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Abstract—The problem of shared node selection and cache
placement in wireless networks is challenging due to the dif-
ficulty of finding low-complexity optimal solutions. This paper
proposes a new approach combining Lyapunov optimization and
reinforcement learning (LoRL) to address content sharing in
heterogeneous mobile edge computing (MEC) networks with
base station (BS) and device-to-device (D2D) communication.
Device in this network can choose to establish D2D links with
neighboring devices for content sharing or send requests directly
to the base station for content. Content access and energy
consumption of shared nodes are modeled as a queuing system.
The goal is to assign content sharing nodes to stabilize all queues
while maximizing D2D sharing gain and minimizing latency,
even in the presence of unknown network state distribution
and user sharing costs. The proposed approach enables edge
device to independently select associated nodes and make caching
decisions, thereby minimizing time-averaged network costs and
stabilizing the queuing system. Experimental results show that
the proposed algorithm converges to the optimal policy and
outperforms other policies in terms of total queue backlog trade-
off and network cost.

Index Terms—Edge cache, content sharing, device-to-
device communication, deep reinforcement learning, Lyapunov
optimization.

I. INTRODUCTION

THE INCREASING number of smart devices joining wire-
less networks has led to a surge in wireless multimedia

traffic [1]. However, a significant portion of this traffic consists
of repeated requests for popular content such as news articles
and TV shows. To address this issue, mobile edge computing
(MEC) technology has emerged as a promising solution,
allowing content retrieval from edge storage nodes like base
stations or clouds. However, this approach often results in
redundant data transmission within a short timeframe and is
constrained by the cache capacity of edge devices.

To mitigate the limitations of storage capacity and duplica-
tion in edge devices, collaborative caching has been recognized
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as an effective solution [2]. The progression of integrated
circuits has led to the integration of storage and computing
abilities into edge devices. Consequently, content sharing via
device-to-device (D2D) communication has become feasible.
Furthermore, the integration of D2D communication with
MEC caching can yield additional benefits such as improved
spatial frequency reuse and boosted cellular network through-
put. These benefits can lead to reductions in transmission and
backhaul loads while augmenting the service probability of
tasks [3], [4].

Extensive research has focused on optimizing user
performance in Mobile Edge Computing (MEC) networks
through collaborative caching and device-to-device (D2D)
caching. Content cache placement strategies have been specif-
ically studied [5], [6], [7], [8], [9], [10], [11]. However,
there are still unresolved issues that require attention. Firstly,
existing studies mainly concentrate on improving cache
performance through effective placement strategies. While
this approach proves beneficial, there is a limitation on the
amount of content a device can transfer within a given
time frame. When simultaneous content requests exceed the
transmission capacity, it causes delays and increases retrieval
latency. To tackle this challenge, researchers propose using a
virtual queuing system to represent access requests [10], [11].
This allows for optimization of queue management to miti-
gate transmission delays. Secondly, in collaborative networks,
forwarding content sharing node requests incurs energy con-
sumption costs. Virtual queues effectively represent node
energy consumption dynamics. Therefore, ensuring stability
in the consumption queue becomes crucial for overall system
stability.

The selection of shared content delivery nodes and cached
content replacement in a D2D-assisted MEC network are key
issues. When a user’s local cache cannot fulfill a request, it
is necessary to determine which cache node (e.g., neighboring
user node, local/base station, neighboring base station) should
handle the request and how to cache the content [3]. User
requests can be routed to other users or accessible edge nodes,
and dynamic queues represent the content access and energy
consumption of all edge nodes. The objective is to select
shared nodes for unsatisfied requests, ensuring the stability of
the request and energy consumption queues. However, there
are three main considerations when deciding on shared nodes
and caching. Firstly, the data rate for content sharing via D2D
links depends on user distance and channel conditions. User
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preferences can be challenging to understand, but machine
learning methods can be employed to learn and predict pref-
erences for better decision-making. Secondly, content sharing
incurs transmission costs, necessitating consideration of both
request delay and network cache node energy consumption to
ensure network stability. Lastly, the cache replacement policy
should adapt to the evolving wireless network environment,
facilitating optimal replacement decisions based on changing
network conditions.

Note that when confronted with a large number of users,
simultaneously selecting shared nodes and making caching
decisions for each user in the system poses a significant
challenge. However, this challenge can be addressed by
employing a stochastic Lyapunov optimization method that
does not rely on prior knowledge of the network state distri-
bution. Nevertheless, in our case, the uncertainty surrounding
the user’s mobile location, network channel state, and user
preference further complicates the problem. This increased
complexity arises from the need to stabilize all the queues
while also considering cache decision problems. Therefore,
We introduce context-aware preference learning strategies and
propose dynamic shared node selection and cache replacement
methods that combine Lyapunov optimization and reinforce-
ment learning (LoRL). Thus, the main contributions of this
paper are as follows:

• Our approach integrates Lyapunov optimization the-
ory and reinforcement learning to develop a novel
method for shared node selection and cache replace-
ment. By considering random fading channels and
data arrival, our method enables intelligent decision-
making for user delivery node selection and cache
replacement. The primary objective is to minimize user
request latency and energy consumption while ensuring
the stability of user request and energy consumption
queues.

• We analyze the factors influencing the establishment
of D2D links between users, considering both physical
conditions and user preference similarity. To improve the
effectiveness of D2D links, we propose a user preference
model based on AutoEncoder. This model captures and
measures the similarity in user preferences, enabling us
to optimize the formation of D2D links based on shared
interests.

• We integrate Lyapunov and reinforcement learning
optimization techniques to address network optimization
problems. Our approach involves deriving an upper
bound for the drift plus cost function using Lyapunov
optimization, which guides the training of the reinforce-
ment learning model. By doing so, we enable the model
to maximize user service quality while ensuring the
stability of the system.

II. RELATED WORK

Existing research on edge cache optimization can be divided
into: i) accuracy improvement of popularity prediction models;
ii) joint optimization of edge caching and wireless resources;
iii) collaborative caching.

