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Abstract—To achieve sustainable networking, network ser-
vice providers have expressed significant interest in employing
automated network operations that integrate network functions
virtualization (NFV), software-defined networking (SDN), and
machine learning (ML). In the context of NFV/SDN, a certain
network service is regarded as a sequence of virtual network
functions (VNFs) forming a service chain. The service chaining
(SC) problem aims at establishing an appropriate service path
from an origin node to a destination node where the VNFs
are executed at intermediate nodes in the required order under
resource constraints on nodes and links. SDN enables pro-
grammable configurations on forwarding devices (i.e., switches
and routers) for traffic forwarding between VNFs. In our
previous work, we formulated the SC problem as an integer
linear program (ILP) based on the capacitated shortest path
tour problem (CSPTP), which is an extended version of SPTP
with additional node and link capacity constraints. Furthermore,
we developed Lagrangian heuristics to solve the problem by
considering the balance between optimality and computational
complexity. In this paper, we propose a deep reinforcement learn-
ing (DRL) framework coupled with the graph neural network
(GNN) to realize CSPTP-based SC that adapts to changes of
service demand and/or network topology. Numerical results
show that the proposed framework achieves nearly optimal
SC with higher learning speed compared to the conventional
deep Q-Network based approach. Moreover, it performs well
when confronted with variations in service demand and exhibits
competitive performance compared to the ILP solutions across
the majority of 243 real-world topologies.

Index Terms—Network functions virtualization (NFV), soft-
ware defined networking (SDN), service chaining (SC),
capacitated shortest path tour problem (CSPTP), deep reinforce-
ment learning (DRL), graph neural network (GNN).
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I. INTRODUCTION

W ITH rapidly spreading smartphones and Internet of
things (IoT) devices, diverse services have constantly

been created and the network traffic has exponentially been
increasing. To achieve sustainable networking, network service
providers have shown considerable interest in employing
automated network operations that integrate network functions
virtualization (NFV), software-defined networking (SDN), and
machine learning (ML). NFV can decouple network functions
from dedicated hardware and execute them as virtual network
functions (VNFs) on generic hardware [2], [3], [4]. As a result,
it can deploy network services with agility and flexibility as
well as reducing capital expenditure (CAPEX) and operating
expenditure (OPEX). SDN separates the control plane from
the data plane, thereby achieving programmable networking
through the centralized control functionality [5]. As a result,
it facilitates dynamic traffic steering and routing based on
specific policy rules for each network service.

NFV and SDN are mutually complemen-
tary [6], [7], [8], [9], [10], [11]. NFV facilitates the
virtualization of an SDN controller and SDN data forwarding
rules (referred to as network functions), enabling dynamic
and optimal lifecycle management of these components.
SDN, on the other hand, provides programmable networking
capabilities between VNFs, allowing for dynamic and optimal
traffic steering and routing. The combined characteristics of
NFV and SDN technologies foster the advancement of service
chaining (SC) [2], which facilitates the directed flow of traffic
through a predefined sequence of network functions. A certain
network service can be expressed by a sequence of VNFs,
called a service (function) chain. Given a service chain request
(SCR), an SC orchestrator tries to solve an SC problem,
which aims at establishing a special path (i.e., service path)
from an origin node to a destination node, where the VNFs
are executed at the intermediate nodes one by one under the
resource constraints [2]. It is well known that the SC problem
belongs to the complexity class NP-hard [12].

Several existing studies [13], [14] also pointed out the
similarity between SC and shortest path tour problem (SPTP),
which is a variant of shortest path problem and aims at cal-
culating the shortest path from an origin node to a destination
node while visiting at least one node from given disjoint
node subsets, T1, . . . ,Tk , in this order. Focusing on this
similarity, Bhat and Rouskas proposed an algorithm called
depth first tour search (DFTS) to efficiently find a service path
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as the shortest path tour [13]. The DFTS algorithm, however,
does not consider the resource constraints. In our previous
work [14], we modeled the SC problem as the capacitated
SPTP (CSPTP) and formulated it as an integer linear program
(ILP) for the CSPTP-based SC. CSPTP is an extension of
SPTP with constraints on both node and link capacities
with real values. We also proposed the Lagrangian heuristic
algorithm to solve the online CSPTP-based SC, where the SC
orchestrator immediately serves a new SCR arriving at the
NFV network, by considering the balance between optimality
and computational complexity [15]. This algorithm, however,
may not sufficiently work under dynamical demand change
and/or network dynamics (e.g., temporal link failures) because
it requires environmentally dependent parameter tuning.

ML-based networking has been attracting many researchers
to realize the automatic network operation by solving various
network optimization problems under uncertain environ-
ments [16]. In particular, graph neural networks (GNNs) have
a capability to explore hidden representation in networks
from the complex relationship between network traffic and
topologies [17], [18], [19], [20], [21], [22]. In recent years,
there are several studies for the combination of reinforcement
learning (RL) and SC [7], [9], [10], [23]. They, however,
did not sufficiently consider the following issues of CSPTP-
related SC: (1) permitting the use of identical links as many
times as required, (2) meeting the service chain requirements,
(3) holding resource constraints, and (4) achieving resource
allocation adaptive to demand and topology changes.

To tackle these problems, in the conference paper [1], we
proposed a deep RL (DRL) framework with the GNN for
the online CSPTP-based SC and partly demonstrated the fun-
damental characteristics of the proposed framework through
numerical results using the NSFNET topology [24]. In this
paper, we comprehensively evaluate the proposed framework
by revealing its generalization capabilities against changes of
service demand trend and network topology (temporal link
failures or different networks). For this purpose, we first
evaluate the performance of the proposed framework under a
different topology, i.e., the SPRINT topology [25], from the
viewpoint of the learning speed, adaptability to changes of
service demand and topological change with link failures. We
further investigate the applicability of a model learned in a
certain network to other networks through evaluations using
the 243 real-world network topologies.

The main contributions of the manuscript are as follows:
1) The proposed framework is an initial step toward

the realization of the automatic network operation for
CSPTP-based SC, which aims at accepting as many
SCRs as possible even under the changes of service
demand trend and network topology.

2) Through numerical results, we demonstrate that (1) the
proposed framework achieves nearly optimal SC with
higher learning speed compared to the conventional deep
Q-network (DQN) based approach, (2) the proposed
framework, when trained under a certain service demand
trend, also performs well when confronted with changes
in service demand, and (3) the proposed framework,
when trained under a certain network topology, exhibits

competitive performance with the ILP solutions across
the majority of 243 real-world topologies, benefiting
from the generalization capabilities of both DRL and
GNN.

The rest of the manuscript is organized as follows. Section II
gives the related work. In Section III, we introduce the
some preliminaries, i.e., CSPTP-based SC, DRL, and GNN.
In Section IV, we propose the DRL framework with the
GNN for CSPTP-based SC. Section V shows the fundamental
characteristics of the proposal. Finally, Section VI gives the
conclusion and future work.

