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EFACTLS: Effective Active TLS Fingerprinting for
Large-Scale Server Deployment Characterization
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Abstract—Active measurements allow the collection of server
characteristics on a large scale that can aid in discovering
hidden relations and commonalities among server deployments.
Finding these relations opens up new possibilities for clustering
and classifying server deployments; for example, identifying a
previously unknown cybercriminal infrastructure can be valuable
cyber-threat intelligence. In this work, we propose a methodology
based on active measurements to acquire Transport Layer
Security (TLS) metadata from servers and leverage it for
fingerprinting. Our fingerprints capture characteristic behavior
of the TLS stack, primarily influenced by the server’s implemen-
tation, configuration, and hardware support. Using an empirical
optimization strategy that maximizes information gained from
every handshake to minimize measurement costs, we generated
10 general-purpose Client Hellos. They served as scanning
probes to create an extensive database of TLS configurations to
classify servers. We propose the Shannon Entropy to measure
collected information and compare different approaches. This
study fingerprinted 8 million servers from the Tranco top list
and two Command and Control (C2) blocklists over 60 weeks
with weekly snapshots. The resulting data formed the foundation
for two long-term case studies: classification of Content Delivery
Network and C2 servers. Moreover, the detection was fine-
grained enough to detect C2 server families. The proposed
methodology demonstrated a precision of 99% and enabled a
stable identification of new servers over time. This study shows
how active measurements can provide valuable security-relevant
insights and improve our understanding of the Internet.

Index Terms—Active scanning, TLS, fingerprinting, server
classification, command and control servers.

I. INTRODUCTION

ACTIVE fingerprinting “is the process of actively
interacting with the target entity” [1] to reveal undis-

closed information, like the type and version of software
running on a device. Consequently, fingerprinting has many
applications in the security domain, such as identifying hosts
running vulnerable software, detecting network anomalies,
or revealing malicious entities. One way of accomplishing
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this is to leverage the Transport Layer Security (TLS) pro-
tocol. TLS is currently the de facto standard for encrypted
communication on the Internet [2]. It has evolved into a
complex ecosystem due to continuous development and the
need for backward compatibility [3]. Due to this, the protocol
inherently provides a variety of meta-information related to
client and server capabilities that they exchange during the
initial TLS handshake. Previous research has leveraged these
metadata using passive fingerprinting approaches [4], [5], [6].
In contrast, our work advocates active measurements, enabling
engagement with any responsive server on a large scale, unre-
stricted by the increased encrypted communication hindering
passive approaches. Moreover, it allows the creation of a
comprehensive data set from a single vantage point.

Effective Active TLS Fingerprinting can help to better
understand, model, and secure the Internet. If fingerprints
can indicate a level of trust in infrastructure, they become
valuable cyber-threat intelligence, especially given cyber crim-
inals’ increasing use of TLS [7]. Possible use cases include:
(i) Intrusion Detection Systems fingerprint servers seen in
network flows on-demand and compare results with known
malicious fingerprints; (ii) security researchers use finger-
prints from Internet-wide measurements to identify unknown
threats; or (iii) regular monitoring of own servers helps to
detect unintended software changes or malware infections
when deviations from a fingerprint baseline occurred. Internet
scanning companies like censys.io emphasize the need for
this information as they have begun incorporating JARM [8]
into their portfolio (according to their data definitions [9]).
JARM is an additional example of an open-source TLS
server fingerprinting tool that utilizes data similar to the one
presented in this work and has recently gained prominence in
its usage.

This work demonstrates that only effective fingerprint-
ing can supply the necessary information to be valuable
for the mentioned use cases. It is an extension of the
study described in [10], which provides a long-term analysis
showcasing the applicability and performance of detection
use cases supported by active TLS fingerprinting, along
with an assessment of the effectiveness of their data
collection.

In this work, we investigate (i) how to construct a similarity
relation among TLS server deployments, (ii) how effective
scanning configurations can be found while minimizing the
measurement costs, and (iii) how active TLS fingerprinting
applications perform on a large scale. To this end, we introduce
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EFACTLS, offering an effective method for active TLS
fingerprinting.

The paper presents the following contributions:

(i) a reasoned selection of TLS handshake features for
fingerprinting the TLS stack and their encoding in an
extendable and shareable format;

(ii) a methodology for finding or tailoring effective TLS
Client Hellos (CHs) for fingerprinting use cases and 10
pre-made general-purpose CHs that maximize comple-
mentary information extraction from servers;

(iii) the use of the Shannon Entropy as metric to measure the
information obtained from active Internet measurements;

(iv) a classification approach that utilizes active TLS finger-
printing to predict server classes;

(v) a one-year-long measurement study to validate the
methodology, demonstrate improvements to the related
work JARM, and showcase the potential of active TLS
fingerprinting through two case studies: Content Delivery
Network (CDN) and Command and Control (C2) server
detection;

(vi) an extended analysis that reveals active TLS fingerprint-
ing is fine-grained enough to predict concrete C2 server
families; and

(vii) data of the experiments and the open-source scanner
released publicly, to enable reproducible results and to
support the community.1

This work is an extension of [10], published in the Network
Traffic Measurement and Analysis Conference (TMA) in 2022.
Contributions (iii), (iv), and (vi) represent novel additions
compared to the previous version. Additionally, we conducted
the longitudinal study on a significantly larger and more recent
time frame to demonstrate the applicability of our analyses on
new data. In this work, we provide fresh insights into related
research and enhance the existing content by incorporating
the Entropy metric, comparing additional related works, and
adapting findings to the new data set. Compared to our
previous work, we switched to the Tranco [11] top list as input
for our measurement study due to the discontinuation [12] of
the Alexa top list service.

II. RELATED WORK

The large amount of metadata from TLS handshakes
has been used in multiple passive traffic classification and
fingerprinting related works [4], [5], [6]. In the context of
the Transmission Control Protocol (TCP), fingerprinting with
active scans has been successfully used by [13], [14] and [15]
to detect the Operating System (OS) on a remote server.
Recently, Zirngibl et al. [16] applied active fingerprinting on
the QUIC [17] protocol to fingerprint and analyze libraries.
Like our CH selection, Greenwald and Thomas [13] used the
Entropy from the information theory as a metric to minimize
the number of probes needed for classification.

A. Active TLS Fingerprinting Approaches

This section presents related TLS scanning and fingerprint-
ing approaches. We selected them because they all extract

1https://tumi8.github.io/active-tls-fingerprinting/

TABLE I
SUMMARY OF RELATED TLS SCANNING AND FINGERPRINTING TOOLS

metadata from the TLS layer that can be used for finger-
printing. Additionally, they have in common to implement
specialized probing mechanisms that are able to extract more
information from the TLS layer than it is possible by con-
ducting a single or trivial handshakes. We summarize our
findings on related approaches and tools in Table I. None of
the other active TLS fingerprinting works has used Entropy or
an equivalent metric to evaluate or optimize their approach.

