
3522 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

CCS: A Cross-Plane Collaboration Strategy to
Defend Against LDoS Attacks in SDN

Meng Yue , Qingxin Yan , Zichao Lu , and Zhijun Wu

Abstract—Software-Defined Networking (SDN) actualizes the
separation of control and forwarding, innovates network func-
tionality with a logically centralized controller, and facilitates
network-wide collaboration. Contemporary SDN infrastructure
exposes potential bottlenecks which are prone to engaging low-
rate denial of service (LDoS) attacks. Currently, a great deal
of detection methods are deployed in the controller, and the
controller needs to poll the switch frequently, which brings heavy
load to the controller and the southbound link. According to
the analysis of existing researches, we focused on the how to
decrease the frequent polling of the controller and improve the
detection rate. In this paper, we adopted the idea of cross-plane
collaboration and proposed a two-phase detection framework,
which carried out the lightweight detection method in the data
plane and the in-depth detection based on Bayesian voting mech-
anism in the control plane. Once LDoS attacks are detected, the
controller recalculates routes for the bottleneck nodes using the
optimized Dijkstra algorithm to complete mitigation. Theoretical
analyses and extensive experiments are conducted to validate
the performance of our proposed method. Test results show that
our method outperforms other traditional methods in terms of
the detection rate of 99.1%, the detection delay of 1.3s and
the communication overhead of 1068 Byte/s, the average CPU
utilization of controller remains at approximately 3.5%. The
proposed method takes a step forward to enhance the security
of SDN.

Index Terms—Software-defined networking, low-rate denial of
service attacks, cross-plane collaboration.

I. INTRODUCTION

THE ADVENT of Software-Defined Networking (SDN)
has aroused great concern and research upsurge in

the network industry [1], [2]. SDN enables the separation
of the control plane and the data plane, helps to create
a “global view” of the entire network, improves visibility

Manuscript received 30 December 2022; revised 28 June 2023 and
24 January 2024; accepted 4 February 2024. Date of publication
7 February 2024; date of current version 12 July 2024. This work was
supported in part by the National Natural Science Foundation of China
(62172418, U1933108, U2133203), the Natural Science Foundation of Tianjin
China (21JCZDJC00830), the Scientific Research Project of Tianjin Municipal
Education Commission (2019KJ117), the Fundamental Research Funds for the
Central Universities of CAUC (3122020076) and the Additional Funds for the
National Natural Science Foundation of China by Civil Aviation University
of China (3122022PT05). The associate editor coordinating the review of this
article and approving it for publication was J. J. Yang. (Corresponding author:
Meng Yue.)

Meng Yue and Zhijun Wu are with the College of Safety Science and
Engineering, Civil Aviation University of China, Tianjin 300300, China
(e-mail: myue_23@163.com; zjwu@cauc.edu.cn).

Qingxin Yan and Zichao Lu are with the College of Electronic Information
and Automation, Civil Aviation University of China, Tianjin 300300, China
(e-mail: yanqingxin_1228@163.com; lzc273716@163.com).

Digital Object Identifier 10.1109/TNSM.2024.3363490

and policy consistency. Contemporary network further tends
to simplification and automatization. Through the layered
network architecture, the network administrator can program
the network system as required and push forward the under-
lying implementation without interacting with hundreds of
devices, thousands of lines of code and complex protocols.
The functionality pioneered by SDN precipitate service agility,
programmability, better performance characteristics and lower
latency to become the considerable factors of new network
construction. OpenFlow [3] has become the mainstream pro-
tocol of SDN in data center, which defines the communication
standard between SDN controller and switch. Low-rate Denial
of Service (LDoS) attacks [4], [5] mainly exploit the vulner-
abilities of various adaptive mechanisms in the network, such
as the congestion control mechanism in the TCP protocol and
the queue management mechanism of the router. The adaptive
protocol is designed to focus on the effectiveness, fairness and
stability of the system in the steady state, and its security is
not much considered, which leads to its own vulnerability. In
order to achieve the optimal performance, network protocols
often assume that the network is stable most of the time
and make efforts to ensure the performance of the network
in the stable state, but ignore the transient performance of
the network. LDoS attacks exploit the relatively low transient
performance of the network by periodically launching attack
flows of a certain strength to make the network constantly
fluctuate between failure and stability, thus reducing the
overall performance of the network. LDoS attacks generate
periodic high-speed short-time pulses with characteristics of
low average speed and high concealment, which enormously
increases the difficulty of detection. The Internet of Things
(IoT), cloud computing platform and big data center has a
significant risk of encountering such attack [6], [7], [8].

SDN carries the distinctive properties that allow the
LDoS attackers to concentrate on mining these vulnerabili-
ties [9], [10], [11], which constitutes a potential threat to the
entire SDN [12], [13]. Currently, the corresponding detection
technologies in SDN mainly face with the following problems.

(1) Countermeasures are routinely deployed on the con-
troller, these methods make the controller poll the data
collected by the switch for each test in order to ensure the
real-time detection. However, this brings a significant commu-
nication overhead between the switch and the controller, and
can even severely congests the southbound interface link.

(2) Extensive researches have been conducted based on the
advantages of centralized control and flexible data collection in
SDN [14], [15] and do not fully utilize the global perspective

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-1473-3729
https://orcid.org/0000-0002-6187-1980
https://orcid.org/0009-0001-0578-9034
https://orcid.org/0000-0002-0691-1767

YUE et al.: CCS: A CROSS-PLANE COLLABORATION STRATEGY TO DEFEND AGAINST LDoS ATTACKS IN SDN 3523

of the controller. For example, a considerable number of
researchers put the focal point on using machine learning
algorithms to detect attacks, and the number of training
features also shows a growing trend. In addition, training
the network and calculating numerous parameters can lead
to a significant detection delay and additional computational
efforts.

(3) Another serious challenge of intrusion detection is
derived from the diversity of network traffic. If observed only
at the traffic level, normal network communication behavior
may also appear to be “abnormal”. For example, mass network
activity and retransmission can lead to a surge in network
traffic [16], [17], which may have some similarities with
attacks, and ultimately leads to a high false positive rate.

In this paper, to solve the problem of the controller
frequently polls, we proposed a collaborative detection frame-
work between the control plane and the data plane, and
executed lightweight detection at the data plane. When
the switches find an exception, they report the specified
information to the controller through the south interface proto-
col OpenFlow. The controller collects the information reported
by all abnormal switches and makes a global judgment.

In the lightweight detection phase of the data plane, the
switches collect the statistical information of ports and flows.
In order to reflect the anomaly characteristics of the flow
table and the flow, we defined four indicators then designed
a threshold-based detection method. Once the switch catches
the exceptions of these characteristics, it will send encapsu-
lated messages to the controller through the south interface
to indicate where there the unusual circumstance appears
and provide a reliable feature basis for the controller. The
controller extracts the information reported by the switch
for statistical feature analysis to get the overall state of the
downstream nodes of the controller, and then uses the Bayesian
voting mechanism to detect whether the network is subjected
to the attack. The in-depth detection sufficiently takes advan-
tage of the characteristics of the global perspective of the
controller. The controller provides intention or policy-based
management for the entire network. It serves as a centralized
or distributed intelligent entity with an overall view of the
network, according to which routing and handover decisions
can be made. Once the controller detects the LDoS attack,
it starts the mitigation mechanism for the bottleneck node,
calculates the backup path by using the optimized Dijkstra
algorithm, and issues the flow rules to the corresponding
switches to complete the transfer of the original traffic on
the bottleneck link. The cross-plane collaborative detection
method reduces the load pressure on the controller and the
southern communication link, ensures real-time detection, and
enables the controller to make decisions in a timely manner.

The main contributions of this paper can be summarized as
follows.

(1) We proposed a cross-plane collaborative detection archi-
tecture. First, lightweight detection is carried out in the data
plane. If there is an exception, the controller conducts a
global in-depth detection. This method effectively reduces the
communication overhead caused by frequent polling of the
controller.

(2) We deployed the lightweight detection method in the
data plane and we proposed four new features to characterize
the behavior of LDoS attacks, so as to effectively distinguish
anomalies. These features are lightweight and will not signif-
icantly increase the burden of the switches.

(3) A global in-depth detection method based on path aggre-
gation is deployed in the controller, and the detection model is
established by using Bayesian voting mechanism. This method
depends on the global perspective of the controller, and can
accurately identify attacks and locate the bottleneck nodes that
are affected.

(4) We used the improved Dijkstra algorithm to reroute the
victim bottleneck nodes, so as to complete the mitigation and
recover the link performance. The controller monitors the local
behavior of nodes, quantifies the traffic size of each destination
and the bandwidth capacity of the node outlet port as weights,
and forms the final decision.

Our research gives full play to visibility and policy con-
sistency, and has practical significance in combating LDoS
attacks.

The rest of the paper is organized as follows. Section II
presents the related works, summarizes the current research
status and subsistent bottlenecks, and presents the motiva-
tion of this paper. Section III describes the principles of
LDoS attacks in SDN scenarios. Section IV expounds the
architecture of our proposed framework. Section V covers
the experiments to verify the proposed detection method
and mitigation method, and conducts comparisons with other
methods. Section VI concludes this paper and discusses the
future work.

