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Abstract—System logs are a valuable source of information
for monitoring and maintaining the security and stability of
computer systems. Techniques based on Deep Learning and
Natural Language Processing have demonstrated effectiveness
in detecting abnormal behaviour from these system logs.
However, existing anomaly detection approaches have limita-
tions in terms of flexibility and practicality. Techniques that
rely on log templates such as DeepLog and LogBERT fail
to capture semantic information and are unable to handle
variability in log content. On the other hand, classification-based
approaches such as LogSy, LogRobust and HitAnomaly require
time-consuming data labelling for supervised training. In this
paper, a novel log anomaly detection model named LogFiT is
proposed. The LogFiT model doesn’t make use of a vocabulary
of log templates and it doesn’t require any labeled data as
the model only requires self-supervised training. The LogFiT
model uses a pretrained Bidirectional Encoder Representations
from Transformers (BERT)-based language model fine-tuned to
recognise the linguistic patterns of the normal log data. The
LogFiT model is trained using masked sentence prediction on
the normal log data only. Consequently, when presented with
the new log data, the model’s top-k token prediction accuracy
serves as a threshold for determining whether the new log data
deviates from the normal log data. Experimental results show
that LogFiT’s F1 score exceeds that of baselines on the HDFS,
BGL, and Thunderbird datasets. Critically, when variability is
introduced in the log data during evaluation, LogFiT retains its
effectiveness compared to that of baselines.

Index Terms—Service monitoring, fault management, log
anomaly detection, deep learning, natural language processing,
language modeling.

I. INTRODUCTION

ANNUALLY, cybercrime results in billions of dollars
of losses for businesses [1], [2], [3]. Log anomaly

detection is an active area of research owing to its relevance
to the problem of ensuring the security and reliability of
organisations’ digital infrastructure. The large amounts of
log data generated by computer systems provide valuable
information about the systems’ real-time operation. However,

Manuscript received 13 March 2023; revised 15 September 2023 and
9 December 2023; accepted 23 December 2023. Date of publication
25 January 2024; date of current version 15 April 2024. This work was
supported in part by the Central Queensland University’s School of Graduate
Research and in part by the Commonwealth Scientific and Industrial Research
Organisation (CSIRO)’s Data61 unit. The associate editor coordinating
the review of this article and approving it for publication was Y. Diao.
(Corresponding author: Crispin Almodovar.)

Crispin Almodovar, Fariza Sabrina, and Salahuddin Azad are with the
School of Engineering and Technology, Central Queensland University,
Rockhampton, QLD 4701, Australia (e-mail: crispin.almodovar@
cqumail.com; f.sabrina@cqu.edu.au; s.azad@cqu.edu.au).

Sarvnaz Karimi is with Data61, CSIRO, Sydney, NSW 2015, Australia
(e-mail: sarvnaz.karimi@csiro.au).

Digital Object Identifier 10.1109/TNSM.2024.3358730

human operators are increasingly unable to cope with the
volume and velocity of log data generated by the systems
being monitored. Consequently, Machine Learning (ML) and
Deep Learning (DL)-based solutions have been proposed to
automatically detect anomalies from system log data, thereby
reducing the burden on human operators [4], [5], [6].

System logs are produced by the logging instructions that
software engineers insert in a computer program’s source code
to communicate the program’s run-time state. The system logs
thus produced consist of ordered sequences of log sentences
that assert the occurrence of certain events in the system [7].
Typically, log sentences are grouped according to some crite-
ria, such as time window (e.g., 60 second intervals) or unique
identifier (e.g., HDFS block ID). In this study, such grouping
of log sentences is referred to as a “log paragraph”. The idea
behind log anomaly detection is to learn a model of the normal
behaviour of a computer system based on the sequence of log
sentences that it generates during normal operations. If there
is a significant deviation in the new observed behaviour from
the learned normal behaviour, the deviation can be regarded as
an anomaly. For instance, a normal sequence of log sentences
may consist of one or more “File opened successfully” entries
followed by “File write operation completed” and/or “File
read operation completed” entries. However, a sequence of
log sentences that only contains “File opened successfully”
entries without corresponding “read” or “write” entries can be
considered an anomaly.

There are several considerations in the study of log anomaly
detection. The first consideration is the overall Machine
Learning approach to be used for anomaly detection. In
literature, approaches based on Deep Learning have been
proven to be more effective than traditional Machine Learning
based approaches such as Principal Component Analysis
(PCA), Support Vector Machines (SVM) and Isolation
Forest [6], [8], [9].

