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Abstract—Leveraging the potential of Virtualised Network
Functions (VNFs) requires a clear understanding of the link
between resource consumption and performance. The current state
of the art tries to do that by utilising machine learning and
specifically Supervised Learning (SL) models for given network
environments and VNF types assuming single-objective optimi-
sation targets. Taking a different approach, iOn-Profiler poses a
novel VNF profiler optimising multi-resource type allocation and
performance objectives using adapted Reinforcement Learning
(RL). Our approach can meet key performance indicator targets
while minimising multi-resource type consumption and optimis-
ing the VNF output rate compared to existing single-objective
solutions. Our experimental evaluation with three real-world VNF
types over a total of 39 study scenarios (13 per VNF), for
three resource types (virtual CPU, memory, and network link
capacity), verifies the accuracy of resource allocation predictions
and corresponding successful profiling decisions via a benchmark
comparison between our RL model and SL models. We also con-
duct a complementary exhaustive search-space study revealing
that different resources impact performance in varying ways per
VNF type, implying the necessity of multi-objective optimisation,
individualised examination per VNF type, and adaptable online
profile learning, such as with the autonomous online learning
approach of iOn-Profiler.

Index Terms—VNF profiling, multi-objective optimisation,
reinforcement learning, resource minimisation.

I. INTRODUCTION

THE RISE of Cloud computing, Software-Defined
Networking (SDN) and Network Function Virtualisation

(NFV) have caused a paradigm shift from traditional
networking based on specialised hardware to utilising general-
purpose programmable hardware as a resource for running
Virtualised Network Functions (VNFs). This change has
simplified the design, deployment, and management of
network services, with network-based service providers offer-
ing Service Level Agreements (SLAs) to their customers
that outline performance requirements and Key Performance
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Indicator (KPI) levels (e.g., throughput, packet loss, response
time, processing latency, and so forth).

At the core of achieving SLA goals lies the essential process
of VNF profiling. It involves the systematic analysis and
characterisation of different VNFs within a programmable
SDN environment. The primary objective is to understand
each VNF‘s individual resource requirements, performance
expectations and operational behaviour by discovering the
relationship between resource configuration and performance.
This knowledge enables service providers to decide the (i)
optimal allocation of network and computation resources such
as CPU or bandwidth, for each VNF instance, while (ii)
ensuring adherence to predefined KPI thresholds after SLA
goals. VNF profiling is undertaken by a “VNF profiler” and
the resulting profile describes a discovered reciprocal mapping
between optimised resource allocations and the KPI thresholds
for the respective VNF, which enables knowing the expected
performance after allocating resources and vice versa.

In the context of contemporary networks such as 5G and
future 6G, attention to profiling is driven by its signifi-
cance for NFV MANagement and Orchestration (MANO)
systems. The latter can use VNF profiles to instantiate
Network Services (NSs) by adapting optimised resource con-
figurations. Moreover, profiles can be used to optimise the
life-cycle management of running services. As an example,
the 5G-VIOS [1] common interfacility orchestration platform
leverages autonomously generated [2] profiling models to
deploy and orchestrate inter-edge NSs across multiple domains
and facilities by (i) autonomously assigning optimised resource
configurations to inter-edge NSs while also (ii) exposing
corresponding performance profiles.

The current work presents iOn-Profiler, an online VNF
profiler that leverages adaptive Reinforcement Learning (RL).
In summary, our most significant and novel contributions are:

1) Online, multi-objective optimisation profiling: We
investigate RL-based adaptive VNF profiling for min-
imising the use of both compute and network resources,
as well as finding the Optimum Output Rate (OR).
The latter stands for the output rate achieved by the
profiled VNF under an optimal (i.e., minimum) resource
configuration that meets KPI targets.

2) Pragmatic VNF case studies: We consider three prag-
matic VNFs in our experimental study, namely a virtual
FireWall (vFW) and two different modes of the Snort [3]
open source intrusion prevention system (Inline and
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Passive modes). Besides pragmatic, these VNFs span
both dissimilar and similar features, allowing to assess
functionality footprint on resulting profiles.

3) Oracle exhaustive search: We conduct an exhaus-
tive search of resource-to-KPI combinations for all
VNFs involving all resource types to establish an all-
possible performance knowledge and understanding of
the impact importance of different resource types on the
performance of different VNF types. Then we utilise this
Oracle-gained insight to carefully explore and tune the
RL reward function parameters of iOn-Profiler.

4) Extensive experimental analysis: Overall, our evaluation
study highlights that different resources impact VNF
performance in distinct ways. Besides Oracle search, this
conclusion is also established through the analysis of
each VNF type’s Pareto front over a total of 39 scenarios
(13 per each of 3 VNF types). Our highlight results and
conclusions include the following:
• Multi-objective optimisation is necessary for proper

VNF profiling.
• There is a strong requirement for studying each

VNF type and mode of operation individually
such as demonstrated for Snort (Passive vs. Inline
modes).

• Online learning is significant, as fixed Supervised
Learning (SL) models lack adaptability to dynamics.

In the rest of this article, Section II provides the nec-
essary background context. Section III discusses the design
of iOn-Profiler. The experimental setup, resource and model
configurations are described in Section IV. Our experimental
evaluation is presented in Section V followed by our conclu-
sion in Section VI.

II. BACKGROUND & MOTIVATION IN

INTELLIGENT VNF PROFILING

A. Problem Statement & Utilising Machine Learning

Let I be the set of all considered resource types i ∈ I , and K
be the set of every considered KPI type k ∈ K . Also, Let x =
{x1, x2, . . . , xv} be the decision vector of KPI threshold targets
for allocating resources. Each threshold target xk corresponds
to KPI k and can get a value only from the partition set Tk
defined below. Last, x ∈ X, where set X is the feasible set
of decision vectors. Let the set Tk = {τ1, τ2, . . . , τω} be an
partition set of considered performance thresholds for KPI type
k. Last, let fi (x) be the allocated amount for resource type
i, given the KPI threshold targets x. We define the following
multi-objective optimisation problem:

min
x∈X

(f1(x), f2(x), . . . , fn (x))

Subject to: mk ≥ τk , ∀k (1)

To consider maximum KPI thresholds as well (e.g., for
packet drop rate), we adopt appropriate minimum and max-
imum threshold constraints τmin

k and τmax
k and redefine the

problem constraints as: mk ≥ τmin
k , ∀k and mk ≤ τmax

k , ∀k .
As detailed in Section II-C, Machine Learning (ML) poses

a dominant trend in the VNF profiling literature due to its

adaptability to complex environments. Compared to other
types of prominent works based on linear programming and
heuristics (e.g., [4], [5]) ML solutions delve deeper into VNF-
to-resource specifics, with core challenges captured better:
First, ML can capture better network and service dynamics,
particularly regarding 5G and 6G programmable networks
due to their agility. Second, they can do so within practical
time-scales despite the NP-hardness [6] of the underlying
optimisation problem, by converging towards optimised con-
figurations involving different resources and subject to KPI
targets.