II. RELATED WORKS

LDoS attacks were first found in 2001 by Asta Networks
after six-month monitoring on Internet2 Abilene back-
bone [18]. Then, Kuzmanovic and Knightly first published
its principle at the SIGCOMM in 2003 [5]. Later in 2004,
the website www.qq.com was attacked by such attack [19].
Although LDoS is a traditional attack, new network scenarios
(such as SDN, cloud data center networks) provide greater
space for such attack [20], [21], [22], [23].

LDoS attacks traffic has the characteristic of intermittency,
with a relatively low average rate, making it difficult to defend
against such attacks with existing methods. LDoS attacks can
avoid detection and prevention more effectively, which brings
new challenges to the research of attack prevention. Traditional
middle-box based DoS attack defense mechanisms lack mon-
itoring flexibility. The characteristics of the separation of
control and forwarding as well as programmable network
behavior provide new ideas for the detection and defense of
LDoS attacks in SDN [24]. Although there have been some
researches on LDoS attacks against SDN architecture [25], the
overall situation is still comparatively insufficient.

Yue et al. [26] have developed two LDoS attack models that
effectively limit TCP throughput and improve attack potency,
urging the defenders to develop corresponding methods from
the perspective of attack and defense game. Cao et al. [20]
used LDoS attack pulse flow to destroy the shared link in

3524 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

the control path and data path, causing the delay of the
control flow and indirectly affecting the core services of SDN.
Wu et al. [27] verified that LDoS attacks can cause changes in
the essence of network traffic, and also change the eigenvalue
Holder index of network traffic. Based on this, they proposed a
multifractal-based LDoS attack detection method, and detected
LDoS attacks according to the abnormal changes of the Holder
index. Xiang et al. [28] innovatively proposed to use two
new information metrics, the generalized entropy metric and
the information distance metric, to detect low-speed DDoS
attacks by measuring the difference between legitimate traffic
and attack traffic. Xie et al. [29] analysed LDoS attacks
exploiting the limited Ternary Content-Addressable Memory
(TCAM) finiteness of SDN switches, and designed a flow table
overflow prediction module and a flow table item deletion
policy for such attacks, so as to effectively detect and suppress
such attacks. Tang et al. [21] proposed the Histogram-Based
Gradient Boosting and Finding Peaks (HGB-FP) algorithm
framework. In addition to accurately identifying LDoS attacks,
it can also locate attackers through the peak attribute of the
traffic. In [30], Tang et al. used machine learning algorithm
to determine whether LDoS attacks occur by extracting traffic
characteristics, and locate attack sources and victims through
time-frequency analysis. In order to detect and mitigate DoS
attacks against SDN, Gao et al. [31] put forward a defense
framework called FloodDefender, which uses new frequency
characteristics to detect attacks. And the mitigation module
implements three new technologies: table-miss engineering to
prevent communication bandwidth from running out, packet
filter to filter out attack traffic and save computing resources
of the control plane, and flow rule management to elim-
inate most useless flow entries in the switch flow table.
At present, traditional attack detection methods focus on
detecting whether DoS attacks occur in a single aspect, while
ignoring to find the path of the attack flow through the
network. This increases the difficulty to defend against DoS
attacks. Cao et al. [32] presented a detection method based
on Spatial-Temporal Graph Convolutional Network (ST-GCN).
It senses the state of the switch through in-band network
telemetry (INT) sampling, inputs the network state into the
spatiotemporal graph convolutional network detection model,
and finally finds the switch through which DDoS attack traffic
passes. Han et al. [33] put forward a monitoring algorithm
based on flow density and a classification algorithm based on
machine learning, which are deployed on the data plane and
control plane respectively to achieve efficient collaboration
intelligence. Wang et al. [34] proposed a controller scheduling
mechanism called BWManager, introduced a priority mech-
anism based on bandwidth prediction, and designed a new
weighted loop algorithm to handle requests with different
priorities. Imran et al. [35] proposed a simple and lightweight
detection and mitigation system named DAISY to protect
SDN from DoS attacks by blocking malicious traffic from
attackers. El Houda et al. [36] conducted a multi-stage defense
scheme against DDoS attacks. They measured the randomness
of traffic with entropy, and classified it according to entropy.
Li et al. [37] used the random forest algorithm to select the
characteristics of the training data for the BP neural network,

and improved the Bat Algorithm to build an LDoS attack
detection model. Xie et al. [38] proposed SoftGuard, which
utilizes adaptive Fast Fourier Transform to determine whether
the aggregated TCP throughput has periodicity to confirm the
low-rate TCP attack, and uses the average Euclidean Distance
to accurately identify the attack flow. By installing mitigation
rules in the entrance switch, the identified attack flow can be
effectively suppressed.

Through comparative analysis of existing literature, we find
that most of the defense mechanisms take advantage of the
centralized control and flexible acquisition of the controller
but fail to fully use the global perspective of the controller.
Some machine learning based methods have a high detection
rate, but there may be a certain detection delay. In addition,
the controller needs to frequently poll the traffic statistics
from the data plane switch for attack detection, which will
increase the load of the southbound channel. In order to solve
the problems above, we proposed a cross plane collaborative
overall detection mechanism that extracts new attack features
and conducts lightweight detection and depth detection in
the data plane and control plane respectively. This technol-
ogy examines network behavior from both local and global
perspectives, producing comprehensive conspicuousness. The
data plane is based on the abnormal behavior of the a single
switch’s flow table and controls the abnormal behavior of the
traffic, while the control plane is based on the aggregation
phenomenon of abnormal nodes throughout the network. The
cooperation mechanism improves the overall efficiency of the
system, reduces the frequent polling of the controller, and can
achieve more accurate detection.

III. BRIEF REVIEW OF LDOS ATTACK IN SDN

LDoS attacks under SDN not only affect the throughput
of normal TCP data traffic, but also interfere with control
traffic [20]. Therefore, this attack is more harmful to SDN
than to traditional networks [21]. Commonly, the attacker
first probes the bottleneck link as target using network mea-
surement technologies [20], [22]. Here, the bottleneck link
is a link with small available bandwidth and shared by the
control traffic and the data traffic. The aggregation of multiple
flows facilitates small available bandwidth, such as TCP incast
(many-to-one communication model) [39], the under-provising
in cloud data center network [22]. The in-band development
of controller in SDN forms the shared link. Once a bottleneck
link is determined, the attacker then launches attack data traffic
to fill up the bottleneck buffer. In this case, due to TCP
congestion control on the data channel, the link utilization rate
is extremely low. Moreover, control packets delivered on the
control channel may also be delayed or dropped, which causes
the network functions enabled by the controller to be almost
paralyzed. We illustrate the attack scenario via an example in
Fig. 1.

In Fig. 1, we build an in-band developed SDN network con-
sisting of four switches {S1, S2, S3, S4} and eight host users
{h1, h2, h3, h4, h5, h6, h7, h8}, where h2 and h3 communicate
through links h2−S1−S2−h3, while h1 and h4 communicate
through links h1−S1−S2−h4. We assume that the control path

YUE et al.: CCS: A CROSS-PLANE COLLABORATION STRATEGY TO DEFEND AGAINST LDoS ATTACKS IN SDN 3525

Fig. 1. LDoS attack scenario in SDN.

Fig. 2. LDoS attack model.

between S2 and controller C is S2–C, the link between S1 and
S2 is the shared bottleneck link, h1 and h2 send normal traffic
to h3 and h4. Assume h7 is the attacker who sends LDoS
attack traffic to h8 through the bottleneck link. The attack
packets cause congestion in the bottleneck link, and normal
traffic passing through the bottleneck link will be affected.
The traffic from h1 and h2 (they belong to region of S1) to
h3 and h4 needs to pass through the bottleneck link, so the
throughput of h1 and h2 will decrease sharply. LDoS attacks
can also affect the delivery of control traffic. S1, S3 and S4
are affected switches, since the bottleneck link is also used
by the control paths S3 − S1 and S4 − S1. Consequently, the
control messages delivered on these paths may be delayed or
dropped.

As shown in Fig. 2, the LDoS attack can be modeled by
a series of on-off square bursts with rate R, width L, and
period T [5]. The attacker can implement such attacks using
well-configured attack parameters <R, L, T> [24]. R should
exceed the bottleneck link capacity at least, to induce packet
loss. L should be the same scale of RTT, which makes it long
enough to induce timeout but short enough to avoid detection.
Commonly T should be set to an RTO, by doing so, when
flows attempt to exit timeout, they are faced with another loss.
According to Fig. 2, although R exceeds the bottleneck link,
the average rate (L × R/T) is still low. Therefore, it is called
LDoS attack.

IV. DEFENSE METHOD DESIGN

A. Overall Architecture Design

The purpose of cooperative detection is to reduce the
frequent polling of the switch information by the controller,
and only take further action when the switch detects an

Fig. 3. The overall architecture design.