A further consideration is whether to use supervised or
unsupervised Machine Learning. Due to the high cost of
preparing labelled data, supervised methods such as LogSy
[10], LogRobust [11] and HitAnomaly [12] have limited utility
in production settings. As a result, unsupervised techniques
dominate; these techniques assume a zero-positive training
scenario, where normal log data is the only data available for
training [4]. The study in [13] identified two categories for unsu-
pervised models for log anomaly detection: forecasting-based
model which learns by predicting the next log sentence based
on immediately preceding log sentences; and reconstruction-
based model which learns by reconstructing sequences of log
sentences that have been intentionally corrupted.
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Fig. 1. Log parsing applied to HDFS log data.

Another consideration is the use of a log parser and log
templates to generate representations of log sentences. The
quality of the representation of log sequences is a critical
factor that impacts the effectiveness of log anomaly detection
models, especially when the evolution of log content is
taken into account [14], [15]. As shown in Figure 1, log
parsers [8], [9] extract string templates from the log data
to build a vocabulary of all known log templates (steps 1
and 2). Subsequently, all input log sentences are mapped to
an entry in the log template vocabulary (step 3). Thus a
sequence of log sentences is represented by a sequence of
log template IDs. This approach has been shown to negatively
affect model effectiveness because of its semantically deficient
representation of log sentences. Furthermore, the unseen input
log sentences are expected to match a log template, which
makes this approach incapable of handling variability in log
sentences over time [10], [16], [17].

An important consideration is the choice of model archi-
tecture. DL-based approaches have taken inspiration from
the field of Natural Language Processing (NLP) to pro-
cess log data that are in the form of natural language
sentences. Literature reveals that state-of-the-art research in
this area employs the Long Short-Term Memory (LSTM)
architecture, as exemplified by the DeepLog model [8], and
Transformers, represented by the LogBERT model [9]. The
problems identified with LSTMs are (1) Inability to cater to
longer sequences owing to their sequential nature; and, (2)
Deficient capacity to learn complex and ambiguous contextual
relationships in the input data [9]. Being an LSTM-based
architecture, DeepLog inherits the limitations of LSTM. On
the other hand, Bidirectional Encoder Representations from
Transformers (BERT) [18] has several advantages over LSTM.
It inherits Transformer’s [19] self-attention mechanism which
helps it avoid local bias, and its use of bidirectional con-
text allows it to capture complex and ambiguous contextual
relationships. Although LogBERT inherits the advantages of
BERT, its dependency on log parsing and log templates makes
it less adaptable to changes in log structures. Moreover,
LogBERT trains a BERT model customised to a specific
dataset from scratch, which limits its ability to generalise to
other datasets. Furthermore, LogBERT does not benefit from
prior semantic knowledge already learned by a pretrained
BERT model.

To address the limitations of existing approaches, this work
introduces the following contributions:

• We propose LogFiT, a log anomaly detection model
implemented as a Python package. LogFiT leverages a
fine-tuned, pretrained BERT-based model to semantically
analyse logs without requiring an intermediate parsing
step. During inference, top-k prediction accuracy is used
for anomaly identification, with heuristics to set the
threshold automatically.

• The model employs a novel masked sentence prediction
training objective to enhance the contextual understand-
ing of log sentences and their constituent tokens, thus
improving anomaly detection performance.

• LogFiT works directly on raw logs, eliminating the need
for a separate log parsing step to extract log templates.
LogFiT uses the pretrained model’s extensive vocabulary
of sub-word tokens to adapt to diverse log content.

• LogFiT offers a provision of using one of two base
models - RoBERTa and Longformer. The former allows
faster training, while the latter is capable of handling
longer log sequences.

• Heuristics are used for base model selection and hyper-
parameter tuning, enhancing ease of use.

• LogFiT can also serve as a semantic embedding tool,
generating log representations that can be used for other
tasks outside of anomaly detection.

• LogFiT is designed for easy integration into existing NLP
tool sets and the larger system observability ecosystem.

• We compare LogFiT against established methods,
DeepLog and LogBERT, to demonstrate its effectiveness.

The present paper differs from the authors’ earlier confer-
ence paper [20], outlined as follows. Firstly, the robustness
of LogFiT against gradual changes to the lexical content
of log data has been demonstrated. Secondly, the centroid
minimisation training objective that was used in the earlier
method has been removed, and the model’s effectiveness is
not degraded by its removal. Furthermore, the present paper
leverages k-fold cross-validation to improve the reliability of
the experiments, and includes experiments that explore the
effect of varying the top-k and top-k accuracy threshold values,
and different time windows.

The rest of the paper is organised as follows. Section II
discusses the related works on Deep Learning and natural
language-based approaches for anomaly detection using
log data and the pros and cons of those approaches.
Section III illustrates the proposed LogFiT model in detail.
Section IV describes the datasets, experimental setup and
implementation details. Section V analyses the experimental
results. Finally, Section V concludes the paper with future
directions.

