
3636 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

Toward Automated Attack Discovery in SDN
Controllers Through Formal Verification

Bin Yuan , Member, IEEE, Chi Zhang , Jiajun Ren, Qunjinming Chen, Biang Xu, Qiankun Zhang ,
Zhen Li, Member, IEEE, Deqing Zou , Fan Zhang, and Hai Jin , Fellow, IEEE

Abstract—Software-defined Network (SDN), presented to be a
novel architecture of network because of its separation of data
plane and control plane, brings centralization and extensibility
to network management as well as new attacks that exploit the
flexibility of SDN. OpenFlow, which is the protocol that is applied
by the majority of SDN, leads to the widely used definition of the
communication between the controller and the switch resulting
in similar implementations regardless of different vendors. In
this paper, we focus on the mechanisms of packet processing
and topology discovery and their fundamental weaknesses caused
by general implementations or device limitations. Despite the
common vulnerabilities, the universal standard mechanisms of
basic function in SDN also enlighten us to present an automated
attack discovery method based on the formal verification with
a generic model of SDN system. We describe the abstraction of
the SDN components, their key functions, and communications
along with the malicious operations that could be executed by
malicious hosts and malicious switches and translate them into a
formal model of the SDN system. The formal verification carried
on with the assertion representing the security properties derived
from the common vulnerabilities of the SDN system reports the
potential attack paths each of which shows an attack process. Our
evaluation shows that our method can discover feasible attack
paths efficiently and effectively, with 23 attacks being identified,

Manuscript received 2 September 2023; revised 8 January 2024; accepted
15 March 2024. Date of publication 10 April 2024; date of current version
12 July 2024. This work was supported by the National Natural Science
Foundation of China (No. 62372191), the National Key R&D Plan of China
(No. 2022YFB3103403), the Hubei Province Key R&D Technology Special
Innovation Project (No. 2021BAA032), and the Wuhan Applied Foundational
Frontier Project (No. 2020010601012188). The associate editor coordinating
the review of this article and approving it for publication was J.-F. Botero.
(Corresponding author: Qiankun Zhang.)

Bin Yuan is with the National Engineering Research Center for Big
Data Technology and System, Services Computing Technology and System
Lab, Hubei Engineering Research Center on Big Data Security, Hubei
Key Laboratory of Distributed System Security, School of Cyber Science
and Engineering, Huazhong University of Science and Technology, Wuhan
430074, China, also with Jinyinhu Laboratory, Wuhan 430040, China, and
also with Songshan Laboratory, Zhengzhou 452470, China.

Chi Zhang, Jiajun Ren, Qunjinming Chen, Biang Xu, Zhen Li, Deqing
Zou, and Fan Zhang are with the National Engineering Research Center
for Big Data Technology and System, Services Computing Technology and
System Lab, Hubei Engineering Research Center on Big Data Security, Hubei
Key Laboratory of Distributed System Security, School of Cyber Science
and Engineering, Huazhong University of Science and Technology, Wuhan
430074, China.

Qiankun Zhang is with the Hubei Key Laboratory of Distributed System
Security, Hubei Engineering Research Center on Big Data Security, School
of Cyber Science and Engineering, Huazhong University of Science and
Technology, Wuhan 430074, China (e-mail: qiankun@hust.edu.cn).

Hai Jin is with the National Engineering Research Center for Big
Data Technology and System, Services Computing Technology and System
Lab, Cluster and Grid Computing Lab, School of Computer Science and
Technology, Huazhong University of Science and Technology, Wuhan 430074,
China.

Digital Object Identifier 10.1109/TNSM.2024.3386404

among which 2 are new. We further demonstrate the practicality
of the 2 new attacks.

Index Terms—SDN security, network security, model checking.

I. INTRODUCTION

SOFTWARE-DEFINED Network based on the separation
of control plane and data plane is a prevailing network

architect of data center at present, which provides a more
simple and centralized approach [1]. The centralized control
plane comes up with the forwarding table based on the
knowledge of the whole network which is real-time maintained
during the communication with switches and the consistent
global controlling strategy defined by the network admin-
istrator, and then issues the flow entries directing packet
processing to switches, which simplifies the main function of
switches to general packet forwarding. Therefore, SDN can
provide flexible, dynamic, and programmable management and
allow the network administrator to perform efficient resource
strategy, traffic control, and global monitoring.

The communication between the controller and switch is
carried through the SDN southbound protocol. OpenFlow [2],
which is the de facto general-purpose protocol for SDN
southbound interface, provides a series of standards for con-
trol plane operations that the controller adds, removes and
modifies the flow entries installed in switches, while also
defines the data plane behavior about packet matching and
forwarding guided by flow entries [3]. However, it is important
to note that OpenFlow does not explicitly define how the
controller itself operates; this aspect is left to be specified by
individual controller vendors. Generally, the SDN controller
should include a set of common application modules to support
the core functions of controller, such as topology discovery
and management and flow management [4]. In terms of
the topology discovery, most of the mainstream controllers
adopt OpenFlow Discovery Protocol (OFDP) [5], which is
tamed based on Link Layer Discovery Protocol (LLDP) to
be exploited in SDN diagram, despite the vendors. All the
information about the current network state is maintained
through the communication between the controller and other
network devices, including SDN switches and end host, and
stored in controller database in order to support the application
through controller’s northbound API.

The benefits of SDN come with exploitable weaknesses.
The flexibility of SDN, which comes from the novel structure
separating the network control and packet forwarding, brings

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-5365-904X
https://orcid.org/0009-0007-6380-6983
https://orcid.org/0000-0002-8034-2689
https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0002-3934-7605

YUAN et al.: TOWARD AUTOMATED ATTACK DISCOVERY IN SDN CONTROLLERS THROUGH FORMAL VERIFICATION 3637

new attacks and may lead to a wider damage impact because of
the centralized control plane. The controller becomes literally
the single point of failure which means any sabotage and
deception of controller are most likely to affect the whole
network and controller can be exploited to attack other SDN
devices. To make it worse, although various vendors provide
numerous choices of SDN controllers, their core functions of
packet process and network maintenance share the same logic
pattern, which makes the SDN attack effective to different
controllers regardless of their nuances. For example, the
attacks aiming at the network topology view of controller are
definitely going to affect the correctness of calculation gener-
ating flow entries and further jeopardize the packet forwarding
in the overall network, which makes the majority of controllers
suffer. Also, most commercial hardware SDN switches use
ternary content-addressable memory (TCAM), which is known
as size-limited and power-costly and leads to a limitation of
flow-table space [6]. Therefore, it is easy to trigger a DoS
attack against flow-table space by exploiting the packet process
mechanism of the OpenFlow-based controller [7], [8].

The security issues involving SDN controllers have already
drawn attention of many prior works. There are plenty of
works that discover feasible attacks focusing on certain vulner-
abilities, such as topology discovery poisoning [9], [10], [11],
[12], [13], [14], resource exhaustion against SDN devices [14],
[15], [16], [17] and malicious application [18], [19]. Some
of the attack discovery works are through exhaustive code
reading and manual testing [9], while some analysis tools have
been developed to analyze SDN system and effectively detect
vulnerabilities based on blind fuzzing [20], model check-
ing [21], [22] and real-time verification [14]. Nevertheless,
there are several kinds of defense proposed whether by
improving existing controllers [10], [11], [17], [23] or by
developing new controller [18].

From massively and carefully researching the attack on
SDN, we realized that there are certain exploitable points that
are fatal to all kinds of SDN systems regardless of the vendors
and shared by different controllers. Although the controllers
may vary in specific implementations, their underlying designs
are consistent, especially the fundamental functions, which
increases the probability that one feasible attack against
one type of controller is very likely to transfer against
another.

In this paper, we propose a formal verification method
to automatically discover attacks in SDN controller. Based
on the awareness of the commonalities of SDN controllers,
we have done a thorough investigation of the OpenFlow
protocol, the implementation of mainstream controllers and
SDN vulnerabilities. With the prior knowledge, we can extract
an abstraction about the core components, their key functions
and the critical communications in the SDN system. From the
existing attacks, we can also summarize the key properties that
can be a disaster if violated, which are attackers’ favorites.
Then we present a formal description of SDN system defining
the behavior of different roles in the system, such as malicious
and innocent components, and their interactions as the system
model in order to analyze the possible attack against SDN
controller through formal verification with the model checking.

Later, we evaluate the counterexamples obtained during the
analysis and filter out the ones that can be carried out as
practical attacks. Finally, the feasibility of these attack paths is
verified by returning to the real SDN system. Our contributions
are summarized as follows:

• We suggest that there are commonalities of different
SDN controllers regardless of the vendors through doing
comprehensive research about the attacks and defenses in
SDN and examining the vulnerabilities of SDN protocol.

• We present an automated attack discovery method
through formal verification based on knowledge of SDN
mechanism and exploitability to instruct the practice
of attacks against SDN controllers and analyze SDN
security.

• We exploit our formal model with model checking and
derive counterexamples which lead to exploitable ways
to launch attacks on SDN controllers.

• We conduct practical experiments to validate the feasibil-
ity of new attack ways under the guidance of the analysis
of counterexamples. The attacks found by our method
can be verified on different controllers and different
OpenFlow versions.

The structure of the following paper carries out as follows.
Section II introduces SDN and summarizes the mechanisms
and weaknesses of packet processing and topology discovery.
In addition, we would like to discuss the problems in the exist-
ing formal validation work and the motivation for our work.
Section III depicts the design of our method while Section IV
specifies the implementation of formal verification. Section V
shows the result of our experiments and discusses the attack
paths discovered by our method along with the demonstration
of new attacks. We discuss the features and limitations of our
method in Section VI and other related works in Section VII
while concluding the paper in Section VIII.

II. BACKGROUND AND MOTIVATION

In this section, we briefly introduce the overview of SDN
and focus on its function in packet processing and topology
discovery. We study their mechanism to conclude the weak-
nesses and the simple approaches to exploit the vulnerabilities.
Further, we summarize the existing work on formal verification
of SDN controllers to show why we model the universal
mechanisms for SDN controllers.

A. SDN

The most significant difference between SDN and traditional
network structure is the separation of the data plane and the
control plane, where the data plane is responsible for packet
forwarding as directed by flow entries and the control plane
maintains the entire network view to determine and direct
packet forwarding strategy.

The separation of planes leads to a highly centralized con-
troller and simplified data plane devices. The SDN controller,
as the decision maker and core of the system, has to maintain
a whole view of the network, manages all the network devices
and gives instructions about the packet processing accord-
ing to southbound protocol, generally OpenFlow, and also

3638 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

Fig. 1. SDN structure.

Fig. 2. The mechanism of packet processing.

provides applications with network devices and topology to
facilitate more flexible and versatile management on demand
for network administer through northbound API. Meanwhile,
the SDN device, switches, refreshes and maintains a flow table
filled with flow entries that instruct the packet processing with
match field, action set deciding whether a packet should match
the entry and how to deal with the packet and also handles
packet forwarding. The overview of SDN structure is featured
as Fig. 1.