Prominent examples of ML models used for profil-
ing include Linear Regression [7], K-Nearest Neighbors
Regression (KNNR) [8], Interpolation [9], Artificial Neural
Networks (ANNs) [10], and Curve Fit [11]. However, it
has been shown [12] that regression is not well-suited for
predicting saturation regions, while SL models like ANN and
KNNR, along with Interpolation, do not provide configuration
trends with a monotonic rising function. In contrast, Curve Fit
achieves high accuracy in predicting VNF performance but is
limited in multi-objective resource optimisation. Moreover, SL
models explored for service-level VNF profiling and place-
ment may prove suitable under static conditions [13], however,
they can significantly underperform under dynamic network
conditions [14] such as in contemporary networks. Last, an
important weakness of most ML works is their approach
to profiling as a single-objective (i.e., single resource-type)
optimisation problem, hence lacking realism as most VNFs
need more than one resource types, posing a non-linear impact
of allocated resource amount combinations on resulting KPIs.

B. Solution Objectives

The problem statement presented above establishes the
context for the current solution effort, which revolves around
four primary research objectives:

Objective #1: The profiler should accommodate multiple
resource types and KPIs, and must efficiently converge
towards optimised VNF configurations within practical time-
frames, despite the NP-hardness of the underlying optimisation
problem.

Objective #2: Leverage online learning ML techniques to
effectively adapt to the dynamics of contemporary networks.

Objective #3: Investigate the impact of different and
pragmatic VNF types, with varying functionality features, on
optimal resource allocation concerning specific KPI targets.

Objective #4: Conduct a comprehensive evaluation by
comparing the proposed online learning solution against state
of the art SL-based VNF profiler models.

In pursuit of these objectives, iOn-Profiler extends our prior
work of [15] with an (i) in-depth analysis of the complex
results obtained from an exhaustive search of resource-to-KPI
combinations, to (ii) gain a comprehensive understanding of
the relevance of resource-to-KPI and resource-to-VNF type
relationships, thus enabling to (iii) fine-tune the parameters
of the online learning model in iOn-Profiler. Additionally, our
extension involves considering (iv) a broader set of pragmatic
VNF types, encompassing different features, and exploring
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TABLE I
STATE OF THE ART SUMMARY IN INTELLIGENT VNF PROFILING. COMPARED TO OTHERS,

ION-PROFILER “FILLS IN” ALL COLUMNS CORRESPONDING TO RESEARCH GAPS

(v) multiple optimisation scenarios per VNF. Lastly, the article
presents a (vi) meticulous experimental evaluation of state of
the art SL-based VNF profiler benchmark models, including
Random Forest (RF) and Multi-Layer Perceptron (MLP). The
presented research aims to advance the field of VNF profiling
and contribute valuable insights into enhancing the efficiency
and performance of future network architectures.

Compared to the rest of the state of the art in ML-
based profiling (elaborated in Section II-C), iOn-profiler is
designed to cover existing gaps (see Tab. I). We go beyond
single-objective optimisation by utilising RL to better fit
real-world applications while being adaptable to network
dynamics. We exploit carefully designed reward functions for
the multi-objective optimisation of virtual Central Processor
Unit (vCPU), memory, and network Link Capacity (LC)
resource allocations that can achieve desirable VNF KPIs
targets such as the CPU utilisation, memory utilisation, latency
and Optimum OR.

To do so, our comprehensive study considers a wide
spectrum of different scalarisation weights among vCPU,
memory and LC objectives, which describe the Pareto front
of optimised resource-to-KPI combinations that we wish to
approach in 39 scenarios. The Pareto front is a concept
representing the set of non-dominated solutions.1 When it
comes to VNF profiling the state of the art frequently ignores
the Pareto front, posing a major research gap. Even when
considered, this refers primarily to SL approaches tailored as
“static” models trained for a given VNF type, under specific
conditions (e.g., network structure or traffic), and therefore
cumbersome or even impossible to generalise, if realistic at all
for the highly agile and dynamic contemporary programmable
networks.

C. State of the Art

The state of the art discussed below is summarised
and compared in Tab. I. First off, various important
works [17], [18], [24] have explored offline profiling for VNF

1Non-dominated are best trade-off solutions, being impossible to further
improve one objective unless compromising at least another objective.

Service Function Chains (SFCs) with a focus on different
resources. Regarding optimal VNF placement and profiling,
RAVIN [21] introduces a resource-aware algorithm based on
the Balanced Best Fit Decreasing (BBFD) heuristic algo-
rithm. It enforces performance SLAs for multi-tenant NFV
servers while balancing resource use, aiming to minimize
server count, guarantee performance, and improve resource
utilization, including the processor’s Last Level Cache and
Memory Bandwidth (MB). However, extensive offline profil-
ing by exploring all possible VNF configurations such as in
the aforementioned works is time-consuming, leading to the
development of models that focus on limiting the profiling
time such as in [18]. Nonetheless, and unlike our current
effort in iOn-Profiler, endeavours like [18] do not encompass
the concurrent consideration of pivotal KPIs such as vCPU
utilization, memory utilization, latency, throughput, and packet
loss. In another study by [23], researchers address the profil-
ing challenges by introducing the Coefficient of Interference
metric, which quantifies latency measurement variations on a
per-packet basis.

Works such as ORCA [16] and z-TORCH [6], have stream-
lined the profiling process for data collection and optimal
VNF placement. However, these approaches may not consider
optimal KPIs and pre-defined resource configurations. Last,
other notable contributions include the NFV-Inspector [20]
automated profiling and analysis platform, and the work
of [19] utilising ML techniques such as Interpolation, Gaussian
Process, ANN, and Linear Regression for VNF profiling.