To the best of our knowledge, the closest related work
we can directly compare ourselves to is the JARM tool
developed by Althouse et al. [8]. It is a popular open-source
tool for TLS server fingerprinting. Compared to this work, our
tool differs in the concrete choice of CHs and the extracted
features from the TLS handshake. They use 10 custom-defined
CHs for fingerprinting that “have been specially crafted to
pull out unique responses in TLS servers” [8]. In contrast
to this work, they do not complete the TLS handshake,
only use unencrypted data, and do not consider TLS alerts
nor extension data besides the Application Layer Protocol
Negotiation (ALPN) protocol; hence, they use only part of
the data offered by TLS 1.3. We will show in Section V-F
that JARM also enables C2 server detection; however, the
data suggested by this paper can improve the approach’s
effectiveness.

A fundamentally different approach for collecting TLS
data is to dynamically search for each piece and change the
scanning probes during the fingerprinting based on already
learned information. A scanner can adapt scanning probes
on the fly if it contains a model interpreting the TLS stack
on a server. The scanner would use the model to interpret
previous server responses and generate a new probe likely
to fill the gaps in the already collected data. However, the
quality of the collected data relies on the quality of the
underlying model because it has to explain any observed
behavior. Adapting the scan per server can result in a variable
and unpredictable scan duration. In contrast, the fixed probing
from this work has a constant scan duration independent of
the inner workings of TLS server implementations. The only
requirement is that servers behave consistently. The related
work DissecTLS [20] shows that it is possible to implement
such a dynamic scanning approach efficiently enough to use
it for large-scale measurements.
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DissecTLS provided a higher C2 detection precision com-
pared to this work at the cost of sending more requests
(24 ch per server on average [20]). Similarly, TLS server
debugging tools like testssl.sh [19] or SSLyze [18] dynami-
cally collect data about the TLS servers. Results presented in
DissecTLS [20] demonstrate that the data from both tools can
be used for active TLS fingerprinting, although it is necessary
to sanitize their output first. However, they used many requests
per server, making Internet-wide scans time-consuming and
ethically questionable. Additionally, their focus on the config-
urable part of TLS on servers (e.g., supported cipher suites)
results in neglecting fingerprintable implementation-specific
features like the extension order. In contrast, TLS Prober [21]
solely focuses on such features. Mapping out edge cases
of the TLS protocol enabled the author to fingerprint only
the TLS library. The tool uses up to 295 probes to reveal
implementation-specific behavior, such as the mapping of
TLS messages to TLS records or how the implementation
reacts to erroneous or unusual input. Section V-D will present
how additional data sources can improve CNC detection. We
will present how additional data sources can improve the C2
detection in Section V-D. It is possible that the data obtained
with TLS Prober can be used in conjunction with ours to
improve detection further in the future. However, the tool has
not been updated recently and only supports TLS 1.2.

B. Related Observations on the TLS Ecosystem

Chung et al. [22] investigated the usage of the Online
Certificate Status Protocol (OCSP) stapling from different Web
servers. He observed Nginx servers, which did not return
OCSP responses to the first client connecting, appending
the information only to consecutive requests. These imple-
mentations did not pre-fetch the information nor wait until
the Certificate Authority (CA) returned the necessary OCSP
response they could forward to the client. Hence, from the
client’s point of view, the presence of stapled OCSP responses
is non-deterministic. Their observations on OCSP stapling
align with our observations of the non-deterministic pres-
ence of the Status Request extension because it is currently
only used by servers to announce stapled OCSP responses
(cf., [23]).

Gigis et al. [24] investigated Hypergiants, including CDNs,
over seven years. They showed the increasing role of servers
deployed in Autonomous Systems (ASs) not managed by the
CDN to influence and localize CDN traffic to the user. Their
results align with ours because we could also find server
deployments outside the networks managed by the CDN, and
they found indicators of reverse proxies that influence the
measurement results. Their results rely on servers correctly
offering identification material in the certificates. On the other
hand, this work is more subtle and can identify deployments
where the information is deliberately hidden (e.g., to detect
C2 servers).

Papadogiannaki and Ioannidis [25] have used JARM to
study the evolution of C2 servers based on their TLS fin-
gerprints. Like us, they used the Feodo Tracker as input but
compared the C2 fingerprints only with ones obtained twice

from the top 10k Majestic domains instead of weekly top 1M
scans. Similar to this work, they concluded that it is possible
to identify C2 servers based on their TLS fingerprint; however,
they noticed that fingerprints overlapping with legitimate
servers increased over time. They found that it is vital to
update a fingerprint database often or to use a more effective
fingerprinting approach; otherwise, the detection becomes less
effective. We also conclude the necessity of an up-to-date
database and an effective approach.

III. METHODOLOGY

The TLS protocol family “is the backbone of secure com-
munication over the Internet” (as introduced in more detail
by Holz et al. [26]) and is currently the de facto standard
for encrypted communication [2]. This work exploits the
TLS protocol to discover similarity relations among servers
by fingerprinting their Server Behavior. We define Server
Behavior as the totality of the capabilities, the interpretation
(deviations from the standard or implementation of undefined
parts, such as the order of extensions) and the configuration of
the TLS on a server, which can influence the outcome of the
TLS handshake. Our work assumes that every TLS server has
a specific Server Behavior that depends on the implementation,
capabilities, and configuration of the TLS library, hardware,
and application utilizing the TLS. Identifying these behaviors
allows characterizing server deployments either directly or
in conjunction with additional data (e.g., obtained on the
Hypertext Transfer Protocol (HTTP) layer).

Clients initiate TLS handshakes, and servers only need to
react to the initial handshake request (e.g., a server chooses
one cipher from a list that the client previously proposed).
Therefore, the Server Behavior we want to fingerprint is not
directly revealed by the server; only the reaction to different
requests (i.e., CHs) is visible. Using multiple CHs increases
the acquirable knowledge and coverage of the Server Behavior.
For each CH, we collect the TLS version, cipher, and TLS
extension data from different types of TLS messages to
construct the fingerprint. We only initiate handshakes with
TLS versions 1.0 to 1.3 but construct a fingerprint from any
version the server sends as a response.