II. RELATED WORK

Considerable research has been done on Deep Learning
based supervised and unsupervised anomaly detection. Many
of the approaches [8], [9], [11], [12] require log parsing,
while recent studies [11], [16] suggested that log parsing can
reduce accuracy. Graph-based anomaly detection [21], [22],
[23], [24], [25], [26] is an emerging topic, drawing interest
from researchers.
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A. Supervised vs. Unsupervised Methods

1) Unsupervised Methods: DeepLog [8] pioneered the
application of Deep Learning and Natural Language
Processing to the log anomaly detection problem domain. By
utilising a forecasting-based approach based on the patterns
of past log sentences, it improved upon previous methods,
such as Principal Component Analysis (PCA), Support Vector
Machines (SVM) and Isolation Forest. However, its use
of LSTM and log template indexes negatively affects its
capability to handle complex semantic relationships between
log sentences. LogAnomaly [27] built upon the principles
set by DeepLog by introducing the encoding of semantic
information. LogAnomaly used the template2vec method to
encode the semantic content of log data, enhancing the model’s
ability to detect anomalies. However, LogAnomaly’s use of
LSTM hampers its ability to process longer sequences and
complex log relationships. LogBERT [9] adopted the BERT
architecture to learn more nuanced patterns in the log data,
which allowed it to perform better than previous methods.
However, LogBERT’s use of log parsing and log templates
makes it less adaptable to changes in the lexical structure of
log data.

2) Supervised Methods: LogRobust [11] and HitAnomaly
[12] integrate semantic vectorisation, bidirectional LSTM
with attention, and transformer architecture, offering more
accurate anomaly classification. However, the supervised
nature limits their generalisability and scalability, demanding
a significant effort in labelling data. The requirement for
labelled data makes them less flexible in scenarios where
obtaining labelled anomalies is challenging. Additionally,
domain-specific embedding might limit their applicability
across various domains. Furthermore, their reliance on specific
log parsers like the Drain parser may also limit flexibility.
LogSy [10] introduced flexible preprocessing through its
use of a Transformer architecture. LogSy also introduced a
spherical loss function, which was later adopted by LogBERT.
However, LogSy’s classification-based approach can create
challenges in scenarios where labelled data is not readily
available. The method’s requirement for abnormal log lines
imported from an auxiliary data source creates an external
dependency, which hinders its usability in settings where
auxiliary data sources are not available.

B. Parsing-Based vs. Parsing-Free Methods

1) Parsing-Based Log Anomaly Detection: As mentioned
earlier, DeepLog [8] and LogBERT’s [9] dependency on
standardized templates limits their adaptability to new or rare
log sentence structures. Also, the use of a log parsing tool
might affect its ability to capture the nuanced differences in log
messages. Similarly, LogRobust [11] and HitAnomaly’s [12]
dependency on log parsing tools limits flexibility in capturing
nuanced differences.

2) Parsing-Free Log Anomaly Detection: As mentioned
earlier, while LogSy’s [10] use of flexible pre-processing and
Transformer architecture makes it robust against the evolution
of log data, its classification-based approach poses a challenge
where labelled data is not readily available. LAnoBERT

[28] utilises BERT’s natural language understanding to detect
anomalies without relying on conventional parsing. This
approach allows it to handle variability in formats. However,
similar to the LogBERT method, this approach trains a BERT
model from scratch. This limits its reuse for other datasets
and schemas and foregoes the benefits of a pretrained model’s
prior semantic knowledge.

C. Graph-Based Approaches

Log analysis for the intrusion detection use case pri-
marily use graph-based models, requiring substantial feature
engineering and domain knowledge to identify entities and
their interactions [21], [22], [23], [24], [25], [26]. The input
to graph-based models is formatted as information triples,
such as (user1, authenticate, computer2). In contrast, LogFiT
operates on well-formed sentences, leveraging its transformer
architecture to understand both structural and semantic prop-
erties of log data [29], [30]. Recent studies indicate that
Transformer models can learn representations comparable to
graph-based approaches [31], [32]. Therefore in future, we aim
to adapt LogFiT for intrusion detection scenarios, for example
by converting intrusion detection log data into processable
sentence structures.

D. Log Anomaly Detection Workflow

The log anomaly detection workflow involves four steps as
identified in prior studies [5], [33], [34], [35]: pre-processing
for data quality, vectorisation for Machine Learning, model
development and evaluation, and final operationalisation in
production. Current research does not recommend log parsing
for vectorisation due to accuracy issues [11], [16], and recom-
mends NLP-based architectures like LSTM and Transformers
for optimal performance [8], [9], [10], [16].