A. Popularity Prediction

Due to the repetitive nature of content requests in the
network, edge caching should cache content with high
popularity. Cache placement policies based on popularity
prediction have demonstrated caching effectiveness, and reac-
tive caching [12], [13] or proactive caching [14], [15] by
analysing past historical request information to obtain request
patterns has been extensively investigated. Hassine et al. [16]
used Auto-regressive and Moving Average (ARMA) models
for centralised content popularity prediction. To overcome the
sparse nature of user requests, Chen et al. [17] proposed a
popularity prediction scheme based on weighted clustering
and also described an explicit relationship between cache
performance and popularity prediction accuracy. In addition,
considering the private nature of user data, a federated learn-
ing approach is used for edge caching policy optimization
[3], [18]. Due to the consumption caused by learning-based
approaches, some online popularity prediction approaches that
do not require a training phase have also been proposed
[12], [19]. However, while the improvement of the accuracy
of the popularity prediction model can improve the caching
performance to a certain extent, the channel conditions as well
as the network state in mobile edge networks can have an
impact on the quality of service (QoS) of the users. Therefore,
the relationship between cache performance and prediction
accuracy is implicit, and the impact of popularity prediction
errors on cache performance is difficult to estimate. The most
popular (MP) algorithm with a priori popularity knowledge
of the user request model is compared with the proposed
algorithm in Qian et al. [21], and this is verified by the poor
performance exhibited by the MP algorithm.

B. Joint Caching and Resource Optimization

The decentralization of cache capacity in MEC networks
leads to strong coupling between cache strategies and wireless
communication resource management. From the perspective
of limited cache and wireless resources, study the caching
problem. Existing research approaches to caching policies
are classified as optimization-based, reinforcement learning-
based and deep learning-based, and game-theory-based.
Optimization based caching strategies are usually designed to
maximize certain performance metrics within the constraints
of network resources. For the optimization problem of com-
plex joint wireless resources and caching, simple heuristic
algorithms often require a long time and can only obtain sub-
optimal solutions. Therefore, in existing research, a Lyapunov
optimization method for online joint utility maximization and
stability control framework has been proposed. This method
decouples multi-stage stochastic optimization problems into
continuous deterministic sub-problems for each stage, while
providing theoretical guarantees for the long-term stability of
the system [13], [20]. Strategies based on reinforcement
learning and deep learning use observable user data or envi-
ronmental states, such as user contextual information, channel
gain or cache state, for online caching decisions and resource
allocation. Wireless channels have a finite amount of data
that can be transmitted per unit time, and proactive caching
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strategies are investigated in order to maximise bandwidth util-
isation [21], [22], [23], [24]. However, when the user request
or environment state space is large, centralised Reinforcement
Learning caching strategies are complex and difficult to
handle, hence distributed reinforcement learning approaches
are proposed [25]. Game theoretic caching strategies have
been used for caching and computing resource allocation
in MEC network environments, where service providers or
users compete among themselves for limited computing and
bandwidth resources to meet their own interests [26], [27].

C. Collaborative Caching

In MEC networks, collaborative caching is an effective
approach to reduce network service load, improve service
latency, and enhance spectrum usage efficiency by expanding
cache capacity. Existing research divides collaborative caching
into two types based on cache location: Coordinated Multi-
Point (COMP) and D2D caching. COMP involves obtaining
requested content from adjacent devices, base stations, or other
caching devices. The optimization goal in this context is to
jointly optimize content caching and delivery decisions, con-
sidering network constraints and aiming to minimize service
latency or content retrieval costs [28], [29]. To address the
joint optimization problem of user collaboration nodes and
cache placement, a decoupling approach can be employed for
dual-scale joint optimization [20], [30].

Decentralised cooperative sharing methods address the chal-
lenges of diverse network states in wireless networks. They
aim to solve the node selection problem in centralised cooper-
ative transmission effectively [18]. These methods decentralise
decision-making, allowing nodes to independently select coop-
erative partners and make transmission decisions based on
local information. In networks with caching capabilities on
the user side, collaborative sharing can be performed between
D2Ds by establishing D2D communication [31]. Furthermore,
the uncertainty of user requests and movement patterns makes
it challenging to establish D2D connections. Therefore, based
on learning methods, the user’s movement trajectory as well as
user request patterns are predicted to enable dynamic delivery
of content [8]. Further, user data information is private and
has the property of not being willing to be shared, while
an effective local caching policy requires knowledge of user
preference information. Therefore, to maximise the benefits for
users, D2D content sharing approaches with social awareness
and incentives have been proposed in existing studies [6], [27].
Moreover, in addition to horizontal collaboration between
network cache nodes, vertical inter-tier collaboration between
cache nodes is also an important solution to achieve service
demand by expanding cache capacity. Similarly, some D2D-
assisted heterogeneous collaboration approaches have been
proposed to maximise spectrum efficiency and reduce request
latency [3].

D. Our Contribution

Based on the aforementioned categorization, similar to
the works in [3], [8], and [12], this paper investigates het-
erogeneous collaborative caching strategies supporting D2D

Fig. 1. D2D-assisted network architecture for heterogeneous collaborative
edge caching.

assistance. Similar to the contributions in [14] and [15],
we predict user preference popularity by analyzing historical
request information. Similar to the contributions in [23],
[24], [25], [26], [27], and [28], we utilize reinforcement
learning for dynamic cache decision optimization. However,
what sets our work apart from these contributions is that
we employ predicted user preferences for D2D shared node
selection. Furthermore, we combine Lyapunov optimization
with reinforcement learning for user-associated node selection,
cache decision-making, and maintaining stability in the request
latency queue and cost consumption within the requesting
network nodes.