B. Packet Processing in SDN

1) Mechanism: Basically, the controller works in a reactive
way triggered by events, receives packet-in messages, and
processes the packets contained in that message. To be more
specific, the packets sent by an end host first arrive at the
edge switch connecting to the end host. Then, in terms of
OpenFlow-based SDN, the edge switch looks into its flow
tables and determines how to deal with the packet. If any
certain flow entry matches the packet and has the highest
priority, then the switch obeys its action to process and forward
the packet. Otherwise, the switch sends a packet-in message
carrying the related information or even the whole packet to
the controller based on the preinstalled default table miss flow
entry. Then the controller makes the decision and sends a
packet-out message specifying the packet processing to the
switch. Sometimes the controller also installs the related flow
entry using flow-mod messages to simplify the process steps of
the later packet of the same flow. The processing is illustrated
in Fig. 2.

2) Weakness: The reactive handling approach can be
abused to launch DoS attacks against the control plane [24].
Attackers can exploit the mechanism that the data plane has to
request the control plane for new arrival packets to flood the
control plane with requests in a short period. Eventually
the number of requests exceeds the processing capacity of
the controller so that the controller is unable to handle the
normal flow of the normal components in the network. The
requirement for attackers that adopt this way can be just an end
host in the SDN network, which is readily available. Moreover,
this kind of attack can lead to a further flood of responses from
the control plane to the data plane. As we mentioned before,
the SDN switches usually lack flow table capacity so the newly
installed flow entries can cause SDN switches exhausted.

3) Example: A controller DoS can be launched by an
attacker that compromised an end host in the SDN network.
The attack can forge a large number of data packets with
different IP and MAC addresses and send them quickly in
a short period to force the edge switch to send packet-in
messages to request the controller about how to forward
the mismatching packets. To further make an impact on the
switch’s flow table, the forged packets can use random source
IP and MAC addresses along with destination IP and MAC
addresses that are known to exist in the network. A known
destination address is chosen instead of a random destination
address to induce the controller to send flow-mod messages
and install new flow entries.

C. Topology Discovery in SDN

1) Mechanism: The SDN controller needs to preserve and
update the network state to maintain and direct the network
operations, particularly having the updated topology view
about the information of links and devices to make decisions
on routing.

Universally, the controllers adopt OFDP as the mechanism
of link discovery in SDN, which carries out with adapted
LLDP. The controller discovers switches through the TLS/TCP
connection and learns the switches’ configuration with the
feature-request and feature-reply messages exchange. Then,
the controller sends packet-out messages to all corresponding
switches with LLDP packets containing unique chassis ID
and port ID consistent with the switch’s Datapath Identifier
(DPID) and Port Number (Port No). After receiving the LLDP
packets, switches forward the packet out of the certain port
with a destination MAC as LLDP multicast address, which
is meant to be forwarded to the nearest bridge with a single
hop if the port does link to another switch. The other switch
that receives the LLDP packet will fill the packet-in message.
The IN_PORT field of the packet-in message is the port
on which the LLDP packet was received, and the data field
is the complete LLDP packet. Further, the switch forwards
them to the controller according to a preinstalled flow entry
that indicates all received LLDP packets to be output to the
controller. Consequently, the controller processes the packet-in
message and derives a unidirectional link from the port of the
port ID on the chassis ID switch to the port of the IN_PORT

YUAN et al.: TOWARD AUTOMATED ATTACK DISCOVERY IN SDN CONTROLLERS THROUGH FORMAL VERIFICATION 3639

Fig. 3. The mechanism of link discovery.

field on the switch that generates the packet-in message. The
processing is illustrated in Fig. 3.

The host tracking service is responsible for the host
information, which is updated using the source host
information in the data field of the latest packet-in message.
Specifically, the controller records the source IP and MAC
addresses and associates them with IN_PORT and DPID of the
packet-in message. Commonly, the host information’s index
is MAC address. So that when packet-in messages arrive, the
controller updates the IP address and location if the MAC
address exists, otherwise creates a new host entry.

2) Weakness: In summary, both link discovery and host
tracking are conducted by packet-in messages sent by switches
from the data plane. The controller fully accepts the messages
from the switches that conform to the OpenFlow protocol and
uses the contents to learn the network topology, which means
the mechanism is completely performed on the premise of the
fidelity of data plane devices. The controller is so gullible that
it can be easily deceived by a compromised switch or host
with modified messages to poison the view of topology in the
controller.

3) Example: The attacker with a compromised host can
readily launch a topology attack with fake LLDP packets
and data packets. In case of link fabrication, the attacker can
tamper with the LLDP packets containing fake Chassis ID
and fake Port ID and send them to its edge switch to trick
the switch to send the packet-in messages to the controller.
Then the reckless controller will recognize a new link between
the fake port and the edge port of the compromised host.
Meanwhile, it is rather simple to fake the host location. The
attacker can ordinarily send a forged data packet with fake
source IP and MAC address and achieve its intention. The
false host information will be continuously maintained in the
controller until another host starts to compete for the same
address.

D. Motivation

In previous studies, formal verification has been used to
validate SDN controllers. These works have modeled the com-
ponents in SDN networks using different modeling languages
and validated the models using different model checking tools.
Which components of the SDN system are modeled by these
works, and the modeling language and Verification tools used
are shown in Table I.

TABLE I
FORMAL VERIFICATION RELATED WORK FOR SDN SYSTEMS

Based on existing formal verification work, the main
problems with formal verification of SDN can be classified as
follows:

Controller modeling mostly focused on applications.
For SDN systems, the modeling usually includes SDN com-
ponents such as controllers, switches, hosts and OpenFlow
Channels. However, existing work tends to concentrate on the
applications running on the controller. Most of the modeled
applications, such as Pyswitch and Firewall, are deployed in
the old generation of controllers (e.g., NOX [29]).

Moreover, some researchers propose unique modeling lan-
guages, such as FlowLog [25] and VeriCon [27]. These
initiatives often encourage the SDN community to adopt their
specific modeling languages (e.g., FlowLog and Core SDN)
for developing SDN controller applications, with the intent
that these applications could then be verified directly, without
the need for additional modeling efforts. However, in practice,
the SDN controller community tends to favor general-purpose
programming languages like Java [30], [31] or Python [32] for
application development.

Therefore, to validate an application running on an SDN
controller using these formal verification tools, they must
first translate the application, originally written in a general-
purpose programming language (like Python), into a formal
language model (like FlowLog). Moreover, this model must
accurately represent the behavior of the SDN controller appli-
cation to effectively leverage these tools for verifying the
application’s correctness.

Tools are mostly limited to a single controller platform.
The existing controllers are not limited to the NOX controller
platform only as described in NICE. NICE is mainly for NOX
controllers using Python to write controller programs. If we
want to extend NICE to ONOS or OpenDaylight, there are
significant modifications that need to be made to NICE. This
problem exists for other works as well. They also adapt to
only a portion of the applications of a single controller.

Difficulty in defining security properties and network
invariants. These tools all require the definition of properties
or network invariants that need to be verified. However, the

3640 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

definition of these properties is not simple, and common
properties are not fully adapted to specific applications.
Therefore for each application, it also needs to be defined man-
ually by the validator himself according to his understanding
of the application. Improper property definitions can affect the
correctness of the verification results.

Verify correctness of implementation rather than finding
bugs. The current use of these tools should be for normal
SDN network scenarios. In the absence of malicious SDN
components, whether the controller application can work
properly as expected by the developer. Lack of consideration
of malicious components in SDN networks, in these tool
use cases found mostly problems in the implementation of
applications running on the controller.

After nearly a decade of development, the architecture
of SDN controllers has become more complex. Applications
running on the controllers also have more complex function-
ality. However, we note that although different controllers
use different languages and different architectures in their
implementations, there are still some universal mechanisms
that are retained, such as link discovery. As a result, security
issues can sometimes be triggered in different controllers. In
addition, the network components of the data plane are not
always secure, and most of the existing formal verification
work does not take them into account in the modeling.

Therefore, we model the universal standard mechanisms
implemented for SDN controllers and consider malicious
switches and malicious hosts in the network. Our method is
not limited to the implementation of a specific application
on the controller when modeling for the controller. Instead,
we focus on the generic mechanisms of the controller, such
as packet processing and topology discovery as described
in Sections II-B and II-C. Modeling universal mechanisms
allows our method to work better with different controllers
and versions of OpenFlow. We also no longer need to model
and define security properties for each specific application.
We focus more on the security issues that exist with generic
mechanisms in the presence of malicious components and are
less concerned with the correctness of specific mechanisms
in their implementation. We describe our method in detail in
Section III.

E. Spin and the Promela Language

Spin is a widely recognized model checking tool [33],
predominantly utilized for validating distributed systems and
protocols. Promela [34], a formal modeling language, is
integral to Spin, facilitating the verification of target pro-
grams. Spin’s utility in revealing security issues across various
systems is well-established. Prior research has applied Spin
to diverse protocols and systems, including network protocol
state machines [35], IoT clouds [36], smart contracts [37], and
routing protocols [38], among others.

Given that SDN networks can be viewed as distributed
systems comprising various network nodes like switches,
controllers, and hosts, and also as protocol systems com-
municating through southbound protocols (e.g., OpenFlow,
OVSDB [39], NETCONF [40]), the interaction between the

SDN control plane and data plane can be effectively modeled
using Spin and Promela. Hence, employing Promela to con-
struct an SDN system model and using the Spin tool for its
verification is a fitting approach. Specifically, we employ the
Promela language to create models of SDN systems and define
the security properties these systems should adhere to. Spin
processes these models and security properties to report attacks
discovered.

III. SYSTEM MODELING AND FORMAL VERIFICATION

In this section, we outline the design of SDN system model
in a formal approach and subsequently conduct formal verifi-
cation with security properties by automated model checking.

A. Overview

To detect potential attacks and security vulnerabilities
of the SDN system in the real world, we propose an
approach that involves formally modeling the operations of
SDN components and controllers during network operations.
This modeling represents the transitions of states within the
system. Subsequently, we employ model checking to verify
whether the state transitions during model execution adhere
to predefined security properties. The model checking tool
systematically examines the transitions, reporting counterex-
amples when any lead the SDN model system into states
that violate the specified security properties. These counterex-
amples serve as valuable guides to validate the existence of
attacks within real-world SDN systems.

Notably, despite differences in OpenFlow versions and vari-
ations in specific implementations by different vendors, SDN
controllers generally share a consistent basic functional logic,
particularly in basic mechanisms such as packet processing
and topology discovery. We can portray one abstract model of
the actions of the SDN controller to describe the mainstream
controllers.

Our method for attack discovery comprises three key com-
ponents: the formal description of the SDN system model,
model checking, and the subsequent analysis and validation of
counterexamples, as depicted in Figure 4.

We utilize the Promela language [34] to implement our
model, enabling verification through the Spin off-the-shelf
model checking tool [33]. This formal verification process
aims to derive attack paths to assist in evaluating and increas-
ing the security of the SDN system.