II. RELATED WORK

A. Service Chaining Problem

SC is one of the challenging resource allocation problems
that maps the VNFs and virtual links connecting them into
physical nodes and links [2]. It tries to calculate an appropriate
service path from an origin node to a destination node
while executing VNFs under both the resource constraints
and service chain requirements. Under various scenarios (e.g.,
wide-area network, mobile network, data center network, and
cloud), researchers have addressed SC problems in terms
of diverse aspects such as minimizing total the total delay
of the path [7], [8], [9], [10], [13], [14], [15], streamlining
the resource utilization [10], [11], [26], [27], [28], [29], maxi-
mizing the acceptance rate [30], and reducing the management
cost [27], [31], [32], [33]. It is well-known that the SC prob-
lems belong to NP-hard problems [12]. To address this issue,
there have been many studies on efficiently solving the SC
problems with the help of several types of special network
models: graph transformation [34], layered graph [26], [27],
expanded network [30], and augmented network [14]. These
approaches formulated the SC problems as ILPs using the
special network models and developed heuristic algorithms to
overcome the computational complexity.

The graph transformation, layered graph, and expanded
network construct their special networks in a similar manner.
Basically, they build a hierarchical network with Mc+1 copies
(layers) of the original physical networks where Mc denotes
the number of functions required by an SCR c. The identical
nodes between two successive layers are connected with each
other. As a result, we can establish a service path, which can
sequentially execute the Mc functions in the required order,
by finding a path from an origin node at the bottom layer
to a destination node at the top layer. They, however, have
to build the special networks tailored for each SCR if the
number and/or order of functions are different among SCRs.
Different from these network models, the augmented network
model can efficiently and agilely handle the SC problem for
arbitrary SCRs [14]. Considering this advantage, we adopt the
augmented network in the proposed framework.

Another important aspect of SC is its similarity with SPTP.
The SPTP aims at finding the shortest path from an origin to a
destination while visiting at least one intermediate node from
given disjoint node subsets in required order [35]. Bhat and
Rouskas first pointed out the similarity between SC and SPTP.
They also proposed the DFTS algorithm to find the shortest
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path tour without consideration of resource constraints [13].
In [28], Gao and Rouskas applied the game-theoretic approach
to SPTP-related traffic steering for SC. Focusing on this
similarity and the resource constraints on physical network,
we modeled the SC problem as the CSPTP-based SC, where
the CSPTP is an extended version of SPTP supporting general
constraints on node and link capacities with real values [14].
In addition, we formulated the CSPTP-based SC as an ILP
using the augmented network (i.e., CSPTP-based ILP) and
developed a Lagrangian heuristic algorithm based on the DFTS
algorithm to overcome the computational complexity [15].

However, these approaches [13], [14], [15], [28] basically
cope with the SCR one by one in a myopic manner, which
results in the lack of the adaptability to demand/network
dynamics. In particular, the Lagrangian heuristics requires
environmentally dependent parameter tuning. In this paper, we
propose an ML-empowered SC, which can achieve effective
resource allocation in response to the demand trend and
network dynamics.

Function placement plays a crucial role in enhancing
resource efficiency. Numerous studies have been conducted to
address the challenges of service chaining and function place-
ment (SCFP) problems [7], [14], [15], [23], [26], [27], [29],
[31], [32], [33], [36]. The SCFP problem involves establishing
the service path while deploying VNFs on physical nodes, con-
sidering resource constraints and service chain requirements.
In [14], [15], [26], [27], [29], the authors proposed linear-
programming based approaches to tackle the SCFP problem.
In [7], [23], [31], [32], [33], [36], the authors proposed the
ML-based SCFP solutions. In this paper, our primary focus is
on the SC problem. However, in Section IV-D, we will assess
the feasibility of the proposed scheme for addressing the SCFP
problem.

B. Machine Learning for Networking

ML techniques have been applied to various domains
in networking and expected to realize automated network
optimization even under uncertain environments [16].
Specifically, GNNs have been one of the promising approaches
to explore the hidden representation of network traffic and
topologies [9], [10], [37].

There have been many studies employing ML techniques
to SC [7], [7], [8], [9], [10], [23]. Pei et al. proposed both
supervised and unsupervised learning based two-phase VNF
selection and chaining algorithms for networks with SDN
and NFV support [7]. In [8], Heo et al. proposed GNN-
based SC employing the encoder-decoder model with teacher
forcing to establish a service path such that the total service
path delay is minimized. The supervised learning and teacher
forcing require a large amount of labeled data but it is quite
challenging to obtain them from actual networks in a real-time
manner. Artificial data generation using enormous simulations
is an alternative approach at the cost of time and effort.
Considering these points, we employ the RL approach that
trains a model using the target score (i.e., reward) instead of
the labeled data.

There have been several studies applying RL techniques
to SC [7], [9], [10], [11], [23], [36]. These studies can be
mainly categorized into two methods: (1) path genera-
tion [9], [23], [36] and (2) path prediction [10], [11], [37].
The path generation method aims at efficiently deriving an
appropriate service path from all possible candidates. In other
word, it finds an appropriate service path from the large
solution space, and thus it may be hard to achieve SC in a
real-time manner, due to the high computational complexity.
Chen et al. proposed quality of service (QoS) and quality
of experience (QoE) aware SC based on RL to select the
VNF instances executed in SDN and NFV enabled slices [23].
In [9], Heo et al. extended their previous model [8] by applying
RL algorithms.

On the contrary, the path prediction method first enumerates
a moderate number of path candidates and then selects an
appropriate service path from them. Therefore, it can suppress
the computational complexity by squeezing the solution space
at the risk of degrading the solution diversity. Rafiq et al.
proposed GNN-based SC in SDN to predict the optimal
path that can achieve the delay-aware traffic steering [10].
Ning et al. applied DRL to SC to optimize both end-to-
end SC performance and overall network resource utilization
by determining an appropriate service path from path can-
didates [11]. Almasan et al. applied message passing neural
networks (MPNNs) to the DRL framework to solve the
minimum cost flow problem in optical networks and showed
the generalization capabilities of MPNN based GNN over
different topologies [37]. Note that these approaches do not
consider the possibility that an identical link would be used
multiple times in a service path.

In this paper, to realize the real-time SC, we adopt the
path prediction method. More specifically, we consider an RL
model to select an appropriate service path from the path
tour candidates with the solution optimality, which is derived
by the extended version of the DFTS algorithm for finding
the shortest path tour. In addition, inspired by the approach
in [37], we propose a DRL with GNN framework to solve
SC, which is more difficult than the conventional routing
problem considered in [37]. The proposed framework aims at
realizing (1) adaptive resource allocation based on the learning
of demand trend and (2) generalization capabilities against
temporal topology changes due to link failures and different
physical topologies, thanks to both the DRL and GNN.