III. SYSTEM MODEL

A. Network Model

Consider a wireless D2D-assisted heterogeneous collabora-
tive network architecture, as shown in Fig. 1. The network
architecture includes three types of cache nodes, namely user
equipment (UE), base stations (BS) and cloud servers. The
cloud server connects to all BS via backhaul links to provide
services to users, and the BS serve users via cellular links.
In addition to the traditional BS-to-User use of the BS’s
wireless spectrum for content delivery, the considered network
architecture allows for D2D links between users for content
sharing. Given the abundant storage and computing resources
of cloud servers, we assume that the cloud server has access
to all the content that users may request within the storage
area, denoted as F = {1, 2, 3, . . . ,F}, where F represents the
total number of contents [2], [3], [5], and its size is denoted
as (s1×F

f ). Each UE and BS has a restricted cache capacity to
store content with high content popularity. The cache capacity
of user device u is Mu , where ∀u ∈ N = {1, 2, . . . ,N } is
the set of tags of users. To simplify the model, we consider
the existence of one BS in the network, serving the UE. In
particular, the BS have the limited cache capacity, denoted
as MB .

To meet generality, the capacity of the network’s cache
nodes is Mu ≤ MB ≤ F . All cache nodes in the network
architecture, except for cloud nodes, are represented as
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H = {N ∪ B}. In the network under consideration, operations
are organized based on a time slot framework, represented as
T = {1, 2, 3, . . . , t}. The time axis is divided into equal time
intervals, referred to as slots, with a small duration denoted
as Δt and t ∈ T . Within a time slot t, all network param-
eters (e.g., user location, channel quality, content prevalence)
remain constant. This time-slot-based organization enables
the analysis and optimization of network performance within
well-defined and consistent time intervals. Let us define the
position of user u during time slot t as lu,t , denoted by lu,t =
{xu,t , yu,t}. Here, xu,t and yu,t represent the coordinates of
user u in the given time slot. It is essential to emphasize that
within any time slot t, each user can make at most one request,
and this request must be fulfilled prior to the commencement
of the subsequent time slot.

B. D2D Sharing Mode

In the considered heterogeneous collaborative network,
cache node content sharing has a restricted physical range, so
it is assumed that the service range of the base station is RB
and the range of D2D is bounded by the radius Ru and satisfies
Ru ≤ RB , i.e., πR2

u ≤ πR2
B , and cache nodes exceeding

the service range cannot establish connections. In addition,
user requests have the characteristics of being numerous
and diverse. Therefore, in order to improve the effectiveness
of D2D links, we will model the D2D connections from
the physical domain and user similarity respectively in the
following.

Physical domain: Due to physical limitations such as signal
attenuation between D2D, only users within the user coverage
can communicate [32]. Therefore, similar to [10], a graph
Gp = {N ,Yp} is introduced, where N represents the set of
vertices of all users and Yp = {(u, v)|epu,v = 1, ∀u, v ∈ N}
represents the edge set. When e

p
u,v = 1, it means that the

distance between user equipment u and user equipment v
is Lt

u,v < Ru , that is, within the communication range of
the user, where Lt

u,v =
√

(xu,t − xv ,t )2 + (yu,t − yv ,t )2.
Otherwise, epu,v=0.

User similarity: Humans are herd animals and tend to have
a herd mentality for content acquisition, and each person has
a different request preference Pu . Therefore, the concept of
cosine similarity is introduced to represent the relationship
between users’ preferences. The cosine similarity between user
u and user v is

S v
u =

Pu · Pv

‖Pu‖‖Pv‖
. (1)

A user with a high preference similarity indicates that the
content stored in the cache is more similar, and therefore, the
content requested by the user is more likely to be stored.

User sharing probability: Based on the physical map
and user similarity obtained above, we get the connection
probability Ru,v = e

p
u,v · Su

v between users, and define Ru =

(Ru,v )
1×N . Finally, we normalize Ru by Ru,v∑

u∈N Ru,v
→ Ru .

In the next sections, user preferences are predicted using an
stack AutoEncoder (SAE)-based algorithm, and then content
delivery and latency models for D2D-assisted heterogeneous
networks are investigated in Section III-D.

Fig. 2. A framework for learning user preferences based on contextual
information.

C. User Preference Learning

In order to obtain the similarity between users, a hypothesis
is made that, within a time frame, users send preference
information to surrounding cache nodes. User preferences, i.e.,
the request popularity of a user, are uncertain and therefore
obtaining numerical results for their popularity probability is
very complex. Additionally, we assume that the preferences
of users for the requested content follow an independent
and identically distributed process. Unsupervised learning is
a feasible approach to solve this problem. Therefore, in order
to obtain the preference probability Pu of user u to further
obtain the sharing probability Ru,v between users, we propose
a contextual information-based preference learning framework
based on an unsupervised learning-hybrid filtering neural
network model, as shown in Fig. 2.

The core of the proposed model is to minimise the dis-
crepancy between the input and output, thus training a single
hidden layer neural network to reconstruct the input data from
the latent representations. The model consists of two main
components: (i) an encoder that receives the input data and
(ii) a decoder that outputs the results. The difference between
the input and output is measured by the loss function FL

FL

(
D , D̃

)
=

d∑

i=1

(
D̃i −Di

)
, (2)

where {D1,D2, . . .} is the input dataset, D(i) ∈ R
d represents

the dimension d of each element in the dataset, mainly
including the user’s contextual information, such as name,
gender, age, movie, movie rating and etc. The input data is
represented implicitly using the encoder through the activation
function h(x ) for the input mapping as hw ,b(Di ) ≈ D̃i , where
{D̃1, D̃2, . . .} is the output of the corresponding encoder and
the parameters w and b are the weight matrix and bias vector,
respectively.