E. Pretrained Language Models

In recent research, there has been a growing interest in
the use of pretrained language models (LMs) such as BERT
[18] to improve anomaly detection in system logs. Studies
in [15], [16] demonstrated that pretrained LMs can offer
significant advantages over word embeddings, that were used
in the LogRobust model [11]. According to these studies,
pretrained LMs capture contextual information at the level of
the whole log sentence, whereas word embeddings only pro-
vide representations for individual words in a single sentence.
Furthermore, pretrained LMs are capable of handling out-of-
vocabulary words, unlike static word embeddings. Existing
research suggests that pretrained LMs such as BERT can
learn both syntactic and semantic information, which can
improve the effectiveness of Natural Language Processing
tasks [29], [30], [36], [37]. The BERT model is a Transformer
encoder model that has the capabilities of an auto-encoder.
The BERT model’s encoder capability allows it to generate
semantic vectors that are sensitive to the full context of the
input log sequence, and to reconstruct log sequences that have
been corrupted [18]. Therefore, in this study, a pretrained LM
is incorporated into the LogFiT model to leverage its ability
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TABLE I
COMPARATIVE ANALYSIS OF LOG ANOMALY DETECTION METHODS

to understand the sequential properties and linguistic structure
of system logs.

In Table I, various log anomaly detection methods are
summarised and compared, highlighting their key technical
aspects and limitations. Table I presents the landscape of
existing approaches to highlight the research gap addressed
by the proposed LogFiT method. LogFiT distinguishes itself
from other methods by leveraging transfer learning and LM
fine-tuning through masked sentence prediction, enabling it to
adapt more robustly to evolving log data, unlike other methods
that require log templates, LSTM, labelled data, from-scratch
training, or extensive domain knowledge. Furthermore, it is
important to note that LogFiT is not limited to using RoBERTa
or Longformer. It is straightforward to swap out LogFiT’s
underlying model and replace it with other Transformer
encoder models available on the Hugging Face model hub.

III. LOGFIT

The proposed LogFiT approach takes advantage of advance-
ments in Deep Learning and NLP for system log anomaly
detection. It employs pretrained foundation models [38],
specifically fine-tuning RoBERTa [39] or Longformer [40]
to learn the linguistic and sequential properties of normal
log data. Longformer is selected for its support of sequences
exceeding 512 tokens, overcoming limitations in BERT [18]
and RoBERTa. LogFiT incorporates a heuristic to choose
between RoBERTa and Longformer based on log sequence
lengths: RoBERTa for sequences up to 512 tokens, and
Longformer for longer log sequences.

LogFiT utilises a self-supervised training strategy, focusing
exclusively on normal log data to learn its linguistic and
sequential patterns. The model aims to predict masked tokens
in log sentences, employing cross-entropy loss to optimise its
predictions. This loss function is logarithmic, penalising incor-
rect predictions more severely than correct ones. LogFiT’s
semantic vectors, stored in the [CLS] token, are suitable for
downstream tasks like clustering and visualisation. As shown
in Figure 2, the LogFiT architecture and workflow involve:
(1) preprocessing raw log lines; (2) and (3) fine-tuning a
pretrained RoBERTa/Longformer model on normal logs using
masked sentence prediction and cross-entropy loss; and, (4)
detecting anomalies in new log data. Additionally, Figure 3
shows LogFiT can be integrated into a system observability
platform (such as the Elasticsearch stack) and configured

Fig. 2. Logical architecture of the LogFiT log anomaly detection approach.

for multiple log streams. That is, (1) LogFiT preprocesses
centralised log data for training and inference; (2) The model
trains on normal historical logs; (3) Optimal threshold is
determined; (4) During inference, anomalies are detected
using the model and threshold; and, (5) Alerts appear on the
platform’s UI for operator action.

In its early version [20], LogFiT incorporated centroid loss,
inspired by the LogBERT [9] method. Subsequent research
indicated that centroid loss is unnecessary, thus the present
version of LogFiT does not incorporate it.

A. Framework

Input Representation: The LogFiT model utilises normal log
data for training, which is converted to semantic vectors before
being passed to the model. In contrast to both the DeepLog
and LogBERT methods, the LogFiT model does not require
the input log data to first be converted to log templates. Rather,
log data is directly tokenised using the pretrained RoBERTa
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Fig. 3. LogFiT integrated into existing system observability platform.

or Longformer model’s default tokeniser component. LogFiT
takes inspiration from recent models [15], [16] that forego
the log template extraction step and directly convert the log
data into semantic vectors using a pretrained LM. These
models however treat the pretrained language model as a static
semantic embedding generator, whereas LogFiT fine tunes it
to the log anomaly task.