Regarding our contribution to the field, the Novel
Autonomous Profiling (NAP) method [2] focuses on offline
autonomous profiling by identifying the initial optimal
resource configuration for each standalone VNF based on
a weighted resource configuration selection approach. Our
recent work of [22] introduces a novel autonomous tem-
poral profiling technique, examining VNF behaviour across
performance and resource utilisation aspects. The proposed
technique automates profiling, encompassing diverse resource
types like computation, memory, and network resources,
to yield deeper insight into VNFs resource-performance
correlations.
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Fig. 1. iOn-Profiler and MANO integration diagram.

D. The Potential of Reinforcement Learning

Previous studies summarised in Tab. I demonstrate that
ML model intelligence can significantly enhance accuracy
and other qualitative features of VNF profiling compared to
traditional methods. The current paper covers all relevant
feature columns in Tab. I but that of employing SL. Instead,
we employ RL and look forward to exploring its potential.

Further to our prior works, particularly NAP [2], iOn-
Profiler spans both an offline and (i) an online learning phase
that enables adopting to network dynamics at runtime, both
grounded in RL. Moreover, iOn-Profiler deploys VNFs (ii) on
the established Open Source MANO (OSM) [25] platform and
suggests (iii) a multi-objective VNFs profiling strategy also
grounded in RL, aiming to facilitate Zero-touch service and
network management automation for dynamic networks.

Within this context, iOn-Profiler marks a progression in our
continuing efforts since [2] towards an integrated intelligent
profiling and orchestration framework, where RL finds sig-
nificance in capturing states of resource allocation and VNF
node-placement through an underlying Markov decision driven
by online training and live profiling feedback. The above
integration can occur by fitting RL profiling agents into a more
complex RL model-based orchestration scheme, or by utilising
RL profilers like the iOn-Profiler in a hierarchical structure
likewise to the one detailed in our recent work of [26].

III. ION-PROFILER MODEL DESIGN

A. Integration Into the Next Generation NFV MANO

Figure 1 illustrates the interaction between our proposed
iOn-Profiler, NFV Orchestrator (NFVO), Virtualised
Infrastructure Manager (VIM), and monitoring tools to provide
an intelligent and autonomous NFV MANO system. The
diagram not only shows interaction but also demonstrates the
integration of the iOn-Profiler into next-generation intelligent
NFV MANO. Through online profiling, the configuration
of resources is selected and dynamically updates existing
virtual network function (VNF) descriptors. As a result, the
MANO system deploys a network slice with the newly defined
resources. In Fig. 1, we outline iOn-Profiler’s architecture.

1) Offline Profiling: Given a series of resource availabil-
ities and a number of KPI targets, iOn-Profiler employs the
NAP method [2] to select a baseline resource configuration.

Resources2 and KPIs types can be arbitrary, provided they are
described by a value in a totally ordered bounded set with at
least 3 elements (see Section IV-B, Tables III and IV). NAP is
based on the concept of optimal Input Rate (IR) and OR and
can be divided in 3 stages. The optimal IR is the maximum
IR (in packets per second) associated with a specific resource
configuration for which the system under test still respects all
KPI targets, and the optimal OR is the OR associated with it.

In stage 1, NAP employs exponential ramp-up and binary
search to find the optimal IR for each resource’s upper/lower
bounds while other resources remain at their median. Using
these values, weights are calculated to measure resource influ-
ence on performance. In stage 2, NAP uses weighted random
selection for applying resource configurations, measuring IR,
OR, and KPIs. In stage 3, NAP trains a model to estimate
minimum resource allocation based on IR and KPI targets.
The method uses the NFVO and VIM to deploy the VNFs, a
traffic generator and a monitoring probe at each step. Traffic
generators can be employed to overcome (a) a possible lack of
available real traffic datasets and (b) the need for fine-tuning
the IR as required by the algorithm. We refer to the above
as offline profiling as it needs a dataset implying the control
of IR for generating arbitrary network traffic conditions, and
training before the model can be used in production.

2) Online Multi-Objective Optimisation Profiling: After
deploying the VNF with baseline resources, the iOn-Profiler
employs Q-Learning (see Section III-B) to address possible
discrepancies after moving from the staging environment
where the Offline Profiling regression model is trained,
to an online dynamic environment. Possible disparities are
recognised when the target KPI thresholds are breached,
prompting the resetting of the exploration rate and other
learning parameters (see Section III-A2). This continuous
optimisation tries to minimise resource usage without violating
KPI targets and to improve allocation accuracy. Therefore, the
optimisation objectives need to match the same set of resource
types selected for the offline profiling, subject to the same
restrictions. Each action uses the NFVO and VIM APIs to
scale in/out the VNF instance and the exposed monitoring
capabilities. Last, the term online profiling is due to the profiler
(i) observing only existing network traffic without control over
IR, and (ii) being used in a production environment.

B. Multi-Objective Reinforcement Learning Model
Adaptation

Algorithm 1 describes our multi-objective RL approach to
optimising resource allocation for a given type of VNF. This
approach is aimed at addressing a Markov decision process by
dynamically constructing Q-tables (Qo) for each optimisation
objective (o) that stores the estimated discounted sum of future
rewards for each possible action (a) at a given state (s).
The Q-tables gradually converge by exploring the action
space and performing updates based on the recursive Bellman

2Resource types that can be either present or not such as smart Network
Interface Cards mapped via single root I/O virtualization can be captured via
profiling two corresponding VNF distinct variants.
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Algorithm 1: Multi-Objective Q-Learning Adaptation
Input: learning rate α = 0.1, discount factor γ = 0.99, the

best steepness coefficient value (β) for each reward
function, maximum number of steps (N), convergence
check threshold (ε), number of steps for convergence
check (Nε) .