This work proposes a methodology for capturing a part of
the Server Behavior by sending a fixed number of specifically
crafted CHs to a server, extracting features as string-encoded
information for each CH, as detailed in Section III-A, combin-
ing these features to a fingerprint according to Section III-B,
and use fingerprints for a threshold-based classification accord-
ing to Section III-C. Section III-D describes Entropy as a
metric to measure the amount of information collected via
active scanning and fingerprinting.

A. Features Extracted From TLS Handshakes

Given a CH, we extract features from a single handshake
in a textually encoded format for fingerprinting.

Features are the selected version, cipher suite, received
alerts and extension data. We extract extensions as an ordered
list of key-value pairs from the Server Hello, Encrypted
Extensions, Certificate Request, Hello Retry Request, and
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TABLE II
TLS EXTENSIONS WHERE ACTIVE TLS STACK FINGERPRINTING USES

THE DATA CONTAINED IN THE EXTENSIONS FOR FINGERPRINTING

Certificate TLS messages. The extension identifier served as
the key and the content of the extension as the value. However,
we only included the content of several hand-picked extensions
(Table II) and left the value empty otherwise.

An example of a textually represented fingerprint is

771
Version

_

Cipher

1301 _43.AwQ-51.23
Server Hello Extensions

_

Encrypted Extensions

0.-10.AAo... ___18.
Certificate Extensions

Alerts

<40 .

In the subsequent paragraphs, we will discuss the reasons
for including each feature. The version, selected cipher suite,
and used extensions directly depend on the capabilities and the
configuration of the TLS library used by the server and are,
therefore, part of the fingerprint. The content of each extension
can contain information independent of the Server Behavior,
and its fingerprinting value depends on the respective exten-
sion. We excluded information depending on the current TLS
session, a specific server instance, or the TLS certificate. We
inferred the content of the extensions listed in Table II as
relevant features for fingerprinting based on an analysis of
the respective specifications [23], [28] and our observations
in our scans. An exception to this schema is the Key Share
extension, where we removed the session-specific part and
only kept the selected group used for the Diffie–Hellman key
exchange. The fingerprints are defined in a format that can
easily be adapted (e.g., to include values specified in future
extensions). We included the TLS alerts sent by the server
in the fingerprints because error handling is implementation-
specific. However, we would not create a fingerprint if the
TCP layer caused the error. The current approach cannot
differentiate whether the error was part of the Server Behavior
or a nondeterministic failure of the TCP stack. We considered
the order of extensions valuable and implementation-specific
information that we included in our fingerprints. The Status
Request extension was nondeterministic in our measurements
(Section V-B); therefore, we removed the extension from the
fingerprints, trading the information about the OCSP stapling
support of a server for consistency.

B. Fingerprinting With Multiple Requests

During the development of our methodology, we noticed
that more than a single response from a server was needed to
provide good results in our experiments. Therefore, this work

combines data from multiple server responses to construct the
TLS fingerprint of the Server Behavior.

While a single CH reveals only a potentially small request-
dependent subset of the information about the target server,
multiple request–response pairs allow the collection of com-
plementary information and, thus, a more complete picture
of the Server Behavior. Increasing the number of CHs is
a trade–off between learned information and measurement
costs. However, the benefit of sending multiple CHs decreases
with every additional CHs one sends because of the limit to
which a Server Behavior can influence the TLS handshake.
Moreover, the number of CHs should be limited based on time,
resources, and ethical factors. Hence, the input set CH of CHs
is an optimizable parameter influencing the effectiveness of
fingerprinting. Let f (s , c) return the features from a server s
given a specific CH c in the format described in Section III-A;
then, the server fingerprint is defined as

fp(s) =
⋃

c∈CH

(c, fp(s , c)).

Server responses are a reaction to the initiating handshake
request; e.g., a server can only choose a cipher suite that
the client previously proposed. Consequently, the features
obtained with a single CH are only comparable in the context
of the same CH; hence, the CH used to generate each part
of a fingerprint is a feature of said fingerprint. We never
compared information obtained with different CHs because
we need to know what combination of parameters in the CH
has caused a particular response. In our implementation, we
string concatenated the features obtained with each CHs in a
consistent order and stored the CHs separately.

In conclusion, the number of requests and the design of
different CHs are crucial parameters that can be optimized
to maximize the amount of collectible information while
minimizing measurement costs and respecting ethical aspects.
We experimentally define the CHs of this work in Section IV.

C. Threshold-Based Classification

This work uses a threshold-based classifier to implement
different active TLS fingerprinting use cases. Well-known
classification metrics allow the evaluation of this classifier,
particularly precision and recall.

The classifier works as follows. First, all fingerprinted
servers are labeled according to the use case and split into
training and evaluation sets. The labels can be unspecific
(e.g., whether a server is considered a C2 server or not) or
more precise (e.g., a TrickBot C2 server). Then, we calculate
a prediction for each fingerprint using the training set. The
prediction is the probability that a particular fingerprint pre-
dicts a label. We estimated each probability by dividing the
number of times a fingerprint was seen with each label by
the total number of occurrences of the respective fingerprint.
Afterward, we applied the predictions to the evaluation set
to classify each server. However, only predictions with a
probability above the configurable threshold were considered.
For example, a particular fingerprint appeared 100 times in the
training set: 12 times from servers labeled TrickBot and 30
times QakBot. Observing the said fingerprint in the evaluation
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set would result in a probability of 12% TrickBot and 30%
QakBot. For a threshold of 20%, the classifier would predict
the QakBot class; for a threshold of 50%, the classifier would
produce no prediction. Lastly, the metrics of precision and
recall are computed based on the evaluation set. Both metrics
are defined only in the context of a specific label. Whenever
the classification matches the label, it is counted as True
Positive (TP); if they do not match, as False Positive (FP). The
True Observations (PPs) are the total number of times a label
occurred. The precision and the recall are defined as TP

TP+FP

and TP
PP , respectively.

Intuitively, precision is the rate of correct classifications of
a label. Our classifier assigns a class to not every server in the
evaluation, expressed in a lower recall. The recall gives the rate
of correctly identified servers compared to the total amount of
servers that could have been identified. The threshold serves
as a tuning parameter that can increase the precision at the
cost of a sometimes lower recall.

In summary, the threshold-based classifier is a simple but
effective approach to implement and evaluate the fingerprint-
ing use cases shown later in Section V.