Transformer Architecture: LogFiT inherits from the inno-
vations introduced by the BERT-based language models.
BERT’s ability to accurately reconstruct corrupted input
logs can be used as a threshold-based anomaly detection
method. Thus by inheriting from BERT, LogFiT includes
both the vectoriser and log anomaly detection component
in a single package, allowing for end-to-end training that
does not require intermediate log template extraction or
vectorisation steps. As mentioned earlier, LogFiT makes use
of the RoBERTa model to process log datasets containing
up to 512 tokens per sample, and the Longformer model
for datasets where the token count per sample exceeds 512.
The Longformer model overcomes BERT’s limitation on the
number of tokens, which is due to the quadratic computa-
tional complexity of BERT’s self-attention mechanism, by
introducing a sliding window strategy that effectively reduces
attention computation to a linear time [40]. The LogFiT model
consists of 12 stacked Transformer encoders, 12 attention
heads per layer, 768-dimension vectors, and a maximum
possible sequence length of 4096 tokens – as illustrated in
Figure 2.

Heuristic: The LogFiT tool also includes a heuristic to
automatically select between RoBERta and Longformer based
on the 0.8-quantile length (in words) of the training log sam-
ples, found during preprocessing. LogFiT selects RoBERTa
for datasets with log samples containing no more than 512
tokens. For log datasets with samples that exceed 512 tokens,
LogFiT switches to Longformer to take advantage of its ability
to handle longer log samples via its use of local and global
attention.

Fine-tuning: To adapt the RoBERTa or Longformer model
to the log anomaly detection task, LogFiT utilises fine-
tuning methods based on super-convergence techniques [41]
implemented in the FastAI/ULMFiT framework [42], [43].
Research has demonstrated that fine-tuning yields significant
performance improvements (an average gain of 2%) [44] and
that gradual unfreezing [42], [44] counters the negative effects
of weight dissipation during fine-tuning of pretrained language
models [45].

B. Training Objective

As mentioned previously, the LogFiT model is trained in a
self-supervised manner using masked sentence prediction. This
training objective is a modified version of the self-supervised
masked language modelling (MLM) training objective used
to pretrain BERT-based language models [18]. In LogFiT a
variable ratio (default 0.5) of the sentences that constitute a
log paragraph is randomly chosen for masking, unlike BERT
which randomly chooses a set ratio (0.15) of all the tokens
that make up a log paragraph is randomly chosen for masking.
Subsequently, LogFiT masks a variable ratio (default 0.8) of the
tokens that make up each log sentence. Afterwards, the model
is tasked with predicting what the masked tokens were. The
intuition behind this training objective is to force the model to
learn not just the contextual relationships between the tokens
that make up a log sentence, but also the contextual relationships
between the log sentences to accurately predict the masked
tokens. This enables the model to develop an understanding of
the language rules used by the normal system logs. As a result,
it can differentiate normal log data from anomaly log data.

To satisfy the masked token prediction training objec-
tive, the model minimises the cross-entropy loss between
its masked token predictions and the actual tokens. The
computation of the cross-entropy loss for a mini-batch of log
data is shown in Equation (1). The LogFiT model minimises
the training loss using the Adam optimiser, initialised using
default values from the FastAI [43] Deep Learning library:
momentum = 0.9, sqr_momentum = 0.99, epsilon = 1e − 5,
and weight decay = 0.01.

Loss = −1

b

b∑

j=1

m∑

i=1

y
j
maski

log
(
p
j
maski

)
, (1)

where b is size of the mini-batch, m is the number of masked
tokens, y and p are the true and predicted values, respectively.

C. Anomaly Detection

The LogFiT model, which is exclusively trained on normal
data, can then be used to detect abnormal log data. During the
inference stage, log paragraphs are processed in the same way
as during training. To determine whether a log paragraph is
anomalous, LogFiT uses a technique adopted from LogBERT.
The trained model’s top-k accuracy in correctly predicting the
masked tokens is used as an anomaly score. If the model’s
top-k predictions for a masked token contain the correct token,
the model’s prediction is considered correct. A log paragraph
is considered normal if the model’s accuracy in correctly
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predicting the masked tokens is above some threshold. If the
model’s accuracy falls below the threshold, the log paragraph
is deemed an anomaly. LogFiT includes a heuristic to deter-
mine the optimal threshold during hyperparameter tuning, as
described in the Experimental Setup section.

IV. EXPERIMENTS

In this section, the datasets, experimental setup, and imple-
mentation details are described. Subsequently, the results of
running the experiments are evaluated.

A. Experimental Setup

Datasets: The LogFiT model is trained and evaluated
using three public datasets: HDFS [46], BGL [47] and
Thunderbird [47], as used by baseline models [8], [9]. While
these datasets are partially labelled, LogFiT uses the labels
solely for model validation. In real-world applications, logs are
often unlabeled. HDFS logs were generated by the Hadoop
Distributed File System and contain both normal and anoma-
lous events, manually tagged by experts. Anomalies in this
dataset pertain to abnormal file system operations. The dataset
comprises 11,175,629 log sentences, with 284,818 identified
as anomalies. BGL logs come from the Blue Gene/L super-
computer at Lawrence Livermore National Laboratory. It has
4,747,963 log sentences, with 348,460 categorised as anoma-
lies. Thunderbird logs were produced by the Thunderbird
supercomputer system at Sandia National Laboratories. The
full dataset contains 211,212,192 log sentences; this study
considers the first 20,000,000, of which 758,562 are anomalies.