Our model’s design is informed by a comprehensive
exploration of the OpenFlow protocol, various controller
implementations, and official documents. Simultaneously, our
model incorporates a configuration file to allow the cus-
tomization of the network topology and parameters. This
ensures that our model can more accurately represent real
SDN networks. Additional details regarding the model are
displayed in Section III-D. The security properties detailed in
Section III-E play a crucial role in Spin’s formal verification.
These security properties are derived from a comprehensive
review of known attacks and prior research. Once both the
model and security properties are prepared, running Spin
generates counterexamples. Each counterexample represents a

YUAN et al.: TOWARD AUTOMATED ATTACK DISCOVERY IN SDN CONTROLLERS THROUGH FORMAL VERIFICATION 3641

Fig. 4. The architecture of our method.

violation of a security property and, consequently, indicates
a potential attack. Subsequently, we conduct a comprehen-
sive analysis to comprehend and summarize the attack steps
depicted in these counterexamples. These attack path reports
provide a detailed illustration of the operations conducted
by network components at each step, leading to a state that
violates the security properties. To verify the existence of the
attack in a real SDN network, we can simply follow each step
of these attack path reports and confirm that the corresponding
security properties are compromised in the real SDN network.

To illustrate our approach to discovering attacks in SDN,
we use the example of a controller Denial-of-Service (DoS)
attack. In our constructed model, which represents a universal
mechanism for an SDN system, the end host, switch, and
controller are depicted in the SDN architecture using the
Promela language. These components are represented as sets
of variables that capture their states and interactions. The
model includes security properties, particularly focusing on
the processing capabilities of the controller, as detailed in
Section III-E. The attack path report reveals that an attacker-
controlled host can initiate a controller DoS attack by flooding
the system with numerous data packets, each with a distinct
source address. This scenario is illustrated in Fig. 5. Since
carefully crafted packets typically do not match existing
flow entries, SDN switches forward them to the controller
for processing. Through our analysis, we have successfully
implemented this attack on SDN controllers lacking adequate
protection against DoS attacks in a simulated SDN network
environment using Mininet. During such attacks, the con-
troller’s processing capacity is heavily strained, leading to a
significant reduction in the efficiency of processing normal
network traffic. Therefore, identifying various attack paths in
the system model via model checking can effectively uncover
broader security issues prevalent in SDN controllers.

Fig. 5. Malicious host floods data packets and attacks the controller.

B. Threat Model

We consider attackers to be inside the SDN since we intend
to discover the specialized attacks against SDN and focus on
the attacks poisoning or exploiting SDN controllers that can
be launched by SDN switches and hosts.

It is rational to assume that attackers are capable of compro-
mising some of the switches and end hosts in the network since
the SDN switches are usually running in default configurations
and outdated states, rendering them susceptible to compro-
mise [41]. Besides, we trust the controller to be innocent even
though it can exploit the weakness of its mechanism indirectly
but cannot be taken over by the attacker directly. Meanwhile,
we trust the communication between the network components,
which means the man-in-the-middle attack is not taken into
consideration and all the misconducts like tampering, forging
and injecting are carried out by malicious participants in the
data plane of the network.

Specifically, the benign components within the network are
deemed capable of correctly transferring and processing data
packets, aligning with the topology view in the controller that
corresponds to the actual network state. The malignant ones
can perform malicious operations above the normal behavior
intending to affect the SDN controller and do harm to packet
processing and topology discovery. We consider the actions
that are feasible to execute in a real SDN network and might
be able to impact on SDN controller’s recognition of the
network state or its physical capabilities and take advantage
of the weaknesses of the controller. For a malicious host, it
can send forged data packets with tampered source addresses,
inject forged LLDP packets or send a load of data packets
in a short term of time. For a malicious switch, it can
tamper with the key fields of its received packets or drop the
packets.

C. Problem Scope

In this study, our objective is to identify security vulnera-
bilities in SDN controllers, particularly those associated with
packet processing and topology discovery, and to delineate
potential attack paths. This focus is essential for comprehend-
ing and mitigating potential vulnerabilities and attack vectors,
thereby enhancing SDN system security. Note that, conducting
root cause analysis of these attacks, a task orthogonal to
our primary focus, falls outside the scope of our current
research.

3642 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

TABLE II
SUMMARY OF VARIABLES

D. Modeling SDN System

We present the model of the SDN system as a tuple of a state
automaton M = (S ,O ,V ,T , s0). S is the no-empty finite
state set containing all states of the automaton the operations
can lead to and the initial state s0 (s0 ∈ S) which represents
that no operations have taken place in the SDN system. O
is a finite set of operations in the SDN system. V is a finite
set of variables that describe the situation of all components
and the packets they process currently in the SDN. T is a set
of transitions consisting of transitions that indicate the system
transits from one state to another with an operation.

The definition of the state automaton of SDN system is
a highly abstract description based on our knowledge of
the network operation in SDN diagram. We extract the core
operations during packet transmission such as routing and the
topology discovery and the base operations that consist of the
core operations, i.e., the sending, receiving and processing of
packets by each component. In this context, we reduce the
variables, for example, the packets are delineated by their key
fields, which significantly influence packet processing, while
non-key fields are disregarded to mitigate state complexity. A
more specific introduction of the automaton is following.

1) Variables: We use a set of variables to describe the
situation of components in the network, including the packets
and messages that transfer between the SDN devices and
controller in the network currently and need to be handled
and the view of the controller. Specifically, for each switch
and the controller, we define a list of pending packets Pend
to store the receiving packets waiting to be processed. Similar
to the existing work, the list is a FIFO queue and the first
arriving packets will be processed earlier. For example, a
data packet p is sent by host hi and later arrives at the
edge switch swj , which is a send operation from hi with
a packet p, and p will be stored in Pendswj consequently.
For another example, the controller con processes a packet-
in message carried an LLDP packet and then refreshes its
topology view, which is a process_con operation of con
that pop out a pending packet from its Pendcon causing the
controller updates its topology view ViewTopo based on the
link information from the LLDP packet. The host tracking
process in a similar way that updates the host information
in topology view ViewTopo. In comparison, we maintain a
variable to describe the actual topology of the network as
RealTopo. There are also variables for packet forwarding and
routing, such as flow-tables of each switch FlowTableswj and
mac-to-port table in controller MacToPort. The variables of
the SDN system model are summarized as Table II.

TABLE III
SUMMARY OF OPERATIONS

2) State: A state si (si ∈ S) consists of a set of variables
representing the situation of the SDN system, including vari-
ables of each switch (Pend and FlowTable) and variables of
the controller (Pend , MacToPort and ViewTopo). In real SDN
systems, the variables are finite, so the states set in the model
are always finite. In conclusion, a state can be expressed as
Eq. (1) and the initial state s0 as Eq. (2).

si = Pendcon ∪MacToPort ∪ViewTopo ∪ RealTopo

∪
⋃

swi

{Pendswi ,FlowTabledswi }. (1)

s0 = ∅ ∪ ∅ ∪ ∅ ∪ RealTopo ∪
⋃

swi

{∅, ∅}. (2)

3) Operation: The operations of SDN system model are
relative to OpenFlow messages’ and data packets’ generating,
processing and forwarding, which are summed up as the
handling of pending packets in the controller and switches and
the handling of packets sending and receiving in end hosts, all
of which implies the change of components’ own Pend and
may results in the change of other ones’ Pend as forwarding
or updates of controller’s views ViewTopo and MacToPort
as the processing of OpenFlow messages. In addition to the
operations of the benign components, we also define the
operations of the malicious components in the model, such as
forged packets or forged LLDP packets. Table III summarizes
all nine kinds of operations in SDN system model.
send: A packet p is sent by host hi and later arrives at the

edge switch swj , which is defined as Eq. (3).

{
p := newDataPacket(),
Pendswj

:= Pendswj ∪ {p}. (3)

process_sw: Switch swi processes a pending packet and
forwards it according to the flow-table, next can be either a
switch or a controller, which is defined as Eq. (4).

⎧
⎪⎪⎨

⎪⎪⎩

p := pop(Pendswi),
{next , p′} := proSw(FlowTableswi , p),
Pendnext := Pendnext ∪ {p′},
Pendswi

:= Pendswi − {p}.
(4)

process_con: Controller processes a pending packet and
updates its view of network or make a indication about the

YUAN et al.: TOWARD AUTOMATED ATTACK DISCOVERY IN SDN CONTROLLERS THROUGH FORMAL VERIFICATION 3643

packet’s routing strategy, which is defined as Eq. (5).
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p := pop(Pendcon),
{next , rule, topo,m2p, p′} :=

proCon(ViewTopo,MacToPort , p),
ViewTopo := ViewTopo ∪ {topo},
MacToPort := MacToPort ∪ {m2p},
FlowTablenext := FlowTablenext ∪ {rule},
Pendnext := Pendnext ∪ {p′},
Pendcon := Pendcon − {p}.

(5)

send_lldp: Controller sends a packet-out message with
an LLDP packet to an exact port on the switch, which is
defined as Eq. (6).

{
p := newLLDP(dpid , portid),
Penddpid := Penddpid ∪ {p}. (6)

forge_datapkt: A packet p with forged source address
meant to spoof the controller is sent by host hi and later arrives
at the edge switch swj , which is defined as Eq. (7).

{
p := newForgedDataPacket(fakeAds),
Pendswj

:= Pendswj ∪ {p}. (7)

forge_lldppkt: A LLDP packet p with forged dpid and
portid meant to spoof the controller is sent by host hi and later
arrives at the edge switch swj , which is defined as Eq. (8).

{
p := newForgedLLDP(dpid , portid),
Pendswj

:= Pendswj ∪ {p}. (8)

flood: A load of packets with different fake addresses is
sent by host hi in a short term of time and later arrives at the
edge switch swj , which is defined as Eq. (9).

{
Ps := newFlood(),
Pendswj

:= Pendswj ∪ Ps .
(9)

tamper_field: Switch swi tampers a key field of a
pending packet, which is defined as Eq. (10).

⎧
⎪⎪⎨

⎪⎪⎩

p := pop(Pendswi),
p′ := tamper(p),
Pendswi

:= Pendswi − {p},
Pendswi

:= Pendswi ∪ {p′}.
(10)

drop: Switch swi drops a pending packet deliberately,
which is defined as Eq. (11). Notably, a destructive tampering
action to a packet is also considered as a drop operation
because the tampered packets will be seen as illegal packets
and ignored by other components.

{
p := pop(Pendswi),
Pendswi

:= Pendswi − {p}. (11)

4) Transition: T can be described mathematically as
Eq. (12), while the elements in the transition set T indicate
that an operation takes place leading to a transfer of system
state from one to another. For example, (si ,send, sj) that
si , sj ∈ S , an element of T, represents that a send operation
causes the state of the SDN system model to change from
state si to state sj .

T = S ×O × S . (12)

E. Detecting Attacks

As mentioned earlier, we specify the model in Promela
language in order to execute its formal verification with the
off-the-shelf formal verification tool Spin, which requires us
to define a set of security properties to discover suspicious
states that need to report corresponding counterexamples. We
summarize the security properties that the model needs to
satisfy based on the security issues revealed in previous work,
the OpenFlow protocol specification and the specific controller
implementation code. We classify the security properties into
three categories, which are component capability limitation,
topology incorrectness and packet forwarding abnormality.