1 for each objective o do
2 Initialise Qo(s, a) as an empty Q-table.
3 end
4 for each episode t do
5 Initialise present state s vector;
6 Initialise circular buffer Δs with Nε slots;
7 for n ← 0 to N do
8 if rand(0, 1) < ε -greedy then
9 Action a ← rand A(s);

10 else
11 Action a ← Call Algorithm 2 for state s;
12 end
13 Take action a and observe the next state s ′
14 Calculate reward (Ro) of each resource in s ′ through

equation (2).
15 Call Algorithm 2 to find a ′ based on s ′ that gives

the maximum Scalarised Q-value
16 for each objective o do
17 Qo(s, a)←

Qo(s, a) + α
(
Ro + γQo(s

′, a ′)−Qo(s, a)
)

;

18 end
19 Ask the NFVO to scale in or out the VNF based

on s ′
20 Find the OR and record the corresponding state
21 Insert ‖s − s ′‖ in Δs;
22 s ← s ′;
23 if n > Nε and maxΔs < ε then
24 The algorithm has converged;
25 stop
26 end
27 end
28 end

equation (shown in line 17) Our model considers the following
definitions for state (a), action (a) and reward (Ro):

1) State: A vector that encompasses allocated resources
(e.g., vCPU cores number) in addition to the measured KPIs
(e.g., vCPU utilisation) and OR.

2) Action: The set of feasible actions encompasses increas-
ing, decreasing, or preserving resource assignments. These
actions induce shifts between various states of allocation (e.g.,
incrementing/decrementing the number of vCPU cores). In
terms of action choice, we employ a scalarized ε-greedy algo-
rithm, which facilitates the selection of actions that optimise
individual rewards for each resource category by selecting the
action with the highest reward with probability 1− ε.

3) Reward Function: To find the reward function for each
VNF type, we consider and optimise the parameters of the
following reward function model. For each resource type (i.e.,
objective), we use the zedoid (i.e., a reverse sigmoid) general
formula of f (x ) = 1

1+ex . Zedoid function allows to adap-
tively/gradually yield reward values that decay with increased
resource allocations and vice versa. Therefore, the rewards
promote a more cost-efficient use of resources. We adopt an
appropriately parametrised (discussed in Section IV-D) version

Algorithm 2: Scalarised Greedy Action Selection
Input: wo ← The weight of each objective,

s ← observed state.
1 SQlist ← {};
2 for each action a ∈ A do
3 v ← Q̂(s, a) = {Q1(s, a),Q2(s, a), ...,Qm (s, a)};
4 ŜQ linear (s, a)← f (v ,w);
5 Append ŜQ linear (s, a) to SQlist;
6 end
7 return argmax

a ′
SQlist

Fig. 2. Translation of zedoid function by 0.5 units to yield rewards only for
positive resource allocation over x-axis.

of the zedoid function depicted in Fig. 2. The adopted zedoid
is shifted by 0.5 units. This is a desired transposition of the
zedoid curve so that reward values reflect meaningful (i.e.,
positive) resource allocations over the x-axis. It is worth noting
that in Fig. 2, the blue solid graph curve and the translated
red dotted curve follow the 1

1+e8x
and 1

1+e8(x−0.5) formulas,
respectively. We also impose a penalty for constraint violation
(including KPI targets) by mapping the computed value to 0.
The general formula of the adopted reward function for each
resource type is defined in (2):

Ro =

⎧
⎨

⎩

1

1 + eβ(ô−0.5)
, constraints satisfied

0, otherwise
(2)

where ô is allocated resource, i.e., the number of allocated
vCPU cores, the amount of allocated memory or LC; and β is
the steepness coefficient of the resource reward function that
defines a desired curve steepness best fitting a resource type’s
adaptability to allocation changes. We return and optimise the
selection of β in Section IV-D. We extend the scalarisation
function from single to multiple objective calculations, as in
Algorithm 2. For each action at line 2 - 3, Q values from all
objectives are put in a vector as (3). Note that m refers to
each optimisation objective. This vector and a weight vector
w = (w1,w2, . . . ,wm ) are applied to the scalarisation function
f (v ,w) to calculate the scalarised Q-value (SQ) according
to (4). The sum of all weights must be 1. At line 5, SQ is
appended to the SQlist. Finally, at line 7 the algorithm returns
the action a ′ corresponding to the highest SQ.

Q̂(s , a) = {Q1(s , a),Q2(s , a), . . . ,Qm (s , a)} (3)

ŜQ linear (s , a) = f (v ,w) =
m∑

o=1

wo Qo(s , a),

where

m∑

o=1

wo = 1. (4)
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C. Solution Complexity and Practical Costs

The execution (time and memory) complexity of iOn-
Profiler is defined by the interaction between actions and
the state space of the underlying Q-learning process. Each
state includes the allocated resource values, KPI thresholds,
parameters referring to the input passed to the VNF (e.g., input
requests traffic), and last, the observed KPI measurements.
As such, the state space complexity is defined by the count
of (a) the resource types considered, (b) the input types,
and (c) the targeted KPIs. Given the former, the asymptotic
execution complexity is also a function of (i) the granularity
of possible resource assignment levels per resource; (ii) the
number of resources; (iii) the measurement granularity per
KPIs; and last the (iv) possible input levels per each input
type.

Further to the problem definition (Section II-A), let λ = |I |
be the number of resource types considered and κ = |K | the
count of the different KPIs targeted. Let Ψ be the set of VNF
input categories, with ζ = |Ψ|. Also, let each i be assigned
values in {ι1, ι2, . . . , ιρ}. Note that the granularity of the latter
counts ρ feasible resource level allocation options for each i.
For coherence, we classify measurements for each k into the
immediately preceding class within set Tk , thus counting ω
measurement options (Recall Tk from Section II-A). Finally,
let set Uψ = {υ1, υ2, . . . , υη} define a partition of possible
VNF input levels per type ψ ∈ Ψ, thus counting η levels.

The above gives an an asymptotic upper bound for the space
complexity and time needed to explore the whole space of
O(ρλ)×O(ωκ)×O(ηζ), which falls within the exponential
complexity class O(cn )|c > 1. Practical implementations
of Q-learning solutions set thresholds for action steps, hence
reducing memory and time costs significantly. Another aspect
of time costs refers to the adopted learning rate in RL.