Fig. 4. Lightweight detection architecture design.

exception. We used the available computing resources of the
switch to complete lightweight detection on the data plane.
And when exceptions are detected, we further performed in-
depth detection on the control plane. The overall architecture
design is shown in Fig. 3.

We extracted the flow table and flow characteristics for
attack detection, so that the detection method can catch the
abnormal situation. The Bayesian voting mechanism is used
for depth detection based on global topology, which enables
the controller to accurately detect LDoS attacks.

B. Lightweight Detection Method

1) Data plane detection architecture: In the SDN environ-
ment with OpenFlow as the communication and interaction
protocol, the OpenFlow switches collect port and flow statis-
tics without additional collection devices. In SDN, when the
switch receives a packet, the packet needs to match the flow
table and be forwarded according to the flow rules. For a new
data flow, that is, there are no match items in the flow table, the
switch will send Packet_ in messages to the controller, the con-
troller will send Packet_ out messages to issue flow rules and
complete the forwarding of the traffic. Reference [40] pointed
out that the data plane has certain programming capability.
The existing OpenFlow switches have one or more Central
Processing Units (CPUs). These processors have extraordinary
computing power and generous unused resources, making it
possible to deploy detection methods in the data plane. The
lightweight detection architecture is shown in Fig. 4.

Firstly, the switch periodically collects flow table
information and flow information and extracts features.
This method detects these indicators in real time. Once the
threshold is exceeded, an exception may occur in the network.
At this time, the switch will send alarm information to the
controller.

3526 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

2) Feature extraction: In order to reflect the abnormal
characteristics of the flow table, we defined two indicators:
flow table matching mean A and matching popularity D. The
formulas are as shown in Eq. (1) and Eq. (2).

A =
N∑

i=1

Ci/N (1)

D = max(Ci) (2)

where Ci is the matching times of the i-th flow rule of the
port, and N is the total number of flow rules. Since LDoS
attacks mainly affect TCP long connections, A is featured
by a steady decrease under abnormal conditions. The LDoS
attack is a periodic high-speed pulse. It generally uses small
packet attacks (to improve attack efficiency) and matches the
same flow rules (in order to make the attack packets enter the
queue quickly and avoid the delay caused by the controller).
Therefore, the flow table shows that the value D of a flow is
extremely high during the flow table timeout period.

In addition, we define the entropy value E of bottleneck link
queue change, the formula is shown in Eq. (3).

E = −
n∑

i=1

L1 + L2 − P

C
log2

L1 + L2 − P

C
(3)

where L1 is the cache queue at one end of the bottleneck link,
L2 is the queue length of the bottleneck link transmission, P is
the length of congestion packet loss, and C is the capacity of
the bottleneck link. The core idea of LDoS attacks is to attack
the bottleneck link or router and cause instant congestion.
This leads to the loss of many TCP packets, thus forcing the
network to send congestion signals. As a result, the source
side activates the TCP congestion control mechanism, which
adaptively adjusts the size of the sending window and try
to recover to a stable state. Periodic attacks can cause TCP
performance shocks and severely reduce TCP throughput.
Meanwhile, the queue length is extremely unstable and fluctu-
ates significantly. Under abnormal conditions, entropy E will
increase. A threshold-based detection method can be formed
according to the above four features.

LDoS attacks show certain new features under SDN, such as
the impact on the control flow. In order to reflect the abnormal
characteristics of control flow, the influence factor of control
flow transmission capability F is defined, using the formula
shown in Eq. (4).

Fl =
λl

rl
cl

+ cl
cl−rl

(4)

where λl refers to the delay of link l, cl refers to the physical
bandwidth of link l, and rl refers to the available bandwidth of
link l. LDoS attacks can increase the delay of control flow and
reduce the available bandwidth of link l, causing F to increase
under abnormal conditions.

The above feature-based detection relies on the threshold
decision scheme. We use an adaptive mechanism based on
EWMA (exponentially weighted moving average) to dynami-
cally update the threshold:

Th(i) = (1−w)× Th(i) + w × Th(i − 1) (5)

Fig. 5. Control plane detection architecture.

Fig. 6. Example of aggregation relation.

where Th(i) denotes the current threshold for a specific feature,
Th(i–1) denotes the prior threshold and w denotes the weight
ranging from 0 to 1.

C. Global Detection Method

1) Control plane detection architecture: The control plane
is responsible for network control and information collec-
tion. The control plane’s global view function can enable
real-time monitor and adjustment of the network through
the OpenFlow protocol, and can also collect the global
information. OpenFlow allows the controller to dynamically
specify the forwarding behavior of the SDN switch by
installing flow rules. The lightweight detection made by the
data plane reduces the load pressure on the controller and the
south communication link. This ensures the real-time detection
and enables the controller to make decisions rapidly. The
detection architecture of the control plane is shown in Fig. 5.

After the data plane completes lightweight detection, the
switch that detects the exception sends a report message to
the controller. The message includes the next hop node (Sw.
Next hop) of the abnormal port and the available bandwidth
(Sw. Bandwidth) of the port and reflects the overall state of
the downstream nodes of the controller. According to this, the
controller can obtain two pieces of information: 1) the network
topology formed by the abnormal switches, 2) the location
of bottleneck nodes, that is, where is the minimum available
bandwidth on a path in the network topology. If these switches
that report exceptions have a certain topology relationship
(defined as an aggregation relationship, expressed by the
aggregation index), and the minimum available bandwidth is
at the end of the path, the controller determines that LDoS
attacks occurr. Fig. 6 shows an example of the aggregation
index.

As shown in Fig. 6, all nodes form a topology. From the
global perspective of the controller, A, B, C, D are the switch

YUE et al.: CCS: A CROSS-PLANE COLLABORATION STRATEGY TO DEFEND AGAINST LDoS ATTACKS IN SDN 3527

nodes that report exceptions. The exception ports of A, B, C,
and D are Ports 0, 2, 1, and 2 respectively, and the bottleneck
port of D is port 2. Node A and node B’s next hop is exception
node C. At this time, the aggregation index is defined as 1
and the next hop of C is exception node D, and then the
aggregation index is defined as 3 and the next hop of D is
abnormal node E. At this time, the aggregation index is defined
as 4. The four nodes form an abnormal topology with the
bottleneck link at the end of the abnormal topology. At this
time, it meets the conditions that the controller determines the
occurrence of LDoS attacks, and sends control information to
the switch for real-time mitigation. We used Bayesian voting
mechanism to model the aggregation index.

2) Bayesian voting algorithm: In this paper, we utilized
the Bayesian voting mechanism to establish the aggregation
index relationship. The Bayesian voting algorithm places all
test nodes at the same confidence level, meaning that malicious
nodes will also vote positive for abnormal nodes. If there are
a great number of abnormal nodes, the detection rate will be
terribly inferior. To address this issue, we introduced weights
to improve the algorithm. From the global perspective of the
controller, there are N1 normal nodes and N2 abnormal nodes.
The weight values of normal nodes and abnormal nodes are
as shown in Eq. (6) and Eq. (7).

W1 =
N1

N1 + N2
Sw .Bandwidth1 (6)

W2 =
N2

N1 + N2
Sw .Bandwidth2 (7)

Among them, Sw .Bandwidth1 and Sw .Bandwidth2 respec-
tively indicate the available bandwidth of the normal port and
the abnormal port reported by the switch to the controller. The
total number of votes of node vi is shown in Eq. (8).

N1+N2∑

j=1

Vji = W1 ∗
N1∑

j=1

Vji +W2 ∗
N2∑

j=1

Vji (8)

wherein, W1∗
∑N1

j=1Vji represents the total number of votes of

normal nodes, and W2 ∗
∑N2

j=1Vji represents the total number
of votes of abnormal nodes. The average number of votes of
node vi is shown in Eq. (9).

vi_ave_number =

∑N1+N2
i=1 vi_number

N1 + N2
(9)

wherein,
∑N1+N2

i=1 vi_number indicates the number of votes
of node vi . The overall average voting value of the network
topology is shown in Eq. (10).

all_ave_voting =

∑N1+N2
i=1 Vji

N1 + N2
(10)

Therefore, the mean Bayesian voting value of node vi is
shown in Eq. (11).

