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Abstract—Existing load-balancing methods used in data center
networks involve some shortcomings such as excessively large
decision delays during reactions to microbursts and large over-
heads involved in active probing. Programmable data planes
have provided new opportunities for local decision-making
on switches to address these issues. We observe that queue
behavior (i.e., queue occupancy, queuing trend, and dequeue
time interval) in switches can reflect the current or future
congestion degree on a network. Furthermore, following data-
driven experiments, we found an accurate fitting function of
congestion degree to queue behavior. Thus, we propose an
in-network load-balancing scheme based on a programmable
switch, called queue-behavior-aware localized load balancing
(QALL). In QALL, each switch independently selects egress
ports probabilistically according to fine-grained-measured local
queue behavior. The key concept of QALL is to take account
the evolutionary process of reaching the current queue state into
its decision basis for load balancing. Experimental results under
actual DCN workloads (including Web search and data mining
workloads) demonstrate the effectiveness of QALL. In terms of
flow completion time, decision delay, network shock, load sharing
accuracy, and packet reordering, QALL outperformed recent
per-packet (DRILL), per-flowlet (LetFlow and CONGA), and per-
flow (ECMP) load balancers, particularly under heavy load. For
example, under asymmetrical topology with 90% load level, the
flow completion time of QALL was lower than that of ECMP,
LetFlow, CONGA, and DRILL by up to 54.7%, 46.5%, 38.9%,
and 18.9%, respectively.

Index Terms—Data center networks, distributed, load balanc-
ing, programmable data plane, queue behavior.

I. INTRODUCTION

DATA center networks (DCNs) provide infrastructure
for many online services, such as machine learning,
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on-demand video delivery, Web search, cloud computing, and
interactive online tools [16].

Specifically, the DCN topology plays a significant role in
determining the level of failure resiliency, ease of incremental
expansion, communication bandwidth and latency. Based on
a CLOS architecture [16], existing DCN topologies often
involve a large degree of path redundancy, which allows for
increased fault tolerance. Properly distributing traffic loads
across these paths reduces contention among flows while
increasing overall resource utilization. Effective load balancing
aims to avoid situations in which many links may fall idle
while others continue to experience congestion.

Although most DCN topologies are symmetrical, in prac-
tice, DCNs turn out to be often asymmetrical because of
frequent failures of network elements (e.g., switches, links, and
ports); for example, up to 40 link failures per day [15], [16].
However, the performance of some load-balancing schemes
depending on symmetrical characteristic of topology dete-
riorates significantly under asymmetrical topologies (e.g.,
equal-cost multi-path (ECMP) [3] and Presto [8]).

Static load-balancing approaches such as ECMP [3] are not
suitable in DCNs because of the highly dynamic and bursty
nature of typical traffic. Alternative adaptive load-balancing
approaches can dynamically select paths for traffic loads to
minimize hotspots. Thus, the decision delay of adaptive load-
balancing approaches becomes critical owing to the frequent
decision-making required. However, decision delays in load-
balancing methods based on controllers (e.g., Hedera [6],
DeepRLB [28], Shafiee and Ghaderi [19], and Oddlab [33])
or end hosts (e.g., HPCC [45], CLOVE [7], Presto [8], Zhang
et al. [20], and NDP [21]) are generally quite large. The
basic concept behind these methods is to collect and react
to global or nearly global congestion information. However,
they typically have control loops that are several orders of
magnitude slower. For example, in terms of controller-based
methods, the interaction latency between switches and the
controller may be orders of magnitude slower than the speed
at which typical datacenter congestion events occur. They also
react slowly to microbursts [4]. However, microbursts have
been identified as the main culprit of packet loss in DCNs,
which leads to retransmissions that impose significant latency
and degrade application performance [4], [46].

In summary, these methods move network functions out of
the network fabric, striving to delegate load balancing to cen-
tralized controllers [6], [19], [28] or end hosts [7], [20], [21].
These entities serve as convenient locations to collect global
or end-to-end congestion information.