1) Component Capability Limitation: In SDN, controllers
and switches are common targets for DoS attacks [15]. As for
the controller, which is the core of the whole SDN network,
it is worthwhile to take it down by multiple methods and
the centralized structure also makes the controller vulnerable.
As we know, the switches are designed to send packet-in
messages to the controller if table-miss happens. Furthermore,
the switches send the complete packets if their buffers are
full or the configurations are specified as no buffer due to
the bugs in the old version OVSes [42] and many controllers’
default settings, which compels a huge load for the controller
to handle and causes DoS attacks on the controller. As for
switches, constrained by the fact that the size of the TCAM is
limited, the switch is only able to maintain a certain number
of flow entries [14]. Moreover, the traffic jam in the data
plane can also be a disaster for packet forwarding, which can
be caused by improper routing and affect switches and links.
The bandwidth of the data path through the choked link in
the data plane will remain very low [14]. In summary, we
define thresholds of these capability limitations of network
components as the security properties of the model, which
are MAXCTRLCAPABILITY for the controller’s processing
capability, FLOWTABLESIZE for switch’s flow-table space
and MAXSWCAPABILITY for switch’s processing capability.
The processing capability of each component is represented by
the size of Pend list. Accordingly, we present the constraints
of security properties about component capability limitation
as Eq. (13).

∀s ∈ S , |Pendcon | <= MAXCTRLCAPABILITY ,

|FlowTableswj | <= FLOWTABLESIZE ,

|Pendswj | <= MAXSWCAPABILITY . (13)

2) Topology Incorrectness: A link discovered by the con-
troller is defined as a tuple, (swi , px , swj , py) (∈ ViewTopo),
which should be consistent with the link in RealTopo. Any
discovered links that are not contained in RealTopo, that is,
do not exist in actual topology, are considered illegal and
violate the constraint of the security property. The constraints
of security properties about link discovery correctness can be
described formally as Eq. (14).

∀(swi , px , swj , py
) ∈ ViewTopo,(

swi , px , swj , py
) ∈ RealTopo. (14)

Similarly, a host information is also defined as a
tuple, (hi , 0, swj , py) (∈ ViewTopo). The discovered host

3644 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

information, including the identifier hi like MAC address and
the location. The host location is represented by the host
identifier, the host port, the edge switch connected to the host
and its port. We simplify the host’s port to 0. Host information
observed by the controller should be identical to real host
information in RealTopo, which is presented as Eq. (15).

∀(hi , 0, swj , py
) ∈ ViewTopo,(

hi , 0, swj , py
) ∈ RealTopo. (15)

3) Packet Forwarding Abnormality: A packet that transfers
in the network is defined as a tuple with a source host,
destination host and other information about the protocol or
the OpenFlow message. Regularly, the controller updates the
mac-to-port table with the source address of the packet in the
data field of the packet-in message, the IN _PORT field of the
packet-in message and the switch identifier dpid. Therefore,
we check the rationality of the updates based on the correct
predicted mac-to-port table RealMacToPort as Eq. (16).

∀(hs , hd , . . . , IN _PORT , dpid) ∈ Pend ,

(hs , IN _PORT , dpid) ∈ RealMacToPort . (16)

We count the steps of components that a packet has been
processed to detect potential illegal packet routings, such as the
unprocessed loop topology or forwarding loops. Any packets
that have been processed and passed to more than MAXSTEP
components are suspicious, as Eq. (17).

∀(hs , hd , . . . , cntstep) ∈ Pend , cntstep <= MAXSTEP . (17)

We also check whether the packet ends at the correct
destination when it leaves the network eventually. The output
port should normally be an edge port, therefore the output port
should not be connected to another switch. Further, the link
formed by the destination host and the output port should exist
in a real topology, in order to detect black holes and wrong
routing strategy as the ultimate constraint in the whole process
of packet transferring, presented as Eq. (18).

∀(hs , hd , output , .., cntstep) ∈ Pendswi ,

(hd , 0, swi , output) ∈ RealTopo. (18)

IV. IMPLEMENTATION

The model is implemented using approximately 1400 lines
of Promela code. We implement all the components in Fig. 4
with approximately 1,000 lines of Python codes. The main
functions encompass model tuning based on configuration
files, generating verifiers using Spin, creating readable attack
reports and statistical analysis reports.

A. SDN System Model

Host. We describe hosts by their hostid representing their
address. The hostids, starting at 1, are assigned to each host
in order and used as the indexes in topology descriptions. The
hosts are conceptualized as stateless identifiers related to a
specific port of a switch, which means we do not maintain
the state of the pending or processing of packets on hosts,
and only consider them as the source and destination of data

packets when determining routing strategies on the controller
and judge whether the packet reaches the correct destination.
For malicious hosts, we use a variable MaliciousHost to
specify the attacker’s hostid and a set of bool variables to
represent its attack abilities on forging data packets, forging
LLDP packets and flooding with other variables that define
the details about an exact attack such as the packet volume of
flooding and addresses of forging.

Switch. We describe switches by their swid, also starting
at one and assigned to each switch sequentially, which can
be recognized as the DPID of the devices. Unlike hosts, the
switches in the model are stateful and constitute part of the
overall SDN network state. Each switch holds an array of
pending list of packets containing the arrival packets waiting
to process, variables as the pointer of the index of the next
arrival packet and the index of the next packet to be processed,
and also a variable to record the total number of current
packets. Besides, each switch maintains an array of flow-table
and maintaining-related variables similar to the array of the
pending list to hold flow mod messages sent by the controller
and to modify flow entries. As for malicious switches, we
define a variable MaliciousSwitch to recognize the swid
compromised by the attacker and a set of bool variables to
represent its attack abilities on tampering with key fields and
dropping packets, along with other variables that define the
details about an exact attack such as the field and value to
tamper.

Controller. Similar to switches, the controller maintains an
array of the pending list of arrival packets and the related
variables in order to sustain the packet processing. Besides,
the controller also has an array of the mac-to-port table and
an array of the topology view, which is updated while the
packets process and affects the core function of the controller
like routing.

Topology. The topology of the network is represented as a
2-D array of device information, in which the device’s id and
port id are the indexes. For switches, the device’s id and port
id are the swid and portid. For hosts, hostid starts at
the next value from the last swid and 0 as the port id. The
device information includes the type, the device id and the port
id of the opposite device. On the one hand, if both the index
and the device type indicate it as a switch, then this entry of
the array can be seen as a link in the network. On the other
hand, if the index or the device type indicates a host, then this
entry of the array represents the host information about the
connecting switch and port. Both the actual topology and the
topology view of the controller, Realtopo and Viewtopo
are stored in this structure so as for convenient comparison.
Since we do not consider external network effects, the actual
real topology does not change during the experiments. The
real topology will be initialized during the very beginning of
the model as the topology of our experiment configuration.

Operation: The implementations of operations mainly focus
on the add, delete and modification of the arrays of pending
lists. For example, a simple description of one data packet
transition from one switch to another is deleting the packet in
the pending list of the source switch and copying it into the
pending list of the destination switch. The respective operation

YUAN et al.: TOWARD AUTOMATED ATTACK DISCOVERY IN SDN CONTROLLERS THROUGH FORMAL VERIFICATION 3645

details are drawn from the abstraction of the theoretical logic
and actual practical effects of operations.

B. Counterexample Analysis

We use assertions to describe the security properties
presented in Section III-E. Specially, the assertions are
defined into 8 kinds, which are controller capability limitation
(CtrlCapability), switch capability limitation (SwCapability),
flow-table space limitation (FlowTableSize), link discovery
incorrectness (LinkDiscovery), host information incorrectness
(HostInfo), mac-to-port table abnormality (MacToPort), packet
process step abnormality (PktSteps) and packet transfer abnor-
mality (PktTransErr).

Spin will automatically check the correctness of the asser-
tions inserted in the model. Once it occurs to a state that
violates the assertions during the verification running, Spin
will report a counterexample and output the trail file about how
the state transitions lead to the violation. After the execution
of formal verification with Spin, we obtain the trails of
counterexamples if any states violate the assertions of security
properties and leverage them to derive the specific readable
logs of the trails in order to study how the actions in the
network cause the violation of security properties, that is, how
the attacker succeeds.

C. Model Optimization

The looming challenge confronting model checking is the
risk of state explosion. To address this issue, we employ a set
of reasonable assumptions derived from our prior knowledge
and goals of our detection. Model checking operates as a
depth-first traversal search across the Finite State Machine
(FSM) representing the target system, while the primary
aim of model optimization is to minimize the number of
states in the state machine or eliminate unreachable state
branches. Common optimization techniques include abstrac-
tion, symbolic model checking, partial order reduction, state
compression, among others.

Network topology optimization. Network topology
optimization is a higher level of abstraction optimization.
The SDN controller, as the central brain of the system, is
engineered to be compatible with topologies of any size.
Considering that security issues in SDN controllers generally
do not depend on the size of the topology [43], we have
chosen to utilize small and simple topologies for our attack
discovery process. These topologies are depicted in Figure 6
and Figure 7, selected specifically for their efficiency in
revealing attacks. To validate the adequacy of using smaller
topologies in our research, we have carried out extensive
experiments with various network topologies. The findings and
justifications for this approach are detailed in Section V-E of
our study.

Variable value space equivalence reduction. The value
space of a variable can be symbolized, mapping the original
concrete values to symbolic values. In our SDN model,
the network operations encompass a wide array of values.
Recognizing that some of these values may have equivalent
effects on the SDN controller, we adopt an optimization

Fig. 6. The basic topology.

Fig. 7. The topology with a loop.

approach akin to that used in NICE [21]. This method involves
grouping values into equivalence classes, which significantly
reduces the value space of variables in the network. For exam-
ple, when modeling the port_number variable, we classify
ports into open and closed states. Each open port is treated as a
distinct equivalence class, whereas all closed ports are grouped
into another class. This systematic approach to classifying
values allows us to effectively streamline and condense the
range of values associated with the port number variable
during the modeling process.

Data plane simplification. In the data plane, concrete
packet types can also be abstractly mapped to symbolic packet
types. Our approach to data plane simplification emphasizes
the reduction of complexities in switches and end hosts. In our
model, we retain only those elements of the data plane that are
pertinent to the controller’s packet processing and topology
discovery mechanisms. To achieve a more streamlined model,
we exclude certain OpenFlow data plane structures, such as the
Meter Table, as well as specific OpenFlow message types, like
the OFPT_FLOW_REMOVED message, for switches. Similarly,
for end hosts, we omit various network protocols, including
ARP, TCP, UDP, and LLDP.

We further simplify our model by categorizing packets into
two primary types: LLDP packets, identified by the LLDP
type, and all other packets, labeled as the DataPkt type. This
distinction is based on their respective handling mechanisms
within the SDN environment. LLDP packets are specifically
managed by the link discovery mechanism, while all other
packets trigger the packet processing mechanism. This focused
and strategic simplification ensures that our formal verification
process is both efficient and effective, without compromising
the integrity of the model.

