set. Otherwise, it keeps the old configuration.

For this simple approach, the used counters must be
synchronized out-of-band, else (different) administrators may
configure and deploy different policy sets with the same
counter. This synchronization mechanism could be imple-
mented by some kind of deployment and monitoring platform,
which does not affect the availability and robustness of the
decision algorithm itself yet provides an overview over the
currently active policies.

B. Realizing Inter-Site Policies

We aim to support two types of SD-WAN policies:
Firewalling (drop) policies and routing policies. Firewalling
policies do not require advanced synchronization because
each gateway involved can independently check packets to
determine whether to forward or drop them. Routing policies,
in contrast, require coordination between the participating
instances. To preempt potential instabilities that may arise
from diverse underlay conditions, or overlay NAT and state-
full firewalling, it is advantageous for flows between two
sites to employ symmetric paths in both directions. To
achieve this symmetry, protocols that allow each site to make
independent decisions should be avoided. Instead, both sites
must coordinate which WAN connection to choose. As the
available connections between two sites may have a high
latency, e.g., due to the physical distance, classical consensus
protocols may limit the responsiveness. Instead, we propose to
deterministically select one site as the leading site. The leading
site is then responsible of choosing a single connection for
each inter-site policy between itself and the remote site. The
latter must follow these decisions. To select the leading site for
each pair of sites, we compare the hashes of the concatenated
site IDs and prefer the smaller one:

hash(IDsite1 |IDsite2)
?
< hash(IDsite2 |IDsite1)

ALTHEIDE et al.: INCREASING RESILIENCE OF SD-WAN BY DISTRIBUTING THE CONTROL PLANE 2573

Fig. 4. Two multi-gateway sites A and B are configured with three inter-
site policies with site A being the leading site. To achieve a good scalability,
the role of the inter-site policy leader for the three different policies can be
distributed across gateway A1, A2, and A3. The two sites are connected
by three connections (). For the HTTP policy, which is led by A1, the
regularly transferred and relayed statistic data (←) as well as the distributed
decisions (→) are depicted.Note that this process happens for all policies, yet
is not displayed for the sake of simplicity.

This comparison prevents the site with the smallest ID from
always taking the role of the leading site. Instead, the number
of leader roles per site is evenly distributed in larger networks
(details follow in evaluation).

For reasons of high availability, one or both sites may
consist of multiple SD-WAN gateways, called a cluster of
gateways. To allow a good scalability, availability, and robust-
ness, we propose to further distribute the decision-making of
the individual inter-site policies within a cluster. We therefore
introduce the role of the inter-site policy leader. Gateways
assigned to this role make all decisions for a concrete inter-site
policy. Other gateways within the same site, as well as those in
the remote site, then follow the decisions made by the leader
for that particular inter-site policy. Since a site typically will
be configured with multiple inter-site policies, the different
inter-site policy leaders can be distributed across all SD-WAN
gateways of the cluster (see Fig. 4).

The decision-making process is illustrated for three sites as
an example in Fig. 5. It starts with each gateway notifying the
inter-site policy leader of all connections that are appropriate
for the given policy by transmitting the current connection
and device statistics (more details follow in Section IV). This
action is triggered by a local and policy-specific statistic timer.
To deal with outliers, statistics are fetched more frequently
than specified by the statistic timer from the gateway’s
data plane and smoothened, e.g., with a moving average.
Additionally, the fluctuation for each statistical value is deter-
mined by computing the moving average of the difference
between the smoothened and current values. This corresponds
to an iteratively approximated mean absolute deviation, i.e.,
the first absolute central moment. The smoothened statistics
and fluctuations are sent over the available connections (see
Fig. 4) and relayed within the leading site, either over the
site’s local network or additional intra-site connections. This
process ensures that the leading gateway has information
about all available connections as well as remote site
gateways.

When a decision timer triggers, the leading gateway selects
a distinct connection to the remote site. It then notifies the
remote gateway by sending an activation message containing
the policy ID over the selected connection. If the decision
alters a previous one that involved another gateway, the former
decision is revoked by sending a deactivation message contain-
ing the policy ID through the previously chosen connection.
If the previous connection no longer exists, this step can be
skipped. In cases where the decision remains the same, a
small message is dispatched to keep the soft-state alive. Upon
receiving a decision, a gateway generates and installs new
forwarding rules into its data plane.

All these steps are repeated periodically and can be divided
into rounds/periods. However, in the event of a connection
failure, this information must be processed immediately. The
leading gateway calculates the new decisions and disseminates
it without waiting for a timer. It should be noted that each
gateway can take on the leader role for multiple inter-site
policies simultaneously, e.g., site C in Fig. 5 for A-C and B-C.

To limit the impact of gateway or network failures, the
inter-site policy leader role is assigned to the gateway that the
policy’s network flow is currently sent over. This approach
enhances both robustness and availability compared to ran-
domly distributing inter-site policy leader roles. After startup,
each gateway first selects itself as the leader for all inter-
site policies where it is part of the leading site. If a gateway
discovers another gateway within the same site that it is
currently unaware of, it establishes a bidirectional channel.
Both gateways then exchange information about the inter-
site policies they are currently leading and the quality of
their selected connections. In cases where both gateways are
equally suited for a particular policy, the gateway with the
higher ID relinquishes its role, resulting in the establishment
of a single leader. In all other cases the gateway with the
better connection wins and stays the policy leader. After both
gateways exchanged their leading roles, exactly one leader
exists for every inter-site policy. If the leader selects to route
the flow via another gateway, it informs all gateways and hands
over the policy leader role.