The demonstrative implementation setup considered in the
current paper assumes three types of resources; one input
type: input traffic to the VNF; and four target KPIs with
one threshold target each (see Tab. IV). As such, the state
space is represented by a vector of nine elements, including
the allocated vCPU cores, memory, and output LC, the four
KPI measurements, and input traffic value, and the computed
scalarised Q value. Given the adopted resource configuration
values in Tab. III and allocation steps in Section IV-B, the
implied memory needs include nine 16-bit float numbers (i.e.,
144 bits) per state.3 Given the resource levels assumed in
Section IV-B, and information in Tab. III and Tab. IV, there
are 6×6×8 = 288 resource level combinations, and 24 = 16
KPI alignment/violation combinations. As a result, there are
288× 16 = 4608 states in the state space implying an 81 KB
memory need. This is marginally lower than typical first-level
CPU data cache sizes (e.g., 16-128KB), thus allowing us to
benefit from fast computations. Besides the memory cost, the
mean time cost of each training episode in our experiments is
738 steps, defined by the convergence of the Q value.

3Note, that the previous numbers can be significantly compressed by using
bitmaps of deltas rather than 16-bit float or short numbers. Caching recently
computed Q values can also save a lot of exploration/exploitation.

TABLE II
SOFTWARE FRAMEWORKS AND TOOLS

Fig. 3. Experiment setup.

IV. EXPERIMENTAL SETUP

Fig. 3 depicts our profiling experimental setup assuming
Snort or vFW as the VNF instance. It shows the connection
between the profiled VNF on the one hand, and the traffic
generator and server end-point machines on the other. The
two end-point machines have two vCPU cores, 2 GB of
memory and 10 GB of storage. For simplicity, we employ
iPerf as a traffic generator with UDP packets, noting that
active data collection is more suitable for RL than static
datasets.

We employ the Prometheus and Node exporter monitor-
ing tools to gather the following metrics: vCPU utilisation,
memory utilisation, and ingress and egress traffic rates to
and from the VNF, respectively. Additionally, we calculated
the mean Round Trip Time (RTT) using the ping utility.
In addition, the duration for the offline profiling was set
to 48 hours for each VNF model. The software tools and
frameworks used in this study are outlined in Tab. II.

A. VNF Type Scenarios

We evaluate the performance of our proposed method using
three different types of VNFs as our experimental scenarios.
These VNFs cover a range of scenarios and demonstrate
varying sensitivities to different resources. For example, the
performance of the copying VNFs may be more impacted by
memory utilisation, while the intercepting VNFs may be more
impacted by vCPU utilisation.

1) Snort (Inline mode): The Snort VNF operates as a
traffic gateway between network segments and inspects
all incoming packets before forwarding them to the
destination. This mode slows down traffic transmission
and may block suspicious packets.

2) Snort (Passive mode): The Passive mode Snort VNF
operates outside of the direct traffic path and copies
incoming traffic to detect suspicious activity. This mode
raises a different set of resource needs compared to the
Inline mode, as shown by our evaluation results.

3) Virtual Firewall (vFW): Allows packets to pass only
through specified ports towards the destination server.
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Fig. 4. Configuring reward function parameters for Snort with Inline mode.

TABLE III
RESOURCE CONFIGURATION

TABLE IV
KPI TARGETS THAT THE VNF UNDER PROFILING SHOULD MEET

B. Resource and KPI Targets Configuration

We consider vCPU cores, memory and LC as our profiled
resources. Tab. III shows the upper and lower bounds for
their configuration values, chosen in accordance with our
experimental environment and the specs of the considered
VNF types. The iPerf traffic generator client transmits UDP
packets with an initial traffic rate of 50 Mbps to the destination
iPerf server. The traffic rate gets gradually increased, and the
assumed KPI thresholds are specified in Tab. IV.

C. State Transition Actions and Training Episodes

In terms of actions, vCPU is increased/decreased by
0.2 cores, memory by 100 MB, and LC by 50 Mbps, which
aligns quantisation of state space and implementation neces-
sities after the complexity analysis in Section III-C. For the
scalarised ε-greedy algorithm, we adopt a decay factor ε =
0.9999, with minimum exploration rate 0.1, learning rate α =
0.1, and discount factor γ = 0.99. Training is organised in
episodes encompassing action steps until either a maximum
number of steps is reached or the minimum resources are
found. Given this setup, a total of 2000 episodes was assumed,
encompassing a mean number of 738 steps per episode.

D. Rewards Configuration

We conducted an experiment-based parameter tuning of
our reward functions to optimally adjust parameters, such
as the steepness coefficient β, to the unique requirements
and characteristics of the three different VNF types and to
the impact of the three different resource types on profiling

performance. This resulted in 9 individual reward parame-
terisations. To achieve this, we analysed each resource type
for each VNF type in isolation. This involved using a fixed
resource allocation value for the other two resource types
to speed up the process. The mean values of the other
two resource types, which yield optimal allocation of the
investigated resource type in a controlled environment (i.e.,
minimum resource usage for maximum OR), were used as the
fixed values.

1) Snort (Inline Mode):
• vCPU (Rcpu ;β = 8). Regarding vCPU, Fig. 4(a) shows

how the model learns to adapt vCPU values from 0.6
to 1.8 cores, assuming fixed mean memory and link
capacities equal to 1300 MB and 600 Mbps, respectively.
Reward Rcpu (for all different β configurations) exhibits
a similar performance, and convergence point after
episode 1000, resulting in 0.88 vCPU cores. However,
the best reward function based on the smallest confidence
intervals is Rcpu for β = 8.

• Memory (Rmem ;β = 7). Regarding memory,
Graph (b) of Fig. 4, it considers fixed mean values of
1.2 vCPU cores and 600 Mbps of LC. Rmem with a
different β parameter value settings allocates converges
to approximately 1123 MB after approximately 1200
episodes. The best reward function based on the smallest
confidence intervals is Rmem for β = 7.

• Link Capacity (Rlc ;β = 7). We study LC for 1.2
vCPU cores and 1300 MB of memory. As portrayed in
graph 4(c), the best reward option is Rlc with steepness
coefficient β = 7, which yields an LC approximately
equal to 475 Mbps whereas converging to this optimal
final state faster than alternatives after episode 1250.

2) Snort (Passive mode):
• vCPU (Rcpu ;β = 8). Fig. 5a shows the results of an

experiment in which the model is trained to adapt the
number of vCPU cores from 0.6 to 1.8 whereas keeping
the values of memory and LC fixed at 1300 MB and
600 Mbps, respectively. The Rcpu decreases from 1.44
to about 0.88 at episode 1500 in all the alternatives of
the steepness coefficient values (β). However, the best
reward option is Rcpu , β = 8 as it converges to the final
state faster than alternatives after approximately 1400
episodes.