D. Entropy as Metric for the Collected Information of Active
Measurements

In 1948, Shannon [29] defined a theoretical approach for
measuring the amount of “information” contained in arbitrary
communication. We propose to apply his definition to model
the amount of information collected via active measurements.
Entropy is a metric that assigns an observation a low value if it
is likely to be observed; on the other hand, an observation that
rarely occurs has a high value. Intuitively, this also reflects our
understanding of fingerprinting: a fingerprint that is the same
for every server has no value. However, a fingerprint observed
only from a few servers is very valuable because it indicates a
commonality. A downside of Entropy is that it cannot reflect
whether the collected information is useful. For example,
an approach producing a unique fingerprint for each server
would result in the maximum possible Entropy. However, such
fingerprinting would have no value because it does not reveal
relations among the servers. Nevertheless, Entropy can be
an effective metric to evaluate actively collected data if the
usefulness is shown through other means; e.g., a measurement
study like the one we perform in Section V.

C. Shannon abstracted a data source as a Random Variable
Q that emits symbols x ∈ X with a certain probability
p(x ) ∈ [0, 1]. He interpreted the “uncertainty” of each symbol
as its information content I (x ) = −log2 p(x ). The overall
information, defined as Entropy, of a data source Q is the
average across all possible symbols:

H (Q) =
∑

x∈X
p(x )I (x ).

The Entropy definition can be applied to active measure-
ments by modeling the set of scanned servers as a single
data source and Random Variable Y. Every collected datum—
in our case, a TLS fingerprint fp ∈ FP—is abstracted as a
symbol that Y emits. The probability p(fp) ∈ [0, 1] that a

specific datum occurs is unknown. However, we can measure
the rate at which it occurred in a single measurement by
dividing the number of observations from a specific datum
o(fp) ∈ N by the total number of scanned servers t ∈ N.
According to the law of large numbers [30], the occurrence
rate approximates the actual probability, given that the set of
scanned servers is large enough. Hence, we can measure the
collected information from a single active measurement as

H ′(Y) = −
∑

fp∈FP
p′
(
fp
) · log2 p′

(
fp
)
,with p′

(
fp
)
=

o
(
fp
)

t
.

To conclude, the Shannon Entropy can be used to measure
the collected information of an active measurement. Moreover,
Entropy is a metric that allows to compare the effectiveness
of different scanning and fingerprinting approaches. We will
discuss the limitations of the Entropy metric in Section VI-G.

E. Active Measurements Under Ethical Considerations

We have used an active measurement pipeline based on
established tools and by following basic ethical principles.

The pipeline takes a list of IP addresses, domains, and
CHs as input. MassDNS [31] and a local Unbound [32]
server resolve the domains to their IPv4 and IPv6 addresses,
resulting in a set of (IP address, domain) pairs we call
targets. We fingerprinted with multiple CHs; thus, the final
scan input was a randomly ordered cross-product of the target
list and the ten CHs, resulting in (IP address, domain, CH)
triples. IP addresses can be augmented with a TCP port that
should be used instead of the default 443 port. We used the
TUM goscanner [33] to perform a TLS handshake for each
triple and collect the required fingerprinting data. The TUM
goscanner is a TLS scanner designed for Internet-wide usage
and initially implemented by Amann et al. [34]. If a domain
name was available for an IP address, we used it as the
Server Name Indication (SNI). We designed a custom TLS
library based on the Golang standard library that allows the
definition of arbitrary CHs as input for each TLS connection
and extracts sought TLS handshake metadata. Both the scanner
and library are open-sourced [33]. We additionally scanned
each target with the DissecTLS [20] approach to compare their
effectiveness.

We reduced the impact on third parties by following the best
practices described by Durumeric et al. [35]. Our work does
not harm individuals or reveal private data, as [36] and [37]
cover, and focuses on publicly reachable services. We used rate
limiting, maintained a blocklist, used dedicated scan servers
with abusive contacts, configured informative rDNS entries,
and hosted websites that informed scanned parties about our
research. We also provided contact information for further
details or scan exclusion. Additionally, because we scan the
same target with multiple requests, we limit the interference
by spreading the requests over an extensive time frame (i.e.,
two days in the longitudinal study).

IV. SYSTEMATIC DESIGN OF CLIENT HELLOS

The internal mechanism of TLS servers is a black box for
active scanners. Without knowledge about the implementation
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Fig. 1. Experimentally determining the trade-off to increase the number of
CHs versus the ability to distinguish Server Behaviors (measured in distinct
fingerprints). We selected a set of 10 CHs for our following analyses.

of every TLS server, finding the best method for fingerprinting
is impossible. However, more effective fingerprints can be
developed by optimizing their distinctiveness. We propose
herein an empiric design of CHs by analyzing a large pool
of randomly generated candidates to find an optimal subset
maximizing a given metric. We choose the number of dis-
tinguishable servers as a metric to find general-purpose CHs
usable for a wide range of use cases. Alternatively, we could
have used Entropy; however, at the point of conducting this
experiment (published in [10]) we had yet to introduce the
Shannon Entropy (Section III-D) as a metric. If the use case
is known (e.g., detecting CDN or C2 servers), a different
strategy could be minimizing the necessary probes needed for
a classification. We will later revisit the use-case-driven design
regarding C2 servers in Section VI. We have open-sourced the
general-purpose CHs and their generation code as part of our
scanner [38].

Our systematic design of CHs worked as follows:
(i) we randomly generated 5000 CHs each from the feature

space our TLS scanner supported and the complete
feature space as defined by IANA [39];

(ii) we fingerprinted top list servers2 iterating over the 10000
CHs with a maximum of 13 CHs per server to gain a
first impression of good-performing CHs; and

(iii) selecting the best-performing CHs from the previous
measurement, we conducted a second measurement of
the top list servers and fingerprinted each target with
50 CHs.

We choose the prime number 13 and a round-robin algorithm
to increase the variation of the different sets of CHs sent to
a single server. Scanning with 50 CHs per server was a pure
trade-off between scanning speed and data quality (the scan
took more than four days).

Fig. 1 shows the number of Server Behaviors fingerprinting
with a subset of the 50 CHs could distinguish and the
collected information according to the Entropy (introduced
in Section III-D). A simple hill-climbing algorithm generated
the subsets, maximizing the number of distinguishable Server
Behaviors. The algorithm worked as follows: it iteratively
selected the next CHs that most increased the number of
distinct Server Behaviors. We considered only servers for

2At the time of the experiment, published in [10], we were using the Alexa
and Majestic instead of the Tranco [11] top list.

which every CH produced a fingerprint to remove the potential
bias from nondeterministic TCP errors. Fig. 1 shows that
every added CH enabled the differentiation of additional
Server Behaviors; however, the information gain decreased
the more CHs used. We could not reach the upper limit of
distinguishable behaviors and collected information. Based on
this analysis, we selected 10 general-purpose CHs with a good
performance distinguishing Server Behaviors. We thought that
selecting 10 CHs was adequate for our use cases because
the Entropy increase was low when using more than 10 CHs
(according to Fig. 1), we can directly compare related work,
and the number seemed acceptable for Internet scanners like
censys.io already fingerprinting with JARM [9]. However,
Section VI-C will illustrate that the number can be lower
for specific use cases and still provide good results. We only
manually adapted some cryptographic parameters of these CHs
that were too CPU-expensive, such as the 512-bit version
(secp521r1 [40]) of the elliptic curve domain parameters for
the precomputed TLS 1.3 Key Share. Enabling secp521r1
would have more than doubled our scanning time.