III. PRELIMINARIES

In this section, we briefly introduce the preliminaries of
the proposed framework from the viewpoint of system model,
CSPTP-based SC, DRL, and GNN, respectively. Table I sum-
marizes the notations used in this paper.

A. System Model

In this paper, we consider the NFV/SDN collaborative
system model, as in [6], [7], [8], [9], [10], [11]. NFV consists
of three main components as follows: (1) VNF, (2) NFV
infrastructure (NFVI), and (3) NFV management and orches-
trator (NFV MANO) [3], [4]. VNF represents the software



HARA AND SASABE: CAPACITATED SHORTEST PATH TOUR-BASED SERVICE CHAINING ADAPTIVE 1347

TABLE I
NOTATIONS

functionality responsible for a specific network function,
which is composed of one or more VNF components managed
by an element management system (EMS). NFVI is the
virtual resources logically partitioned from physical resources.
NFV MANO is comprised of (1) a virtualized infrastructure
manager (VIM), which controls, manages, and monitors NFVI
resources, (2) a VNF manager (VNFM), which orchestrates
and manages VNFs, and (3) an NFV orchestrator (NFVO)

Fig. 1. System model.

responsible for the lifecycle management of network services.
SDN consists of three layers as follows: (1) an application
plane, (2) a control plane, and (3) a data plane [5]. The
application plane handles network services and communicates
with the SDN controller in the control plane through north-
bound interfaces. The control plane encompasses centralized
controllers, i.e., SDN controllers, which control and manage
the network devices in the data plane through southbound
interfaces, following the requests from the application plane.
In the data plane, network devices forward and steer traffic
based on predefined rules installed by the SDN controllers.

Inspired by the system model presented in [6], we design a
NFV/SDN collaborative system for SC, which consists of three
layers: (1) an application layer, (2) a control layer, and (3)
an infrastructure layer, as shown in Fig. 1. In the application
layer, individual SCRs containing service chain requirements
are generated by applications. The detail of the SCR will
be explained in Section III-B1. Moving to the control layer,
the SC orchestrator receives each SCR and makes an ML-
based decision for an appropriate service path (and function
locations) that should adhere to the defined service chain
requirements and the resource constraints extracted by the
NFV manager and the SDN controller. The NFV manager
is responsible for NFVO and VNFM, thereby overseeing
the lifecycle management of VNFs. It actively monitors the
VNFs and orchestrates their deployment on the physical nodes.
Meanwhile, the SDN controller functions as VIM, actively
managing network resources. It collects network features and
effectively routes traffic based on the service path determined
by the SC orchestrator. Detailed information regarding the SC
orchestrator will be presented in Section IV. Finally, in the
infrastructure layer, physical nodes and links are located in
the wide-area network. Further details regarding the physical
network will be shown in Section III-B2.
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Fig. 2. Overview of CSPTP-based SC.

B. CSPTP-Based Service Chaining

In this paper, we consider the system model used in [14].
Fig. 2 illustrates the overview of the CSPTP-based SC.

1) Service Chain Request: We assume the online SC
where the SC orchestrator serves a newly incoming SCR
c immediately after its arrival. As shown in the top layer
of Fig. 2, each SCR c has the service chain requirements
rc = (oc , dc ,Rc , bc , {pc,fc,m }k=1,...,Mc

) where oc and dc
denote an origin node and a destination node, respectively.
Rc represents a sequence (fc,1, . . . , fc,Mc

) of Mc functions
in required order. Let bc and pc,fc,m be the required bit rate
and the processing resources required for executing the mth
function fc,m at a physical node, respectively.

2) Physical Network: A physical network is defined as a
directed graph G = (V,E,X), where V (resp. E) is a set of
physical nodes (resp. links). Let X denote a set of features
of physical links, i.e., X = {x e}∀e∈E, where x e represents
a vector of D > 0 features of physical link e, i.e., x e =
(xe,1, . . . , xe,D ). The NFV/SDN collaborative system supports
a set of F distinct functions, F = {f1, . . . , fF }, and consists of
two types of the physical nodes: VNF-enabled nodes VVNF
and forwarding devices (i.e., routers and switches). Each
VNF-enabled node i ∈ VVNF is a commodity server and
accommodates one or more virtual machines corresponding to
functions Fi ⊆ F. Each function f ∈ F can be installed at
part of VNF-enabled nodes, i.e., Vf ⊆ VVNF.

3) Augmented Network: To handle CSPTP-based SC, the
augmented network G+ = (V+,E+,X+) is constructed by
extending the physical network G with imaginary nodes V̂
and virtual links Êin ∪ Êout where V+ = V ∪ V̂ and E+ =

E ∪ Êin ∪ Êout. X+ denotes a set of features on physical
and virtual links, i.e., X+ = {x e}e∈E+ . An imaginary
node v̂c,fc,m ∈ V̂ is responsible for function fc,m and is
connected to VNF-enabled node(s) supporting fc,m . Links
incoming to (resp. outgoing from) imaginary node v̂f , called

virtual links, are defined as Êin (resp. Êout). Note that Êin =

{(vf , v̂f )}f ∈F,vf ∈Vf
(resp. Êout = {(v̂f , vf )}f ∈F,vf ∈Vf

).

The virtual link (v̂f , v) ∈ Êout indicates that the VNF-
enabled node v ∈ Vf supports the function f. Each virtual link
(v̂f , v) (resp. physical link (i , j )) has the residual processing
capacity Pv̂f ,v of physical node v for executing function f
(resp. residual link capacity Bi ,j ) at the arrival of SCR c. The
middle layer of Fig. 2 illustrates an example of the augmented
network.

4) Service Path: Thanks to the augmented network, the
service path wc with origin oc , destination dc , and required
functions Rc can be decomposed into a sequence of Mc +
1 subpaths, i.e., wc = (wc,1, . . . ,wc,Mc+1). The pair
(oc,m , dc,m ) of origin and destination nodes of the mth
subpath wc,m is given by (oc , v̂fc,1) for m = 1, (v̂fc,m−1

, v̂fc,m )
for m = 2, . . . ,Mc , and (v̂fc,Mc

, dc) for m = Mc + 1. Note
that selecting the virtual link in the service path determines
the physical node on which the corresponding function is
conducted. Each subpath does not contain any loop while the
entire service path may have loop(s). As a result, a certain
link may be used more than once in the service path. We
define E+wc

as a multiset of links included in wc , i.e., E+wc
=

Ewc ∪ Ê
in
wc
∪ Êoutwc

, where Ewc is a multiset of physical links

included in wc and Êinwc
(resp. Êoutwc

) is a multiset of incoming
(resp. outgoing) virtual links included in wc . Here, a multiset
is a set that allows multiple instances for each of its elements.
The bottom layer of Fig. 2 shows an example of the service
path.