To address situations where multiple gateways claim the
role of the inter-site policy, each leader distributes its current
decision and its quality to all other cluster members after each
round. Hence, by applying the rules stated above each cluster
member is aware of the current leader for each policy. In order
to sustain responsiveness in the event of a leading gateway
failure, each decision has a lifetime texp = ttimer + c with
c > 0. Each gateway in the leading site periodically checks
for expired decisions. For each expired decision, the gateway
announces itself as the new leader to all other gateways within
the site. The presented rules as well as the regular exchange of
the current decisions ensure that over time only one inter-site
policy leader will remain, even if multiple gateways choose to
promote themselves as the leader simultaneously.

Due to connection failures, a clustered leading site may
split into multiple partitions that are unable to communicate
with each other. We assume that each of the site’s subnets
is connected to at most one partition, since otherwise a
connection between the partitions would exists. Since inter-site

2574 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

Fig. 5. Time sequence of decision making between three sites. Site A with no leader role only sends statistics and statistic fluctuation, receives decisions, and
writes appropriate flow rules into the data plane. If a site has one (B) or multiple leading roles (C), it receives and stores statistics along with their fluctuations.
Based on these, a decision is calculated and then transmitted to the appropriate remote site. After a decision was received by a site, flow rules are written into
the data plane of the site’s gateways. Both steps of sending statistics and calculating decisions are triggered by timers. In case of a connection failure, a new
decision is calculated immediately, and the timer is restarted. For sake of readability, the statistic timers as well as the decision timers of one site are executed
at the same time. It should be noted that in reality all timers are not synchronized and operate independently. The process of sending/receiving statistics and
calculating/receiving a decision for a specific inter-site policy can be divided into rounds. Each round lasts for one timer interval and starts when the statistic
timer is triggered.

policies exclusively contain a single subnet per site, as defined
in Section III-A, their functionality remains intact. Even if two
gateways should temporarily elect themselves as leaders after
connections are regained, the protocol ensures that eventually
only one leader remains.

IV. PROGRAMMING A DISTRIBUTED CONTROL PLANE

By utilizing the described architecture, decisions can be
made in a fully distributed manner, eliminating the requirement
for a central component or global/regional knowledge. Thus,
telling the control plane on how to react to changing network
characteristics is not realizable by one simple network program
deployed on a central component. However, for reasons of
usability, a simple but comprehensive method of programming
the distributed system is required. We therefore propose to
let the distributed gateways weight every connection based on
locally available data such as connection statistics, gateway
utilization and/or the current time. The calculation of a spe-
cific connection’s weight is accomplished through the use of

customizable metric functions within the distributed SD-WAN
gateways. These functions, as demonstrated in 1, determine a
weight > 0 for each connection. The idea is to let the inter-
site policy leader compare different connections using their
calculated weights with lower cost considered as the better
connection. As a connection involves two endpoints, either
both endpoints weight their statistics independently and send
the weight to their policy leaders, or the connection statistics
are transferred to the leading site, where they are weighted and
then sent to the leaders. In both cases the leader can then sum
both weights to a connection weight, which is then used for
comparing connections. If the goal is to balance the execution
time between both sites, it could be beneficial to evaluate the
statistics independently on each endpoint. Yet, [1] revealed
that while such a design is technically feasible, it significantly
reduces scalability and works only for very small numbers of
policies. This is because, instead of transmitting statistics once,
the solution requires the transmission of all metric weights of
each connection, leading to a linear bandwidth increase when
new policies are installed. Thus, all weights of an inter-site

ALTHEIDE et al.: INCREASING RESILIENCE OF SD-WAN BY DISTRIBUTING THE CONTROL PLANE 2575

Listing 1. Based on the connection statistics and the current time a
programmed metric function returns a weight.

policy should be evaluated at the point where the decision is
made.

Either way, the programmed metric functions used to weight
the statistics should be easily changeable to provide high
flexibility for administrators. This enables the adjustment
of existing steering properties or the introduction of new
QoS requirements. Further, robustness (e.g., limiting resource
consumption) and security must be ensured, e.g., by isolating
the metric function execution. To fulfill these requirements,
we utilize the binary format WebAssembly (Wasm) [18],
which not only is executed with near native speed inside
Web browsers, but also in isolated execution environments
called WebAssembly System Interface (WASI).1 It allows a
user to write costs() functions in any supported language,2

compile them into a textual representation and append it to the
global and subsequently to the inter-site policies. The binary
is then loaded into the gateway’s WASI execution environment
and used to calculate the weight of a connection for a specific
policy.

A. Making Stable Decisions

After receiving the weights of all connections, each inter-
site policy leader needs to select one distinct connection for
their policy. Like any traffic control algorithm, we aim to
increase the quality of all flows while also ensuring stable end-
to-end connections. Yet, optimizing the quality of inter-site
policies presents several challenges that the selection algorithm
must address:

1) Selecting the best available connection for all inter-site
policies might decrease the quality of that connection.