• Memory (Rmem ;β = 7). In Fig. 5(b), Rmem graph
scales down from 1425 MB to 1147 MB assuming fixed
mean values of 1.2 vCPU cores and 600 Mbps of LC after



2346 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

Fig. 5. Configuring reward function parameters for Snort with Passive mode.

Fig. 6. Configuring reward function parameters for vFW.

approximately 1600 episodes. The most effective reward
function for minimising memory is when β = 7 based
on the smallest convergence time.

• Link Capacity (Rlc ;β = 8). Fig. 5(c) shows the
mean allocated LC for 1.2 vCPU cores and 1300 MB
of memory. However, the best reward function based
on minimum LC is for β = 9 where LC can be
reduced from 689 Mbps to approximately 480 Mbps at
episode 1525.

3) Virtual FireWall:
• vCPU (Rcpu ;β = 7). Fig. 6(a) demonstrates an experi-

ment where the model was trained to vary vCPU values
from 0.6 to 1.8 cores while maintaining memory and LC
at 1300 MB and 600 Mbps, respectively. Using Rcpu , it
can be seen that the vCPU cores get reduced from 1.40
to approximately 0.87 at episode 1450. However, we find
the minimum vCPU cores faster using β = 7.

• Memory (Rmem ;β = 7). For Rmem in Fig. 6(b), the
system using the Rmem reward function, tries to make
adjustments to decrease the memory from 1430 to 1140
MB when the vcpu cores are 1.2 and LC is 600 Mbps.
However, the best reward function based on the minimum
memory is Rmem for β = 7 at episode 1600.

• Link Capacity (Rlc ;β = 9). As shown in Fig. 6(c), we
use Rlc to find the minimum LC where vCPU cores are
1.2 cores and memory is 1300 MB. However, β = 9 can
significantly reduce LC from 686 Mbps to 482 Mbps.

V. PERFORMANCE STUDY

We conduct a comprehensive search in Section V-A to
discover an “Oracle” model of optimal profiles in a simu-
lation environment. These optimal solutions set the ultimate
performance targets for our RL model. Moreover, a practical

assessment of our approach requires a comparison against
intelligent models thus we train SL models and compare their
performance against online learning over a dynamic environ-
ment with growing dataset size, so as to draw adaptability
conclusions.

A. Oracle Resource Allocation (Exhaustive Search Study)

The results presented in Fig. 7, 8 and 9 correspond to each
VNF type, namely Snort for Inline mode, Snort for Passive
mode and vFW, respectively. Each figure contains 5 graphs
that portray performance after an exhaustive exploration
of resource allocation combinations towards identifying an
optimal trade-off combining a minimum of resources for
optimal performance in terms of OR. All performance mea-
surements are based on the mean values of at least 30 recorded
instances from a dataset attained during the offline profil-
ing stage, alongside corresponding 95% confidence intervals.
Graphs (a) and (b) in Figures 7, 8 and 9 show the mean
OR against the number of allocated vCPU cores and LC,
respectively, for different allocated memory levels mapped to
each curve in the graphs per each VNF type. Their purpose is
to pinpoint a minimum of resource allocation on the x-axis for
which the OR on the y-axis converges to a maximum mean
value. Specifically, Graph (a) in each figure above illustrates
the impact of vCPU cores on OR with a fixed LC of 600 Mbps,
while Graph (b) shows the impact of LC with a fixed allocation
of 1.2 cores for vCPUs. Fixing these values serves to focus on
the direct relationship between pairs of values. Note that fixed
values are carefully selected to accommodate Optimum ORs
after preliminary test runs. Graphs (c) and (d) plot mean OR
(orange curves) compared to consistently increasing LC levels
(blue curves). The y-axes show bit-rates against increasing
LC levels grouped by increasing vCPU cores or memory for
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Fig. 7. Oracle resource allocation using Snort (Inline mode).

Fig. 8. Oracle resource allocation using Snort (Passive mode).

Fig. 9. Oracle resource allocation using vFW.

(c) and (d), respectively. If these two curves identify, then
the LC is best-utilised, with the best resource combinations
achieved at optimal (i.e., maximised) OR levels. As with

(a) and (b), we keep memory fixed at 1300 MB for (c) and
vCPU at 1.2 cores for (d). Last, Graph (e) in each figure
shows on the x-axis increasing memory levels grouped by
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Fig. 10. Percentage error of resource allocation predictions by MLP, RF and RL regarding Snort (Inline mode).

incrementally increasing vCPU cores: 0.6, 0.8, . . . , 1.8, given
fixed 600 Mbps.

1) Snort (Inline Mode): The graphs of Fig. 7(a) and
Fig. 7(b) show three curves corresponding to 1300 MB,
1500 MB and 1600 MB memory levels. We observe that the
OR grows with the number of vCPU cores in the range of
0.6 – 1.4 cores regardless of allocated memory in Fig. 7(a),
excluding the case of 1.0 - 1.2 vCPU for the 1500 MB
and 1600 MB memory curves due to outliers as denoted by
confidence intervals. The OR also increases with LC in the
Graph 7(b) for all memory curves. By comparing the different
memory curves, increased memory results in a higher OR.
Based on the above, we can conclude that the total allocation
of all resource types collectively affects the OR. Also, OR
converges to a maximum of ~550 Mbps after vCPU = 1.4.
Another important conclusion from Graph (b) (also backed
by conclusions below after Graph (d)) is that the OR for
a memory of less than 1500 MB ceases to increase and is,
thus, sub-optimal. At the same time, an increased memory
allocation at 1600 MB does not increase OR further. Regarding
Graphs (c) and (d) of Fig. 7 the optimal utilisation of LC can
be achieved with minimum vCPU 1.4, as OR for increasing
LC in Graph (c) slowly converges and finally identifies with
LC at a minimum (i.e., optimal) allocation of vCPU 1.4. Note
that this is consistent with the observation from Graph 7(a)
(see above). The best LC utilisation can be achieved with
a minimum of memory (1500 MB), as OR in Graph (d) for
increasing LC identifies with LC for a minimum (i.e., optimal)
memory level of 1500. For completeness, we note that lower
memory levels like for 1100 MB show a linear (but not
identifying) trend between OR and LC curves, yet with large
confidence intervals. Last, Graph (e) of Fig. 7 leads to the
conclusion that OR (orange curve) generally increases with
vCPU until before vCPU = 1.4 irrespective of some large
confidence interval values, and then converges for vCPU≥1.4.
This is consistent with the observation from Graph 7(a), and
with the conclusion from Graph 7(c).