3646 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

Packet order optimization. The packet order optimization
fully follows the idea of partial order reduction. In the SDN
network state model, factors like packet transmission latency,
packet processing latency at network devices, and the device
responsible for processing at any given time contribute to
a notable increase in the number of states. In our model
optimization, we address this complexity by treating each
internal processing or transmission within the various SDN
planes and devices as an atomic operation, thereby simplifying
the states. Furthermore, we preserve the stochastic nature
of network processing by randomly selecting components
in the model to execute operations. More specifically, our
model maintains a separate circular queue for each network
component that receives and forwards packets arriving at
the network component following the FIFO (First-In, First-
Out) principle. This ensures that packets arriving first at a
component are typically prioritized and forwarded to the next-
hop network component. This approach effectively simplifies
the handling of order changes that might result from complex
processing within the network components. Additionally, for
the interaction between the controller and the switch, we
integrate the NO-DELAY heuristic algorithm from NICE [21]
into our model. This optimization mirrors the implementation
of the direct OFPT_BARRIER function in OpenFlow, thus
guaranteeing the sequential order of OpenFlow messages. For
instance, we ensure that an OFPT_PACKET_OUT message
always comes after the OFPT_FLOW_MOD message. It is
also important to note that while out-of-order packet delivery
is a common occurrence in networks, including SDNs, the
security issues we focus on in this paper are generally not
reliant on this aspect. Therefore, for simplicity, our model does
not consider out-of-order packet delivery.

Component capability optimization. The capacity con-
straints in the optimized model stem from the concept of
state compression, which efficiently diminishes the number of
loops in the state machine. Network component capabilities
are usually relatively large in real networks. For example,
in most controllers, MAXCTRLCAPABILITY reaches values
in the millions [44], FLOWTABLESIZE often numbers in
the thousands [6], while MAXSWCAPABILITY usually falls
within the range of 1,000 to 9,000 [45]. However, replicating
these real-world values in our experimental setup could result
in state explosion. For example, setting FLOWTABLESIZE
to 8,000 would create thousands of new states to represent
the scenarios with 0 to 8,000 rules installed in the switches,
most of which are irrelevant for attack discovery. Therefore,
we opted for smaller values, adhering to the principle of
selecting the smallest possible value for each variable under
which our method would not falsely report attacks in non-
attack scenarios. For example, in the case of the three-switch
topology, as it requires two rules for bidirectional traffic flow,
we set FLOWTABLESIZE to 2. Crucially, these variables
are configurable. We utilize a configuration file to set these
values, offering flexibility to adjust them according to different
topology sizes and specific security concerns.

Other optimization. We count the number of operations
and limit its maximum to avoid unnecessary transitions after
the essential operation amount to detect counterexamples,

which we derive according to multiple tests of model checking.
This can also reduce duplicate types of counterexamples and
lighten the workload of further analysis.

V. EVALUATION

We translate the SDN model depicted in Section III in the
way of Section IV and apply the Python script to run the whole
process of verification with Spin and result analysis. Through
reviewing the readable attack logs and the analysis report, we
have found two kinds of novel attack methods and manually
confirmed their feasibility with practical demonstrations.

A. Experiment

1) Experiment Setup: We performed the formal verifica-
tion with Spin (6.5.2) [33] running with the machine with
8 GB of RAM. For attack demonstrations, we created an
emulated experiment environment on a Ubuntu Linux 20.04
virtual machine. The simulated network was created by
Mininet (2.3.0d6) [46] with Open vSwitch (2.13.1) [42].
We verified whether two new attacks can be imple-
mented on different controllers and adopted POX(0.7.0) [47],
Ryu(4.34) [48], Floodlight(v1.2) [49], ONOS(v2.5.0) [50],
OpenDaylight(Carbon) [51] as the target SDN controller. We
also verified whether the attacks can be implemented under
different OpenFlow versions (see Table VI and Table VII).

The characteristic of model checking dictates that a small
difference can derive an individual state, which means there
can be a large number of states, even if there are only a few
components defined in the SDN model. Though the automated
formal verification process can iterate through all possible
states theoretically, we set the search depth of Spin as 20,000
based on several times of attempts considering the overhead,
which is adequate to derive satisfying results.

2) Effectiveness: We evaluate the model with an exam-
ple of normal traffic, benign components and the topology
without loops to verify the correctness of the SDN model
and the rationality of the configuration of the parameters
and constraints. Specifically, the example includes the LLDP
packets of the initial link discovery and a data packet sent by
each host to another respectively. With the current settings,
the correct model should not output any counterexamples. It
runs with the same settings of Spin as the experiments with
malicious participants and outputs no counterexample after the
verification of 104 s of time and 138 MB of memory usage.
It shows that the generation of counterexamples is caused
by abnormal traffic, operation of malicious components, etc.
Further, it indicates the reliability of the later experimental
results.

We test our SDN model by applying the Python script and
successfully detect 39 errors with their trail files, which can be
categorized into 8 types by the final assertions they triggered,
and the number of errors of each assertion is shown in
Table IV. The analysis report shows the statistics of different
assertions and the summaries that refine the key contexts in
trails of each counterexample, like assertion violations and
malicious operations. The analysis can help the users identify

YUAN et al.: TOWARD AUTOMATED ATTACK DISCOVERY IN SDN CONTROLLERS THROUGH FORMAL VERIFICATION 3647

TABLE IV
SUMMARY OF COUNTEREXAMPLES

the attack paths and their causes and guide the further specific
check of each readable attack log.

3) Performance: We measure the total time of the ver-
ification of the SDN model, the generation of readable
counterexamples and the analysis of the results. The whole
process takes about 375 s, of which 104 s are for running the
verification process with Spin to generate counterexamples.
Meanwhile, the report of Spin also shows that the total actual
memory usage of the model checking is about 138 MB.

B. Case Study

We manually look into the attack logs guided by the
analysis report and filter the unique attack paths summarized
in Table V. There are 23 unique attack paths among all the
counterexamples and 2 of them are new attacks detected by
our method. Also, the detection of known attacks shows that
our method can reach the goal of effectively helping users
find practical attack paths against SDN network based on
the formal verification. These known attacks were also not
discovered by a single work, but were summarized in the
previous research efforts.

CtrlCapability. The malicious participants can leverage the
mechanism of processing new packets to trick SDN switches
to send more packet-in messages to the controller leading to
overload and resource exhaustion of controller. As for the
malicious host, it can implement the attack by generating
data packets with fake addresses which would be seen as
packets with no matching flow entry and triggering the packet-
in messages. As for the malicious switch, it can drop the
flow-mod messages to keep data packets not matching and to
continuously send packet-in messages.

SwCapability. Instead of normally sending a massive of
data packets, the switch would be exhausted by the packet-out
and flow-mod messages in a smaller amount of data packets.
Both the packet-out messages and the flow-mod messages
consume the CPU of the switch agent. The flow-mod messages
have more overhead than the packet-out messages. Under
saturation attack and the striking attack, the bandwidth of
normal users will be significantly decreased [23]. Moreover,
the attack can be successful even faster, if the switch bans
the use of buffer, which will force the controller to send both
packet-out and flow-mod messages. With the optimization of
our method that limits the transitions, we can easily filter
out the more advantageous approach that triggers the switch
capability assertion earlier.

FlowTableSize. The switch’s flow table is usually imple-
mented as TCAM, so the flow table are usually constrained

and not too large (e.g., IBM RackSwitch G8264 with a TCAM
of size 1K) [14]. Therefore, it is not difficult to add enough
flow table entries to fill the flow table. In order to trick the
controller to issue more new flow entries, the malicious host
generates data packets with different source addresses based
on the gullibility of the controller, which is also convenient to
implement with only one compromised host.

LinkDiscovery. The malicious switch can launch attacks
against link discovery by modifying the key fields of LLDP
packets, such as IN_PORT, Chassis ID and Port ID. Simply
dropping or invalidating the LLDP packets can also cause the
controller to delete links, giving the data plane a different
view of the network than the control plane. The malicious host
can forge LLDP packets or indirectly interfere with the link
discovery process by launching DoS attacks against the SDN
network components.

HostInfo. The host information can be poisoned through the
injection of data packets and packet-in messages containing
tampered information. Additionally, we have uncovered two
novel attacks with benign data packets. In SDN architecture,
edge ports typically denote connections to hosts, while internal
ports facilitate inter-switch connections. The controller only
registers the host location when the IN_PORT of the packet-
in message is an edge port. Consequently, a host information
poisoning attack can be initiated through orchestrated link
deletions, which can be accomplished by two conspiring
neighbor switches or one malicious switch. After the link
deletion of both ways, the edge ports and associated hosts of
the attacker switch erroneously relocate to the internal ports
of neighboring switches, thereby corrupting the host location
information maintained by the controller.

MacToPort. The malicious participants can directly modify
the data packets and packet-in messages to poison the mac-to-
port table and further affect the routing. Also, the malicious
switch can indirectly mess up the packet transfer causing
another innocent switch to send abnormal packet-in messages.
In addition, a network topology with a loop will cause
MAC address flapping if the controller does not leverage any
forwarding loop preventing solutions like spanning tree.

PktSteps. The modification of the IN_PORT field of packets
by the malicious switch will make a message broadcast to the
port it arrived at. The invalid broadcast might not lead the
packet to the right destination, which causes more transitions
and operations of the packet transfer and triggers the assertion
of the limitation of process steps. Besides, modifying the
output port of the packet-out message to the IN_PORT of
the packets can make a routing loop, leading the packet to
repeat transfer between two switches and finally violating
the assertion. Moreover, a network topology with a loop can
cause a forwarding loop which leads to a broadcast storm as
mentioned earlier.

PktTransErr. Obviously, the packets might transfer to the
wrong destinations if the malicious switch modifies the output
port of packet-out messages, which violates the normality of
packet forwarding when the data packets leave the network
in the wrong ports. Packets that do not eventually reach their
destination may result in black hole routing or denial of service
in the data plane.

3648 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

TABLE V
SUMMARY OF ATTACKS

C. Attack Demonstration

We demonstrated the new attacks derived through our
method, Attack No. 13 and No. 14. As for the other known
attacks, they have been verified and described in detail in
previous work. Therefore, our practical experiments focus
more on the unknown new attacks. For the practical experi-
ment, we used the same network topology as Fig. 6 and tested
different SDN controllers and different widely used OpenFlow
versions. For the controllers, they are all able to support packet
processing as well as link discovery and host tracking service
based on the OFDP protocol.

1) Attack No. 13: Following the attack description, we
define sw1 and sw2 as the malicious switches compromised
by the attacker as shown in Fig. 8(a) and Fig. 8(b). There
is a both-way link between sw1’s p2 and sw2’s p1. The two

malicious switches drop LLDP packets from each other by
installing flow entries to take drop actions on LLDP packets
from the specific ports on their own causing the controller
reports the EventLinkDelete events of both ways as
Fig. 8(a). Furthermore, flow entry will be installed on sw1 to
directly pass its arrival packets to sw2 to prevent matching
the table-miss entry and sending packet-in messages to the
controller. Later, a data packet sent by the benign host h1 will
trigger sw2 to send a packet-in message as Fig. 8(b). Since
the controller does not recognize the link between sw1 and
sw2 and consider sw2’s p1 as an edge port, the attacker can
successfully trick the controller to believe that h1 is joining in
the network on sw2’s p1 instead of sw1’s p1. This attack aims
at hijacking the location of benign hosts with less attention to
the controller and the hosts, which will affect the routing or

YUAN et al.: TOWARD AUTOMATED ATTACK DISCOVERY IN SDN CONTROLLERS THROUGH FORMAL VERIFICATION 3649

Fig. 8. Attack No. 13.

TABLE VI
VERIFY ATTACK NO. 13 IN DIFFERENT CONTROLLERS SUPPORT

DIFFERENT OPENFLOW VERSION

implement an attack of bypassing the access control policies
further.