C. Deep Reinforcement Learning

RL aims at learning a long-term strategy (i.e., policy) to
solve an optimization problem under a certain environment,
which is defined by a set S of states [38]. Given a state s ∈ S,
an agent takes an action a ∈ A at the state s according to
the current policy π : S→ A learned so far. After taking an
action a at the state s, the agent will move to a next state s ′ and
obtain a reward r with a probability Pr(s ′, r |s , a). The agent
aims at acquiring a strategy that maximizes the cumulative
reward R at the end of an episode (trial), which starts from an
arbitrary initial state followed by multiple state transitions and
ends with a certain stop condition, e.g., reaching a predefined
number of steps. Finding the optimal strategy can be modeled
as a Markov decision process (MDP) [39].

Q-learning is an RL algorithm to solve MDP by making
the agent learn an optimal policy π : S → A. It maintains
a table with the size of |S| × |A|, where (s, a)th element is
initialized as zero or a random value and updated with a q-
value for the combination of state s and action a. If the agent
takes an action a at a state s according to the current policy π,
it will update the value of (s, a)th element by Q(s, a), which
is the expected cumulative reward after performing the action
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a at the state s under the assumption that the agent will follow
the current policy π in the rest of episode. Here, the q-value
Q(s, a) is updated according to the rule based on the Bellman
equation [40]:

Q(s , a) ← (1− α)Q(s , a) + α

(
r + γ max

a ′∈A
Q(s ′, a ′)

)
,

where γ (0 ≤ γ ≤ 1) denotes a discount rate indicating the
importance of the future reward and α (0 < α ≤ 1) is a
learning rate.

One of the potential drawbacks of Q-learning is the scala-
bility against the size of state and action space. If the solution
space, i.e., S×A, becomes large, it is difficult for the agent
to explore all the possible combinations of states and actions,
which would degrade the optimality of learned policy. DQN
can solve this potential drawback by approximating the q-value
function using a deep neural network (DNN) and learning
it through observed states and actions [41]. In DQN, the
q-values for unobserved states and actions are estimated by
the DNN learned through observed states and actions, with
the help of its generalization capabilities. By taking advantage
of DNN, the DRL agent is expected to take an appropriate
action even at a state that it has not experienced yet. The
state transition information {s , a, r , s ′} is stored in a memory
called an experience replay buffer, which is used for training
DNNs. The DRL agent trains neural networks by randomly
sampling from the experience replay buffer to cope with the
time-dependency problem.

D. Graph Neural Network

GNNs are deep learning based methods to operate the
graph domain [17], [18], [19], [20], [21], [22]. Given the
graph structure and node feature information as inputs, a
GNN outputs the node, edge, or graph-level representation by
graph convolution operation in the spectral or spatial domain.
Message passing neural networks (MPNNs) are a well-known
type of GNNs, which is a unified framework for the graph
convolution operations (i.e., aggregation, update, and readout)
in the spatial domain [22]. In MPNNs, each node in the graph
initially has its own features. Then, it collects the features from
the neighbors and aggregates them into a message. It further
combines the message with its own features and updates
its features as the hidden embedding. These operations are
repeated along with multiple layers of MPNNs. The output
of the final layer defines the node-level representation, i.e.,
embedding of each node, and it can generate a graph-level
representation through the readout operation.

Graph convolutional networks (GCNs) are one of the most
popular baseline GNN models and employ the first-order
neighboring aggregation and the self-loop update [18]. GCN
with the renormalization trick can be defined as the following
layer-wise aggregation and update operations:

X(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2X(l)Θ(l)

)
. (1)

Here, Ã = A + I ∈ R
N×N is the adjacent matrix with self

loops where A ∈ {0, 1}N×N is the original adjacent matrix
of the undirected graph G with N nodes and I is the identity

matrix. D̃ = D+I is the degree matrix of Ã, where D denotes
the degree matrix of A. X(l) ∈ R

N×D represents a feature
matrix at the lth GCN layer, where X(0) = [x1, . . . ,xN ]T

indicates an original feature matrix. Θ(l) indicates a learnable
weight matrix for the lth layer, and σ(·) is a general element-
wise nonlinear activation function, e.g., rectified linear unit
function (ReLU) [42].

Klicpera et al. proposed graph diffusion convolution (GDC)
to generalize the graph convolution by considering the impact
of both direct and indirect neighbors [19]. GDC replaces the
adjacency matrix A with the following diffusion matrix S:

S =
∞∑
n=0

ηnT
n , (2)

where T ∈ R
N×N is a transition matrix whose (i,j)th element

means the transition probability from node i to node j. Tn

gives the n-step transition probabilities and ηn > 0 is the
weighting coefficient for Tn . In [19], the authors showed
some special cases of graph diffusion, i.e., personalized
PageRank [43], heat kernel [44], and GCN [18]. If the
diffusion matrix S is dense, the sparsified diffusion matrix
S̃ was used to obtain the spatial locality by removing links
with small values of S in a simple manner, e.g., top-k-based
sparsification or threshold-based sparsification.

IV. PROPOSED SCHEME

A. Overview

In this paper, inspired by the DRL with GNN architecture
for network routing problems [37], we propose the DRL based
framework with a GNN for the CSPTP-based SC. The SC
problem as CSPTP is more challenging than the conventional
routing problem as the shortest path problem. The agent, i.e.,
SDN controller, aims at accepting as many SCRs as possible,
which will be achieved by the minimization of the overall
physical and virtual link utilization in the physical network.
The proposed DRL agent is realized by the double-DQN
algorithm [45], where the q-value function is modeled by a
GNN. (We will give the DRL agent design in Section IV-C
and the GNN architecture in Section IV-C3.)

Fig. 3 illustrates the overview of the proposed DRL based
framework with a GNN for the CSPTP-based SC. At each time
step, the agent (i.e., SDN controller) monitors the environment
(i.e., physical network) and obtains both a network state and
an SCR c as inputs from the environment (Step 1 in Fig. 3).
Here, the network state is represented by the features of each
link in the augmented network, which will be described in
Section IV-B. Next, the agent enumerates the service path
candidatesWc , i.e., an action setA, using K-DFTS algorithm
(Step 2 in Fig. 3). We will show the details of the action
set in Section IV-C2. For each service path candidate (i.e.,
action), it generates an SC-embedded state from the current
state s ∈ S by concatenating the network-related features and
SC-related ones (Step 3 in Fig. 3) and generates a sparsified
diffusion matrix S̃ with the help of GDC (Step 4 in Fig. 3). It
computes the q-value of the SC-embedded (action-embedded)
state (Step 5 in Fig. 3). The details of the agent operation
will be described in Section IV-C1. Note that the existing
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Fig. 3. DRL framework with GNN for the CSPTP-based SC.

work for the conventional routing problem in [37] adopts
a different GNN approach, i.e., MPNN. Finally it performs
an appropriate action a ∈ A, i.e., selecting an appropriate
service path, according to the policy π (Step 6 in Fig. 3),
and then obtains the reward r, the next SCR c′, and the
next state s ′ ∈ S from the environment (back to Step 1 in
Fig. 3).