Through the experiment described in this section, we gained
a set of 10 general-purpose CHs that we will use for finger-
printing servers on the Internet in the following Section V.
They are a good trade-off between limiting the number of
requests and the resulting impact on the scanned infrastructure
and providing a high distinctiveness of the Server Behaviors.

V. LONGITUDINAL STUDY OF TOPLISTS AND BLOCKLISTS

To investigate the applicability of TLS fingerprinting on the
Internet, we measured top lists and two C2 blocklists over
one year. The following sections analyze the stability of the
fingerprints, apply the methodology to detect CDN and C2
servers, and compare it to related work. The two case studies
were selected to have one with a significant sample size where
the ground truth can be verified and one where the value of
the study is high but the sample size is small. We published
the raw measurement data that served as the basis of this
section under [41].

A. Data

We scanned servers from a top list and two blocklists over
60 weeks using 57 weekly snapshots starting July 4, 2022.
Three scans failed due to infrastructure problems and an issue
in the scanning scripts. We skipped these weeks.

Table III presents the number of scanned servers. A target
is the scanned combination of IP addresses, TCP port, and
domain name. We used the Tranco [11] top 1M list as the top
list. The last 30 days were used for the SSLBL [42], while
the current list was utilized for the Feodo Tracker [43]. We
took a considerable time frame for the SSLBL because the
published ports and IP addresses are just indicators and the
actual blocklist consists of certificate hashes. In the following
analyses, we only considered servers to be blocked by the
SSLBL if they returned one of the blocked certificates. The
combined list of around 1.8M weekly targets was taken as
input to the scanning pipeline, as described in Section III-E.
The scanning probes are the 10 CHs designed in Section IV
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TABLE III
TOTAL NUMBER OF COLLECTED DATA SAMPLES OVER 60 WEEKS FOR

THE LONGITUDINAL ANALYSES. ALSO SHOWS THE NUMBER OF

DISTINCT TARGETS AND DOMAIN NAMES THE DATA COVERS (M = 106)

Fig. 2. Percentage of targets with the same TLS fingerprint on the n − 1
and nth measurement in relation to the total targets fingerprinted on both
weeks. The Status Request extensions are responsible for the most unstable
fingerprints, with drops under 90% caused mainly by Cloudflare.

and the 10 CHs modeled after JARM [8], which allows us to
compare both approaches. However, unless stated otherwise,
the following analyses are only based on the 10 CHs designed
for this study. We consider targets successfully fingerprinted
if a fingerprint for each CH was collected. The total number
of targets was less than the sum of each list due to a small
overlap on the blocklists.

B. Consistency of TLS Fingerprints

The fingerprints only provide value for identification pur-
poses if they can be unambiguously assigned to a server, and
this assignment does not change; in other words, it is stable.

For each measurement, many servers were already seen in
the last measurement (≈ 66% each week); hence, their finger-
prints can be compared over time. Fig. 2 shows the relative
number of targets remaining stable during each measurement.
On average, the targets remained stable 99% of the time.
The stability drops to an average of 89% if the fingerprinting
includes the Status Request extension. In these cases, the
presence of the extension is nondeterministic. Interestingly,
after March 13, 2023, the stability improved even when
including the Status Request extension. We did not change
our methodology; the stability improvement was due to a
change seen from Cloudflare servers. Before the date, we
observed inconsistent results from Cloudflare of up to 14%,
and after the date, around 3%. Cloudflare is very dominant in
our data and was able to cause such statistically significant
effects (i.e., the Cloudflare AS was able to serve 29% of the
evaluated Tranco domains at least once). We confirmed the
behavior change with Cloudflare; apparently, they improved
their “OCSP Fetcher service” [44] during this time, increasing
the number of certificates with OCSP staples available.

TABLE IV
SERVERS SEEN WITH A TLS FINGERPRINT FROM THE RESPECTIVE CDN.

A STRONG CORRELATION BETWEEN BOTH CAN BE SEEN

This analysis concludes that Status Request extensions
should not be considered for obtaining useful fingerprints.
However, TLS fingerprints are, without the extension, a very
stable and consistent feature to identify servers. The subse-
quent sections analyze how fingerprinting can reveal whole
deployments of similar servers.

C. Case Study: Detecting CDN Server Deployments

A core assumption about active TLS fingerprinting is that
it reveals groups of similar server deployments. We tested this
assumption by analyzing the fingerprints of four major CDNs.
On the one hand, these are TLS-enabled servers deployed by
a single actor on a large scale. On the other hand, we can
verify if a server is a part of the CDN, effectively producing a
ground truth. Moreover, we found servers outside of the ASs
operated by the CDN that served CDN content.

The analyzed CDNs have in common that they use their
own ASs to deploy servers and CDN caches. Hence, we could
identify them by their AS, which we determined through
Border Gateway Protocol (BGP) dumps downloaded from
Routeviews [45] and Pyasn [46]. The content served by CDNs
is independent of the actual server or the IP address. The
CDNs decide on other criteria, like the SNI, which content
they should return. Similarly, the CDN selects the proper TLS
certificate for the requested domain. Hence, we can evaluate
whether or not a server is a valid CDN cache with our TLS
scanner. The server is verified as CDN cache if it completed a
valid TLS handshake for a domain we have manually observed
to be cached by the CDN and, therefore, proves possession of
a valid certificate and the respective private key.

This analysis focused on the CDNs of Cloudflare, Fastly,
Akamai, and Alibaba, as they provided promising results in
our previous work [10]. The CDN fingerprints were collected
based on the scanned IP addresses located within their respec-
tive AS. The HTTP Server header enhanced the mapping,
as described by Gigis et al. [24]. Note that the AS was
sufficient for Fastly to detect their CDN servers. Table IV
lists an overview of the results showing a strong correlation
between the TLS fingerprint and the CDNs. Almost all targets
with a CDN fingerprint were located within a CDN AS. In
addition, several targets we falsely assigned to one of the
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Fig. 3. Overview of the performance of the CDN server classifier for different
thresholds. Training and evaluation sets were the combined data over each
measurement. Based on this analysis, we selected a 40% threshold for the
detection over time.