Bayes_voting(vi)

=
vi_ave_number ∗ all_ave_voting +

∑N1+N2
j=1 Vji

vi_ave_number + vi_number
(11)

Algorithm 1 Bayesian Detection Algorithm for Node vi
1: Input: Available bandwidth Sw. Bandwidth of next hop

node of node vi
2: Information base of normal node Ni= NULL
3: Information base of abnormal node Ai= NULL
4: if time�=0
5: Collect information of all next hop nodes Ri

6: end if
7: for j=1 to Number of next hop nodes
8: if Sw. Bandwidth ε Ni

9: vij = 1,
10: else if vij = −1
11: end if
12: end if
13: end for
14: for i = 1 to Number of nodes
15: Calculate the voting value voting(vi) of node vi

16: if |voting(vi) – Bayes_voting(vi)| converges to param-
eter σ

17: max(|voting(vi) – Bayes_voting(vi)|) corresponding
to the bottleneck

18: Determine LDoS attacks occur
19: end if
20: end for

We suppose that voting(vi) represents the voting value of
node vi , if the difference |voting(vi) – Bayes_voting(vi)| con-
verges to the parameter σ (i.e., it aggregates towards a specific
value), it is considered that the aggregation relationship is
satisfied. Parameter σ represents a preset benchmark, which
can be set according to experimental statistics and network
measurements in practice [41], [42]. In addition, this Bayesian
voting algorithm is substituted into the weight formula (5)(6).
This weight is proportional to the bandwidth. If the value
of the bandwidth of node vi is relatively small, and the
corresponding weight value is also small, the final difference
will be larger, and then the maximum value corresponds to
the bottleneck position (Maximum aggregation index). After
these two conditions are met, the controller will determine that
LDoS attacks occur.

Algorithm 1 shows the specific process of Bayesian vot-
ing algorithm. The controller views nodes’ behavior from
the global perspective and takes the bandwidth reported by
the switch as an indicator. If the connection of node 1
to node 2 is detected as normal, then node 1 to node 2
will vote positively, vij=1. Conversely, vij = −1. Then
we calculate the voting value voting(vi) of node vi . If
|voting(vi) – Bayes_voting(vi)| converges to parameters σ
and max(|voting(vi) – Bayes_voting(vi)|) (i.e., the aggregation
index is the largest) corresponds to the bottleneck location,
at this moment, the controller determines that LDoS attacks
occurr.

D. Mitigation Mechanisms Based on the Re-Routing Strategy

The existing link recovery and mitigation schemes are
generally divided into two methods, active and passive [43].

3528 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

Active link recovery refers to the process where the controller
calculates the corresponding backup path and stores it in
the relevant switch nodes before a failure occurs. When
the link detects an abnormality and generates congestion, it
quickly reroutes the data packets along the calculated backup
path. However, active recovery and mitigation solutions will
occupy the TCAM resource of the switch. The passive link
recovery scheme refers to the operation that when a link
abnormality is detected, the controller calculates and issues
routing commands to the switch node. This paper adopts a
passive link recovery and mitigation scheme, which only takes
the next action when an abnormality is detected in the link and
this scheme does not occupy switch resources. The paper’s
core objective is to improve routing efficiency, shorten link
anomaly time, and restore link performance.

In the SDN architecture, Jiang et al. [44] extended the
Dijkstra algorithm. When solving the single source shortest
path problem, they not only considered the weight of edges,
but also the weight of nodes. This method improves the
routing efficiency. Li et al. [45] used an optimized genetic
algorithm for routing and set objective functions for multiple
QoS parameters. The proposed algorithm effectively reduced
the packet loss rate and latency of the link. Tanha et al. [46]
used a more complex routing strategy based on the ant colony
algorithm, where individuals in the ant colony correspond to
the routing strategy. This process involves continuous iteration
and updating while also setting budget constraints, and then
continuously updates the routing strategy to achieve optimal
results. This method often requires more computing time
while the users’ demand for network services is becom-
ing increasingly time sensitive, making it unrealistic to use
the controller for excessive computation in the presence of
attacks.

After the controller captures the bottleneck position, it will
recalculate the backup path for the bottleneck nodes and
instruct the corresponding switches to install flow rules to
complete the transfer of the data flow from the original bot-
tleneck link. The controller collects the flow table information
of the abnormal switches after calculating the route and
rephrases the forward port in the forward table according to the
calculated new path. Then the controller sends the new forward
table entry into the abnormal switches, guaranteeing that all
the data groupings are forwarded out by the alternate path,
and ensuring the normal communication of subsequent clients.
The mitigation performance is measured by the recovery time,
the available bandwidth and delay of the bottleneck link, the
throughput and delay of the control packets. This paper used
the optimized Dijkstra algorithm to reroute data packets. The
rerouting strategy is shown in Fig. 7.

In Fig. 7, the attacker attacks the bottleneck link S1−S2, so
that the request of the normal user User1 cannot be responded.
The controller quickly calculates a new path according to the
Dijkstra algorithm, that is, User1−S1−S4−S5−S6−User2.
This effectively mitigates the LDoS attack.

At present, the most widely used controllers in SDN, such
as Ryu and Pox, use Dijkstra as default routing algorithm.
The SDN controller has a global perspective, and through
the LLDP Protocol (Link Layer Discovery Protocol, LLDP)

Fig. 7. The rerouting strategy.

it can obtain basic information of the network, such as
network topology, bandwidth, latency, etc., forming an overall
resource view. The controller uses the Dijkstra algorithm
to calculate the shortest path from the source node to the
destination node, but this shortest path is not necessarily the
optimal path. The development of SDN and the complex
and ever-changing needs of the real network environment
have increased the difficulty of selecting the optimal path. In
path selection problems, a single metric parameter cannot be
selected as a constraint to make reliable path planning [47].
This will lead to some unnecessary congestion and reduce link
utilization. At the same time, we should not only consider the
reachability of the link, but also take the real-time changing
network parameters into account in the path planning. Then we
should use the characteristics of centralized management of the
controller to plan the most suitable forwarding path. Therefore,
on the one hand, we should save the cost of path consumption.
On the other, it is necessary to consider the performance
changes of the selected link in real-time, measure the traffic
distribution throughout the entire network, and improve the
reliability of routing.

Obviously, the traditional Dijkstra algorithm cannot meet
these requirements, especially when the network is under
attack, the link performance changes greatly and is extremely
unstable. Therefore, improving link utilization is particularly
important. The traditional link recovery scheme does not
consider factors such as traffic scheduling and historical
failures when calculating backup routes. If a suitable backup
path is not selected, it may exacerbate network congestion.
When making routing decisions, the controller often faces the
following problem: the performance indicators of the path to
the destination may vary over time. So the routing decision
system must be able to perceive changes in some performance
indicators, such as capacity, link utilization, and bandwidth.
The centralized controller receives the relevant states of nodes
in the network and forms the final routing decision. In order
to implement a bottleneck node mitigation strategy, it is
necessary to know the traffic size of each destination and the

YUE et al.: CCS: A CROSS-PLANE COLLABORATION STRATEGY TO DEFEND AGAINST LDoS ATTACKS IN SDN 3529

Fig. 8. Improved Dijkstra algorithm.

bandwidth capacity of the node’s exit port. In this paper, the
performance indicators of real-time traffic are included in the
decision-making process. Two parameters m1 and m2 are
defined to represent the traffic size of each destination and
the bandwidth capacity of the node’s exit port, respectively.
These two parameters are used as decision indicators for the
controller to select the nodes included in the optimal path. The
optimized flowchart is shown in Fig. 8.

As shown in Fig. 8, V represents the set including all N
nodes in the network, the set S only contains the source node s,
and T represents all other nodes. Our algorithm first traverses
the distance from each node i in T to s and selects the node
k with the shortest distance. Then, it determines the current
traffic size m1 of node k and the bandwidth m2 of the traffic
exit port, so that the throughput of the bottleneck link is n1
and the bottleneck link capacity is n2. If m1 < n1 and m2 >
n2, it moves k from T moves into S. Next, it traverses the
distance from nodes j left in T to k, and update the shortest
distance from s to j according to dist[s, j] = min[dist[s, j],
dist[k, j]+w(k, j)]. If m1 < n1 and m2 > n2 is not satisfied,
k is removed, and the left nodes is checked again. Loop the
above process until all nodes are moved to S. Finally, it gets
the shortest path.

Fig. 9. Experimental topology.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Environment Configuration

The experimental platform is mainly composed of the
Mininet simulation tool and the Pox open-source con-
troller. Mininet is a standard work simulator for SDN. It
supports multiple versions of OpenFlow protocols and can
create a virtual network containing controllers, switches, hosts
and links. It is the first choice of most researchers at present.
The Pox controller is written in Python language and has a
complete set of programmable interfaces that perfectly support
the OpenFlow protocol. Developers can use the interface
provided by the controller for free design and research. The
hardware used in the experiment mainly includes two physical
hosts with quad-core Intel Xeon CPU E5504 and 64GB
RAM, which deploy Pox controller and Mininet simulation
network respectively. The experimental topology is shown in
Fig. 9.

According to the attack principle reviewed in Section III,
the experimental scenario commonly considers two folds. One
is that the target link is shared by data traffic and control
traffic, and both the control plane and the data plane are
affected. The other is configuring the link bottleneck and
using a TCP-oriented periodic on-off “square-wave” attack
traffic to decrease the attack rate. As shown in Fig. 9, the
experimental platform consists of six Open vSwitch switches,
one Pox controller and six hosts. In Fig. 9, h1 is the attacker,
and h2, h3, h4, h5 and h6 are all legitimate users. h1 sends
attack traffic to h4, h2 sends normal traffic to h3, and h5
sends background traffic to h6. We set the bottleneck link
between S3 and S4 with 15Mbps bandwidth and 10ms one-
way delay. The bandwidth of other links is 100Mbps, and
the link delay is 1ms. The background traffic is generated
by the D-ITG [48] tool, while the normal traffic is gen-
erated by the traffic generation tool Scapy [49]. We used
Socket to continuously initiate connections to simulate attack
flow. Unlike the traditional flooding DoS attack, the LDoS
attack does not launch large-scale attack flows, but precisely
designs attack parameters to conceal its behaviors. Here,
we set the attack parameters <R, T, L> to <15Mbps, 1.2s,
400ms>. In addition, we set the size of the switch flow
table to 1500 [50]. Totally, the above network settings and
attack parameters are typical and commonly used by existing
studies [20], [21].