B. Environment

In this paper, we consider the environment as the augmented
network with link features, as shown in the middle layer of
Fig. 2. More specifically, the network state s is defined as the
feature matrix X = [x1, . . . ,x |E+|]

T where x e is a D = 5

dimensional feature vector of physical/virtual link e ∈ E+,
i.e., x e = (xe,1, . . . , xe,5). Note that the features of physical
(resp. virtual) link are associated with the network (resp.
computing) resources. The feature vector x e is composed of
the SC-related features (i.e., xe,1, xe,2, and xe,3) and the
network-related features (i.e., xe,4 and xe,5). The SC-related
features are calculated per service path candidate wc ∈Wc to
evaluate its deployment cost in terms of resource usage. xe,1 is
the number of times that the link e is used in wc . Please note
that xe,1 can be more than one if the service path candidate wc

has loop(s), which makes the problem more difficult than the
conventional routing problem [37]. xe,2 is SCR c’s bandwidth
requirement bc (resp. processing capacity requirement pc,fc,m )
for the physical (resp. virtual) link e, which is demanded by
the SCR c. xe,3 is the link e’s utilization uc,e resulting from
the establishment of wc , which considers the possibility that
an identical link would be used multiple times in a service
path. Focusing on the SC-related features only for the links
used in wc , we set xe,1, xe,2, and xe,3 to be zero for the links
unused in wc . (Similar assumption is also used in [37].)

The network-related features are used to evaluate the overall
utilization of physical network, which will contribute to saving
the network resources for future requests. For this purpose,
we apply the link betweenness centrality [46] and the residual

capacity of link e as the network-related features xe,4 and xe,5,
respectively. Note that these features are also used in [37].

C. Agent Design

1) Agent Operation: The agent operates through the inter-
actions with the environment. We assume that the agent learns
the optimal policy through T ≥ 1 training iterations, each
of which consists of L ≥ 1 episodes. Algorithm 1 presents
a pseudocode describing the proposed agent behavior in one
episode of the τ th training iteration (τ = 1, . . . ,T ). At the
beginning of the episode, the environment env is initialized by
calling the INIT() function, which also generates a new SCR
c with the service chain requirements rc (line 1). At the same
time, the cumulative reward R is set to be zero (line 2).

Algorithm 1 executes the following procedures as long
as the agent succeeds in allocating a service path to a
new SCR c, i.e., the corresponding binary flag allocated is
true (lines 3–16). Since considering all possible service path
candidates will result in a highly dimensional action space, the
action set is limited to K service path candidates as in [37].
The agent calculates the set of K service path candidates,
Wc = {w1

c , . . . ,w
k
c }, by calling the K-DFTS() function

(line 4). We will describe the details of K-DFTS() function in
Section IV-C2. Note that symbols A and Wc will be used
interchangeably. We also initialize a set Q of each pair of
action a and its yielding q-value Q(s , a) to an empty set
(line 5).

For each service path candidate wk
c ∈Wc , the agent com-

putes the corresponding q-value using the GNN (lines 6–8).
More specifically, the agent first generates the SC-embedded
state s̃kc using the ALLOCATE-SCR() function (line 7). As
described in Section IV-B, s̃kc is represented by the feature
vector x e of each link e. Given the state s̃kc as the input, the
agent then computes the corresponding q-value Q(s̃kc ,w

k
c ) by

calling the GET-Q-VAL-FROM-GNN() function and adds the
new element (wk

c ,Q(s̃kc ,w
k
c )) to Q (line 8). The details of
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Algorithm 1 Agent Operation
Require: Agent agent, environment env, augmented network

G+, the number K of actions, training iteration id τ ,
training interval M.

1: s , c, rc ← INIT(env)
2: R ← 0
3: do
4: Wc ← K-DFTS(K , rc)
5: Q← ∅
6: for wk

c ∈Wc do
7: s̃kc ← ALLOCATE-SCR(env , c, rc ,w

k
c )

8: Q← Q∪ {(wk
c , GET-Q-VAL-FROM-GNN(s̃kc ,w

k
c )}

9: wk ′
c ← EPSILON-GREEDY(Q, ε)

10: r , allocated , s ′, c′, r ′c ← STEP(env , s ,wk ′
c )

11: R ← R + r
12: MEMORIZE(agent , {s , a, r , s ′})
13: if τ mod I = 0 then
14: TRAIN-GNN-USING-REPLAY-BUFFER(agent)

15: s , c, rc ← s ′, c′, r ′c
16: while allocated = true

the GET-Q-VAL-FROM-GNN() function will be explained in
Section IV-C3.

Next, the agent selects a service path candidate wk ′
c from

Wc according to Q and the ε-greedy exploration strategy [38]
by calling the EPSILON-GREEDY() function (line 9). In the
STEP() function, the agent tries to apply the service path
candidate wk ′

c to the physical network and then obtains the
reward r, the binary flag allocated, the next state s ′, and the
next SCR c′ with r ′c from the environment (line 10). Here, we
design the reward r after selecting wk ′

c such that it should be
nonnegative and becomes large in case of low utilization of
network resources:

r = ω1 exp

⎛
⎜⎝− ∑

e∈E
wk′
c

uc,e

⎞
⎟⎠+ ω2 exp

⎛
⎜⎜⎝−

∑
ê∈Êout

wk′
c

uc,ê

⎞
⎟⎟⎠,

where the first (resp. second) term is related to the usage
degree of physical links (resp. virtual links) in wk ′

c , ω1 > 0
(resp. ω2 > 0) is the corresponding weighting parameter.
Recall that Ewk′

c
(resp. Êoutwk′

c
) is a multiset of physical links

(resp. outgoing virtual links) in wk ′
c since an identical link

would be used multiple times in the service path wk ′
c . Note

that the cumulative reward R is defined as the sum of reward
r during one episode.

The agent updates the cumulative reward R (line 11)
and stores the transition (experience), i.e., {s , a, r , s ′}, into
the experience replay buffer (line 12). The stored tran-
sition will be used to train the GNN by executing the
TRAIN-GNN-USING-REPLAY-BUFFER() function every I ≥ 1
training iterations (lines 13–14). The GNN model is trained
such that a loss function L(Θ) with the learnable weight matrix

Algorithm 2 K-DFTS Algorithm

Require: Augmented network G+, the number K of path
candidates, service chain requirement rc .

Ensure: Service path candidates Wc .
1: Wc ← ∅
2: for k = 1 to K do
3: wc,k ← DFTS(G+, rc)
4: if wc,k = ∅ then return Wc

5: Wc ←Wc ∪ wc,k

6: G+ ← REMOVE-LINK(G+,wc,k )
return Wc

Θ approaches to zero by using the samplesZ randomly chosen
from the experience reply buffer. L(Θ) is defined as follows:

L(Θ) =
∑

{s,a,r,s′}∈Z

(
Q(s, a|Θ)−

(
r + γ max

a′∈A
Q
(
s′, a ′ | Θ)

))2

+ ρEL1(Θ),

where the first term is the mean squared error between the
estimated q-value and observed one. The second term indicates
L1 regularization penalty to prevent overfitting, where EL1(Θ)
is the L1 regularization and ρ > 0 is a weighting parameter.