The training of user preferences means that the model
is to be continuously updated and used to minimise the
reconstruction error of the input data set. By training the SAE
neural network, the hidden features encoding z of the training
data are obtained and these features are used to calculate the
user similarity. Since what content is needed in the future, i.e.,
the popularity of the user’s request, may depend on the user’s
context. Therefore, by combining the hidden feature encoding
z with the user’s contextual information, the user’s preferences,
i.e., the user’s own content request popularity, are obtained.
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D. Content Transmission and Delay Model

In a heterogeneous collaborative network, a user’s cache list
in time slot t can be represented as xu = {xu,f ∈ {0, 1}, u ∈
N , f ∈ F}. xu,f = 1 means that content f is stored in the
cache, otherwise, if xu,f = 0, it means that the user does not
store content f. When the user’s requested content f cannot
be satisfied locally, the user selects a node for content sharing
from the network. We define bu,t = {bnu,t ∈ {0, 1}|u ∈
N ,n ∈ H/u} to denote the set of associated candidate nodes
for user u. bnu,t = 1 indicates that user u selects cache node n
to process user requests. Specifically, b0u,t = 1 indicates that
users directly obtain content requests from the base station.
Therefore, in D2D assisted heterogeneous networks, there are
several methods for obtaining content.

1) The user’s request is saved in the local cache list, i.e.,
the request is satisfied in the local cache. Therefore, the
corresponding user request delay dLu,t is 0.

2) If a user request is not saved in the local cache list,
we can establish a D2D link to obtain the request from
nearby users n. In line with the approach taken in many
existing studies [3], [5], [6], we adopt orthogonal models
to allocate non-overlapping radio resources for D2D
transmission. This allocation scheme involves dividing
the bandwidth of each node into equal sub-bands and
assigning equal sub-bands to each node while ensuring
no interference among them. Thus, the request delay
dD2D
u,t =

sf
rnu,t

, where sf denotes the size of the

user request file and rnu,t denotes the data transfer
rate between user u and user n. rnu,t = BD log2(1 +

gDt hDt /Ln
u,t ), with parameters BD , gDt , hDt denote

the inter-user channel bandwidth, transmission power
consumption and channel gain, respectively.

3) The user u can also send a request to the local base
station for content retrieval. If the base station can fulfill
the request, the delay for file f is given by dBu,t =

Sf

rBu,t
.

The transmission rate is calculated using the formula

rBu,t = BB log2(1 +
gBt hB

t

LB
u,t

), where LB
u,t represents the

path loss between user u and the base station at time
slot t. Here, rBu,t represents the transmission rate from
user u to the base station at time slot t. It is determined
by parameters such as the bandwidth BB , transmission
power consumption gBt , and channel gain hBt associated
with the user-to-base station link.

4) Eventually, when content cannot be obtained through
direct sharing or local caching, the base station forwards
the request to the cloud server. The latency of fetching
the content from the cloud server is the sum of the base
station delay dBu,t and the transmission time required to
transfer the content from the cloud server. This can be
expressed as dcu,t = dBu,t +

sf
rc

, where sf is the size of
the requested content and rc is the constant transmission
rate between the base station and the cloud server.

Therefore, the request latency for the user of the above
fetch request method satisfies dLu,t ≤ dD2D

u,t ≤ dBu,t ≤ dcu,t .
When the user makes the selection decision bnu,t , if the selected
content sharing cache node cannot meet the request, it will

obtain the request from the same or upper layer cache node
by the above collaborative method.

IV. QUEUE MODEL AND CACHING PROBLEM

A. Queuing Model

When user u initiates a request, if the request cannot be
fulfilled locally, a content sharing node bnu,t is selected. Based
on the chosen delivery node bnu,t , the content access queue
associated with node n is denoted as Qn (t). The dynamic
backlog of all queues in the network is captured by the vector
Q(t) = {Qn (t)|n ∈ H}. The arrival rate of Qn(t) represents
the total size of content shared by node n as selected by users.
Therefore, the arrival rate of queue is

An
(
bnu,t

)
=

∑

u∈N ,n∈{H/u}
bnu,t sf . (3)

The service rate of the queue Qn (t) is expressed as the
average rate at which the current request is satisfied. Based on
the above description, the dynamic request queue {Qn (t)}Hn=1
at any time slot t can be dynamically described as

Qn(t + 1) = max{Qn (t) + An
(
bnu,t

)
− rnu,t , 0} (4)

Specifically, at the initial stage, the request queue main-
tained by user n is set to Qn(0) = 0. In addition, since the
system state is random, the system-dependent queuing vector
process {Qn (t)}t∈T is also random.

When users select nodes, there is a cost associated with
content sharing. This cost is related to the delivery rate of the
content from the user to the selected node. We assume that the
transmission cost is proportional to the data rate, which is a
general performance metric that can be converted to other met-
rics such as battery life, transmission delay, and interference.
Following similar calculations in prior studies [10], we assume
that the transmission cost is charged per unit of data rate.
Therefore, at any given time slot t, the transmission cost from
the selected node n to the user u can be expressed as:

Cn
(
bnu,t

)
= bnu,t · ptransu,n · rnu,t , (5)

where ptransu,n is denoted as the transmission power consump-
tion from user u to node n. To deal with the network cost of
the delivery nodes in the network, virtual cost queues Y (t) =
{Yn (t)|n ∈ H} are introduced. Specifically, at the initial
stage, the cost queue maintained by user n is set to Yn (0) = 0.
Based on the above description, at any time slot t, the dynamic
cost queue {Yn (t)}Hn=1 can be dynamically described as

Yn (t + 1) = max
{
Yn (t) + Cn

(
bnu,t

)
− εv , 0

}
, (6)

where ε is a positive scaling factor. Dynamic queue Yn (t) can
be seen as a random energy consumption Cn (b

n
u,t ) and a fixed

service rate εv .