CDNs turned out to be valid caches of the CDNs from Akamai
and Cloudflare outside of their respective networks. We will
discuss these targets in more detail in VI-D.

A multi-label classifier can be built using these data, accord-
ing to Section III-C, by identifying a CDN server purely from
its TLS fingerprints. To find a suitable classification threshold,
we present an overview of the precision and recall for different
thresholds in Fig. 3. Both metrics were evaluated according
to the definition in Section III-C on our whole dataset to
indicate a fitting threshold. Based on Fig. 3 we selected a
threshold of 40% for the rest of this section. The threshold
was a trade–off between a high detection precision and the
ability to detect caches outside of a CDN AS (labeled as non-
CDN server in the training set, falsely reducing the detection
probability). We can see that a threshold of 100% was suitable
for neither CDN, either because our initial training labels were
imperfect (in case of a wrong mapping of IP addresses to
ASs) or because the fingerprints were not entirely unique to
each CDN.

Having a reasonable threshold allowed us to evaluate the
multi-label classifier in more detail and over time. It was
trained with the data from weeks [1..n] and evaluated using
the data from week n + 1. Servers in the training set
were labeled CDN servers if their IP address was located
within the respective CDN AS, returned a valid certificate,
and had the appropriate HTTP Server header (according to
Gigis et al. [24]). To incorporate the CDN servers outside
of the CDN AS, we additionally labeled servers as CDN
servers in the evaluation set if we could validate them as
CDN cache with our TLS scanner. The predicted classes were
always unambiguous because the fingerprints of the CDNs did
not overlap. We evaluated precision and recall for each week
individually. Fig. 4 illustrates the CDN classification results.
The precision was high, with an average of 84% for Akamai,
99% for Cloudflare, and 97% for Fastly. The latter two had
networks that were much more uniform and easily clusterable
than those of Akamai. However, in contrast to our results from
2022 [10], the caches we detected from the Alibaba CDN
reduced over time, and after June 5, 2023, we could no longer
detect any targets. We observed a rising amount of servers

Fig. 4. Evaluation of a 40% threshold CDN server classifier. It was trained
with TLS fingerprints from weeks [1..n] and evaluated on week n.

responding with fingerprints we could attribute in most other
cases to Tengine or nginx webservers (inferred from the HTTP
header). These Web servers are not only deployed by Alibaba;
thus, they cannot infer a CDN cache. It is possible that we
observed a gradual technology shift in the CDN infrastructure.
Additionally, Alibaba and Akamai have a more diverse cloud
portfolio than the other examined companies, which could be
the reason for the lower precision and recall.

We observed an interesting drop in the recall for Fastly
in March 2023. A Server Behavior change caused the drop
because we suddenly observed new behaviors not covered by
the fingerprints from the previous measurements. Changing
Server Behaviors could relate to a software update or other
change in their infrastructure. We saw the new behaviors in the
later measurements stabilizing the recall. Therefore, a potential
fingerprint database must be regularly updated for the best
performance.

Sometimes, our fingerprints detected minor differences
among the deployments of the same CDN. In these cases, the
approach was too specific for the general use case to detect
just the CDN. We mitigated the problem by mapping multiple
fingerprints to each CDN, covering all of these variations. To
detect Akamai, Alibaba, Cloudflare, and Fastly, we have used
397, 2, 2733, and 1513 fingerprints, respectively.

In summary, with active TLS fingerprinting, large CDN
deployments can be identified because they share a mutual
TLS behavior. The precision was above 97% for some CDNs,
and we have found several CDN caches in unexpected ASs.
After showing that the approach works with major known
deployments, we will apply it to a much smaller sample size,
identifying potentially malicious C2 servers.

D. Case Study: Identifying C2 Servers

Aside from identifying CDN deployments, TLS fingerprint-
ing can identify and track potentially malicious targets like C2
servers.

We used blocklists containing C2 servers as an indicator
of malicious behavior. Table V presents the measurement
results for all servers from the blocklists grouped by C2
label (listing only successfully fingerprinted targets). The
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Fig. 5. Precision and recall to identify new observations on our input lists as C2 servers using the data described in Fig. 5abc as input for the classification.

TABLE V
FINGERPRINTING RESULTS FOR SUCCESSFULLY SCANNED C2 SERVERS.

COMBINING OUR FINGERPRINT (FP) WITH HTTP DATA RESULTS IN

MORE FPS AND DISTINCT TARGETS (TAR.) UNIQUE TO A C2 LABEL

Ransomware, AsyncRAT, Gootkit, and DCRat labels are from
the SSLBL [42]. The remaining labels are from the Feodo
Tracker [43]. Several fingerprints are unique to a specific type
of C2 server. However, these unique fingerprints cover only
a tiny part of all observations. Unique fingerprints gradually
increase by combining them with additional HTTP data (i.e.,
the HTTP Server header containing values like nginx or
Apache/2.4.18). New servers added to the blocklists
repeatedly had the same fingerprint as past servers; i.e., 9%
of the targets added during the week n + 1 had fingerprints
already observed for this label during weeks [1..n]. In other
words, fingerprinting could identify those servers.

This work uses the threshold-based classifier from
Section III-C to decide whether or not a server is a C2 server
from a blocklist. A server was labeled a “C2 server” if its IP
address was on the Feodo Tracker or the certificate was on the
SSLBL. We evaluated the classifier on every new target added
to the top list or blocklist during week n + 1 based on the
training data from weeks [1..n]. We evaluated the precision
and recall of the classifier for each threshold according to
Section III-C. The threshold serves as a tuning parameter; e.g.,
selecting a value of 80% means a fingerprint must be observed
more than 8% from C2 servers such that a new observation
with this fingerprint is classified as a C2 server.

Fig. 5 shows the results for three data sources used as input
for the classification. The classifier performance significantly
increases if we add HTTP data to the fingerprints by concate-
nating the TLS fingerprints with the HTTP Server header and
using the result as a fingerprint. The HTTP Server header alone
is not ideal for a classifier, but when combined, it achieves a
maximum precision of 9% for 7% of the added C2 servers and
a threshold of 91%. Interestingly, the highest precision was
not achieved with a threshold of 10% because several good-
performing fingerprints were only partially unique to blocklist
servers. The lower recall indicates that our fingerprinting
was not fine-grained enough to detect the differences in the
deployments needed to identify all C2 servers. Augmenting
the fingerprints with HTTP data was our solution to improve
the granularity for more effective fingerprinting.

This analysis demonstrates that many C2 servers had unique
TLS behaviors that allowed us to identify them. We presented
how a classification of these servers is possible on a large
scale and that such an approach can achieve high precision.
Furthermore, a potential fingerprint database for C2 servers
would live much longer than IP addresses on a blocklist, which
means they can provide valuable information about newly
deployed C2 servers until their IP address is publicly known.