2) Action Set: To obtain the action set, i.e., K service path
candidatesWc , we propose a K-DFTS algorithm by extending
the DFTS algorithm [13]. K is expected to be a moderate
value, e.g., 5, to hold the balance between computational
complexity and flexibility of steering traffic. In addition, the
service path candidates are expected to be as exclusive as
possible with each other to avoid making specific physi-
cal nodes/links highly congested. Algorithm 2 presents the
K-DFTS algorithm. The agent first initializes the service path
candidatesWc with the empty set (line 1) and then repeats the
following procedures (lines 2–6). It calculates the first service
path candidate wc,k under G+ and rc by calling DFTS()
function [13] (line 3). Since saving the network resources
leads to accepting more SCRs in future, we design the cost
of each link (i,j) as bc/Bi ,j , pc,f /Pi ,j , and zero in case of

(i , j ) ∈ E, (i , j ) ∈ Êout, and (i , j ) ∈ Êin, respectively. If
the service path wc,k cannot be found, it returns the current
service path candidates Wc (line 4). Otherwise, the service
path wc,k is added into Wc (line 5). In addition, it updates
the augmented network G+ by removing a physical/virtual
link with the highest utilization in the service path candidates
selected so far by calling REMOVE-LINK() function (line 6),
and calculates the next service path candidate in the same way.
It continues this procedure to obtain at most K service path
candidates.

3) GNN Architecture: Given the graph structure and link
feature information as inputs, the GNN model outputs the
q-value by the following procedures. To deal with link features
and neighborhood links, we first transform the augmented
network by treating links as nodes. Note that two nodes
in the transformed augmented network are connected if the
corresponding two links in the original augmented network
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are connected to the same node. Let A denote the adja-
cency matrix of the transformed augmented network. As
a result, we can interpret the link features of the original
augmented network as the node features of the transformed
one.

Next, to extract the hidden representation in the graph
domain, we apply the topological augmentation to A and
obtain the diffusion matrix S, which is given by Eq. (2),
according to the extended version of GDC [19]. The extended
version of GDC applies the weighted PageRank [47] into
GDC to derive the transition matrix T, where the weight
of a link (ei , ej ) in the transformed augmented network is
defined as the minimum of the normalized residual capacities
of links ei and ej in the original augmented network. We
further calculate the sparsified diffusion matrix S̃ by using
the threshold-based sparsification. Then, a two-layer GCN is
applied to the sparsified diffusion matrix S̃ and link feature
matrix X to derive the hidden representation X(l) according to
Eq. (1). Next, the graph-level features X(l)

G ∈ R
D are obtained

by applying the sum-pooling to the feature matrix X(l) ∈
R
N×D across nodes. Finally, the readout function modeled by

DNNs computes the q-value from X
(l)
G .

D. Applicability to Service Chaining and Function
Placement Problem

Finally, we discuss the applicability of the proposed
SC approach to the SCFP problem, which will be real-
ized in the similar manner used in our previous ILP-based
approaches [14], [15]. SC tries to find a service path under the
predefined function locations by using the augmented network.
The SC problem can be extended to the SCFP problem, which
incorporates both the service chaining and function placement
in the following manner. It is important to note that selecting
a virtual link (v̂f , v) from an imaginary node v̂f to a physical
node v in the mth subpath indicates the execution of VNF
f at physical node v, as mentioned in Section III-B4. The
virtual link (v̂f , v) between imaginary and physical nodes in
the augmented network signifies the deployment of VNF f
on physical node v. All possible function placements can be
considered by connecting each imaginary node to all physical
nodes through virtual links. Specifically, we construct the
augmented network for SCFP by connecting each imaginary
node to all physical nodes. Finding a service path on this
augmented network realizes both service chaining and function
placement.

V. NUMERICAL RESULTS

A. Evaluation Settings

We first use two kinds of real-world network topologies:
the NSFNET topology with 14 nodes and 21 links and the
SPRINT topology with 11 nodes and 18 links, as shown in
Figs. 4a and 4b, respectively. The topological data is available
at the Internet topology zoo [49]. The original capacity of each
physical link (i , j ) is set to be identical, B̂i ,j = 1Gbps. As
for each virtual link (v̂f , v), the original capacity P̂v̂f ,v is set
to be 2/|Fv | such that the physical node v equally divides

Fig. 4. Network topologies used in the evaluation.

TABLE II
SERVICE CHAIN DEMAND AND REQUIREMENTS (NAT: NETWORK

ADDRESS TRANSLATOR, FW: FIREWALL, TM: TRAFFIC MONITOR, WOC:
WAN OPTIMIZATION CONTROLLER, IDPS: INTRUSION DETECTION

PREVENTION SYSTEM, AND VOC: VIDEO OPTIMIZATION CONTROLLER)

TABLE III
RELATIONSHIP BETWEEN FUNCTION TYPE AND THE NUMBER OF CPU

CORES FOR EXECUTING THE CORRESPONDING FUNCTION PER SCR [48]

and distributes the processing resource of two CPUs to its
supporting functions Fv . Each function f ∈ F is assigned
to two VNF-enabled nodes randomly selected (Vf = 2).
Table III gives pc,fc,m as the number of CPU cores required
for executing each function f ∈ F per SCR [48].

An event-driven simulator is implemented according to
Algorithm 1. One episode of the SC scenario is as follows.
A new SCR c with a random o–d pair occurs in the physical
network (i.e., environment) according to the demand dis-
tribution in Table II. Next, the SDN controller (i.e., agent)
allocates the resources to the SCR c according to the ε-greedy
exploration strategy. To examine how many SCRs the SDN
controller can simultaneously support, we assume that each
established service path holds until the end of simulation. If
the SDN controller fails to allocate resources to the SCR c, the
simulation is terminated. The set of accepted SCRs is defined
as Caccept. These procedures are repeated TL times where T
and L are the number of iterations and that of episodes in one
iteration, respectively. (T, L) = (100, 50) is used for both the
training and testing phases.

The DRL+GNN agent is implemented by using Pytorch
and Pytorch geometric libraries [50], [51]. In the training
phase, we use the Adam optimizer [52] with the initial
learning rate of 10−4 and the discount rate γ = 0.95. We
train the model every I = 2 training iterations by using 5
batches with 32 samples randomly chosen from the experience
replay buffer. The experience replay buffer has the size of
5000 samples with the first-in first-out (FIFO) updating policy.
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Fig. 5. Evolution of number Caccept of accepted SCRs on SPRINT topology in training phase.