B. Problem Formulation

In this paper, the overall objective is to make dynamic node
selection and caching decisions that maximise D2D sharing
gains while minimising user request latency. The specific
problem under consideration can be formulated as
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1) D2D shared gain: If the user’s request cannot be
satisfied locally (i.e., xu,f = 0), then by selecting the
content sharing node bnu,t establishes a D2D link with
adjacent user n to meet user requests, where n > 0.
Therefore, the gain obtained through the D2D sharing
method can be expressed as

G t
u,1 =

∑

n∈N
sf · Ru,n · bnu,t · xn,f ·

(
1− xu,f

)
,

∀u ∈ N , ∀n ∈ H, ∀t ∈ T , ∀f ∈ F . (7)

2) Content fetch gain: To account for the fact that a
User Equipment (UE) can only share content with
a chosen node during a time slot, we introduce an
average queue delay that is directly proportional to the
serving UE. Consequently, the network’s benefit from
user acquisition requests can be expressed as follows:

G t
u,2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τe−dL
u,t , Local Cache

τe−dD2D
u,t , D2D Communication

τe−dB
u,t , Communication to BS

τe−dc
u,t , Cloud Service

(8)

Where τ represents the introduced parameter, we
observe a negative exponential function that highlights
the inverse relationship between user request delay and
channel gain. In simpler terms, when the user request
delay is low, a larger gain is obtained. By using this
formulation, we can analyze the impact of user request
delay on the network’s benefit.

Based on the above description, the gain of the obtained
content is represented as

G
(
bnu,t , xu,f

)
=

N∑

u

{
λ1G

t
u,1 + λ2G

t
u,2

}
, (9)

where λ1 and λ2 is the two introduced parameters, which sat-
isfy the condition λ1+λ2 = 1, where 0 ≤ λ1, λ2 ≤ 1. These
parameters represent the weights or proportions assigned to
D2D gain and delay, respectively. Therefore, the goal of this
article is to optimize the problem P1, can be expressed as

max G
(
bnu,t , xu,f

)
(10)

For ease of understanding, the notation used in this article
is summarized in Table I.

V. DYNAMIC CONTENT CACHE AND NODE

SELECTION ALGORITHM

A. Stochastic Lyapunov Optimization

Directly solving the aforementioned problem P1 becomes a
challenging task without prior knowledge of the system’s sta-
tus, queue backlog, and network cost distribution. In addition,
the choice of content sharing delivery nodes creates an imbal-
ance in the request queue and delivery cost of caching nodes in
the network. In order to tackle the aforementioned challenges,
we employ stochastic Lyapunov optimization methods to
regulate the selection of content sharing nodes. The primary
objective of this approach is to minimize the average network

TABLE I
MODELING PARAMETERS AND NOTATIONS

latency while ensuring the stability of both the request and
cost queues within the network, all without relying on any
prior knowledge. We started by defining the functions used in
our analysis.

Definition 1 (Quadratic Lyapunov Function): In order
to jointly control the request and network cost queues of
any time slot t, the total queue is defined as Z (t) =
{Qn (t),Yn (t)}, where {Qn(t)}Hn=1 and {Yn (t)}Hn=1. The
quadratic Lyapunov function L(Z (t)) of the random queuing
process is equal to half the sum of the squares of the backlogs
of all current queues, which is

L(Z (t)) =
1

2

(
∑

n∈H
Qn(t)

2 +
∑

n∈H
Yn(t)

2

)

. (11)

The Lyapunov function is a scalar measure of the total queue
backlog in the network, with a smaller L(Z (t)) indicating a
lower queue occupancy in the network.

Definition 2 (Conditional Expectation Lyapunov Drift): At
any time slot t, the conditional expectation Lyapunov drift
ΔHt represents the expectation of the time slot difference of
the Lyapunov function, namely

ΔHt = E{L(Z (t + 1))− L(Z (t))|Z (t)}, (12)

which ΔHt describes the variation of the quadratic Lyapunov
function, i.e., the degree of fluctuation of the function. A
smaller ΔHt indicates a more stable queue in the network
system. Therefore, we choose to minimise ΔHt for each time
slot t to stabilise the whole system network. However, if one
wishes to stabilize the request and energy consumption queues
in the network while minimizing average latency, one must
add the expected cost E{G(bnu,t , xu,f )} to ΔHt [10] and
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then, transform the function that minimises ΔHt , into a cost
function that maximises the dift-plus-cost

V · E
{
G
(
bnu,t , xu,f

)
|Z (t)

}
−ΔHt , (13)

where the weights V ≥ 0 to balance the impact on network
cost and network stability. In the following, to obtain an upper
bound on the drift plus cost in (13) within an arbitrary time
slot t. Firstly, we have

Qn (t + 1)2 = Qn(t)
2 + 2Qn (t)

(
An
(
bnu,t

)
− rnu,t

)

+
(
An
(
bnu,t

)
− rnu,t

)2
,

(14)

Yn (t + 1)2 = Yn(t)
2 + 2Yn (t)

(
Cn
(
bnu,t

)
− εv

)

+
(
Cn
(
bnu,t

)
− εv

)2
. (15)

Secondly, by combining equation (4), (6), equation (12) can
be rewritten as

ΔHt =
∑

n∈H

1

2
E
{(

An
(
bnu,t

)
− rnu,t

(
bnu,t

))2
+Qn (t) ·

((
An
(
bnu,t

)
− rnu,t

)
|Qn (t)

)
+

1

2

(
Cn
(
bnu,t

)
− εv

)2

+Yn (t) ·
((
Cn
(
bnu,t

)
− εv

)
|Yn (t)

)}
. (16)

Therefore, at any slot t, the drift-plus-cost function in (13)
is upper-bounded by

V · E
{
G
(
bnu,t , xu,f

)
|Z (t)

}
−ΔHt

≤ V · E
{
G
(
bnu,t , xu,f

)
|Z (t)

}

−
(

B +
∑

n∈H
Yn (t) ·

(
(Cn (b

n
u,t )− εv)|Yn (t)

)

+
∑

n∈H
Qn(t) ·

((
An(b

n
u,t )− rnu,t

)
|Qn (t)

)
)

, (17)

where B is a constant independent of V and the Qn (t)
and Yn (t) in the total queue Z (t) = {Qn (t),Yn (t)} are
independent of each other. Therefore, define B = B1 + B2,
where B1 and B2 can be obtained separately from