E. Multi-Label C2 Detection

The previous section demonstrated the general feasibility of
C2 detection using active TLS fingerprinting. Moreover, the
unique C2 fingerprints from Table V indicate that it should be
possible to predict the type of C2 server. A more fine-grained
classifier can help explain the decision of the C2 classifier and
provide additional valuable information.

We performed the same classification from Section V-D
for each C2 label (every new observation is classified only
based on the data from previous weeks). Only this time,
we calculated the evaluation metrics on the combined data
from every week. This analysis focuses only on four selected
thresholds: 50%, 70%, 90%, and 100%. Table VI presents the
precision and recall per threshold and label. We can see that the
high precision from Table V was due to the detection of a few
C2 server types, especially QakBot and BumbleBee. We could
not classify some labels (i.e., GootKit and PikaBot) and others
above a certain threshold (i.e., Emotet and Dridex). In these
cases, the fingerprints obtained from the new observations
were either unknown to us or seen too often (depending
on the threshold) from servers on top lists. Note that the
sample size of the evaluation set was low for some labels;
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TABLE VI
PRECISION (P) AND RECALL (R) FOR A THRESHOLD (TH.)-BASED

CLASSIFICATION PER C2 LABEL ON COMBINED DATA (FINGERPRINT +
HTTP). SOME COMBINATIONS RESULTED IN NO PREDICTION (EMPTY)

therefore, the calculated precision should be treated with care.
For example, we found only 35 new observations labeled as
AsyncRAT (as listed in Table V), and the recall of 23% means
we successfully identified 8 of them. Arguably, more than such
a small sample size is needed to generalize the precision of
89% for the 100% threshold.

This section demonstrated that active TLS fingerprinting
can be used beyond a simple binary classification and can
distinguish the type of C2 servers. We showed that detecting
some C2 server types works well, with a precision above 99%,
while other labels could not be detected at all.

F. Comparison With JARM and DissecTLS

After analyzing the applicability of active TLS fingerprint-
ing for different use cases, the subsequent paragraphs look
at the performance of JARM [8] and DissecTLS [20], which
also allow the fingerprinting of TLS servers. While JARM
uses similar data to our approach, we show that the data
extracted from the TLS handshakes and the CH selection
of this work provide an improved base for fingerprinting.
DissecTLS surpasses both tools at the cost of its increased
probing, as explained in Section II-A.

We scanned every target with the CHs used by JARM, the
empirically optimized ones from this work, and the DissecTLS
scanner. Thus, we can compare the three approaches. We
did not use the open-source JARM script directly because it
could not scan the number of targets on our hardware fast
enough. Instead, we have used our scanner with the JARM
CHs and extracted the subset of features that JARM uses
to construct its fingerprints from our data. In particular, we
stripped fingerprints from alerts, any TLS message besides
the Server Hello, and any extension data besides the ALPN
(i.e., the IDs and the order of the extensions remained intact,
and we only removed the data contained in these extensions).
Table VII compares how selecting features and CHs affects
the fingerprinting results. DissecTLS works fundamentally
differently; thus, we can only evaluate the overall performance
instead of the two dimensions. The improvements proposed
herein consistently provide better results while maintaining
the number of requests necessary for fingerprinting the same
(i.e., 10 CHs). In total, this work can differentiate 62%
more Server Behaviors than JARM. Considering the C2

TABLE VII
COMPARING THE EFFECTIVENESS OF FINGERPRINTS (FPS) OBTAINED

WITH EFACTLS, JARM, AND DISSECTLS CONSIDERING BOTH THE

DIMENSIONS OF FEATURE SELECTION AND USED CHS

servers, the improved differentiation resulted in 15 unique C2
behaviors and 7.8 times more C2 servers identifiable with
these unique behaviors. In contrast, DissecTLS identified 2.4
times more Server Behaviors than EFACTLS, resulting in
23 more uniquely identifiable C2 behaviors. “Unique” means
we observed no overlap with any server found on a top
list. Interestingly, the number of distinct fingerprints suggests
our feature selection had a higher impact on the improved
detection than the used CHs. In contrast, the Entropy and
number of unique C2 fingerprints indicate the opposite was
the case.

In conclusion, TLS fingerprinting tools like JARM can
benefit from the advanced feature extraction and the sys-
tematic design of the CHs proposed in this work to
improve the approach’s effectiveness. Dynamic scanning tools
like DissecTLS can surpass both approaches; however, the
increased effectiveness comes with higher resource usage. A
more thorough comparison can be found in [20].

VI. DISCUSSION

With our TLS fingerprinting approach, we gained new
insights into the Internet and found interesting relations among
TLS servers. We discuss some of them in the following
paragraphs.

A. Advanced Similarity Comparison

This work explicitly does not obfuscate any information
as done by [6] and [8]. Keeping the syntactic information
of each part of the fingerprint intact supports explainability,
allows us to relate similar behaviors in the future, and adapt
the fingerprints afterward (e.g., removing the Status Request
extensions). Similar fingerprints can indicate deployments
from an actor who has done minor configuration changes.

B. The Success of Random CHs

Initially, we used the standard CHs from the Go library
and CHs mimicking popular browsers for fingerprinting.
However, they could not extract enough information from
servers to be effective in use cases because the requests
were similar, focusing on a few popular TLS parameters.
In contrast, the Random CHs were empirically optimized
to distinguish servers and have unusual combinations and
order of parameters. They vary in the combination of TLS
versions, ciphers, ALPN values, and supported groups and,
sometimes, are not realistic (e.g., offer ALPNs unsuitable for
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Fig. 6. Influence of the CHs on the C2 detection with an 80% threshold.

Web servers). Interestingly, two CHs use TLS 1.3, and none
use TLS 1.2 as the legacy_version; neither conforms
to the RFC [28]. In contrast, JARM uses more realistic CHs
with fewer parameter variations. They defined them through
systematic subsets (e.g., the top half) or a reversed order
from a fixed input. In conclusion, the Random CHs are
very successful for fingerprinting because they have a fuzzy
character triggering more distinctive responses.