We further try to verify the attack in different OpenFlow
versions with different controllers. Except for POX controllers
that only support OpenFlow 1.0 and OpenDaylight controllers
that do not support OpenFlow 1.4, the attack can be successful
as shown in Table VI. In the process of our experiments, we
noticed that although we had the malicious switches sw1 and
sw2 perform the same operation of dropping LLDP packets,
there were differences in the way they were implemented
in different controllers. The ONOS controller requires the
northbound APIs to install malicious flow entries to drop
LLDP packets, while other controllers only require the Open
vSwitch command for flow entries installation. The reason for

Fig. 9. Attack No. 14. Malicious switch sw1 drops LLDP packets and
invalidates packet-out messages with LLDP packets.

this is that ONOS keeps flow entries consistent between the
controller and the data plane. If the flow table installation is
done only in the data plane, ONOS detects the inconsistency
and removes the flow entries. Although the attack exists on
different controllers, for ONOS controllers it may require
an attacker with stronger attack capabilities to successfully
perform the attack. Different OpenFlow versions also change
flow entries installation commands, but eventually do not affect
the location of benign hosts hijacked by attackers. Among the
different controllers, we can observe the hijacking of benign
hosts‘ location through the controller logs or the controller
Web GUI.

2) Attack No. 14: Attack No. 14 exploits the same
vulnerability as No. 13 but with fewer requirements, making
it less conspicuous as the attacker only needs to compromise
a single switch within the SDN network. In this scenario,
we assume sw1 as the malicious switch trying to disrupt the
bidirectional link between sw1’s p2 and sw2’s p1 as Fig. 9.
The attacker drops the LLDP from sw2 to sw1 with self-
installing flow entries and replacing LLDP packets containing
Chassis ID 1 and Port ID 2 in packet-out messages with invalid
information (e.g., Chassis ID 0 and Port ID 0). Although the
modified LLDP packets still reach the controller, their invalid
topology information prompts the controller to discard them
after parsing, thereby tampering with the semantics of the link
originally connecting from sw1 to sw2. It’s worth noting that
directly dropping LLDP packets might lead to the discon-
nection between the switch and the controller. Therefore, we
consider processing LLDP packets on the malicious switch and
disabling them from being accepted by the controller. Then
we can see the EventLinkDelete events of both ways
in the controller console logs or see both ways links being
deleted in the controller topology. Then the data packets sent
from h1 to h2 leading the innocent sw2 to send a packet-in
message similar as Fig. 8(b), which indirectly convince the
controller that h1 is on sw2’s p1 as the EventHostAdd
event. Taking Ryu as an example, the log of the whole attack
process is shown in Fig. 10. Ryu performs link discovery
and observes two bidirectional links between sw1, sw2 and
sw3. Further, the bidirectional link between sw1 and sw2 is
successfully removed by the operation of the malicious switch
sw1. Finally, the benign packet sent by h1 will cause the
controller to assume that h1 appears at the port p1 of the
switch sw2.

3650 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

TABLE VII
VERIFY ATTACK NO. 14 IN DIFFERENT CONTROLLERS SUPPORT

DIFFERENT OPENFLOW VERSION

Fig. 10. Ryu console log.

Compared to attack No. 13, this attack might be more
difficult to identify the malicious component since sw1 is not
exposed in the host location and both the related participants
h1 and sw2 are innocent. It is also easy to notice that the
attack can also be reproduced in different OpenFlow versions
of different controllers as shown in Table VII. Both new attack
paths were eventually validated in the current mainstream
SDN controllers and widely used version of OpenFlow. It
illustrates that our approach finds out common vulnerabilities
across different OpenFlow controllers, and different OpenFlow
versions.

D. Comparison With Other State-of-the-Art Works

Our analysis, as detailed in Table VIII, shows that some
attacks uncovered by our approach have also been identified
in other research. However, it is crucial to note that each of
these tools only reveals a subset of the attack paths that our
method has detected.

NICE [21] is a tool utilized for both modeling and formal
verification of SDN applications specifically designed for
NOX controllers. It employs symbolic execution, simplified
modeling of hosts and switches, and incorporates four heuristic
algorithms to pinpoint issues within NOX controller appli-
cations. However, as we discuss in Section II-D, NICE [21]
is exclusively tailored to model controller applications and
is restricted to NOX controllers. SPHINX [14] constructs
an incremental flow graph by collecting FLOW_MOD,
PACKET_IN, STATS_REPLY, and FEATURE_REPLY from
the OpenFlow Proxy. SPHINX verifies whether the flow
graph meets security policy constraints to find malicious

TABLE VIII
COMPARE OUR METHOD WITH OTHER VULNERABILITY

DETECTION TOOLS

switches and malicious hosts in the network. BEADS [41]
is an automated attack discovery framework that focuses on
testing controllers through protocol-aware fuzzing. It defines
the OpenFlow protocol structure to ensure that inputs can be
received by the controller without generating a large number
of unparsable error messages.

In terms of attack discovery, our method has shown remark-
able effectiveness by identifying 23 security vulnerabilities. In
contrast, each of the other three tools we evaluated detected
fewer than ten security flaws. It is noteworthy that the
remaining known security flaws, which were identified prior
to our detection, were typically discovered through manual
methods [9].

Moreover, our method exhibits significant efficiency advan-
tages over these three existing tools. A notable limitation of
NICE [21] is its capacity to handle only a finite number
of packets, leading to a dramatic increase in the number of
states with a slight increase in ping packets. For example, as
the number of ping packets in NICE increases from 4 to 5,
the detection time escalates exponentially from 30 minutes to
30 hours, and processing more packets risks state explosion.
BEADS [41] requires around 60 seconds to test each input,
resulting in approximately 200 hours to complete testing on
a controller. SPHINX [14] operates in dynamically running
networks, employing network invariants to detect attacks.
While it can respond to certain malicious attacks in just a
few microseconds, its ability to identify unknown attack paths
remains quite limited.

In addition to the aforementioned works, it’s worth noting
that numerous other studies investigate security issues in SDN
controllers. However, their focus diverges from ours. For
instance, Intender [52] focuses on security concerns within the

YUAN et al.: TOWARD AUTOMATED ATTACK DISCOVERY IN SDN CONTROLLERS THROUGH FORMAL VERIFICATION 3651

Fig. 11. Tested topologies (For simplicity, hosts were excluded from the
topologies under examination).

network intent module of controllers. AudiSDN [53] aims to
detect the inconsistencies of network rules across various lay-
ers of the SDN system. EVENTSCOPE [54] identifies missed
event handlers in SDN applications. SVHunter [55] targets
D2C2 vulnerabilities (data dependency creation and chaining)
exploitable by attackers. SDN-fuzzer [56] detects storage
vulnerabilities in NMDA-based controllers; and Evgenii
Vinarskii et al. [57] have proposed a modeling approach for
identifying concurrency issues (i.e., races) in controllers. Due
to the distinct nature of these studies, they were not included
in our direct comparison.

E. Performance Evaluation

In this subsection, we examine the influence of network
topology and the execution time of our tool on the outcomes
of attack discovery. To this end, as depicted in Figure 11,
we selected 4 network topologies of varying sizes for our
evaluation. These topologies were chosen based on existing
research work and from the topology zoo dataset [58].

Performance under different topologies. We conducted
experiments where we varied network topologies and mon-
itored the associated overheads, such as time consumption,
needed to discover all attacks as listed in Table V.
Additionally, we evaluated the effectiveness of our tool in iden-
tifying attacks across these different topologies. The results
presented in Table IX show an increase in overheads, including
computational time and storage requirements, as the network
size expands. This is in line with our expectations, given the
increasing complexity of the state model in larger networks,
necessitating more resources for Spin to analyze the model.
Notably, while the number of reported attack paths by our tool
increases with larger network sizes, our findings indicate that
no new types of attacks (beyond those discovered with the
three-switch topology, see Table V) were identified.

Fig. 12. Equivalent attacks in different topologies.

Outcomes of our tool with different execution times.
We also explored whether our tool could uncover attacks that
differ fundamentally from those previously identified when
operated over extended time periods. For this purpose, we ran
our tool for varying durations — 30 minutes, 1 hour, 2 hours,
and 4 hours — and across different network topologies. The
findings, as detailed in Table X, indicate that while the number
of reported attack paths increases in larger networks with
longer execution times, there are no new types of attacks
identified beyond those already discovered.

Discussion. The analysis of industrial-scale topologies is
crucial for validating network policies, primarily because the
complexity of these policies and their validation challenges
are directly linked to the scale of the topology [38]. However,
when it comes to detecting security issues in SDN controllers,
it is important to note that most of these issues are not
inherently dependent on the size of the topology [43]. This
assertion is supported by the results of our experiments.

Specifically, we found that choosing a larger topology does
result in a higher number of reported attack paths as the
topology scale increases, but it does not lead to the discovery
of new types of attacks. The same attacks identified in smaller
and simpler networks (e.g., a 3-switch topology) are also
identifiable in larger networks, as the underlying vulnerabil-
ities leading to these attacks remain constant regardless of
network size and topology. In larger networks, the increased
number of network nodes potentially exploitable by attackers
results in more attack paths. For instance, as depicted in
Figure 12, the link fabrication attack is detectable in both
3-switch and 5-switch topologies, albeit with varying attack
paths. Considering the additional time required to discover all
attacks in larger network topologies, we opted for a smaller
and simpler network topology for attack discovery in our
current research.

Conclusions for different scale topologies. Our proposed
model checking tool has the capability to accommodate vari-
ous scale topologies. However, scaling up to larger topologies
inevitably results in considerable increases in both time and
memory overhead. Additionally, when it comes to automated
attack discovery for SDN controllers, expanding the scale of
the topology does not necessarily translate into a qualitative
change in the number of detected security issues; instead,
it often leads to redundant exploration of state transitions.
Given these considerations, we opt for smaller topology sizes
as an optimization strategy to expedite the discovery process
of security vulnerabilities, prioritizing time efficiency and
effective memory utilization.

3652 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

TABLE IX
PERFORMANCE OF OUR TOOL UNDER DIFFERENT TOPOLOGIES

TABLE X
OUTCOMES OF OUR TOOL WITH DIFFERENT EXECUTION TIME

VI. DISCUSSION AND FURTHER WORK

Our methodology is centered around modeling the compo-
nents of an SDN system to uncover potential security risks
in SDN controllers and generate comprehensible attack paths.
These paths provide a roadmap that enables us to efficiently
validate the reported attacks, confirming the presence of any
security vulnerabilities within the controller. While our current
approach has its limitations, we are actively considering
enhancements and future developments to address these areas
and augment our methodology.

Addressing dynamic network activities. Our current
methodology focuses on attack discovery within static network
environments. While the attacks we have reported are appli-
cable to real-world, dynamic SDN systems, the introduction
of dynamic network activities could potentially lead to the
emergence of new attack vectors not accounted for in our
existing framework. As such, a future objective is to expand
our methodology to include dynamic scenarios. This expansion
will involve integrating new operations into our model that
reflect dynamic network activities, like adding or deleting
switches and managing switch ports. The high-level design of
our tool is poised to adapt to the dynamics of SDN systems.
For example, we can add new operations involving the addition
or deletion of switches to modify the RealTopo variable
(see Table II) to reflect dynamic switch changes. However,
the challenge extends beyond simply describing the network
topology changes; it also involves developing a model that
accurately describes how SDN controllers process dynamic
events. This requires an abstraction of controller behaviors,
which can be derived either from static analysis of controller
source codes or from dynamic testing on the controllers. Given
the substantial challenges this poses, we plan to address this
aspect in our future work.