2) Load balancing different inter-site policies onto the n
metrical best connections might decrease quality if n is
chosen too small (e.g., bandwidth exhaustion), yet also
if chosen too high, e.g., higher delay for flows routed
over nth best connection.

3) Switching traffic of multiple inter-site policies simulta-
neously might (negatively) affect each other.

4) Inter-site policies might continuously toggle between
connections since switching could decrease the quality
of the selected connection while the previous connec-
tions quality might recover due to reduced utilization.

1https://wasi.dev/
2https://github.com/appcypher/awesome-wasm-langs

Fig. 6. All connections with costs inside the fluctuation of the “best”
connection c(conbest) ± f (conbest) are included into the best connection
class. If the currently used connection is outside this class, the inter-site policy
should be switched to a class member over time (dotted lines). Depending on
the current cost difference, the switch is scheduled soon or later.

5) If one connection consistently offers slightly better
costs over an extended period of time for an inter-site
policy, it should be used to improve overall quality. The
connection switch should neither be too fast (e.g., only
temporary low costs) nor too slow (poor quality until
switch is performed).

These challenges do not only occur because of dynamically
programmed metric functions, but also because of varying
WAN quality as well as variations in the number and size of
traffic flows. Furthermore, objectives can conflict with each
other, like reducing toggles between two connections and
preferring the better connection in the long run. As a result,
relying on a static threshold per metric and switching when it is
exceeded will not adequately address the challenges described.
Instead, a dynamic threshold is necessary. Its evaluation has to
be efficient in computation but also in memory consumption.
Hence, incremental calculations are preferred.

As a solution for the presented challenges, we propose a
class of best connections. This class includes all connections
whose current metric value falls within the fluctuation range
of the best available connection f (conbest) (see Fig. 6). As
with the handling of outliers when collecting statistics, the
calculated metric values are smoothened, e.g., with a moving
average, and a fluctuation is calculated.

When employing the first absolute central moment for
fluctuation calculation, we observed that the fluctuation of the
best connection will quickly converge to a value close to 0
if the metric weight is nearly static, e.g., the delay on an
unutilized link. However, in case of extremely short quality
degradations, the fluctuation also stays close to 0. Thus, our
approach to calculate the fluctuation may not be the perfect
choice for all scenarios. For example, weighting statistics in
rapidly fluctuating network situations quicker than in stable
situations may be more suitable. The evaluation of different
fluctuation metrics and their application in different scenarios
is, however, left for future work.

Switching an inter-site policy to another connection within
the class of best connections does not offer a statistically
relevant advantage, since all metrics within the class are
insignificantly different from the best connection for the
given metric. Yet, if the used connection is not part of the
class, a (random) connection within the class (see Fig. 6)
should be selected to transfer the corresponding traffic over
a path with higher quality. To prevent instabilities due to
many switches at the same time, the decision to switch
to a different connection is decided in each round using a

2576 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

Bernoulli distribution independently from the previous round.
Considered over multiple rounds, it corresponds to a geometric
distribution. The probability p whether to switch to another
connection in this decision period/round is determined by the
difference between the current metric value c(concur) and
the upper limit of the class of best connections c(conbest) +
f (conbest).

p = max

(
α, 1− c(conbest) + f (conbest)

c(concurrent)

)
: α ∈ (0, 1]

If the previous connection is only slightly better than the
best connection, p will diverge to the minimal switching
probability α. Otherwise, the value of p will be between α
and 1, depending on the difference between the connections.
Therefore, α influences how long an inter-site policy stays on
a connection that is nearly similar to the best connection but
not part of the class of best connections. In Section V-A, we
evaluate the duration required for a connection switch, taking
into account different values of p.

B. Limiting the Required Communication

As outlined in the previous sections, all connected SD-WAN
gateways have to directly exchange information regarding
its established connections, WAN uplinks, policies as well
as device-specific information like the CPU load (detailed
list in Table I). This information must be directly exchanged
among all connected gateways. To also support low bandwidth
uplinks, the required bandwidth should be reduced. The sub-
sequent paragraphs will outline various approaches to achieve
this reduction.

1) Compression: Lossless compression can be applied to
the data being transmitted, trading off some bandwidth for
extra computation time in compression and decompression.
For measured data modern compression algorithms typically
achieve compression ratios ranging from 1.5 to 3 [19]. Yet, it
is important to note that this process is most effective when
different statistic values and/or decisions are transmitted as
groups rather than individually.

2) Selective Send: By design, the leading site requires
statistics from all established connections to select a suitable
connection for each inter-site network policy. Hence, it is
not possible to only send statistics for connections that are
currently in use. Instead, the statistic values may be limited
to those required by the leading site, e.g., by annotating
each metric function with the required values. Then, non-
leading gateways can spare out irrelevant information from the
control messages. A simple and practical approach could be
to categorize metric functions into different classes based on
the statistics values they use. This way, a local gateway can
easily determine which statistics to send. For smaller setups
with only a limited number of distinct metric functions, this
approach can lead to reduced bandwidth usage. Nonetheless,
based on the statistics listed in Table I, even with slightly more
metric functions, nearly all statistic values are likely to be
used. In such cases, the benefit remains marginal.