3530 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

Fig. 10. Flow table matching mean.

B. Detection Performance Analysis

In this section, we analyzed the detection performance of
lightweight detection method through quantitative indicators
and the performance of depth detection based on the Bayesian
voting algorithm.

1) Lightweight Detection in Data Plane: In the experiment,
we collected 30 groups of flow table matching mean A under
normal and attack scenarios respectively. The variation of A
is shown in Fig. 10.

Fig. 10 shows that in the attack scenario A has decreased.
These sampling points represent different flow rules. The
attacker successfully matches the flow rules after sending
a large number of packets in the first period, resulting in
an initial increase of A. Before these flow rules expire, the
attacker will send the same packets to the switch. At this
time, there are flow rules installed in the last period, and
no matching is performed. Therefore, in the attack scenario,
the matching times of flow rules will decrease. Under normal
circumstances, the specific access requirements of users have
tremendous randomness, while packets vary in size and may
match different flow rules. Therefore, the matching times of
the i-th flow rule will be relatively high.

We collected 30 groups of matching popularity D under
normal and attack scenarios respectively. The variation of D
is shown in Fig. 11.

Fig. 11 shows that the matching popularity D of a certain
flow rule in the attack scenario appears at a high value. This
is due to the attacker sending a large number of data packets
in the first period, which match a significant number of flow
rules. As a result, the flow table fills up quickly, and the
maximum number of times a flow rule is matched can be
close to the upper limit of the flow rule capacity. Under
normal circumstances, the packet requirements of legitimate
users will match different flow rules randomly, so the matching
popularity of a flow will appear at a low value.

We collected 30 groups of data on the influence factor F of
control flow transmission capability under normal and attack
scenarios respectively. The variation of F is shown in Fig. 12.

SDN architecture with in-band deployment [26] has
attracted an increasing number of attention due to its positive

Fig. 11. Matching popularity.

Fig. 12. The influence factor of control flow transmission capability.

flexibility and economic deployment. However, in the SDN
with in-band control [51], [52], the control flow and data
flow share a physical link for forwarding. Since the attack
can increase the delay of the control flow and reduce the
available bandwidth of the link, the transmission capability
impact factor F of the control flow in the attack scenario
remains at a high value (15-25). In normal scenarios, legitimate
users send requests to match flow rules, and the controller
sends commands to instruct the switch to take action, resulting
in legal delay and bandwidth occupation, and then F appears
at a tremendously low value.

We collected 30 groups of the entropy value E of bottle-
neck link queue changes under normal and attack scenarios
respectively. The variation of E is shown in Fig. 13.

Fig. 13 shows that the entropy value E of the bottleneck link
queue change remains at a high value under attack scenarios.
LDoS attack traffic causes periodic packet loss of normal TCP
traffic and creates different levels of network congestion. This
continuously triggers the TCP congestion control mechanism,
making the congestion control window at the normal TCP
sending end always in a small state, thus resulting in a sharp
drop in the TCP throughput of the victim host. The link will be
in a cycle of congestion - packets loss - recovery – congestion.

YUE et al.: CCS: A CROSS-PLANE COLLABORATION STRATEGY TO DEFEND AGAINST LDoS ATTACKS IN SDN 3531

Fig. 13. The entropy value of bottleneck link queue change.

Fig. 14. |voting(vi) – Bayes_voting(vi)| under one experiment.

This makes the queue length extremely unstable and change
greatly. Under abnormal circumstances, the entropy E will
increase. In normal scenarios, the packet loss of the link is
within a reasonable range. A threshold-based detection method
can be set according to the above four features.

2) Depth Detection in Control Plane: In the experiment,
we collected 30 groups of the value of |voting(vi) –
Bayes_voting(vi)| as shown in Fig. 14.

At the initial stage of detection, the value of |voting(vi) –
Bayes_voting(vi)| fluctuates from around 0.32 to 9.66. After
we injected attacks at the 15th second, it increases sharply and
then stabilizes. We repeated the experiments, each time using
the same experimental settings, and collected 20 groups of test
results when attacks occur, which are shown in Fig. 15.

Fig. 15 shows that the value of |voting(vi) –
Bayes_voting(vi)| is stable at about 31, so we set the value
of σ to 31. We compared the method proposed in this
paper with other detection methods by conducting extensive
experiments, which further proves that our method has
excellent performance in real-time and detection rate. Also, it
reduces communication overhead and CPU utilization of the
controller.

Table I presents the real-time performance and detection
rate. Here, real-time refers to the detection time cost.

Fig. 15. The value of |voting(vi) – Bayes_voting(vi)| when LDoS attacks
occur.

TABLE I
DETECTION PERFORMANCE

Our detection method was compared with other existing
methods on the same experimental platform. XGBoost and
AdaBoost are commonly used machine learning algorithms
that boost multiple weak learners into one strong learner, with
high detection rates but longer detection time. The HGB-
FP algorithm has higher complexity, longer detection time,
and higher false alarm rate due to the input of a large
number of feature values. The BA-ANN algorithm selects
the features to be trained through the ANN neural network
model, and constructs a detection model through the Bat
iterative algorithm. The time complexity is small, but there
is a high false alarm rate. The SoftGuard algorithm utilizes
fast Fourier transform to analyze convection, and the time-
frequency domain conversion increases a certain detection
delay. It can be seen that our method not only has a high
detection rate PD , a low false negative probability PFN and
a low false positive probability PFP , but also has preferable
real-time performance. The detection time is shorter, and the
controller no longer interacts with the switch frequently during
global deep detection, which greatly shortens communication
delay and maintains a relatively low detection time. This
method is suitable for cross-plane detection.

Next, we assess the extra communication overhead induced
by our method. The communication overhead is defined as the
throughput of the southbound interface. Test results are shown
in Fig. 16.

Our method only sends a warning message to the controller
when abnormal flow is detected on the data plane, then
the controller begins to perform in-depth detection. In this
way, the communication volume of the southbound interface
approaches 0 under normal circumstances. When LDoS attacks

3532 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

Fig. 16. Communication overhead of the southbound interface.

Fig. 17. CPU utilization of controller.

are launched at the 15th second, the coarse-grained detection
method in the data plane first detects the abnormality and
triggers in-depth detection in the control plane. This increases
the communication overhead of the southbound interface..

The communication overhead further effects the CPU uti-
lization of the controller. We test the impact on the controller
CPU in the circumstance where we executed the cross plane
collaborative detection strategy as shown in Fig. 17.

Fig. 17 shows that the CPU utilization of controller remains
at a relatively low value (below 10%). The lightweight detec-
tion method is executed on the data plane, occupying only
the computational resources of the switch, and not imposing
significant load pressure on the controller. When the switch
detects the abnormality at the 15th second, it will only
report it to the controller. The controller then analyzes and
calculates the received information and performs global in-
depth detection. At the same time, the real-time detection is
high, so the CPU usage time of the controller is short and thus
the CPU utilization rate remains at a low value. The CPU of
the controller gradually rises to 10%.

In addition, we compared the average communication over-
head and CPU utilization with those of other methods as
shown in Table II.

TABLE II
MEASUREMENT OF CONTROLLER LOAD

Our proposed method implements feature extraction in the
data plane, consuming only the computation resources of the
switches and not putting great load pressure on the controller.
The controller will initiate the detection algorithm based
on Bayesian voting when the switches detect abnormality
with less computation. DAISY is applicable to threshold
detection, so this method has a low CPU utilization in the
initial stage. However, once an attack occurs, it will block
the defense. Every time an attack is detected, the blocking
time will be extended, resulting in a long CPU utilization
time. The detection and defense methods of both BWManager
and FloodDefender are based on neural networks. These
two algorithms have high complexity and are deployed in
the controller, resulting in slightly higher CPU utilization
of the controller. The CPU resources occupied by SAIA
attack detection and defense system showed a linear increase.
In the experiment, we configured LDoS attacks on host h4
and captured all data packets from the southbound interface
using wireshark. This paper separates the lightweight detection
stage from the deep detection stage, enables the analysis of
traffic to be completed on the data plane and identifies the
occurrence of abnormal situations in the first place. This
reduces the southbound communication overhead of SDN. The
in-depth detection stage is deployed on the control plane, fully
utilizing the computational power and global perspective of
SDN architecture. The communication overhead of our method
is significantly lower than the other four methods.