Manual works. We still need manual work to translate the
mechanisms into formalized model language and refine the
security properties, which needs ample knowledge of prior

works and developer documentation. As for the enhancement,
we can leverage NLP (Natural Language Processing) to extract
the security properties with the keywords in the documentation
to reduce the workload of manual reading, which is left
to our future research. We can also consider some static
analysis methods to analyze the code similarity among the
specific implementations of different controllers, to extract the
common mechanisms to help model the SDN system. How
to translate controller implementation languages such as Java
and Python into the formal language Promela is also worth
exploring.

State explosion. We adjust and simplify the model param-
eters to eliminate meaningless transitions, limit the states for
more effective counterexamples, and reduce the manual effort
needed to study the reported attack paths. But this solution also
limits the coverage of transitions to discover more possible
attack paths. We shall balance the verification coverage with
the scale of the model when more operations are added based
on experience from multiple tests and estimation from prior
knowledge.

VII. RELATED WORK

Attacks and detection in SDN. Many works have proposed
attacks and defenses in SDN focusing on different attack
surfaces. As for the attack against the control plane, the
most common target is poisoning the topology view of the
controller since it is easy to spoof the controller with forge
packets because of the gullibility of the controller. There
are researches [10], [11], [12], [13], [14] that proposed host
location hijacking attacks and link fabrication attacks to affect
the topology view and their corresponding defenses that check
more conditions before accepting the topology information.
Besides, Marin et al. [9] proposed reverse loop attack which
tricks the controller into re-computing the topology under
unnecessary conditions in order to exhaust the CPU of the con-
troller. The DoS attacks are also widely researched to affect the
control plane, among which the packet-in messages are often
abused to launch resource exhaustion attacks against switches
and controllers [14], [15], [17]. The frequent occurrence of
DOS attacks in SDN networks is mainly due to the controller’s
role as the brain of the network and its limited processing
capabilities. Further, attacks on the controller can also stem
from bugs present in the switch implementation. Cao et al. [19]
proposed buffered packet hijacking that can cause resource
exhaustion on the SDN control channel, the controller and the
switches, which leverages the recklessness of SDN switches
that blindly process buffered packets with the buffer id of flow-
mod messages and do not check the consistency of the buffered

YUAN et al.: TOWARD AUTOMATED ATTACK DISCOVERY IN SDN CONTROLLERS THROUGH FORMAL VERIFICATION 3653

packets and the match fields. Cross-plane attacks are also an
integral part of control plane attacks. Xie et al. [59] presented
CrossPath attack which can occupy all the bandwidth of the
control channel by injecting low-rate traffic to the shared links.
As for attack discovery, there are many works [14], [41] that
detect attacks by testing the controllers in realistic network
environments or by reading the code of the controller [9]
while our method adopts the model checking which verifies
the formalized model and only does further practical test when
new attacks are reported, which makes the discovery process
lighter and faster.

Model-based attack discovery. Prior researches demon-
strate the effectiveness and practicality of employing
formalized methods for uncovering attacks within network
protocols. For instance, Ritchey and Ammann [60] utilized
formal methods to assess traditional network vulnerabilities,
while Yuan et al. [36] developed the VerioT tool based
on model checking to verify IoT delegation systems. The
formal methods have also been integrated into SDN security
practices, with formal verification techniques being extensively
applied in the SDN control plane. Canini et al. [21] examined
NOX controller applications using symbolic execution, while
Vinarskii et al. [57] and Lu et al. [61] explored the concurrency
races problems between components in SDN network. While
these studies focused on specific controller types, our work
delves into universal issues arising from common design prin-
ciples in the SDN paradigm. Consequently, our tool identifies
attacks that are prevalent across the majority of controllers. In
Section II-D and Table I, we discuss various works related to
model checking in the context of SDN. It’s important to note
that the majority of these studies primarily focus on assessing
the correctness of implementations within SDN applications.
However, none of these works specifically concentrate on
the formal verification of the universal mechanisms of SDN
controllers. Compositional reasoning, another formal method
suitable for SDN’s distributed nature, enables the segmentation
of model checking into simpler verification tasks for individual
components [62]. Despite its relevance, this approach is more
aligned with addressing network isolation issues in complex
SDN networks rather than with universal SDN controller
mechanisms.

VIII. CONCLUSION

We present an automatic method to discover attacks in
SDN through formal verification with a formalized model
describing SDN network process based on the universal design
of SDN in order to find the exploitable attacks leveraging
the common vulnerabilities shared by controllers regardless of
vendors. We modeled the SDN system in formal language and
performed the model checking with Spin with the assertions
representing the security properties concluded from the general
weaknesses of SDN. To reduce the state explosion. we adapted
the model by rational assumptions and transition limitations
from experience. With experiments, we found 23 unique attack
paths based on our formal SDN model among which there
are 2 new attacks and We verified the feasibility of the
new attack in SDN systems with different controllers and

different OpenFlow versions. Therefore, our method shows
its lightness in the implementation of SDN model with
effectiveness and efficiency in finding instructive attack paths
leading to practical attacks, which proves that it can guide new
insight of attacks with automated attack discovery based on
the understanding of SDN universal mechanism.

REFERENCES

[1] P. Goransson, C. Black, and T. Culver, Software Defined Networks: A
Comprehensive Approach. Amsterdam, The Netherlands: Elsevier, 2016.

[2] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[3] D. Li, S. Wang, K. Zhu, and S. Xia, “A survey of network update in
SDN,” Front. Comput. Sci., vol. 11, no. 1, pp. 4–12, 2017.

[4] Y. Gong, W. Huang, W. Wang, and Y. Lei, “A survey on software defined
networking and its applications,” Front. Comput. Sci., vol. 9, no. 6,
pp. 827–845, 2015.

[5] “OpenFlow discovery protocol.” 2023. [Online]. Available:
https://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol

[6] D. Kreutz, F. M. V. Ramos, P. J. E. Veríssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[7] G. Huang and H. Y. Youn, “Proactive eviction of flow entry for SDN
based on hidden markov model,” Front. Comput. Sci., vol. 14, no. 4,
2020, Art. no. 144502.

[8] Y. Guo, F. Miao, L. Zhang, and Y. Wang, “CATH: An effective method
for detecting denial-of-service attacks in software defined networks,” Sci.
China Inf. Sci., vol. 62, no. 3, pp. 1–15, 2019.

[9] E. Marin, N. Bucciol, and M. Conti, “An in-depth look into SDN
topology discovery mechanisms: Novel attacks and practical counter-
measures,” in Proc. 26th ACM SIGSAC Conf. Comput. Commun. Secur.,
2019, pp. 1101–1114.

[10] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility in
software-defined networks: New attacks and countermeasures,” in Proc.
22nd Annu. Netw. Distrib. Syst. Secur. Symp., 2015, pp. 8–11.

[11] R. Skowyra et al., “Effective topology tampering attacks and defenses
in software-defined networks,” in Proc. 48th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw., 2018, pp. 374–385.

[12] S. Jero, W. Koch, R. Skowyra, H. Okhravi, C. Nita-Rotaru, and
D. Bigelow, “Identifier binding attacks and defenses in software-defined
networks,” in Proc. 26th USENIX Secur. Symp., 2017, pp. 415–432.

[13] T. Alharbi, M. Portmann, and F. Pakzad, “The (in)security of topology
discovery in software defined networks,” in Proc. 40th IEEE Conf. Local
Comput. Netw., 2015, pp. 502–505.

[14] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “SPHINX: Detecting
security attacks in software-defined networks,” in Proc. 22nd Annu.
Netw. Distrib. Syst. Secur. Symp., 2015, pp. 8–11.

[15] S. Shin and G. Gu, “Attacking software-defined networks: A first
feasibility study,” in Proc. 2nd ACM SIGCOMM Workshop Hot Topics
Softw. Defined Netw., 2013, pp. 165–166.

[16] J. Cao et al., “The crosspath attack: Disrupting the SDN control channel
via shared links,” in Proc. 28th USENIX Secur. Symp., 2019, pp. 19–36.

[17] H. Wang, L. Xu, and G. Gu, “FloodGuard: A DoS attack prevention
extension in software-defined networks,” in Proc. 45th Annu. IEEE/IFIP
Int. Conf. Dependable Syst. Netw., 2015, pp. 239–250.

[18] S. Shin et al., “Rosemary: A robust, secure, and high-performance
network operating system,” in Proc. 21st ACM SIGSAC Conf. Comput.
Commun. Secur., 2014, pp. 78–89.

[19] J. Cao, R. Xie, K. Sun, Q. Li, G. Gu, and M. Xu, “When match fields
do not need to match: Buffered packets hijacking in SDN,” in Proc.
27th Annu. Netw. Distrib. Syst. Secur. Symp., 2020, pp. 1–15.

[20] S. Lee, C. Yoon, C. Lee, S. Shin, V. Yegneswaran, and P. A. Porras,
“DELTA: A security assessment framework for software-defined
networks,” in Proc. 24th Annu. Netw. Distrib. Syst. Secur. Symp., 2017,
pp. 1–15.

[21] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and J. Rexford, “A NICE
way to test openflow applications,” in Proc. 9th USENIX Symp. Netw.
Syst. Design Implement., 2012, pp. 127–140.

[22] M. Kuzniar, M. Canini, and D. Kostic, “OFTEN testing OpenFlow
networks,” in Proc. Eur. Workshop Softw. Defin. Netw., 2012, pp. 54–60.

[23] M. Zhang, G. Li, L. Xu, J. Bi, G. Gu, and J. Bai, “Control plane
reflection attacks in SDNs: New attacks and countermeasures,” in Proc.
21st Int. Symp. Res. Attacks, Intrusions Def., 2018, pp. 161–183.

3654 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

[24] B. Yuan et al., “Resource investment for DDoS attack resistant SDN:
A practical assessment,” Sci. China Inf. Sci., vol. 66, no. 7, 2023,
Art. no. 172103.

[25] T. Nelson, A. Guha, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“A balance of power: Expressive, analyzable controller program-
ming,” in Proc. 2nd ACM SIGCOMM Workshop Hot Topics Softw. Defin.
Netw., 2013, pp. 79–84.

[26] D. Sethi, S. Narayana, and S. Malik, “Abstractions for model checking
SDN controllers,” in Proc. 13rd Formal Methods Comput.-Aided Design,
2013, pp. 145–148.

[27] T. Ball et al., “VeriCon: Towards verifying controller programs in
software-defined networks,” in Proc. 35th ACM SIGPLAN Conf.
Program. Lang. Design Implement., 2014, pp. 282–293.

[28] R. Majumdar, S. D. Tetali, and Z. Wang, “Kuai: A model checker for
software-defined networks,” in Proc. 14th Formal Methods Comput.-
Aided Design, 2014, pp. 163–170.