3) Reduced Statistic/Decision Frequency: Changing the
interval of sending statistics and making decisions directly
impacts the amount of data to send but also the system’s

responsiveness (see Section V-A for more details). Thus,
the interval should be tailored to the concrete scenario’s
requirements. For certain scenarios, connection statistics
might require more frequent updates than uplink or device
information. As a result, multiple independent sending
intervals could be introduced for the different statistic types,
to reduce the bandwidth required.

4) Reducing Redundant Information: If a gateway has
multiple connections to the same remote gateway, it should
send per-device and per-uplink information only once. Further,
if a gateway with a low-bandwidth uplink has set up multiple
connections to a cluster, it can send per-device and per uplink
information to just one of the cluster gateways. The gateways
of the remote site can then distribute the information within the
cluster. This approach can also be employed for the decision-
sending process. Note, that while this approach reduces the
number of control messages, the following sites must be
notified of the current cluster members of a leading site to
detect cluster partitions. Otherwise, per-device and per-uplink
statistics may not be available in all partitions resulting in
partitions lacking the required statistics.

5) Statistic Reflectors: To reduce the strain at low-
bandwidth gateways, particular well-connected sites can be
designated as statistic reflectors that would forward statistics
as needed. The assignment can be either static or dynamic. If a
single reflector was used, the concept would remain relatively
straightforward. Yet, to increase robustness and balance load
across multiple sites, it is beneficial to have multiple reflectors.

6) Distributing Control Messages Over Time: The process
of sending statistics to the different remote sites should be
distributed over time. While this method does not reduce the
required bandwidth it helps avoiding burst of control messages.
This method could also be applied to any data sent to one site,
yet this increases header overhead.

C. Multi-Flow Policies

The described distributed SD-WAN solution facilitates
policy-based routing for specific traffic flows. Nonetheless, in
certain scenarios, there may be the desire to direct multiple
flows over a single pair of gateways or even the same
connection, e.g., when using intrusion detection systems, or
multi-flow applications expecting similar latency across all
flows. If multiple flows share the same source and destination
subnet, disjunctive traffic descriptions can be used within a
single inter-site policy, e.g., all TCP traffic with destination
ports 443 or 8443 between 10.0.0.0/24 and 192.168.0.0/24.
Any flow matching the description will be treated as a single
flow and will always use the same connection.

However, grouping of multiple flows with different sub-
nets, e.g., all HTTP flows destined to 172.168.0.0/24 or
182.168.0.0/24 or 192.168.0.0/24, is not possible out of the
box, since the inter-site policies only define flows between
exactly one subnet at each site (see Section III-A). Thus,
such a global policy would result in distinct inter-site poli-
cies for every pair of subnets, each deciding independently
which connection to choose. Consequently, multiple different
connections could be utilized. Forcing a set of inter-site

ALTHEIDE et al.: INCREASING RESILIENCE OF SD-WAN BY DISTRIBUTING THE CONTROL PLANE 2577

policies to only use connections between a pair of gateways or
even one specific connection, requires additional coordination
between these inter-site policies, especially if partitioning
scenarios within in cluster shall be considered. To avoid this
additional coordination, we introduce the concept of virtual
multi-flow groups, which aggregate a set of inter-site policies
that should be treated uniformly. Configuration options allow
specifying whether this “uniform treatment” means using a
single connection (no load-balancing wanted) or to utilize
connections between one pair of gateways (load-balancing
over different connections still possible).

To implement the preference of making uniform decisions,
we modify the process of selecting a connection from the class
of best connections. The objective is not to impose a decision,
but rather to guide independent inter-site policies toward a
cohesive resolution, eliminating the necessity for explicit coor-
dination. Instead of choosing a class member randomly, we
enhance the likelihood of selecting a connection to the gateway
with the highest number of subnets associated with the multi-
flow group. In case of multiple candidates, connections to
the gateway with the lower gateway ID take precedence. In
configurations mandating a single connection, this choice is
further refined by incorporating the connection ID.

To reduce the number of used connections in the long
term, these specialized inter-site policies are not obliged to
remain on a previous selected connection that is still part of
class of the best connection. Instead, an inter-site policy can
sporadically check if a different connection within the class
of best connections exists with a gateway announcing more of
the associated subnets. Thus, if a pair of gateways announces
all required subnets and its connections are part of the class
of the best connections, all inter-site policies part of the multi-
flow group will eventually transition to that connection. It is
important to note that if a connection announces all needed
subnets, but does not fall within the class of best connections,
it will not be used. In case, no pair exists offering all required
subnets, multiple pairs are used. When a consistent decision
over a single connection is required, it is imperative to utilize
only one metric program. Yet, if the sole requirement is for
the pair of gateways to be identical, multiple different metric
programs can be employed.

In essence, the introduction of multi-flow groups provides
a straightforward method of uniformly routing specific traffic
flows without the need for additional complex synchronization
methods. This approach is applicable in cluster scenarios
where members are connected to different sets of local subnets
and is also capable of handling cluster partitioning.