2) Snort (Passive Mode): Likewise to Snort for Inline
mode, the conclusions for each graph of Fig. 8 are as follows.

Regarding Graph (a), increasing vCPU cores causes a higher
OR. However, the OR converges and remains at around
525 Mbps in the range of 1.0 – 1.8 vCPU cores. This holds for
all memory level curves, for which LC results strongly iden-
tify. Graph (b), on the other hand, shows that the OR increases
in an almost linear function with LC at 1.2 vCPU cores at
all memory sizes. In addition, Even though we added more

memory across all vCPU cores, as also shown in Graph (e),
the OR at each vCPU core remained the same. Therefore we
conclude that memory does not impact OR. This is due to this
VNF type’s different nature compared to Snort (Inline mode),
with the latter needing memory resources to inspect packets
before forwarding them. The OR in Graph (c) is similar to LC
in the range of 1.0-1.8 of vCPU cores, while in Graph (d) OR
changes along with LC across the memory range. We conclude
that the vCPU cores and LC affect OR, but memory does not.

3) Virtual FireWall: The graphs of Fig. 9 for the case of
vFW are similar to the ones for Snort (Passive mode), where
the OR depends on the LC across the vCPU core and memory
range. Nevertheless, for vCPU equal to 0.6 in Graphs (a) and
(c), the OR also seems to depend on the vCPU core. Moreover,
Graphs (a), (b), and (e) show that the output value does not
change even when the memory is increased. And last, the LC
evidently affects the OR, as shown in Graphs (b) and (d).

B. Online Learning Profiling Performance

We assess iOn-Profiler’s Q-Learning adaptation of
Algorithm 1 in a dynamic environment where the dataset
size grows at run time. We analyse the performance of our
online learning method for 3 VNF types by comparing the
predicted resources to those obtained in a static environment
with a static dataset for each training episode, as shown in
Fig. 10, Fig. 11, and Fig. 12, respectively. To compute the
allocation error, we calculate the percentage error in resource
allocation compared to the optimal allocation, along with 95%
confidence intervals for each resource type and the reported
results refer to a scenario of4 equal resource weights w(1⁄3,
1⁄3, 1⁄3) and tuned parameters β for each resource in a static
environment.

1) Setup and Training of SL Benchmarks: For the MLP and
RF benchmarks, we forecast the resources required periodi-
cally at landmark episodes (where RL performance is recorded
and depicted in Figures 10-12) by training the models on the
available dataset collected up to that episode. Then, we split
the dataset into a 90:10 ratio for the training and test sets, and
normalised it using min-max feature scaling. This approach
allows us to conduct a fair comparison between RL and the
benchmarks over the same training data.

The input variables for the SL predictions include vCPU and
memory utilisation, latency, and Optimum OR, while output

4We elaborate on this in Section V-C, where scenario w(1⁄3, 1⁄3, 1⁄3) is only
one out of 13 for each of the 3 VNF types outlined in Tables VIII, VI and VII.
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Fig. 11. Percentage error of resource allocation predictions by MLP, RF and RL regarding Snort (Passive mode).

Fig. 12. Percentage error of resource allocation predictions by MLP, RF and RL regarding the vFW VNF.

TABLE V
PARAMETERS OF THE MLP MODEL

variables include the number of vCPU cores, memory, and
LC. The number of trees in the RF is set to 500, 500, and
800 for Snort (Inline mode), Snort (Passive mode) and vFW,
respectively. The MLP parameters are described in Tab. V.

2) Snort (Inline Mode): Graphs (a), (b), and (c) of Fig. 10
show the resource allocation percentage error for Snort with
Inline mode. According to (a) and (b), RL has less vCPU and
memory percentage error than MLP and RF. As for Fig. 10(c),
MLP and RF do not significantly reduce LC whereas the RL
gives a lower percentage error. We can infer from the data
above that RL can provide a lower percentage of prediction
resource error than MLP and RF. The underlying reason is that
RL learns to reduce resource consumption from past events.
In contrast, the resource allocation percentage errors of MLP
and RF are high because they use a static trained model that
makes them unable to adapt to reduce resource consumption.

3) Snort (Passive Mode): According to Graph (a) of
Fig. 11, RL produces a lower percentage error regarding vCPU
cores than MLP and RF. In terms of Memory, Graph (b) shows

that RL yields no error contrary to MLP and RF. In Graph (c),
the LC percentage error is negative and quite similar for RL,
MLP, and RF. Therefore, RL is more accurate for Snort with
Passive mode as it yields lower error percentages than MLP
and RF, notably for vCPU and memory. The analysis presented
in Figure 12 focuses on the performance of the vFW VNF.
In general, our online RL model exhibits notably superior
capabilities for predicting resource allocation compared to the
benchmarks across all resources. When examining Graphs
(a), (b), and (c) after 150-175 episodes,5 the RL model
demonstrates mean percentage errors of 9%, 2%, and 5% for
vCPU cores, memory, and LC respectively. In contrast, the
MLP and RF models yield errors of 52% and 18% for vCPU
cores, respectively, and produce a 37% error for memory, and
−5% and −6% of error, respectively, for LC. Noteworthy,
all models achieve an error close to 0% for LC, posing a
significant finding considering the substantial impact of LC on
the performance of the vFW. However, negative errors by the
benchmarks indicate under-provisioning predictions compared
to the required LC. The over-provisioning predictions made
by the RL model are preferred over the under-provisioning
exhibited by the benchmarks, as the latter results in sub-
optimal OR performance of the vFW.