C. Mitigation Performance Analysis

The controller identifies the LDoS attack, discovers the
bottleneck position and launches the mitigation mechanism
by implementing the Dijkstra algorithm. Our attack mitigation
method inevitably brings extra time overhead. Fortunately,
existing studies have validated that Dijkstra algorithm has the
advantages of fast convergence and robustness [53], [54], [55].
For example, [56] indicated that calculating intra area routes
using Dijkstra algorithm took no more than tens of millisec-
onds on common routers, and [57] indicated that the average
convergence time decreased with the number of failure links
grows. To validate the performance of our proposed method,
we tested the recovery time of the bottleneck link. The test
results are shown in Fig. 18.

The link recovery time includes the time to calculate the
route, the time to install the forwarding rule to the switch on
the backup path, and the time to migrate the flow to the backup
path. Fig. 18 shows that the recovery time of bottleneck link
maintains a value of about 40ms. The controller does not
need to interact with the switch, and it actively installs new

YUE et al.: CCS: A CROSS-PLANE COLLABORATION STRATEGY TO DEFEND AGAINST LDoS ATTACKS IN SDN 3533

Fig. 18. Recovery time of bottleneck link.

Fig. 19. Available bandwidth of bottleneck link.

Fig. 20. Delay of bottleneck link.

flow rules to the switch, ensuring that SDN can recover its
performance as soon as possible after encountering attacks.

The available bandwidth of the bottleneck link is shown
in Fig. 19 and the delay of the bottleneck link is shown in
Fig. 20. In the experiment, the data from the 1st to 10th
second is collected after sending normal traffic. From Fig. 19
and Fig. 20, it can be seen that the available bandwidth and
delay of the bottleneck link are within the normal range of
change. Under normal circumstances, the average throughput

Fig. 21. Throughput of control packets.

Fig. 22. Delay of control packets.

of the bottleneck link is about 13Mbps, and the average delay
is about 15ms. The data from the 10th to 20th second is
collected after sending attack traffic. The average throughput
of the bottleneck link under the attack is about 1.5Mbps, and
the maximum delay can reach about 10000ms. This indicates
that LDoS attacks will affect normal TCP connections through
the bottleneck link. The data from the 20th to 30th second
is collected after the mitigation mechanism is activated. The
average available bandwidth of the bottleneck link is about
11Mbps, and the average delay is about 22ms. The above
results indicate that the mitigation mechanism proposed in this
paper helps to reduce network congestion, thereby increasing
the available bandwidth of the bottleneck link and reducing
the transmission delay of the link.

Since LDoS attacks can interfere with the transmission of
control traffic, we validate the recovery effect of the mitigation
mechanism on control flow in experiments. Fig. 21 and
Fig. 22 show the throughput and delay of control packages.
Throughput is defined as packets per second (pps) on the
southbound interface. Delay is defined as one-way delay of a
packet transmitted from the controller to its directly connected
switch.

In order to test the throughput of the control flow, we
made the controller generate 2000 control packets per second

3534 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

TABLE III
COMPARISON OF MITIGATION MODEL PERFORMANCE

to switch S1 in the experiment. As shown in Fig. 21, under
normal circumstances, the throughput can reach 2000 packets
per second. The data before the 15th second is the collected
data after sending attack traffic, and the data after the 15th
second is the collected data after activating the mitigation
mechanism. In the case of attack, the throughput of the control
packets becomes extremely unstable and may even drop to
0 due to the timeout retransmission mechanism. After the
controller detects the attack, it initiates a mitigation mechanism
to reduce network congestion. After the attack defense method
takes effect, the throughput of the control packets quickly
returns to normal level, and stabilizes at about 1831pps, which
is 91.5% of the normal situation.

As shown in Fig. 22, the average delay of the control
packets under normal circumstances is 3.21ms. The average
delay of the control packets under attack is about 300 times
higher than that under normal scenarios. The delay is mostly
less than 8ms without attacks, and fluctuates widely between
8ms and 1800ms under attacks. The data after the 15th second
is collected after the deployment of the mitigation mechanism,
and the average delay of the control packet is reduced to
about 30ms. The above results indicate that the mitigation
mechanism proposed in this paper helps to reduce network
congestion, thereby improving the throughput of the control
packets and reducing the transmission delay of the control
traffic.

In order to further verify the performance of the mitiga-
tion method proposed in this paper, it was compared with
other routing algorithm models, and the results are shown in
Table III.

The Extended Dijkstra method [44] extends the original
Dijkstra algorithm by considering the weights of nodes and
edges simultaneously. During network changes, some nodes
may not be suitable as a certain hop point for the optimal
path, resulting in low computational complexity. Therefore,
the recovery time for bottleneck links is shorter, but the
available bandwidth and delay recovery ratio are lower. The
NSGAII [45] method obtains QoS parameters on the link
through monitoring, and then establishes a multi-objective
function optimization model based on the bandwidth require-
ments of the new data flow to find the optimal path, thereby
alleviating network congestion. However, due to the mutual
constraints between multiple objectives, the algorithm struc-
ture is more complex and the recovery time is longer. During
the optimization process, the progress of the optimization of
each objective is inoperable, resulting in relatively low per-
centages of available bandwidth recovery and delay recovery.
ACO-R [46] deployed a routing algorithm based on the ant

colony algorithm which includes continuous iteration and
update, thereby requiring more computational time. Therefore,
the recovery time on bottleneck links is slightly longer, while
the available bandwidth recovery and the delay recovery effect
are both higher. Due to the fact that LDoS attacks can reduce
the throughput of a certain node, this paper uses the traffic
size of each destination and the bandwidth capacity of the
node’s exit port as decision indicators for path selection. After
the controller detects the attack, it immediately reroutes the
bottleneck node based on the information reported by the
switch, ensuring the real-time and efficient recovery without
occupying too much CPU of the controller. The recovery time
of the link is about 40ms and the available bandwidth and
delay of the link can be restored to a higher proportion.

VI. CONCLUSION

SDN conducts an unconventional concept which realizes
the separation of control and forwarding, breaks the closure
between different devices in the traditional network, and
shortens the network deployment cycle. LDoS attack is one
of the fundamental threats faced by the SDN. This paper
proposed a cross-plane cooperative detection method against
LDoS attacks. We deployed lightweight detection methods
in the data plane. The data plane can conveniently count
each flow separately. We determined whether there is an
exception based on four characteristics. We conducted in-depth
detection based on Bayesian voting mechanism according to
the information reported by the switch. After detecting the
attack, the controller recalculates the route to the bottleneck
node to complete mitigation. The proposed method makes
full use of the global perspective of the controller, improves
the detection rate, and effectively reduces the controller load
and detection delay. In the future, four aspects are worth
researching. 1) Taking advantages of SDN to further improve
the other performance of Dijkstra algorithm (e.g., link failure
tolerant, load balance, et al.). 2) Combining moving target
defense with SDN. The global view of the controller in
SDN can promote the effectiveness of moving target defense,
thereby increasing the complexity and cost of attacks and
reducing the attack success rate. 3) Constructing attack mit-
igation strategies by resource allocation. When the attack
traffic is detected, the network traffic can be migrated from
the victim bottleneck switch to other switches, and then the
idle resources of these switches can be used to mitigate
attacks. 4) Further exploring other possible low rate DoS attack
models in SDN, precisely characterizing their behaviors and
developing effective countermeasures.

REFERENCES

[1] Y. Maleh, Y. Qasmaoui, K. El Gholam, Y. Sadqi, and S. Mounir, “A
comprehensive survey on SDN security: Threats, mitigations, and future
directions,” J. Reliab. Intell. Environ., vol. 9, pp. 201–239, Jun. 2023,
doi: 10.1007/s40860-022-00171-8.

[2] I. Maity, S. Misra, and C. Mandal, “SCOPE: Cost-efficient QoS-aware
switch and controller placement in hybrid SDN,” IEEE Syst. J., vol. 16,
no. 3, pp. 4873–4880, Sep. 2022, doi: 10.1109/JSYST.2021.3124280.

[3] R. Aryan, A. Yazidi, F. Brattensborg, Ø. Kure, and P. E. Engelstad,
“SDN Spotlight: A real-time OpenFlow troubleshooting frame-
work,” Future Gener. Comput. Syst., vol. 133, pp. 364–377, Aug. 2022,
doi: 10.1016/j.future.2022.03.014.

http://dx.doi.org/10.1007/s40860-022-00171-8
http://dx.doi.org/10.1109/JSYST.2021.3124280
http://dx.doi.org/10.1016/j.future.2022.03.014

YUE et al.: CCS: A CROSS-PLANE COLLABORATION STRATEGY TO DEFEND AGAINST LDoS ATTACKS IN SDN 3535

[4] V. De M. Rios, P. R. M. Inácio, D. Magoni, and M. M. Freire,
“Detection and mitigation of low-rate denial-of-service attacks:
A survey,” IEEE Access, vol. 10, pp. 76648–76668, 2022,
doi: 10.1109/ACCESS.2022.3191430.