V. EVALUATION

The evaluation of the distributed SD-WAN solution follows
the structure of the requirements in Section I. The proposed
fully distributed solution (N1, N6) is able to implement global
traffic policies. Matched flows (F2) are steered based on
programmable metric functions (N5), which reflect the current
QoS properties of the used WAN connections (F1). The deci-
sions made by one intent leader do not only facilitate steering
but can also block specific traffic flows (F6). Additionally, load

balancing among a site’s cluster members is attainable (F4),
yet symmetric routing is ensured at all time (F3).

In the following, we first evaluate the time required to
respond to changing network conditions (N3). We will then
discuss robustness (N2) and support of high availability,
especially in case of geo-redundant gateways (F5), and its
scalability (N5).

A. Reaction Time

The evaluation of the response time is structured as fol-
lows: First, we discuss the reaction delay at sudden network
changes, e.g., a failing connection. Next, we estimate the
duration for which a connection switch can be artificially
delayed enhancing the overall network stability, if the currently
selected connection is only marginally outside the class of best
connection.

1) Minimal Reaction Time: The routing decision for a spe-
cific policy involves several communication steps that impact
the minimum reaction time. Initially, an inter-site policy leader
must be selected. Next, the network conditions, in form of
connection, uplink and device statistics, are regularly sent to
the leader. The leader then calculates the appropriate decision
and distributes it. In the event of a network or device failure,
the failure must first be detected, and a new leader may need
to be determined. The process of recalculating and distributing
a decision is then repeated.

The selection of the leading site is done implicitly when
setting up a connection. The identification of the correct policy
leader happens implicitly when decisions are exchanged within
a site. Consequently, both selection mechanisms do not add
anything to the reaction time required for regular network
condition changes.

Each gateway regularly collects local information and sends
the statistics every ttimer to the leader. Updates from a remote
site take 1/2 RTTinter before being received at the leading
site. Data measured at the leading site takes 1/2 RTTintra

to reach the inter-site policy leader. Every ttimer , the policy
leader calculates a decision based on the received data and
sends it to all gateways participating in the policy. If a
remote gateway has no direct connection to the leader, updates
to and decisions from the leader have to be forwarded by
other gateways of the leading site adding 1/2 RTTintra per
direction. All in all, the reaction time sums up to:

treact ≤ RTTintra +RTTinter +2× ttimer

In local clusters, members are expected to communicate
without significant delay resulting in RTTintra ≈ 0. Further,
both the statistics and decision timer have an expected delay
of 1/2 ttimer until the next trigger. Consequently, the expected
reaction time is:

E (treact) = RTTinter +ttimer

The gateway that realizes the inter-site policy’s routing
automatically becomes its leader. Hence, a failure of the
currently used connection can be handled immediately by

2578 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

Fig. 7. Probability of switching into the class of best connections for different
values of p corresponding to a geometric distribution.

calculating an appropriate response and informing both the
local and remote gateways (orange color in Fig. 5):

tcon_failure =
1

2
RTTintra +

1

2
RTTinter

Gateways at the leading site detect the failure of a policy
leader when decisions are not renewed within its lifespan
texp . If a gateway detects a failure, it instantly assumes itself
as the new leader, calculates a new decision, and distributes
it. As multiple gateways may have elected themselves, a
uniform routing decision is reached after all cluster members
distributed their decisions and a single leader is chosen using
the rules described in Section III-B. Thus, the reaction time
after a failure of the leading gateway is:

tlead_failure < texp +
1

2
RTTintra +

1

2
RTTinter

2) Artificial Delay of Reaction Time: To maintain a high
robustness and not immediately switch a connection to a
supposedly better one, Section IV-A introduced the concept of
artificially extending the reaction time. Nonetheless, even if a
connection switch is delayed, eventually all inter-site policies
should use a connection inside the class of best connections.
Fig. 7 displays the probability of switching a connection when
n decision intervals (rounds) have passed. The different values
of p describe the difference between the current metric and
the class of best connections.

If the decision interval is configured to be 10 seconds, inter-
site policies with a comparatively poor metric value (p = 0.7)
have a 99.9% chance for switching into the class of best
connections in under 1 minute/6 rounds. For policies with quite
similar metric values (p = 0.1) it takes 11 minutes/66 rounds
to reach the same probability. Thus, a connection that briefly
leaves the class of best connections will not lose the policies
assigned to it. Nonetheless, every policy whose metric value
is not inside the class of best connections for a long time will
eventually switch into it. Yet, if the currently used connection
fails, a new decision is made without any artificial delay.

B. Robustness and High Availability Support

Section III describes how to fulfill the stated functional
SD-WAN requirements without requiring any kind of exposed
infrastructure component. By using inter-site policies instead
of global policies and selecting an inter-site policy-specific
leader, only one instance controls the routing of a specific
traffic flow. Thus, if two gateways can communicate, they are
also able to coordinate decisions to realize the optimal paths
according to the deployed SD-WAN policies. The proposed
algorithms in Section III-B ensure that independent from any
previous network failure scenario eventually (1/2 RTT after
connectivity is regained) a single leader persists per policy.
The algorithms not only support a connection between single-
gateway sites but also clustered gateways. If a gateway fails,
all its decisions time out, and the appropriate inter-site policy
leader roles will be taken over by other gateways of the leading
cluster. The described algorithm ensures that only one gateway
persists as the leader for a specific policy.