C. Adequate Number of CHs for C2 Detection

We designed the 10 CHs as a general-purpose configu-
ration to provide a good base for classification. However,
for specific use cases, they can be different. We scanned
every server with 10 optimized and 10 JARM CHs; hence,
we can recompute the classification performance shown in
Fig. 5a using up to 20 CHs as input for an 80% threshold.
We used a similar optimization strategy to find the next CH
for the classification input, as in Section IV. We chose the
Entropy as a maximization metric because Table VII revealed
that the Entropy correlates better with the effectiveness of
the C2 detection than the number of unique fingerprints.
While the precision was high after three CHs, scanning with
additional CHs mainly increased the number of classified
servers (visible in the increasing recall). 18 CHs achieved the
maximum precision and recall, but the gain was minimal after
10 CHs. Interestingly, two of the first 10 CHs were from
JARM, providing a slightly higher precision (+0.8%) than our
10 general-purpose CHs To conclude, for the C2 detection
use case, multiple CHs are necessary, but a few less than 10
would have also provided good results. Additionally, future
work could implement an adaptive scanning approach where
additional requests are only sent to a server if the precision of
its current classification needs to be higher or the Entropy of
server’s fingerprint is too low.

D. CDN Caches in a Foreign AS

We could not correctly identify all the reasons why some
domains resolved to CDN caches in a foreign AS. In particular,
56% were located in an AS from Episerver, Amazon, China
Unicom, China Mobile, or Render. Interestingly, the whole
Render AS was proxied through Cloudflare, and every IP
address in the AS functioned as a CDN cache. Cloudflare
was the only upstream provider for the Render AS (checked
with [47]), effectively redirecting all traffic to the Render AS
to Cloudflare via the BGP. However, not every other AS that
seemed to contain a Cloudflare cache was redirected via BGP.

We may have observed the effect of operators trying to remain
in control of their traffic flow (e.g., by deploying a Meta-
CDN [48]) because 93% domains pointing to a CDN cache
in a foreign AS used a nameserver unrelated to the CDN.
To our knowledge, Cloudflare does not operate CDN caches
outside of their ASs. At least 11 of these caches were reverse
proxies set up by third parties; investigated with a tracing
endpoint3 suggested to us by Cloudflare. Additionally, our data
contained 204 outlier domain names resolving to the public
Domain Name System (DNS) resolver 1.1.1.1, which was
also a cache to the Cloudflare network. 59% of these domain
names used a Cloudflare nameserver. In contrast to Cloudflare,
Akamai has deployed CDN caches in more than 1k foreign
ASs to localize their traffic [49]. However, we detected just 16
ASs because we did not scan the full IPv4 address space, but
IP addresses resolved from the top list. Akamai uses the DNS
to distribute the load on their servers [49]. We assume, we saw
these ASs because our scan traffic was not always directed
to the closest CDN cache but distributed across servers in
multiple ASs.

E. CDN Inconsistencies

Some CDN caches were inconsistent in their responses
because not every IP address successfully responded to every
requested domain name. In the end, multiple domain names
were necessary to validate all caches. For Cloudflare, it was
only a single IP address located in China. For Akamai, bigger
clusters were visible and multiple domain names were needed
to verify them.

F. Unstable Fingerprints

Some targets had inconsistent fingerprints that could be
caused by the server or more complex setups. Sometimes, we
saw indicators of load balancers in the HTTP Server header,
indicating that the actual fingerprinted server changed during
the scan process. An inconsistent server is also the main
limitation of our approach because it relies on multiple TLS
connections to connect to the same Server Behavior. However,
inconsistent servers were rarely an issue (Section V-B).

G. Limitations of the Information Metrics

In this work, we used the number of fingerprints and the
Entropy as metrics to compare the effectiveness of finger-
printing approaches. However, both are only useful metrics
if the obtained fingerprints represent real-world server char-
acteristics and remain stable for the same Server Behavior.
Unstable fingerprints could trick both metrics into an unjus-
tified high value. Unstable fingerprints can happen either
because the methodology has flaws (e.g., it contains session-
specific information and produces a new fingerprint in each
connection) or because the servers produce a high entropy
(e.g., by shuffling the order of TLS extensions or other
parameters). Entropy can only compare the effectiveness of
fingerprinting approaches if each approach is guaranteed to

3https://cloudflare.com/cdn-cgi/trace
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provide only useful fingerprints. In EFACTLS, we confirm the
usefulness of our fingerprints with our measurement studies.
JARM uses a subset of our data, which means their fingerprints
are also useful. The DissecTLS [20] paper also shows its
applicability for fingerprinting with a measurement study.
Consequently, the proposed metrics allow a comparison of the
approaches in Table VII; however, additional tools must be
compared with care.

H. Alternative Comparison Metrics

We selected the Entropy to model the amount of
information obtained via active fingerprinting approaches.
Initially, we used the number of fingerprints as metric; how-
ever, Section V-F indicates that Entropy is a better metric
because it correlates more with the number of detected
C2 servers. Although alternatives to Entropy were proposed
it remains “the main tool in the analysis of the con-
cept of information” [50] since Shannon’s publication in
1948 [29]. An extension to our use of Entropy would be
to model Conditional Entropy that considers already learned
information. For example, a fingerprint might provide only a
little information if we already know from the IP address prefix
that the Server Behavior is most likely from a Cloudflare CDN
cache. However, Conditional Entropy drastically increases the
complexity of the metric because of the many possibilities
to model the condition. An alternative metric is to compare
fingerprinting approaches based on the performance of use
cases; e.g., the DissecTLS work [20] compares approaches
based on precision and recall of a C2 detection. However,
such classification metrics rely on the quality of a ground
truth.

Entropy has the advantage of providing a simple and
intuitive metric based only on the data source itself. Using
Entropy, Ground truth is optional and the metric can be
calculated before an actual use case is known.

VII. CONCLUSION

This work proposed a methodology for acquiring and lever-
aging TLS metadata through large-scale active measurements.
Two measurement studies conducted over a year on the Tranco
top list and two C2 blocklists support the value of this
approach. The two studies evaluate the detection of CDN and
C2 servers. The precision in classifying new C2 servers added
to the blocklists reached 97% and 99% for some C2 families.
Depending on the CDN and its infrastructure, the average
detection precision ranged from 83% (Akamai) to more than
97% (Cloudflare and Fastly). Additionally, we identified 555
IP addresses to serve CDN content outside of the AS operated
by the CDN.

The results were obtained with a reasoned selection of
features extracted from TLS handshakes and using multiple
scanning probes to construct fingerprints of the TLS stack on
servers. These probes were empirically optimized to provide
maximum information while minimizing measurement time
and the impact on targets.

This paper describes in detail how effective active
TLS fingerprinting can be conducted and demonstrates the

applicability of the approach to real-world classification
problems, such as C2 detection, demonstrating its rele-
vance in security contexts. Moreover, the extended feature
extraction and improved CH design can improve exist-
ing active TLS fingerprinting tools while maintaining their
scanning effort. Given that the approach is independent
of the actual CHs, future research may explore tuning
CHs for specific use cases or dynamically adapt them per
server.
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