[5] A. Kuzmanovic and E. W. Knightly, “Low-rate TCP-targeted denial
of service attacks: The shrew vs. the mice and elephants,” in Proc.
SIGCOMM: Appl., Technol., Architect., Protoc. Comput. Commun.,
2003, pp. 75–86.

[6] I. Cvitić, D. Perakovic, B. B. Gupta, and K.-K. R. Choo, “Boosting-
based DDoS detection in Internet of Things systems,” IEEE
Internet Things J., vol. 9, no. 3, pp. 2109–2123, Feb. 2022,
doi: 10.1109/JIOT.2021.3090909.

[7] X. Sun, R. Torres, and S. Rao, “Preventing DDoS attacks on Internet
servers exploiting P2P systems,” Comput. Netw., vol. 54, no. 15,
pp. 2756–2774, Oct. 2010, doi: 10.1016/j.comnet.2010.05.021.

[8] J. Cheng, R. Xu, X. Tang, V. S. Sheng, and C. Cai, “An abnormal
network flow feature sequence prediction approach for DDoS attacks
detection in big data environment,” Comput. Mater. Contin., vol. 55,
no. 1, pp. 95–119, 2018, doi: 10.3970/cmc.2018.055.095.

[9] C. Yoon et al., “Flow wars: Systemizing the attack surface and defenses
in software-defined networks,” IEEE/ACM Trans. Netw., vol. 25, no. 6,
pp. 3514–3530, Dec. 2017, doi: 10.1109/TNET.2017.2748159.

[10] J. C. C. Chica, J. C. Imbachi, and J. F. B. Vega, “Security in SDN:
A comprehensive survey,” J. Netw. Comput. Appl., vol. 159, Jun. 2020,
Art. no. 102595, doi: 10.1016/j.jnca.2020.102595.

[11] B. Mladenov and G. Iliev, “Studying the effect of internal DOS attacks
over SDN controller during switch registration process,” in Proc. Int.
Symp. Netw. Comput. Commun., Shenzhen, China, 2022, pp. 1–4.

[12] M. U. Farooq, M. Rashid, F. Azam, Y. Rasheed, M. W. Anwar, and
Z. Shahid, “A model-driven framework for the prevention of DoS attacks
in software defined networking (SDN),” in Proc. IEEE Int. Syst. Conf.,
Vancouver, BC, Canada, 2021, pp. 1–7.

[13] J. Galeano-Brajones, J. Carmona-Murillo, J. F. Valenzuela-Valdés, and
F. Luna-Valero, “Detection and mitigation of DoS and DDoS attacks in
IoT-based stateful SDN: An experimental approach,” Sensors, vol. 20,
p. 816, Feb. 2020.

[14] K. Hong, Y. Kim, H. Choi, and J. Park, “SDN-assisted slow HTTP
DDoS attack defense method,” IEEE Commun. Lett., vol. 22, no. 4,
pp. 688–691, Apr. 2018, doi: 10.1109/LCOMM.2017.2766636.

[15] T. Lukaseder, L. Maile, B. Erb, and F. Kargl, “SDN-assisted network-
based mitigation of slow DDoS attacks,” in Proc. 14th Int. Conf. Secur.
Privacy Commun. Netw., 2018, pp. 102–121.

[16] S. Axelsson, “The base-rate fallacy and its implications for the difficulty
of intrusion detection,” ACM Trans. Inf. Syst. Secur., vol. 3, no. 3,
pp. 186–205, Aug. 2000, doi: 10.1145/357830.357849.

[17] R. Sommer, “Viable network intrusion detection in high-performance
environments,” Ph.D. dissertation, Dept. Comput. Sci., Technische
Universität München, Munich, Germany, 2005.

[18] M. Delio, “New breed of attack zombies lurk,” Accessed: Jan. 1,
2024. [Online]. Available: https://www.wired.com/2001/05/new-breed-
ofattack-zombies-lurk

[19] Q. Zhu, Z. Yizhi, and X. Chuiyi, “Research and survey of low-rate denial
of service attacks,” in Proc. 13th Int. Conf. Adv. Commun. Technol.
(ICACT), Gangwon, Korea (South), 2011, pp. 1195–1198.

[20] J. Cao et al., “The Crosspath attack: Disrupting the SDN control channel
via shared links,” in Proc. 28th USENIX Secur. Symp., 2019, pp. 19–36.

[21] D. Tang, S. Zhang, Y. Yan, J. Chen, and Z. Qin, “Real-time detection
and mitigation of LDoS attacks in the SDN using the HGB-FP algo-
rithm,” IEEE Trans. Services Comput., vol. 15, no. 6, pp. 3471–3484,
Nov./Dec. 2022, doi: 10.1109/TSC.2021.3102046.

[22] H. Liu, “A new form of DoS attack in a cloud and its avoidance
mechanism,” in Proc. ACM Workshop Cloud Comput. Secur. Workshop,
2010, pp. 65–76.

[23] M. Sides, A. Bremler-Barr, and E. Rosensweig, “Yo-Yo attack:
Vulnerability in auto-scaling mechanism,” ACM SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 103–104, Aug. 2015,
doi: 10.1145/2829988.2790017.

[24] Y. Tong, B. Zhihua, G. Zhen, Y. Lina, and Z. Lei, “Detection and
defense mechanism of LDoS attack in SDN environment,” J. Front.
Comput. Sci. Technol., vol. 14, no. 4, pp. 566–577, 2020,
doi: 10.3778/j.issn.1673-9418.1905043.

[25] K. S. Sahoo, D. Puthal, M. Tiwary, J. J. P. C. Rodrigues, B. Sahoo,
and R. Dash, “An early detection of low rate DDoS attack to
SDN based data center networks using information distance met-
rics,” Future Gener. Comput. Syst., vol. 89, pp. 685–697, Dec. 2018,
doi: 10.1016/j.future.2018.07.017.

[26] M. Yue, J. Li, Z. Wu, and M. Wang, “High-potency models of LDoS
attack against CUBIC +RED,” IEEE Trans. Inf. Forensics Security,
vol. 16, pp. 4950–4965, 2021, doi: 10.1109/TIFS.2021.3117066.

[27] Z. Wu, L. Zhang, and M. Yue, “Low-rate DoS attacks detection based on
network multifractal,” IEEE Trans. Dependable Secure Comput., vol. 13,
no. 5, pp. 559–567, Sep./Oct. 2016, doi: 10.1109/TDSC.2015.2443807.

[28] Y. Xiang, K. Li, and W. Zhou, “Low-Rate DDoS attacks detection and
traceback by using new information metrics,” IEEE Trans. Inf. Forensics
Security, vol. 6, pp. 426–437, 2011, doi: 10.1109/TIFS.2011.2107320.

[29] S. Xie, C. Xing, G. Zhang, and J. Zhao, “A table overflow LDoS
attack defending mechanism in software-defined networks,” Secur.
Commun. Netw., vol. 2021, Jan. 2021, Art. no. 6667922,
doi: 10.1155/2021/6667922.

[30] D. Tang, Y. Yan, S. Zhang, J. Chen, and Z. Qin, “Performance
and features: Mitigating the low-rate TCP-targeted DoS attack via
SDN,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 428–444,
Jan. 2022, doi: 10.1109/JSAC.2021.3126053.

[31] S. Gao, Z. Peng, B. Xiao, A. Hu, Y. Song, and K. Ren,
“Detection and mitigation of DoS attacks in software defined
networks,” IEEE/ACM Trans. Netw., vol. 28, no. 3, pp. 1419–1433,
Jun. 2020, doi: 10.1109/TNET.2020.2983976.

[32] Y. Cao, H. Jiang, Y. Deng, J. Wu, P. Zhou, and W. Luo, “Detecting and
mitigating DDoS attacks in SDN using spatial-temporal graph convolu-
tional network,” IEEE Trans. Dependable Secure Comput., vol.19, no. 6,
pp. 3855–3872, Nov./Dec. 2022, doi: 10.1109/TDSC.2021.3108782.

[33] B. Han, X. Yang, Z. Sun, J. Huang, and J. Su, “OverWatch: A cross-
plane DDoS attack defense framework with collaborative intelligence in
SDN,” Secur. Commun. Netw., vol. 2018, Jan. 2018, Art. no. 9649643,
doi: 10.1155/2018/9649643.

[34] T. Wang, Z. Guo, H. Chen, and W. Liu, “BWManager: Mitigating
denial of service attacks in software-defined networks through band-
width prediction,” IEEE Trans. Netw. Service Manage., vol. 15, no. 4,
pp. 1235–1248, Dec. 2018, doi: 10.1109/TNSM.2018.2873639.

[35] M. Imran, M. H. Durad, F. A. Khan, and H. Abbas, “DAISY: A detection
and mitigation system against denial-of-service attacks in software-
defined networks,” IEEE Syst. J., vol. 14, no. 2, pp. 1933–1944,
Jun. 2020, doi: 10.1109/JSYST.2019.2927223.

[36] Z. A. El Houda, L. Khoukhi, and A. S. Hafid, “Bringing intelligence
to software defined networks: Mitigating DDoS attacks,” IEEE Trans.
Netw. Service Manage., vol. 17, no. 4, pp. 2523–2535, Dec. 2020,
doi: 10.1109/TNSM.2020.30148703.