C. Resource Optimisation Scenarios

We examine the impact of resource objectives on
performance as a result of the resource type importance
on the optimisation problem. The latter is captured via
weighted parameters in the scalarised Q-Learning equation of
formula (4). We investigate 39 scenarios (13 per VNF type)

5This range poses an approximate performance convergence milestone
across all graphs and models.
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TABLE VI
MEAN STEADY-STATE OUTPUT FOR SNORT (INLINE MODE)

IN 13 RESOURCE-SCALARISATION SCENARIOS

TABLE VII
MEAN STEADY-STATE OUTPUT FOR SNORT (PASSIVE MODE)

IN 13 RESOURCE-SCALARISATION SCENARIOS

TABLE VIII
MEAN STEADY-STATE OUTPUT FOR VFW IN 13

RESOURCE-SCALARISATION SCENARIOS

with different RL resource allocation objective weights, with
our findings presented in Tables VI, VII, and VIII for each
type of VNF.

1) Snort (Inline Mode): Our findings in Tab. VI show that
all weight configurations can reduce vCPU core usage to
around 40%. Specifically, setting the weight of vCPU to one
(w(1, 0, 0)) leads to a 40% reduction in vCPU usage, but
also results in an 80% reduction in memory usage and a low
link utilisation of 34.38% (as expressed by OR/LC). On the
other hand, weight configurations such as w(1/2, 1/2, 0) and
w(1/2, 0, 1/2) increase vCPU usage, reduce memory usage,
and increase link utilisation to almost 80% respectively. Our
analysis reveals that the weight of LC has a higher impact on
vCPU usage than the weight of memory reward. Furthermore,
the weight of vCPU and the weight of LC do not affect
memory usage. The steady-state LC utilisation for w(0, 0, 1),
w(0, 1/2, 1/2), and w(1/2, 0, 1/2) is 92.73, 91.70, and 79.54
respectively. If the weight of vCPU is increased, the OR/LC
decreases significantly, while the weight of memory has
no significant effect on the OR/LC. Finally, compared to
schemes with high resource weighting or equal weighting,
w(1/2, 1/2, 0), which only weights vCPU and memory, does
not increase link utilisation. As a result, considering the weight
of LC is critical in enhancing LC utilisation.

2) Snort (Passive Mode): The case of only vCPU w(1, 0, 0)
in Tab. VII minimises demand for vCPU cores to 40%. vCPU
usage can be reduced to 44% and 42% also in the case of
w(1/2, 1/2, 0) and w(1/2, 0, 1/2), respectively. Memory weight
has a slight impact on allocated vCPU cores. Memory and
LC weights have a minor impact on allocating vCPU cores.
The weight of vCPU has more impact on memory allocation
than that of LC. The weight of vCPU has a greater influence
on the LC utilisation than the memory weight. In conclu-
sion, Snort Passive mode with w(1/3, 1/3, 1/3) can effectively
reduce resource usage while achieving a high link utilisation
OR/LC.

3) Virtual FireWall: The need for vCPU cores is reduced
to 40% for the case of w(1, 0, 0). In the cases of w(1/2, 1/2, 0)
and w(1/2, 0, 1/2), vCPU usage can be decreased to 42%
and 40%, respectively. In this case, LC and memory weights
have no impact on the allocation of vCPU cores. Memory
allocation for the cases of w(0, 1, 0), w(1/2, 1/2, 0), and
w(0, 1/2, 1/2) is reduced to 55%, 56%, and 56%, respectively.
In this case, the weight of vCPU and LC does not impact
memory. For weight combinations w(0, 0, 1), w(0, 1/2, 1/2),
and w(1/2, 0, 1/2), link utilisation OR/LC in steady state is
94.45%, 94.64%, and 88.84%, respectively. Consequently, link
utilisation is influenced more by the weight of vCPU than by
the weight of memory. Regarding all high resource-weighted
cases, steady-state vCPU and memory were about 39% and
55%, respectively. However, for w(1/2, 1/4, 1/4) we observe
the highest link utilisation OR/LC, almost 90%, which is
about 9% higher than the case of the high weight of the
LC (around 81%). To conclude, vFW with w(1/2, 1/4, 1/4)
can cut down on resource consumption while offering high
OR/LC.

4) Highlight Conclusions & Limitations: Link Capacity is
more untactful on OR performance in Snort Passive mode
than in Snort Inline mode and vFW because traffic is for-
warded directly to the destination without being inspected
before forwarding. vFW gives the highest OR to LC ratio at
around 83.63% compared to Snort Inline mode (58.50%) and
Snort Passive mode (57.36%). Because vFW drops packets
incoming to unallowed ports and forwards packets from
allowed ports, packet delay does not occur in this VNF.
But unlike vFW, Snort Passive duplicates packets with a
latency stop before forwarding them, and Snort Inline packets
must be inspected before being sent to the output link.
This inspection delay causes congestion in the output link.
When considering the effect of the weights of each resource’s
reward function on reducing the corresponding resource while
maintaining the OR, we find that the behaviour of each VNF is
different.

Finally, we acknowledge the following experimental limita-
tions. First, the performance of vFW and Snort can fluctuate
under a constant resource allocation, depending upon the num-
ber of configuration rules loaded into the system. Our method
assumes that all configurable aspects of VNF behaviour, aside
from resource allocation, exhibit relative stability through-
out the VNF‘s lifecycle. Future research should assess the
performance of RL in scenarios involving dynamic config-
uration changes. Second, iPerf has limited traffic generation
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capabilities, e.g., it struggles to reach rates ≥1 Gbps, and
packets are not completely realistic. While a well-configured
iPerf suffices for demonstrating the proposed method and
showcasing an experimental proof of concept, it cannot fully
capture a production network deployment with real traffic.

VI. CONCLUSION

We present iOn-Profiler, an intelligent online learning VNF
profiler employing RL with Q-Learning to autonomously
adjust to network dynamics, enhancing the efficiency of pro-
filing for three pragmatic VNF types. We analyse 39 scenarios
with varied RL resource allocation weights. Among many
conclusions, our results reveal for each VNF type individually
the impact of different resource types on profiling, while
stressing the significance of addressing multiple resource
optimisation objectives, and that unlike RL, SL model-based
profilers are incapable of adapting to dynamic conditions.

Future work focus includes (i) exploring RL transfer
learning across diverse resources and/or VNF types; (ii) exper-
imental studying and validation of iOn-Profiler on varying
VNF, traffic types, and loads. The latter may involve stream-
oriented TCP connections and various VNF types (e.g., video
streaming traffic) besides UDP and the VNFs explored in the
current work; also, stochastic loads, including flash crowds
with special interest in sudden, continuous, and stochastic
bursts for testing RL and benchmark ML model adaptability
properties.
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