1

2
E

{
∑

n∈H

(
An
(
bnu,t

)
− rnu,t

)2
}

≤ 1

2

∑

n∈H
E
[(
An
(
bnu,t

))2
+
(
rnu,t

)2]

≤ 1

2
N ·

(
sf
)2

+
∑

n∈H

(
rnu,t

)2
= B1, (18)

1

2
E

{
∑

n∈H

(
Cn
(
bnu,t

)
− εv

)2
}

≤ 1

2

∑

n∈H
E
[
(Cn

(
bnu,t

)2
+ (εv)2

]

≤ 1

2

∑

n∈H

(
ptransu,n · rnu,t

)2
+ N · (εv)2 = B2. (19)

The terms of the second inequality in (18) and (19) relate
to the content sharing node bnu,t selected by user u. Instead of

minimizing the dift-plus-cost function in (13), we minimize
its upper-bound function. Therefore, in order to minimize the
right-hand side of the inequality (17), it is necessary to con-
sider the current historical request queue Q(t) and energy cost
queue Y (t) in time slot t. This can be achieved by selecting
the appropriate shared delivery Node bnt . Then, we obtain the
following optimization problem P2 max Ω(bnu,t , xu,f |Z (t)),
where the objective function

Ω
(
bnu,t , xu,f |Z (t)

)

= V · E
{
G
(
st , at

)
|Z (t)

}
−

N∑

u

∑

n∈H
Qn(t) · An

(
bnu,t |stu

)
−Yn (t) Cn

(
bnu,t |stu

)

=
N∑

u

(
∑

n∈H

(
sf · Ru,n · bnu,t · xn,f · (1− xu,f ) + τe−dn

u,t

−Qn (t) · bnu,t · sf − Yn (t) · bnu,t · ptransu,n · rnu,t
))
. (20)

s .t .bnu,t ,n ∈ {N ∪ B}/u, u ∈ N (19a)
∑

n∈{N∪B}
bnu,t = 1 (19b)

B. Deep Reinforcement Learning for Shared Delivery Node
Selection and Cache Replacement

Notice that the problem P2 is linear and, therefore, decom-
posable. In particular, we can then decompose this problem
into N subproblems, given by

Ωu(bnu,t , xu,f |Z (t)
)

=
∑

n∈H

(
V ·

(
sf · Ru,n · bnu,txn,f · (1− xu,f ) + τe−dn

u,t

)

−Qn (t) · bnu,t · sf − Yn (t) · bnu,t · ptransu,n · rnu,t
)
,

(21)

for all users u ∈ N , which can be solved in parallel by the
users separately. Therefore, solving P2 is synonymous with
finding the optimal content delivery node and caching policy,
i.e.,

P3 arg max Ωu(bnu,t , xu,f |Z (t)
)
. (22)

It is worth noting that users need to make dynamic
node selection and caching decisions under constantly chang-
ing channel conditions. We transform the joint optimization
problem P3 of content delivery node selection and cache
replacement into a Markov decision process (MDP), as shown
below:

State: The state of user at time t can be expressed as stu =
{Yu(t),Qu (t),Ru , hu (t)}. Yu (t),Qu (t) denote the energy
consumption queue and request queue of user u, respectively.
In addition, Ru is the probability of a user establishing a D2D
connection with neighbouring user, and hu(t) is denoted as the
channel gain of the user requesting content to other delivery
nodes.

Action: After receiving the status stu , select the content
sharing transmission node and replace the file. Therefore, the
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Fig. 3. DDPG architecture for solving the proposed MDP problem.

action can be expressed as atu = {bnu,t , I tu}, where bnu,t is
the indication identifier indicating the node (e.g., including
UE’s neighbouring nodes and base station). I tu is the indicator
whether the file in cache list need to be replaced.

Reward value of the system: Our goal is to maximize
revenue from D2D and content sharing while reducing user
request latency and maintaining the stability of the request and
energy queues in the system. Therefore, we set the reward as
the optimization problem P3, i.e., ru = Ωu (bnu,t , xu,f |Z (t)).

In general, obtaining the optimal action, including content
node selection decision (bnu,t )

∗ and cache replacement I tu ,
involves exploring a vast number of possible decisions, which
can be as high as 2(N+Mu ) options. This results in significant
computational complexity even when N is very small. As
a result, a reinforcement learning approach is employed to
enable online shared node selection and cache decisions.
Specifically, we use the deep deterministic policy gradient
(DDPG) reinforcement learning algorithm to dynamically
make node selection and cache decisions, thus solving the
formulated MDP problem.

Fig. 3 illustrates the architecture for addressing the
proposed MDP problem in DDPG. The DDPG algorithm
employs two independent deep neural networks (DNNs),
which follow the actor-critic paradigm, including an online
network and a target network. In each selection period t,
the state su is sent to the actor network of the online
network. To ensure comprehensive exploration of the envi-
ronment while maintaining a balance between exploration
and exploitation, a Gaussian noise vector is incorporated
into the action policy function during its output. Following
the execution of action au , the ensuing reward ru and the
subsequent state s ′u(t) are observed. The observed Transition
state (su(t), au (t), ru (t), s

′
u (t)) is saved to the experience

pool to facilitate subsequent network learning.
The target network, which acts as a delayed replica of the

online network, progressively tracks the acquired knowledge
and updates the parameter configuration of the target network
model through a process of soft updates. Throughout the
training of the system, the agent randomly samples from the
experience replay pool. In an effort to ensure the proximity
of the Q-value output produced by the critic network to the
actual value, the Q-value estimated by the critic network is
employed within the target network. Additionally, the mean
square error loss function is utilized to guide the training of
the actor network. The model is trained Episode times, and
in each epoch, the target network implements a soft update

Algorithm 1 Combines Lyapunov Optimization and
Reinforcement Learning (LoRL) for Solving (P3)

input: Parameters V.
output: Control actions atu = {bnu,t , I tu}.
initialization: {hu}Hu=1, Yu(t)}Hu=1, {Qu(t)}Hu=1,
Yu(0) = 0, Qu(0) = 0.
for UE-u ∈ N in Parallel: do

Training AutoEncoder model, and then obtain user
preferences Pu .

end for
for each epoch in episode do

for t = 0, 1, 2, 3, ...,T do
for UE-u ∈ N in Parallel: do

User u sends a request file f.
IF xu,f = 1:

continue.
Calculate the similarity S v

u (12) between user u and
neighboring users.
Calculate the connection probability between users
Ru , Ru,v∑

u∈N Ru,v
→ Ru .