[29] “The nox controller.” Accessed: Dec. 2023. [Online]. Available:https://
github.com/noxrepo/nox

[30] “How to write an application in floodlight SDN controller.” Accessed:
Dec. 2023. [Online]. Available: https://floodlight.atlassian.net/wiki/
spaces/floodlightcontroller/pages/1343513/How+to+Write+a+Module

[31] “How to write an application in OpenDaylight SDN controller.”
Accessed: Dec. 2023. [Online]. Available: https://docs.opendaylight.org/
en/latest/developer-guides/developing-apps-on-the-opendaylight-
controller.html

[32] “Ryubook.” Accessed: Dec. 2023. [Online]. Available: https://book.ryu-
sdn.org/en/Ryubook.pdf

[33] “Spin.” Accessed: Jun. 2023. [Online]. Available: http://spinroot.com/
spin/whatispin.html

[34] “Promela.” Accessed: Jun. 2023. [Online]. Available: http://
spinroot.com/spin/Man/promela.html

[35] P. Fiterau-Brostean, B. Jonsson, K. Sagonas, and F. Tåquist, “Automata-
based automated detection of state machine bugs in protocol
implementations,” in Proc. 30th Annu. Netw. Distrib. Syst. Secur. Symp.,
2023, pp. 1–18.

[36] B. Yuan et al., “Shattered chain of trust: Understanding security risks in
cross-cloud IoT access delegation,” in Proc. 29th USENIX Secur. Symp.,
2020, pp. 1183–1200.

[37] X. Bai, Z. Cheng, Z. Duan, and K. Hu, “Formal modeling and
verification of smart contracts,” in Proc. 7th Int. Conf. Softw. Comput.
Appl., 2018, pp. 322–326.

[38] S. Prabhu, K. Y. Chou, A. Kheradmand, B. Godfrey, and M. Caesar,
“Plankton: Scalable network configuration verification through model
checking,” in Proc. 17th USENIX Symp. Netw. Syst. Design Implement.,
2020, pp. 953–967.

[39] (Internet Eng. Task Force, Fremont, CA, USA). The Open vSwitch
Database Management Protocol. Accessed: Dec. 2023. [Online].
Available: https://www.ietf.org/rfc/rfc7047.txt

[40] “NETCONF configuration protocol.” Accessed: Dec. 2023. [Online].
Available: https://datatracker.ietf.org/doc/html/rfc4741

[41] S. Jero, X. Bu, and S. Fahm, “BEADS: automated attack discovery in
openflow-based SDN systems,” in Proc. 20th Int. Symp. Res. Attacks,
Intrusions Def., 2017, pp. 311–333.

[42] “Open vSwitch.” Accessed: Jun. 2023. [Online]. Available:
http://www.openvswitch.org/

[43] J. Kim et al., “Systematizing attacks and defenses in software-defined
networking: A survey,” TechRxiv, Preprint, 2023.

[44] M. Paliwal, D. Shrimankar, and O. Tembhurne “Controllers in SDN: A
review report,” IEEE Access, vol. 6, pp. 36256–36270, 2018.

[45] Y.-D. Lin, Y.-K. Lai, C.-Y. Wang, and Y.-C. Lai, “OFBench:
Performance test suite on OpenFlow switches,” IEEE Syst. J., vol. 103,
no. 1, pp. 2949–2959, Sep. 2018.

[46] “Mininet.” Accessed: Jun. 2023. [Online]. Available: https://mininet.org/
[47] “The pox network software platform.” Accessed: Jun. 2023. [Online].

Available: https://github.com/noxrepo/pox
[48] “Ryu.” Accessed: Jun. 2023. [Online]. Available: https://ryu-sdn.org/
[49] “Floodlight OpenFlow controller (OSS).” Accessed: Jun. 2023. [Online].

Available: https://github.com/floodlight/floodlight
[50] “ONOS: Open network operating system.” Accessed: Jun. 2023.

[Online]. Available: https://github.com/opennetworkinglab/onos
[51] “OpenDaylight controller project.” Accessed: Jun. 2023. [Online].

Available: https://github.com/opendaylight/controller
[52] J. Kim, B. E. Ujcich, and D. J. Tian, “Intender: Fuzzing intent-based

networking with intent-state transition guidance,” in Proc. 32nd USENIX
Secur. Symp., 2023, pp. 4463–4480.

[53] S. Lee, S. Woo, J. Kim, V. Yegneswaran, P. Porras, and S. Shin,
“AudiSDN: Automated detection of network policy inconsistencies
in software-defined networks,” in Proc. 39th IEEE Conf. Comput.
Commun., 2020, pp. 1788–1797.

[54] B. E. Ujcich et al., “Automated discovery of cross-plane event-based
vulnerabilities in software-defined networking,” in Proc. 27th Netw.
Distrib. Syst. Secur. Symp., 2020, pp. 1–18.

[55] F. Xiao, J. Zhang, J. Huang, G. Gu, D. Wu, and P. Liu, “Unexpected
data dependency creation and chaining: A new attack to SDN,” in Proc.
41st IEEE Symp. Security Privacy, 2020, pp. 1512–1526.

[56] V. H. Dixit, A. Doupé, Y. Shoshitaishvili, Z. Zhao, and G.-J. Ahn,
“Aim-SDN: Attacking information mismanagement in SDN-
datastores,” in Proc. 25th ACM SIGSAC Conf. Comput. Commun.
Secur., 2018, pp. 664–676.

[57] E. Vinarskii, J. Lopez, N. Kushik, N. Yevtushenko, and D. Zeghlache,
“A model checking based approach for detecting SDN races,” in Proc.
31st IFIP Int. Conf. Test. Softw. Syst., 2019, pp. 194–211.

[58] Dec. 2023, “Topology zoo dataset,” Dataset. [Online]. Available:
http://www.topology-zoo.org/dataset.html

[59] R. Xie et al., “Disrupting the SDN control channel via shared links:
Attacks and countermeasures,” IEEE/ACM Trans. Netw., vol. 30, no. 5,
pp. 2158–2172, Oct. 2022.

[60] R. W. Ritchey and P. Ammann, “Using model checking to analyze
network vulnerabilities,” in Proc. 21st IEEE Symp. Security Privacy,
2000, pp. 156–165.

[61] G. Lu, L. Xu, Y. Yang, and B. Xu, “Predictive analysis for race detection
in software-defined networks,” Sci. China Inf. Sci., vol. 62, no. 6,
pp. 1–20, 2019.

[62] A. Majith, O. Sankur, H. Marchand, and D. T. Bui, “Compositional
model checking of an SDN platform,” in Proc. 17th Int. Conf. Design
Rel. Commun. Netw., 2021, pp. 1–8.

Bin Yuan (Member, IEEE) received the B.S.
and Ph.D. degrees in computer science and
technology from the Huazhong University of
Science and Technology, Wuhan, China, in
2013 and 2018, respectively, where he is an
Associate Professor. He has published several
technical papers in top conferences/journals, such
as USENIX Security, CCS, IEEE TRANSACTIONS

ON SERVICES COMPUTING, IEEE TRANSACTIONS

ON NETWORK AND SERVICE MANAGEMENT,
IEEE TRANSACTIONS ON NETWORK SCIENCE

AND ENGINEERING, IEEE INTERNET OF THINGS JOURNAL, and Future
Generation Computer Systems. His research interests include software-defined
network security, network function virtualization, cloud security, privacy, and
IoT security.

Chi Zhang received the B.S. degree in soft-
ware engineering from the University of Electronic
Science and Technology of China in 2021. He
is currently pursuing the master’s degree with the
Huazhong University of Science and Technology,
Wuhan, China. His research interests include
software-defined network and SDN security.

Jiajun Ren received the B.S. degree in cyber science
and engineering from the Huazhong University of
Science and Technology, Wuhan, China, in 2021,
where he is currently pursuing the master’s degree
with the School of Cyber Science and Engineering.
His research interests include network protocol
security and SDN security.

YUAN et al.: TOWARD AUTOMATED ATTACK DISCOVERY IN SDN CONTROLLERS THROUGH FORMAL VERIFICATION 3655

Qunjinming Chen received the B.S. degree in
cyber science and engineering from the Huazhong
University of Science and Technology, Wuhan,
China, in 2022, where he is currently pursuing the
master’s degree with the School of Cyber Science
and Engineering. His interests include network
protocol and IoT security.

Biang Xu received the B.S. degree in cyber science
and engineering from the Huazhong University of
Science and Technology in 2023, Wuhan, China,
where he is currently pursuing the master’s degree
with the School of Cyber Science and Engineering.
His interests in include network protocol and IoT
security.

Qiankun Zhang received the bachelor’s degree
from Zhejiang University in 2017, and the Ph.D.
degree from the University of Hong Kong in 2021.
He is an Associate Researcher with the Huazhong
University of Science and Technology. He is broadly
interested in theoretical computer science, and more
specifically in design and analysis of approximation
and online algorithms. He has published several
papers in top theoretical computer science confer-
ences, including STOC and FOCS.

Zhen Li (Member, IEEE) received the Ph.D.
degree in cyberspace security from the Huazhong
University of Science and Technology, Wuhan,
China, in 2019, where she is an Associate Professor.
She was a Postdoctoral Fellow with the University of
Texas at San Antonio, USA, from 2019 to 2021. Her
research interests mainly include software security
and artificial intelligence security. She is a member
of ACM.

Deqing Zou received the Ph.D. degree from HUST
in 2004, where he is a Professor of Computer
Science. He has been the leader of one “863”
project of China and three National Natural Science
Foundation of China projects, and core member of
several important national projects, such as National
973 Basic Research Program of China. He has
applied almost 20 patents, published two books (one
is titled Xen Virtualization Technologies and the
other is titled Trusted Computing Technologies and
Principles) and more than 50 High-quality papers,

including papers published by IEEE TRANSACTIONS ON DEPENDABLE AND

SECURE COMPUTING and IEEE Symposium on Reliable Distributed Systems.
His main research interests include system security, trusted computing,
virtualization, and cloud security. He has always served as a reviewer for
several prestigious Journals, such as IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON COMPUTERS,
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, and
IEEE TRANSACTIONS ON CLOUD COMPUTING. He is on the editorial boards
of four international journals, and has served as the PC chair/PC member of
more than 40 international conferences.

Fan Zhang received the B.S. degree in information
security from the Hefei University of Technology
in 2020. She is currently pursuing the master’s
degree with the Huazhong University of Science and
Technology, Wuhan, China. Her research interests
include software-defined network and network
security.

Hai Jin (Fellow, IEEE) received the Ph.D. degree
in computer engineering from HUST in 1994.

He is a Cheung Kung Scholars Chair Professor
of Computer Science and Engineering with HUST.
In 1996, he was awarded a German Academic
Exchange Service fellowship to visit the Technical
University of Chemnitz, Germany. He worked with
The University of Hong Kong from 1998 to 2000,
and as a Visiting Scholar with the University of
Southern California from 1999 to 2000. He is
the Chief Scientist of ChinaGrid, the largest grid

computing project in China, and the Chief Scientist of National 973 Basic
Research Program Project of Virtualization Technology of Computing System,
and Cloud Security. He has coauthored 22 books and published over
700 research papers. His research interests include computer architecture,
virtualization technology, cluster computing and cloud computing, peer-to-
peer computing, network storage, and network security. He was awarded
Excellent Youth Award from the National Science Foundation of China in
2001. He is a Fellow of CCF and a member of ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