To ensure high robustness and availability, even in the case
of geo-redundant clusters, the architecture must be capable of
handling high-latency intra-cluster connections. Section V-A
shows that the reaction time on changing network conditions
and failures depends on the RTTintra . Yet, the impact is
only additive and does not depend on the number of cluster
gateways. In contrast to the local cluster, the delay between
members of a geo-redundant clusters is subject to its phys-
ical distance. Hence, RTTintra can be expected similar to
RTTinter resulting in:

E (treact_geo) = 2× RTTinter +ttimer

The formulas for calculating the reaction time after network
and gateway failures remain the same between geo-redundant
and non-geo-redundant scenarios. In case, two gateways of a
(geo-redundant) cluster do not reach each other because of
a network failure, the cluster falls into two partitions. Nodes
that do not reach their current policy leader start the process
of determining a new policy leader using the rules stated in
Section III-B. Nevertheless, each individual inter-site policy
has at most one inter-site policy leader, as each cluster partition
manages distinct and non-overlapping subnets. As outlined in
Section IV-C, for multi-flow groups a partition might result in
a routing over different connections of the separate flows if the
corresponding leading gateways belong to different partitions.
Yet, it is crucial to note that if flows belong to different subnets
that cannot reach each other, it is inherently impossible to route
them over the same connection. If connectivity is regained,
the presented reassignment rule will eventually route all flows
over the same connection, if possible.

C. Scalability

In Section V-A, we observed that the reaction time of the
concept is not a critical factor for scalability. This is because it
remains constant regardless of the number of sites, gateways,
or gateways per site. Instead, the scalability of the overall
solution is primarily determined by three key factors:

1) The execution time and memory usage of the pro-
grammable metric functions.

ALTHEIDE et al.: INCREASING RESILIENCE OF SD-WAN BY DISTRIBUTING THE CONTROL PLANE 2579

Fig. 8. Distribution of percentage of leader roles between varying number
of sites with a standard library SipHash algorithm.

2) How evenly the evaluation tasks can be distributed
among multiple gateways.

3) The amount of data that needs to be transferred between
gateways and a leader.

When building a prototype, we discovered that the first two
factors pose no significant challenge:

1) CPU and Memory Usage: The CPU usage scales linear
with the number of metric calculations. This corresponds to
the number of inter-site policies × the number of connections.
In our prototype, a simple metric function requires 775 kB of
memory and takes approximately 3.4μs to calculate on one
2.20 GHz (Xeon Gold 5120) core.

For example, if one CPU core is reserved for the distributed
SD-WAN software, configured with a 10 second interval
time, a gateway could handle up to ∼2800000 metric cal-
culations (including ∼2.0% base utilization). Breaking down
the 2800000 calculations into 2000 sites connected over two
WANs, each gateway could be configured with 700 inter-site
policies with individual metric functions. Assuming 700 metric
functions are used, about 550 MB of memory would be needed
for the metric function handling. Note that if metric functions
are reused by multiple inter-site policies, connections between
two sites must be weighted only once per metric. Hence,
utilizing a shared metric function among multiple policies for
the same pair of sites will reduce the required CPU resources.

2) Distributing the Calculations: Distributing the leader
roles equally among all sites reduces the number of calcula-
tions required for an individual gateway by half. Fig. 8 shows
that by utilizing the deterministic selection of a leader site
(as described in Section III-B), an equal distribution will be
achieved if the number of gateways is sufficiently high. Note
that even for a low number of gateways the skew is negligible,
since the additional load is low.

Additionally, if the calculations are distributed among
multiple gateways, i.e., inside a cluster, the load is further
distributed. Yet, the intra-cluster distribution depends on the
realization of the concrete inter-site policies. One well con-
nected gateway might handle all policies and become the
leader for all policies. Thus, for cases where all metric
functions are quite similar or one cluster member offers a

Fig. 9. Bandwidth requirements for sending statistics and its fluctuation of a
single gateway with one WAN uplink. Optimization strategy of rarely sending
uplink and device statistics (every third interval) is depicted.

comparably good connection, appropriate computing resources
should be provisioned.

Note that distributing calculations over multiple gateways
will not necessarily reduce memory usage because the metric
functions must be stored on all gateways to enable rapid
response to a policy leader change. However, like discussed
in the previous section, this does still not pose an issue.

3) Bandwidth Overhead: The following evaluation of the
bandwidth overhead of the payloads is partially based on an
initial prototype that we had built for conducting feasibility
tests. Yet, some initial assumptions from our previous work [1]
led to a varying scalability of different factors. Thus, we
leverage the linearity of the different factors to extrapolate
the behavior for high numbers of gateways, connections, and
policies in the following. Although this method may not be
the most precise way to evaluate the required bandwidth, it
provides an insight into the concept’s capabilities as well as
potential challenges when implementing it.