Log paragraphs: The HDFS log sentences are chunked into
log paragraphs using the HDFS block ID, which represents a
session in HDFS. The BGL and Thunderbird datasets do not
have a natural grouping field, so the log sentences are grouped
using time windows of 10, 30 and 60 seconds. A shorter
time window facilitates timely feedback for system operators.
Table II shows some statistics about the HDFS, BGL, and
Thunderbird datasets.

K-fold Cross-validation: In the experiments, k-fold cross-
validation was used, specifically using a five-fold approach.
For each dataset, a total of 25,000 normal and 2,000 anomaly
log paragraphs were allocated for this process. The normal
logs were used exclusively for training, while the anomaly
logs were reserved for hyperparameter tuning and model
evaluation. During each five-fold iteration, 5,000 logs sampled
from the 20,000 training split were utilised for training. For
hyperparameter tuning, 1,000 normal logs (from the training
split) were used, supplemented with 1,000 anomaly logs. The
final model evaluation exclusively used the 5,000 logs from
the test split, supplemented with 1,000 anomaly logs.

Log Content Variability: To test the models’ ability to
handle variation in the syntactic structure of the log data, the
evaluation set is dynamically modified during model evalua-
tion on the BGL dataset, so that the top 10% most commonly
occurring verbs are replaced with their WordNet [48] lemmas.

Baselines: The performance of the LogFiT model is
compared against two key baselines. DeepLog [8] and
LogBERT [9]. DeepLog utilised an LSTM-based architecture
and a forecasting-based approach for anomaly detection by

TABLE II
PER-PARAGRAPH WORD AND SENTENCE STATISTICS FOR THE DATASETS

predicting the next log template based on its preceding ones.
The model deems a log sequence normal if the correct template
falls within its top-k predictions. The results are produced
using the logdeep library,1 and it should be noted that the
original DeepLog performance metrics are not reproducible
with this implementation. LogBERT, on the other hand,
employs a BERT-based architecture and a reconstruction-based
approach. It learns normal log patterns through masked log
key prediction and centroid distance minimisation. Anomalies
are identified by predicting masked log keys and calculating an
anomaly score based on top-k accuracy and centroid distance.
If either metric exceeds a certain threshold, the sequence is
classified as anomalous. Results are produced from publicly
available LogBERT source code, and it is noted that the
original evaluations are also not reproducible.

Implementation Details: LogFiT was implemented using
Python and leveraged several well-known libraries to accel-
erate the development and evaluation of the model, such
as Pytorch, FastAI and Hugging Face. The details of the
implementation can be found in the pre-print version of this
paper [49]. The source code implementing the LogFiT model,
datasets and model checkpoints will be made available online.

Evaluation Metrics: To evaluate the effectiveness of the
models, the experiments use the following metrics:

• Precision (P) measures the proportion of correctly iden-
tified anomaly samples (TP), out of all the anomalies
detected by the model, and is calculated as P = TP /
(TP + FP).

• Recall (R) measures the proportion of correctly identified
anomaly samples (TP) out of all real anomalies and is
calculated as R = TP / (TP + FN).

• F1 Score (F1) is the harmonic mean of the Precision and
Recall and is calculated as F1 = 2 * (P*R)/(P + R).

• Specificity (S) measures the proportion of correctly iden-
tified normal samples (TN) out of all real normal samples
and is calculated as S = TN/(TN + FP).

In real-world deployment scenarios, having a predictive
model with high Specificity is more advantageous since it
minimises the chances of producing false positives or false
alarms. Furthermore, in [4] it was noted that a high Specificity
can help mitigate the impact of having an imbalanced class
distribution on the model’s overall performance.

Hyperparameter tuning: During the hyperparameter tuning
step, LogFiT iterates through top-k values in the range: 5, 9,
and 12. Subsequently, for the top-k accuracy threshold, LogFiT
iterates through values based on the top-1 token prediction
accuracy of the model during training. For example, if the
model’s top-1 token prediction accuracy during training was
0.9, the range of values for the top-k accuracy threshold search
is derived by computing 3 evenly spaced numbers in the

1Included in the LogBERT source code distribution.
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range [(0.9− 0.1), 0.9]. This computation is facilitated by the
linspace function from the NumPy library, which yields
the values 0.8, 0.85, and 0.9.

Observations: In our experiments, we observed that the
implementations of LogBERT and DeepLog included the test
set during the log parsing step (which builds the vocabulary
of log templates), thus artificially avoiding out-of-vocabulary
issues. The implementations also filtered out log instances
with fewer than 10 log template IDs, which avoided a failure
condition when the input sequence length is 1. We modified
the implementations to align with LogFiT’s setup.