Observer the state stu = {Yu(t),Qu (t),Ru , hu (t)}.

Observer reward feedback ru(t) (21), and obtain
new observations s ′u(t).
Construct transition (su (t), au (t), ru (t), s

′
u (t)) and

then store the transition into experience pool.
Update actor-critic model parameters

end for
end for

end for

mechanism to modify network parameters. The detailed LoRL
Algorithm is shown in Algorithm 1.

C. Complexity Analysis

The computational complexity analysis of the proposed
LoRL scheme is as follows: The execution of the LoRL
algorithm consists of two parts, namely, joint user association
and cache decision, and policy update. Between these two
parts, a joint decision action generation is performed in each
time frame, while policy updates are less frequent. Therefore,
we focus on analyzing the complexity of policy decision
generation in each time frame.

Careful observation reveals that within each time slot,
the algorithm’s complexity includes the computation of sim-
ilarity for each user (12), the probability of connections
between users, and the updating of DDPG model parameters.
Specifically, the complexity of computing similarity and user
connection probability is O(2N), where N is the number of
users.

Additionally, the time complexity of the DDPG algorithm,
which mainly consists of initialization, memory replay, and
four deep neural networks, is as follows. The state is initial-
ized at the beginning of each training episode, with a time
complexity of K. Additionally, both the actor network and
the critic network are designed as fully connected networks,
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assuming the actor network has NA fully connected layers,
and the critic network is composed of NC fully connected
layers. Therefore, the time complexity of DDPG is

2

NA−1∑

i=0

ua,iua,i+1 + 2

NC−1∑

j=0

uc,j uc,j+1 + vaui +K

= O

⎛

⎝
NA−1∑

i=0

ua,iua,i+1 +

NC−1∑

j=0

uc,j uc,j+1

⎞

⎠+O(K )

(23)

Based on the description above, the time complexity of
the proposed LoRL algorithm is O(

∑NA−1
i=0 ua,iua,i+1 +

∑NC−1
j=0 uc,j uc,j+1) +O(K ) +O(2N ).

VI. SIMULATION RESULTS

A. Parameter Setting

In our simulation study, we utilized the MovieLens 1M
dataset [34] to model the request behavior in the network. This
dataset contains user ratings for a total of 3952 movies. Each
record in the dataset includes a user ID, a movie ID, a rating,
and a timestamp. Since user ratings are typically provided
after viewing, we treated these ratings as request records
for our simulation. To calculate user preferences, we divided
the dataset into two parts. The period from January 1, 2000
to April 13, 2002 was used as a historical training set to
obtain user preferences. The remaining data served as the
test set to evaluate the performance of our algorithm. The
content database F consists of the 3952 movies contained in
the dataset. In order to reflect the degree of queue backlog
in the system network, we set the total number of requests
to be 10,000 under different numbers of users. We set the
default cache sizes of user nodes and base stations to 40M and
100M, respectively. These cache sizes determine the amount
of content that can be stored locally at each node.

In our simulation, we modeled the user’s movement tra-
jectory using the Random Waypoint model [35], which is a
widely applied and proven effective approach in simulating
user mobility. The Random Waypoint model has also been
commonly used in other studies, particularly in research
related to caching strategies [36], [37]. This model generates
random coordinate locations for the user at each time slot
within a specified region. To determine the range of D2D
connections, we assumed that users can establish connections
within a physical range limit of 100 units. Users can connect
to the base station within a range of 500 units. The path loss in
the network was modeled using the formula 36.8 + 36.7log(d),
where d represents the distance between user cache nodes.
The small-scale fading was modeled using the unit variance
of Rayleigh fading. Other network parameters included a
channel bandwidth of 20 MHz and a background noise level
of -95 dBm. In addition, all users run a DRL agent with a
three-layer neural network. All these agents use the Adam
optimizer with adaptive learning rates to learn their respective
training parameters, starting from a learning rate of 10−2. For
specific simulation parameter settings of DDPG, please refer
to Table II.

TABLE II
MODEL SIMULATION PARAMETERS

Fig. 4. Variation in request preference at different numbers of users.

B. Content Request Preference Analysis

In our experiment, we simplified the dataset by extracting
the user IDs with the highest number of requests. We then
selected a specific number of users for simulation purposes.
User preference in this context refers to users’ focus on
requesting certain types of files. To illustrate how user pref-
erence changes with different numbers of users, we provide
a simple example. In the example, we consider the numbers
of users to be [20, 40, 60, 80, 100, 120, 140]. Fig. 4
shows the distribution of requested content IDs at different
numbers of users. From the figure, we observe that the content
popularity exhibits certain preferences for different numbers of
users. The requested content IDs are clustered within specific
ranges, i.e., [500-1000], [1250-1500], [2000-2500], [3000-
3250], [3725-3952]. This indicates that certain content types or
categories are more popular among users, and their preferences
can be observed based on the content IDs requested.

C. Baseline Schemes and Performance Metrics

To evaluate the performance of the proposed LoRL algo-
rithm under different parameters, we consider the following
baseline scheme:

1) LRU: Randomly select content sharing nodes within the
communicable range, and the earliest stored content will
be replaced with new content.

2) MLPLRU [38]: Randomly select content sharing nodes
within the communicable range, and an improved
online cache replacement strategy based on Pareto Least
Recently Used (PLRU) Algorithm and Least Recently
Used K (LRU-K) Algorithm.