As the leading roles are equally distributed among all sites,
each site transmits and receives statistics (see Table I) as well
as decisions. Since the statistics must be exchanged directly
among all connected gateways, certain data will be transferred
multiple times. However, because decisions are made exclu-
sively between two sites, connection-specific data must only
be sent once between two connection endpoints (SD-WAN
gateways). The quantity of data required for this purpose is
denoted by the term connection in Fig. 9 and corresponds
exactly to the volume of connection information that has to
be sent in centralized scenarios. Still, the gateway’s per-uplink
and device-specific information must be disseminated to all
(leading) gateways, in contrast to a single transmission to the
controller. For ease of representation, Fig. 9 shows the worst-
case (one-to-one) connection scenario, where deduplication of
uplink and per device statistics is not possible. The plot reveals
that with a single uplink and no bandwidth optimization,
the uplink and device statistics transmitted to all remote
sites consume roughly the same bandwidth as the connection
statistics. In scenarios where the anticipated fluctuations of
uplink or device statistics are minimal, the sending interval
could be adapted (rarely sent in Fig. 9) and dynamically
increased in response to significant changes. If additional
connections were established to remote leading gateways,
device-specific statistics would only need to be sent once.
Consequently, the required bandwidth for device statistics

2580 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

Fig. 10. Bandwidth requirement for different percentages of decision updates
per interval across 100 policies. All updates involve gateway changes. If no
new decision is made, a keep-alive packet is sent.

would remain unchanged. The same principle applies to uplink
statistics when multiple connections share an uplink to the
same leading site.

After evaluating and choosing a connection using the class
of best connections, two cases can occur. First, the remote
gateway of the newly selected connection may differ from the
previously chosen one. In this situation, the leading gateway
must notify both remote gateways by sending the policy ID
(8 byte) and whether the policy is to be activated or deactivated
(1 byte) over the corresponding connection, requiring a total
transmission of 18 bytes. Second, when only a different
connection to the same remote gateway is selected, only a
single gateway has to be informed, resulting in a transmission
of 9 bytes. The scenario where no prior decision was made
aligns with the second case.

Fig. 10 illustrates that, analogous to centralized scenarios,
this demand is multiplied by the number of connections. This
multiplication results in a substantial bandwidth requirement
when all decisions are updated in every round. Yet, in stable
networks, the frequency of connection changes is typically
low, resulting in a considerably reduced demand for band-
width. For instance, in a scenario with a 10-second decision
interval and a 5 % change rate, every single decision is
renewed approximately every 3 minutes, indicative of a highly
unstable network. Further, the plot assumes that decision
updates consistently entail a switch of the remote gateway,
necessitating the transmission of two update messages. In
practice, we assume that the majority of decision updates
merely involve switching to a different connection with the
same remote gateway. Thus, only one message needs to be
sent, effectively halving the required bandwidth.

In summary, for 2000 connections with uplink and device
information rarely sent and a 5 % change rate, each gateway
is expected to approximately transmit and receive 4 Mbit per
round. With a configured round interval of 10 seconds, this
translates to a transmit and receive bandwidth of 0.4 Mbit/s
at each site. Yet, it is worth noting that commercial solutions
employ much larger intervals, such as the 10-minute interval
used in Cisco SD-WAN [20], which would result in an average
bandwidth requirement of 7 kbit/s.

VI. CONCLUSION & FUTURE WORK

This paper presented a novel approach to fully distribute
the control plane of SD-WANs, which enables automatic,

fine-grained traffic control without introducing exposed enti-
ties. As a result, the network control plane remains highly
available and robust, even in the event of device failures
or network partitioning. This is achieved by three methods.
The first is to split global network policies into local inter-
site policies. This eliminates the need for complex consent
algorithms when deciding how to route traffic. It facilitates
distributed decisions over policy-based routes, even if gate-
ways are placed in a geo-redundant clustered setup with
high communication latency. Second, to enable a simple and
comprehensible way of programming the distributed control
plane, we propose to attach programmable metric functions to
the policies. These functions are executed inside the distributed
instances to evaluate the quality of appropriate connections.
Third, the paper introduced a method for dynamically selecting
an optimal path for routing without introducing instabilities
to the network. This is achieved by considering not only
the current quality of a connection, but also its fluctuations.
The quantitative evaluation shows that this solution can man-
age several thousand nodes and inter-site policies in terms
of computation. By avoiding a central controller, statistics
and decisions have to be exchanged between the gateways.
Consequently, non-connection-specific information must be
transferred multiple times. Yet, with some of the suggested
bandwidth optimizations in place, the increased need for
bandwidth is only marginal compared to a centralized solution.

It should be noted that the described methods may not
only be used in combination but could also be applied
separately. Considering the fluctuation of an input value
instead of using only thresholds adds network stability to any
SDN/SD-WAN controlled network. In future work, we plan
to evaluate the scalability and robustness in large real-world
setups. Additionally, we aim to develop effective methods
for managing and monitoring the distributed environment,
particularly in scenarios involving partitioning. Further, the
interaction between the proposed distributed SD-WAN control
plane and the site-local routing has to be assessed.

In summary, this paper introduced new methods for achiev-
ing a highly robust and available traffic engineering solution
that can be used to implement fine-grained global policies
while remaining responsive even in the event of device
failures, network failures, or network partitioning.