We note that k-fold cross-validation may lead the models
to peek into the future, by processing log samples that only
occur at later times leading to the model’s effectiveness
improvement. This has been shown in the past in time-based
datasets [50].

V. EXPERIMENTAL RESULTS

Log Anomaly Detection Effectiveness: Table III, Table IV
and Table V show the results of running anomaly detec-
tion inference using LogFiT, as compared to the results
from running DeepLog and LogBERT using the available
source code implementation. The results show that LogFiT’s
F1 scores exceed that of LogBERT and DeepLog on all
three datasets, while LogFiT’s specificity exceeds that of the
baseline models on the HDFS and BGL datasets and is very
close to LogBERT’s on the Thunderbird dataset. The DeepLog
and LogBERT models were trained and evaluated using the
source code implementation mentioned earlier.

Analysis: The LogFiT results indicate that fine-tuning
pretrained RoBERTa or Longformer models with a novel
masked sentence prediction training objective is effective for
adapting these language models to the task of detecting
anomalies in system logs. This training approach enhances
LogFiT’s contextual understanding of log data. LogFiT’s
extensive sub-word token vocabulary and its lack of need for
log parsing allow it to easily adapt to diverse log content.
Additionally, we corrected implementation issues in DeepLog
and LogBERT, which may have influenced these methods’
performance. It is emphasized that while LogFiT improves upon
baseline methods on standard metrics, the LogFiT method’s true
effectiveness is evident in scenarios where the textual content of
log data changes due to log schema evolution. LogFiT’s superior
adaptability and robustness in handling dynamic changes in
log data - achieved through LM fine-tuning - underscores its
significant contribution to the domain of log anomaly detection.

Anomaly Detection Throughput: Table VI presents the
throughput rates (in samples per second) for DeepLog,
LogBERT and LogFiT on the HDFS, BGL and Thunderbird
datasets. DeepLog excels in throughput on the HDFS
dataset, owing to this dataset’s shorter sequence lengths.
However, its LSTM architecture limits its efficiency on the
BGL and Thunderbird datasets, where sequence lengths are
longer. LogBERT achieves superior throughput on these latter
datasets, benefiting from its parallel token processing due
to its use of a transformer architecture. LogFiT lags in
throughput primarily due to its larger vocabulary size of
50K, which dictates the size of its embedding layer. Unlike

TABLE III
ANOMALY DETECTION PRECISION (P), RECALL (R), F1 SCORE (F) AND

SPECIFICITY (S) OF DIFFERENT METHODS ON THE HDFS DATASET.
LOGFIT VALUES ARE AVERAGED FROM 5-FOLD CROSS-VALIDATION

TABLE IV
ANOMALY DETECTION PRECISION (P), RECALL (R), F1 SCORE (F) AND

SPECIFICITY (S) OF DIFFERENT METHODS ON THE BGL DATASET.
LOGFIT VALUES ARE AVERAGED FROM 5-FOLD CROSS-VALIDATION

AND TIME WINDOWS OF 10S, 30S, AND 60S

TABLE V
ANOMALY DETECTION PRECISION (P), RECALL (R), F1 SCORE (F), AND

SPECIFICITY (S) OF DIFFERENT METHODS ON THE THUNDERBIRD

DATASET. LOGFIT VALUES ARE AVERAGED FROM 5-FOLD

CROSS-VALIDATION AND TIME WINDOWS OF 10S, 30S, AND 60S

TABLE VI
ANOMALY DETECTION THROUGHPUT (IN SAMPLES PER SECOND) OF

DIFFERENT METHODS ON THE HDFS, BGL AND THUNDERBIRD

DATASETS. BGL AND THUNDERBIRD VALUES ARE AVERAGED ACROSS

TIME WINDOWS OF 10S, 30S, AND 60S. BOLD VALUES REPRESENT THE

HIGHEST IN A COLUMN

DeepLog and LogBERT, whose vocabularies are based on the
number of unique log templates, LogFiT’s vocabulary is more
extensive - which allows it to handle variability in log content.
Additionally, LogFiT accommodates up to 4096 tokens, as
opposed to the 512-token limit in DeepLog and LogBERT.
Finally, LogFiT’s lower throughput is also influenced by its
generation of detailed metrics and artifacts at inference time.
In contrast, DeepLog and LogBERT’s outputs are simple
statements printed out to the terminal. It is important to clarify
that the primary objective of our research was not centred
on throughput optimization. Throughput enhancements for
LogFiT is a subject we explore in the future.