[37] X. Li, N. Luo, D. Tang, Z. Zheng, Z. Qin, and X. Gao, “BA-BNN:
Detect LDoS attacks in SDN based on bat algorithm and BP neural
network,” in Proc. IEEE Int. Conf. Parallel Distrib. Process. Appl. Big
Data Cloud Comput., Sustain. Comput. Commun., Soc. Comput. Netw.
(ISPA/BDCloud/SocialCom/SustainCom), New York City, NY, USA,
2021, pp. 300–307.

[38] R. Xie, M. Xu, J. Cao, and Q. Li, “SoftGuard: Defend against the low-
rate TCP attack in SDN,” in Proc. IEEE Int. Conf. Commun. (ICC),
Shanghai, China, 2019, pp. 1–6.

[39] Y. Zhang and N. Ansari, “On architecture design, congestion noti-
fication, TCP incast and power consumption in data centers,” IEEE
Commun. Surveys Tuts., vol. 15, no. 1, pp. 39–64, 1st Quart., 2013,
doi: 10.1109/SURV.2011.122211.00017.

[40] J. Mao, B. Han, Z. Sun, X. Lu, and Z. Zhang, “Efficient mis-
matched packet buffer management with packet order-preserving for
OpenFlow networks,” Comput. Netw., vol. 110, pp. 91–103, Dec. 2016,
doi: 10.1016/j.comnet.2016.09.016.

[41] M. Panda and M. R. Patra, “Network intrusion detection using naïve
Bayes,” Int. J. Comput. Sci. Netw. Secur., vol. 7, no. 12, pp. 258–263,
Dec. 2007.

[42] D. M. Farid and N. Haibi, “Combining naïve Bayes and decision tree
for adaptive intrusion detection,” Int. J. Netw. Secur. Appl., vol. 2, no. 2,
pp. 12–25, May 2010, doi: 10.5121/ijnsa.2010.2202.

[43] C. Li et al., “QL-STCT: An intelligent routing convergence method
for SDN link failure,” J. Commun., vol. 43, no. 2, pp. 131–142, 2022,
doi: 10.11959/j.issn.1000-436x.2022038.

[44] J.-R. Jiang, H.-W. Huang, J.-H. Liao, and S.-Y. Chen, “Extending
Dijkstra’s shortest path algorithm for software defined networking,” in
Proc. 16th Asia–Pac. Netw. Oper. Manage. Symp., 2014,
pp. 1–4.

[45] D. Li, X. Wang, Y. Jin, and H. Liu, “Research on QoS routing method
based on NSGAII in SDN,” J. Phys. Conf. Ser., vol. 1656, no. 1, 2020,
Art. no. 012027, doi: 10.1088/1742-6596/1656/1/012027.

[46] M. Tanha, D. Sajjadi, R. Ruby, and J. Pan, “Traffic engineering enhance-
ment by progressive migration to SDN,” IEEE Commun. Lett., vol. 22,
no. 3, pp. 438–441, Mar. 2018, doi: 10.1109/LCOMM.2018.2789419.

http://dx.doi.org/10.1109/ACCESS.2022.3191430
http://dx.doi.org/10.1109/JIOT.2021.3090909
http://dx.doi.org/10.1016/j.comnet.2010.05.021
http://dx.doi.org/10.3970/cmc.2018.055.095
http://dx.doi.org/10.1109/TNET.2017.2748159
http://dx.doi.org/10.1016/j.jnca.2020.102595
http://dx.doi.org/10.1109/LCOMM.2017.2766636
http://dx.doi.org/10.1145/357830.357849
http://dx.doi.org/10.1109/TSC.2021.3102046
http://dx.doi.org/10.1145/2829988.2790017
http://dx.doi.org/10.3778/j.issn.1673-9418.1905043
http://dx.doi.org/10.1016/j.future.2018.07.017
http://dx.doi.org/10.1109/TIFS.2021.3117066
http://dx.doi.org/10.1109/TDSC.2015.2443807
http://dx.doi.org/10.1109/TIFS.2011.2107320
http://dx.doi.org/10.1155/2021/6667922
http://dx.doi.org/10.1109/JSAC.2021.3126053
http://dx.doi.org/10.1109/TNET.2020.2983976
http://dx.doi.org/10.1109/TDSC.2021.3108782
http://dx.doi.org/10.1155/2018/9649643
http://dx.doi.org/10.1109/TNSM.2018.2873639
http://dx.doi.org/10.1109/JSYST.2019.2927223
http://dx.doi.org/10.1109/TNSM.2020.3014870
http://dx.doi.org/10.1109/SURV.2011.122211.00017
http://dx.doi.org/10.1016/j.comnet.2016.09.016
http://dx.doi.org/10.5121/ijnsa.2010.2202
http://dx.doi.org/10.11959/j.issn.1000-436x.2022038
http://dx.doi.org/10.1088/1742-6596/1656/1/012027
http://dx.doi.org/10.1109/LCOMM.2018.2789419

3536 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

[47] V. Kumar, S. Jangir, and D. G. Patanvariya, “Traffic load balancing in
SDN using round-robin and Dijkstra based methodology,” in Proc. Int.
Conf. Adv. Technol. (ICONAT), 2022, pp. 1–4.

[48] A. Botta, A. Dainotti, and A. Pescapè, “A tool for the gen-
eration of realistic network workload for emerging networking
scenarios,” Comput. Netw., vol. 56, no. 15, pp. 3531–3547, 2012,
doi: 10.1016/j.comnet.2012.02.019.

[49] P. Biondi. “Scapy.” Scapy.net. Accessed: Jan. 1, 2024. [Online].
Available: https://scapy.net/

[50] S. Y. Qiao, C. C. Hu, H. Li, X. H. Guan, and J. H. Zou,
“A mechanism of taming the flow table overflow in OpenFlow
switch,” Chin. J. Comput., vol. 41, no. 9, pp. 2003–2015, 2018,
doi: 10.11897/SP.J.1016.2018.02003.

[51] W. Braun and M. Menth, “Software-defined networking using
OpenFlow: Protocols, applications and architectural design
choices,” Future Internet, vol. 6, no. 2, pp. 302–336, May 2014,
doi: 10.3390/fi6020302.

[52] L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu, “Attacking the brain:
Races in the SDN control plane,” in Proc. 26th USENIX Secur. Symp.
(USENIX Secur.), 2017, pp. 451–468.

[53] J. Moy, “OSPF Version 2,” Internet Eng. Task Force, RFC-2328,
Apr. 1998.

[54] M. Goyal et al., “Improving convergence speed and scalability in OSPF:
A survey,” IEEE Commun. Surveys Tuts., vol. 14, no. 2, pp. 443–463,
2nd Quart., 2012, doi: 10.1109/SURV.2011.011411.00065.

[55] J. Wu, F. Dai, X. Lin, J. Cao, and W. Jia, “An extended fault-tolerant
link-state routing protocol in the Internet,” IEEE Trans. Comput., vol. 52,
no. 10, pp. 1298–1311, Oct. 2003, doi: 10.1109/TC.2003.1234527.

[56] A. Shaikh and A. Greenberg, “Experience in black-box OSPF measure-
ment,” in Proc. 1st ACM SIGCOMM Workshop Internet Meas., 2001,
pp. 113–125.

[57] A. Nastiti, A. Rakhmatsyah and M. A. Nugroho, “Link failure emu-
lation with Dijkstra and bellman-ford algorithm in software defined
network architecture (case study: Telkom university topology),” in Proc.
6th Internet Conf. Inf. Commun. Technol., Bandung, Indonesia, 2018,
pp. 135–140.

Meng Yue received the Ph.D. degree in information
and communication engineering from Tianjin
University, China, in 2017. He is an Associate
Professor with the College of Safety Science and
Engineering, Civil Aviation University of China.
His current research interests include aeronautical
telecommunication network and cyber security.

Qingxin Yan received the B.S. degree from the
North University of China, China. She is currently
pursuing the master’s degree in information security
with the College of Electronic Information and
Automation, Civil Aviation University of China. Her
research interests include security of information
security.

Zichao Lu received the B.S. degree from the North
China Institute of Aerospace Engineering, China,
in 2021. He is currently pursuing the master’s
degree in information security with the College
of Electronic Information and Automation, Civil
Aviation University of China. His research interests
include security of information security.

Zhijun Wu received the Ph.D. degree in cryp-
tography from the Beijing University of Posts
and Telecommunications, China, in 2004. He is a
Professor with the College of Safety Science and
Engineering, Civil Aviation University of China,
where he is the supervisor of Ph.D. candidates. His
current research interests include network security
and cloud computing.

http://dx.doi.org/10.1016/j.comnet.2012.02.019
http://dx.doi.org/10.11897/SP.J.1016.2018.02003
http://dx.doi.org/10.3390/fi6020302
http://dx.doi.org/10.1109/SURV.2011.011411.00065
http://dx.doi.org/10.1109/TC.2003.1234527

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