REFERENCES

[1] F. Altheide, S. Buttgereit, M. Rossberg, and G. Schaefer, “Increasing
resilience of SD-WAN by distributing the control plane,” in Proc. 14th
Int. Conf. Netw. Future (NoF), 2023, pp. 10–18.

[2] W. Stallings, Foundations of Modern Networking: SDN, NFV, QoE, IoT,
and Cloud. Boston, MA, USA: Addison-Wesley Prof., 2015.

[3] V. Paxson, “End-to-end routing behavior in the Internet,” IEEE/ACM
Trans. Netw., vol. 5, no. 5, pp. 601–615, Oct. 1997.

[4] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central control
over distributed routing,” in Proc. ACM SIGCOMM, 2015, pp. 43–56.

[5] V. Yazici, M. O. Sunay, and A. O. Ercan, “Controlling a software-defined
network via distributed controllers,” 2014, arXiv:1401.7651.

[6] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. R. Kompella,
“ElastiCon; an elastic distributed SDN controller,” in Proc. ANCS, 2014,
pp. 17–27.

[7] M. F. Bari et al., “Dynamic controller provisioning in software defined
networks,” in Proc. CNSM, 2013, pp. 18–25.

[8] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133–169, May 1998.

ALTHEIDE et al.: INCREASING RESILIENCE OF SD-WAN BY DISTRIBUTING THE CONTROL PLANE 2581

[9] T. Zhang, P. Giaccone, A. Bianco, and S. De Domenico, “The role
of the inter-controller consensus in the placement of distributed SDN
controllers,” Comput. Commun., vol. 113, pp. 1–13, Nov. 2017.

[10] E. Sakic and W. Kellerer, “Impact of adaptive consistency on distributed
SDN applications: An empirical study,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 12, pp. 2702–2715, Dec. 2018.

[11] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control
plane for OpenFlow,” in Proc. INM/WREN, 2010, pp. 10–5555.

[12] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks,” in Proc. 9th USENIX OSDI, 2010, pp. 351–364.

[13] S. H. Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient and
scalable offloading of control applications,” in Proc. 1st Workshop Hot
Topics Softw. Defin. Netw., 2012, pp. 19–24.

[14] Y. Fu, J. Bi, K. Gao, Z. Chen, J. Wu, and B. Hao, “Orion: A hybrid
hierarchical control plane of software-defined networking for large-scale
networks,” in Proc. 22nd ICNP, 2014, pp. 569–576.

[15] D. Marconett and S. B. Yoo, “Flowbroker: A software-defined network
controller architecture for multi-domain brokering and reputation,” J.
Netw. Syst. Manag., vol. 23, no. 2, pp. 328–359, 2015.

[16] E. Brewer, “CAP twelve years later: How the ‘rules’ have
changed,” Computer, vol. 45, no. 2, pp. 23–29, 2012.

[17] P. Bailis and A. Ghodsi, “Eventual consistency today: Limitations,
extensions, and beyond,” Commun. ACM, vol. 56, no. 5, pp. 55–63,
2013.

[18] A. Haas et al., “Bringing the Web up to speed with Web Assembly,” in
Proc. ACM SIGPLAN, 2017, pp. 185–200.

[19] A. Gupta, A. Bansal, and V. Khanduja, “Modern lossless compression
techniques: Review, comparison and analysis,” in Proc. 2nd ICECCT,
2017, pp. 1–8.

[20] Policies Configuration Guide for Vedge Routers, Cisco SD-WAN, Cisco
Syst. Inc., San Jose, CA, USA, 2022.

Friedrich Altheide received the B.Sc. and M.Sc. degrees in computer
science from Technische Universität Ilmenau, Germany. In 2022, he joined
Telematics/Computer Networks Research Group, where he worked on intent-
driven distributed control planes for software-defined wide area networks and
virtual private networks. He further researched on approaches to secure VPNs
by combining asymmetric key exchanges with symmetric in-band and out-of-
band key exchanges, such as quantum key distribution (QKD) and multipath
key reinforcement (MKR). He is currently working with secunet Security
Networks AG in the fields of VPNs, distributed SDN, PQC, QKD, and MKR.

Simon Buttgereit received the B.Sc. and M.Sc. degrees in computer engi-
neering from Technische Universität Ilmenau, where he is currently pursuing
the Ph.D. degree, focusing on automatically verifying security properties of
critical infrastructure network architectures. Over the past few years, he has
played an active role in various research projects with Telematics/Computer
Networks Research Group with partners spanning the security, telecommuni-
cations, and network supply industries. His research interests primarily revolve
around addressing the complexities of ensuring security and robustness in
computer networks, all while harnessing the potential of modern networking
technologies, such as software-defined networking, network function virtual-
ization, and user workload virtualization.

Michael Rossberg (Member, IEEE) received the degree in computer science
from Technische Universität Ilmenau, Germany, in 2007, and the Ph.D.
degree in 2011 on the automatic configuration of large-scale VPN. In 2007,
he joined Telematics/Computer Networks Research Group. Since then, he
continued research in this field following academic and practical questions
and broadening the scope to cloud technologies and SD-WAN applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