Centroid Distance Minimisation: The LogFiT model was
extended to include a centroid distance minimisation objective
(as used in LogBERT) alongside the standard masked token
prediction. The loss function, as shown in Equation (2),
was thus a combination of the cross-entropy loss from
Equation (1) and a new term representing the centroid distance
weighted by a hyperparameter cw (set to 0.25). The centroid
distance is essentially the proximity of each log paragraph’s
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Fig. 4. UMAP plot of Thunderbird semantic vectors, where the blue,
pink, and yellow colours of the points represent training samples, normal
predictions, and anomaly predictions respectively.

TABLE VII
ANOMALY DETECTION PRECISION (P), RECALL (R), F1 SCORE (F) AND

SPECIFICITY (S) OF DIFFERENT METHODS ON THE BGL DATASET. THE

EVALUATION DATA WAS MODIFIED TO REPLACE THE TOP 10 VERBS

WITH THEIR WORDNET LEMMAS

[CLS] vector to a mean vector calculated from normal
logs. A specific q-quantile (with q between 0.65 to 0.9)
centroid distance was also calculated to serve as a threshold
during inference. However, experimental results indicated
that the incorporation of centroid distance did not enhance
the effectiveness of the model in distinguishing normal
from anomalous log entries. Despite these modifications,
the extended model’s performance remained comparable
to the original LogFiT model. Furthermore, the semantic
vectors of the training set did not form distinct clusters, after
dimensionality reduction via the UMAP algorithm [51], as
shown in Figure 4. Consequently, we concluded that centroid
distance minimisation does not offer an advantage and can be
omitted from the model.

Loss = Losscross−entropy + cw ∗ 1

b

b∑

j=1

(
CVj − centroid

)2
.

(2)

Variability in input data: In practical applications, it is
expected that the content of the log sentences changes over
time. This can be because the programmers may change
some words in the log sentences, or introduce misspellings.
The LogFiT model contains built-in support for log sentence
variability due to its large vocabulary of sub-word tokens
(around 50K). In contrast, the DeepLog and LogBERT models
would fail if they encounter variations in log sentences that
cannot be mapped to their list of known log templates. To test
the LogFiT model’s ability to handle log sentence variability,
the evaluation set is dynamically modified during inference so
that the top 10 occurring action words (that can be mapped
to synonyms in WordNet) are replaced with their WordNet
lemmas. Table VII shows the results of feeding the modified
BGL evaluation set to the trained LogFiT, DeepLog and

LogBERT models. The results indicate that the LogFiT model
is robust to changes in the log sentences, as the reduction in
F1 is around 2% (from 91.22 to 89.38). However, the drop in
F1 performance for LogBERT is large, from 88.63 to 44.22.
Similarly for DeepLog, F1 dropped from 79.25 to 53.38.

VI. CONCLUSION

The paper has introduced LogFiT, a novel log anomaly
detection model that leverages the general linguistic knowledge
of a pretrained BERT-based LM by adapting it to learn the
linguistic patterns of normal system logs. LogFiT is trained
using a novel self-supervised masked sentence prediction
objective, using only normal log data. This approach enables
LogFiT to recognise the linguistic structure of normal system
logs only, thus anomalies can be flagged when the model fails
to predict the correct log sentences for new log data. Critically,
LogFiT can handle variability in the content of system logs
because of its use of a BERT-based LM. The performance of
LogFiT on the HDFS, BGL, and Thunderbird datasets has been
evaluated and it has been that LogFiT’s F1 score outperformed
that of the baseline models. Moreover, LogFiT’s specificity
exceeded that of the baselines on the HDFS and BGL datasets
and was comparable to LogBERT on the Thunderbird dataset.
In addition, LogFiT demonstrated superior effectiveness over
LogBERT in experiments that tested for variations in the content
of input log paragraphs, which is attributed to its ability to
handle out-of-vocabulary tokens. LogFiT integrates with the
popular Hugging Face ecosystem, making it easy to adapt in
future work. Overall, LogFiT presents a flexible approach to
detecting abnormal behaviour in computer systems through
language model adaptation and fine-tuning.

A. Future Work

While the LogFiT model is intended to be used as a
threshold-based anomaly detector trained in a self-supervised
manner, it can easily be converted to a classifier. If at some
point after the model is deployed, operators can collect and
label anomaly log samples, the model can be converted to
a classifier by replacing its language modelling head with
a classification head. Additionally, the LogFiT LM can be
pretrained on diverse log datasets, allowing it to be used
as the foundation for downstream NLP and log anomaly
detection tasks. Furthermore, LogFiT’s suitability for the
intrusion detection use case can be considered in future
studies. Lastly, ongoing research to address LogFiT’s sub-
optimal throughput performance focuses on efficient training
and deployment strategies. These include the use of LoRA
adapters, quantisation, and optimised model serving environ-
ments. These initiatives are aimed at improving LogFiT’s
operational effectiveness in real-world scenarios, balancing its
throughput with its anomaly detection capabilities.
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