As for the ε-greedy exploration strategy, in the training phase,
ε initially takes one, keeps the value during the first ten
iterations, then exponentially decays with the base of 0.99
every two episodes, and approaches asymptotically to 0.01.
On the other hand, in the testing phase, ε is fixed to be zero
in order to apply the learned GNN model and lines 12–14 in
Algorithm 1 are skipped.

As for the evaluation metric, we use the average number
of SCRs that are successfully allocated per episode, i.e.,
Caccept = |Caccept|. Note that we have confirmed that the
cumulative reward R shows the similar tendency to Caccept

in the following results. In terms of the efficient resource
allocation, we also use the total amount of incoming traffic
among accepted SCRs, i.e., Baccept =

∑
c∈Caccept bc . From

the viewpoint of the computational complexity, we adopt
the computation time, which is the average time required to
calculate a service path under the same scenario used in the
training phase except ε = 0.

We compare the DRL+GNN scheme with the following
five schemes: (a) a random scheme where the agent randomly
selects an action regardless of the state, (b) a vanilla DQN
scheme where the agent computes the q-value based on the
DNN only. (c) a graph pooling (GP) +DQN scheme where
the agent computes the q-value based on the DNN with
graph pooling, (d) the Lagrangian heuristics for CSPTP-based
SC [15], and (e) the online CSPTP-based ILP [14] where the
objective function is modified to minimize the overall physical
and virtual link utilization.

The vanilla DQN scheme cannot be applied to different
networks from the learned network because it does not con-
sider the node permutation invariance and equivariance [17].
To cope with this problem, the GP+DQN scheme first
obtains the graph-level features XG ∈ R

D by applying the
sum-pooling to the feature matrix X ∈ R

N×D across nodes
and then computes the q-value by applying the two-layer

neural networks to XG . As for the Lagrangian heuristics, we
use it with parameters that are appropriately tuned for the
initial condition. To solve the online CSPTP-based ILP, we
use the existing solver CPLEX 12.8 [53] with the parallel
optimization parameter (i.e., the number of threads) of 32.
Note that the online CSPTP-based ILP gives the optimal
solution per SCR but does not guarantee the optimality in the
long-term perspective, due to the lack of prediction of future
SCRs. As a result, there is a possibility that the ML-based
approaches outperform the online CSPTP-based ILP in the
long-term perspective by learning the demand trend.

In the calculation, we use the server with 16-core Intel Xeon
Gold 6226R, 196 GB memory, and an NVIDIA GeForce RTX
3090 GPU.

B. Fundamental Characteristics

1) Training Result: We train the DRL+GNN scheme,
the GP+DQN scheme, and the vanilla DQN scheme
under the NSFNET and SPRINT topologies, respectively.
Figs. 5(a) and 5(b) illustrate the evolution of the number
Caccept of accepted SCRs averaged over L = 50 episodes
per iteration during the training phase under the NSFNET and
SPRINT topologies, respectively.

Since all the schemes except both CSPTP-based ILP and
Lagrangian heuristics randomly adopt a service path candidate
per SCR during the first 10 iterations, due to the ε-greedy
exploration strategy with ε = 1, they show almost the
same behavior, regardless of the topologies. On the other
hand, they show different behavior after the 11th iteration.
Since the random scheme continues the random selection, it
cannot improve Caccept. On the contrary, the DRL+GNN,
GP+DQN, and vanilla DQN schemes increase Caccept with
iteration, which is confirmed as the learning effect with the
decay of ε. In particular, the DRL+GNN scheme becomes
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TABLE IV
COMPARISON OF COMPUTATION TIME UNDER THE NSFNET TOPOLOGY

competitive with the online CSPTP-based ILP under both
topologies. Someone might wonder why the DRL+GNN
scheme sometimes overcomes the online CSPTP-based ILP.
This is because the online CSPTP-based ILP gives the optimal
solution per SCR but does not guarantee the optimality in the
long-term perspective.

Comparing the results between NSFNET and SPRINT,
we confirm that the GP+DQN and vanilla DQN schemes
exhibits similar performance compared with the DRL+GNN
scheme under the NSFNET topologies in Fig. 5(a) while their
performance is smaller than that of DRL+GNN scheme under
the SPRINT topology in Fig. 5(b). This result indicates that
the DRL+GNN scheme has the learning effect regardless of
the network topologies, which comes from the representation
capabilities of GNNs. In addition, the DRL+GNN scheme
has the faster learning convergence rate than the GP+DQN
scheme under both topologies.

2) Computation Time: Table IV presents the average and
standard deviation of computation time for the six schemes
under the NSFNET scenario. We observe that the CSPTP-
based ILP and Lagrangian heuristics show the largest and
smallest computation time, respectively. The DRL+GNN
scheme shows the similar tendency to other ML-based
schemes (i.e., vanilla-DQN and GP+DQN). More specifically,
it requires larger computation time than the Lagrangian heuris-
tics but can almost halve the computation time compared with
the CSPTP-based ILP.

C. Adaptability to Different Service Demand Trend

Next, we evaluate the trained models in terms of the
adaptability to demand trend through the evaluations under
the following four scenarios. We first prepare the base
(demand trend) scenario, which is the same environment in
the training phase except for the random seed value. Then,
we prepare the three different demand trend scenarios (i.e.,
different 1, different 2, and different 3) in descending order of
its cosine similarity θ to the base service demand trend. More
specifically, we make these scenarios by modifying the base
scenario as follows: We reduce a certain amount of the service
demand of video streaming and equally dividing it among
the others. Table V shows the service demand distribution
in each scenario with its cosine similarity θ to the base
scenario.

Fig. 6 (resp. Fig. 7) depicts the box-and-whisker plot of
Caccept (resp. Baccept) for each scheme in the base and
different demand trend scenarios under the NSFNET and
SPRINT topologies. The box-and-whisker plot consists of
three parts, i.e., box, two whisker lines, and outliers. The box

TABLE V
SERVICE DEMAND DISTRIBUTION OF EACH DEMAND TREND

SCENARIO FOR THE TESTING PHASE

has the height ranging in [Q1,Q3] where Q1 (resp. Q3) is
the first (resp. third) quartile and includes a horizontal line as
the median. The upper (resp. lower) whisker line is connected
between Q3 (resp. Q1) and the upper (resp. lower) bound, over
(resp. under) which the data samples are regarded as outliers,
denoted by points. The length of whisker line is given by
1.5(Q3 −Q1).

We first focus on Caccept of each scheme in the base
demand trend scenario under both network topologies. As we
expect, regardless of the network topologies, the performance
of each scheme has almost the same as that achieved at the
end of the training phase in Fig. 5(a) and 5(b), respectively.
As a result, the DRL+GNN and GP+DQN schemes exhibit
the competitive performance with the online CSPTP-based ILP
under both topologies. Baccept in Fig. 5(a) shows the same
tendency as Caccept in Fig. 5(b), regardless of the network
topologies.