3) LoRL-with no preference: LoRL-with no preference
refers to the variant of LoRL algorithm that disregards
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Fig. 5. Dynamics of the time-averaged sum of queue backlogs in LoRL for
different weights V during the observation period t = 1, . . . , 100 slots.

Fig. 6. Dynamics of the time-averaged network cost in LoRL for different
weights V during the observation period t = 1, . . . , 100 slots.

user preferences and solely focuses on the connection
probability between users.

4) DAC: A delay-aware D2D caching (DAC) [39] algorithm
with the goal of request latency.

5) GHM: The greedy heuristic method (GHM) [10]
searches within a limited number of user/file pairs to
maximize the target D2D gain and delay value.

To evaluate these solutions, we use the following
performance metrics: (i)hit rate (satisfied by local cache,
D2D sharing, or BS); (ii) average delay; (iii) queue backlog;
(iv) network cost; (v) D2D offloading rate.

D. The Impact of Weight V

Figures 5-7 verify the analysis results related to Lyapunov
optimization established in (17). Figures 5 and 6 show the
dynamics of the time-averaged network cost and sum of queue
backlogs during different values of weight V, respectively, in
LoRL during the period t = 1, . . . , 100. It is observed that
LoRL converges to stable delivery cost and queue backlog
levels around time slot t = 30. We also see that when weight
V = 10, there is lower network cost and queue backlog.
Figure 7 illustrates the target value, which is the time average
of the sum of transmission cost and queue backlog, as a
function of the weight V in Lyapunov optimization. The graph
demonstrates a proportional relationship between the sum of
queue backlog and network cost. This can be attributed to

Fig. 7. Time averages of the content transfer cost and the sum of queue
backlogs in LoRL as functions of weight V.

Fig. 8. The cache hit ratio varies with the number of users.

Fig. 9. Time-average transmission delay varies with the number of users.

the fact that a higher queue backlog prompts the selection
of delivery nodes with lower transmission delays to minimize
retrieval costs, thereby resulting in an increase in delivery
costs.

E. The Impact of User Numbers

Results in Figures 8-12 describe the performance of the
cache strategy in terms of cache hit ratio, time-averaged
latency, time-averaged delivery cost, and time-averaged queue
backlog under different numbers of users. The Figure 8 shows
that the higher the number of users, the higher the cache
hit rate.As depicted in Figures 9-11, it is evident that with
the expansion of the network user scale, the queue backlog,
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Fig. 10. Time-average sum of queue backlogs with varies with the number
of users.

Fig. 11. Time-average network cost varies with the number of users.

Fig. 12. The Device-to-Device (D2D) offloading rate varies with the number
of users.

transmission cost, and average request delay decrease accord-
ingly. This can be attributed to the increased opportunities for
D2D communication resulting from a larger number of users,
thereby enhancing the effectiveness of collaborative caching.
It is worth noting that it is observed from Figure 12 that as
the number of users increases, the D2D offloading rate has a
slow decreasing trend, which is mainly because our proposed
mechanism combines user preference node selection and cache
decision, local The cache decision is more biased towards local
requests, increasing the probability of local cache hits, thereby
reducing the proportion of D2D offloading. Furthermore, it
can be seen from these figures that although the proportion

Fig. 13. The cache hit ratio varies with cache size.

Fig. 14. Time-averaged transmission delay varies with cache size.

Fig. 15. Time-averaged sum of queue backlogs varies with cache size.

of D2D offloading decreases, the proposed mechanism still
outperforms other strategies.

F. The Impact of Cache Size

In order to compare the performance of LoRL with other
caching strategies, we present the results in Figures 13-17
with respect to cache size. These figures display the hit rate,
request latency, time-averaged network cost, and the sum of
queue backlog and D2D offload ratio. It is evident that the
cache hit ratio improves with larger cache sizes. Conversely,
the combined metrics of queue backlogs, transmission delays,
and network costs decrease as the user cache size increases.
As can be seen from these figures, LRU and MLPLRU
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Fig. 16. Time-averaged network cost varies with cache size.

Fig. 17. The Device-to-Device (D2D) offloading rate varies with cache size.

are not very effective in minimizing content delivery delay,
transmission cost, and queue backlog. The reason is that LRU
and MLPLRU do not consider the popularity of file content,
and only update the cache according to local requests. Also,
these algorithms randomly select shared nodes from within
the exchange range. In addition, both the GHM algorithm
and the DAC algorithm are greedy node selection algorithms,
which can improve the content sharing rate by optimizing the
D2D node selection, but it does not consider the local cache
decision, so its local cache hit rate is low. We also observed
that the DAC and GHM algorithms are inefficient, leading
to performance degradation at the expense of queue backlog
and network transmission costs. The main reason is that when
the number of users is fixed, the cache nodes that users can
establish D2D links are limited, so GHM is compared to DAC
advantage is not particularly obvious. In particular, LoRL has
certain performance advantages compared to LoRL with no
preference, and can better select shared nodes with high D2D
gains, making the network have lower queue backlogs and
transmission costs.

VII. CONCLUSION

In this paper, we introduce a novel approach for selecting
shared nodes and making cache decisions in D2D-assisted
heterogeneous collaborative edge computing networks. Our
approach involves formulating a joint optimization problem
and utilizing a Lyapunov optimization algorithm to decouple
the problem. To enable intelligent user association and caching

decisions, we propose a content caching algorithm based on
deep deterministic policy gradient (DDPG) [33]. The algo-
rithm aims to minimize user request latency while ensuring
the stability of request and energy consumption queues in
the system. To evaluate the effectiveness of our proposed
algorithm, we conduct an extensive study and compare it
with five baseline schemes. The results demonstrate that our
algorithm surpasses the baseline schemes in terms of average
content download latency and system queue stability. In our
future work, we intend to delve deeper into the fine-grained
characteristics of users and requests. This will enable us to
make more informed decisions regarding user association and
caching, ultimately enhancing the overall performance of the
system.
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