Next, we compare the results among the four scenarios.
At first, someone might wonder why Caccept of each scheme
increases with decrease of the cosine similarity θ (from the
left to right in Fig. 7). This is because the different bandwidth
requirement bc among services as shown in Table II. More
specifically, in the preparation of the three different scenarios,
we reduce β% service demand of video streaming and add
β/3% service demand to each remaining service, which
reduces the bandwidth requirement in proportion to 16β −
(1 + 4 + 32)β/3 
 3.67β. Since the amount of network
resource is identical among all scenarios, such increasing
trend does not arise in terms of Baccept, as shown in Fig. 5.
This tendency can be confirmed from the evaluations in both
network topologies.

We observe from Figs. 7 and 6 that the DRL+GNN,
GP+DQN, and vanilla DQN schemes have competitive
Caccepts and Baccepts with the online CSPTP-based ILP
among all scenarios, thanks to their generalization capabilities.
Note that the GP+DQN and vanilla DQN schemes require
more training iterations as shown in Fig. 5. On the other hand,
the Lagrangian heuristics gradually degrades the performance
with decrease of θ and consequently exhibits almost the same
performance as the random scheme. This indicates that the
Lagrangian heuristics fine-tuned for the base scenario cannot
adapt to the demand change.

D. Adaptability to Topology Change With Link Failures

In actual systems, some of the links may be temporar-
ily down, due to equipment failures, which changes the
network topology. In this section, we evaluate how much the
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Fig. 6. The number Caccept of the accepted SCRs for five schemes in the testing phase.

Fig. 7. Total amount Baccept of incoming traffic among accepted SCRs for five schemes in the testing phase.

DRL+GNN scheme learned through the original NSFNET
(resp. SPRINT) topology can work well even under the
NSFNET (resp. SPRINT) topology with link failure(s). In the
testing phase, we prepare link failure scenarios by changing
the number Eremoved of links removed from the NSFNET and
SPRINT topologies from 1 to 4, respectively. More specif-
ically, for each Eremoved, we randomly remove Eremoved
link(s) from the original NSFNET and SPRINT topologies at

the beginning of an episode, respectively. We should note that
the vanilla DQN scheme cannot be applied to this link failure
scenario because the input size of the vanilla DQN scheme
depends on the number of links and it changes before and
after the link failure(s).

Figs. 8(a) and 8(b) depict the relationship between Eremoved
and Caccept for the five schemes under the NSFNET and
SPRINT topologies, respectively. In these figures, we show
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Fig. 8. Impact of the number Eremoved of removed links on the number Caccept of accepted SCRs.

TABLE VI
CHARACTERISTICS OF 243 TOPOLOGIES IN THE INTERNET

TOPOLOGY ZOO [49]

the average with 95% confidence interval. We observe that all
the schemes decrease Caccept with Eremoved, regardless of the
network topologies. Comparing the results of the DRL+GNN
scheme, GP+DQN scheme, Lagrangian heuristics, and ran-
dom scheme with those of the online CSPTP-based ILP, we
confirm that the maximum performance degradation becomes
3.9%, 6.3%, 11.9%, and 27.3% (resp. 0.8%, 3.5%, 23.0%,
and 29.4%) under the NSFNET (resp. SPRINT) topology,
respectively. The smaller performance degradation of the
DRL+GNN scheme can be regarded as the generalization
capabilities of the GNN and the similarity between the
original topology and modified one. The Lagrangian heuristics
decreases its performance due to the same reason explained in
Section V-C.

E. Applicability to Other Real-World Topologies

Finally, we assess the generalization capabilities of the
proposed DRL+GNN scheme using 243 real-world network
topologies available from the Internet topology zoo [49].
Table VI depicts the characteristics of the 243 topologies in
terms of the numbers of nodes and links. Fig. 9 illustrates the
complementary cumulative distribution of the relative number
of accepted SCRs compared to the online CSPTP-based ILP
result. (As mentioned in Section V-A, the Vanilla DQN scheme
cannot apply the learned model in a certain network to other
networks, due to lack of properties of node permutation
invariance and equivariance.) As the values of Caccept and
Baccept vary based on network topologies, we focus on their
relative performance to the online CSPTP-based ILP.

Our observations reveal the proposed DRL+GNN scheme
trained in the NSFNET (resp. SPRINT) topology can achieve

Fig. 9. Complementary cumulative distribution of the relative number of
accepted SCRs to the online CSPTP-based ILP result.

over 95% relative performance to the online CSPTP-based
ILP for 95.1% (resp. 93.4%) of the total real-world network
topologies, with the help of DRL, GNN, and path candi-
dates. In comparison, the GP+DQN scheme trained in the
NSFNET (resp. SPRINT) topology and the random scheme
support 70.8% (resp. 74.5%) and 64.6% of the total real-world
topologies in the same case. This outcome demonstrates the
DRL+GNN scheme trained in the NSFNET/SPRINT topol-
ogy can support most real-world topologies while mitigating
performance degradation. As mentioned in Section V-A, the
online CSPTP provides an optimal solution per SCR but does
not guarantee optimality in the long-term perspective. As a
result, the DRL+GNN (resp. GP+DQN) scheme trained in
NSFNET and SPRINT topologies can achieve over 100%
relative performance compared to the online CSPTP-based
ILP across 21.4% and 18.9% (resp. 19.7% and 19.3%) of the
topologies.

Additionally, we observe a similar tendency in the total
amount Baccept of incoming traffic among the accepted
SCRs, mirroring Caccept. The enhanced performance of the
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DRL+GNN scheme can come from the benefit of the gener-
alization capabilities by graph diffusion. By employing graph
diffusion, the proposed agent identifies critical physical links
for SC in terms of resource efficiency and aggregates their
features into the graph feature during candidate path evaluation
for the q-value determination. Conversely, the GP+DQN
scheme utilizes graph-pooling to aggregate the features of all
physical links in the network topology into the graph feature,
making it challenging to identify the crucial features of the
bottleneck links for SC.

VI. CONCLUSION

In this paper, we have proposed the deep reinforcement
learning (DRL) framework with the graph neural network
(GNN) for addressing the service chaining (SC) problem based
on the capacitated shortest path tour problem (CSPTP) in
the context of network functions virtualization (NFV) and
software defined networking (SDN). The proposed framework
adopts the GNN architecture for computing the q-values,
which consists of the graph convolutional network and graph
diffusion convolution. Through the numerical results, we
have shown that the proposed framework achieves both
optimality and adaptability (generalization capabilities). More
specifically, as for the optimality, the proposed framework
is competitive with the online CSPTP-based ILP. As for the
adaptability, the proposed framework trained under a base
demand distribution (resp. a certain network topology) can
also work well under different demand distributions (resp.
changes of network topologies, due to link failures or different
networks). Specifically, the proposed framework demonstrates
competitive performance compared to the CSPTP-based ILP
in the majority of real-world topologies, thanks to the graph
diffusion.
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