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-7343-4948
https://orcid.org/0000-0003-1695-483X
https://orcid.org/0000-0002-9454-4919


2304 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

From a different direction, some methods (e.g., CONGA [1]
and HULA [2]) strive to delegate load balancing to the core of
a network, where switches make decisions for load balancing.
However, these methods require coordination among multiple
switches, leading to a considerable delay in making decisions.
For example, although CONGA adds customized hardware
mechanisms to leaf and spine switches, its control loop
nonetheless typically requires several RTTs, by which time a
typical congestion event is likely to have ended [4].

Furthermore, these methods (i.e., controller-based, end-host-
based, and multiple-switch coordination) not only increase
delays in making decisions but also result in additional
overhead. For example, Shafiee and Ghaderi [19] collected link
utilization data from switches at a controller. Zhang et al. [20]
periodically sends small probe packets between end-host pairs
to monitor path conditions. HULA [2] regularly sends probe
packets transmitted between switches to sense the global
link utilization. Thus, designing load-balancing methods with
short decision delays suitable for asymmetric topologies and
operating in a distributed manner with low overhead is a
considerable challenge.

Recently, programmable data planes (PDPs) [23] such as
programmable network interface cards (i.e., smartNICs) and
programmable switches have attracted increasing attention. In
this study, PDPs refers to programmable switches. Due to
their programmability, PDPs have provided new opportunities
to drive unprecedented innovation in network protocols and
architectures. Switches located at the core of the network
can directly and accurately observe the network behavior of
all processed flows over short timescales. Furthermore, when
the switch becomes programmable, it is possible to perform
flexible load-balancing strategies directly inside PDPs (i.e.,
in-network load balancing), as in, for example, HULA [2],
DASH [14], and Contra [17]. Clearly, in-network load-
balancing schemes are more effective at scale and more
responsive to network dynamics. However, they all use active
probing to collect network state. Of note, probing adds com-
munication overhead that can lead to performance degradation.
Although it does not depend on probing, DRILL [4] can suffer
from network shock because it allows each programmable
switch to select the “best” option among a set of randomly
selected multiple possible egress ports for each packet based
only on local queue occupancy.

To address dynamic networks, traffic control schemes (e.g.,
load balancing and routing/flow scheduling) use a strategy to
change the path (i.e., they actually also change the switches
passed by a given traffic flow in the network) by which
traffic is transmitted according to an optimal goal. Clearly,
this is eventually reflected in changes in the queue behavior
of the switches. In this article, we refer to queue occupancy,
dequeue time interval, and queuing trend in the egress ports
of switches as the queue behavior of switches. However,
collecting fine-grained statistics on queue behavior in real
time is challenging. Fortunately, in contrast to traditional
switches that infer queue behavior based on back-to-back
methods, emerging programmable switches can measure their
own queue behavior independently and in a fine-grained
manner.

In short, load-balancing strategies actually involve choosing
ports to distribute traffic loads. Choosing a port determines
the egress traffic of the given egress port, and then the egress
traffic largely determines the congestion degree (or load) of
a switch to which this egress port connects. We observed
some interesting relations between egress queue behavior
and egress traffic, including (i) egress traffic being positively
correlated with egress queue occupancy and (ii) egress traffic
being negatively correlated with egress dequeue time interval.
Moreover, switches use a port to connect to other switches, and
thus the queue behavior of an egress port actually reflects the
congestion degree (or load) of the network connected to
the port. That is, the queue behavior of switches can reflect
the state of the corresponding network. PrintQueue [42] also
observed that queuing is both a result of historical effects and
the current state of the network.

Therefore, we propose a distributed in-network load-
balancing method on programmable data planes, called
queue-behavior-aware localized load balancing (QALL). In
QALL, each switch probabilistically selects an egress port
according to fine-grained-measured local queue behavior to
achieve per-packet/per-flowlet load balancing without any
coordination among switches or any controllers or probing.
The main contributions of this study are summarized as
follows.

1) We propose a distributed queue-behavior-aware load-
balancing method on PDPs. The key concept is that
QALL creatively takes account the evolutionary process
of reaching the current queue state into its decision
basis for load balancing: how to arrive (i.e., queu-
ing trend) and how long to arrive (i.e., dequeue time
interval) the current queue state (i.e., queue occupancy).
Furthermore, QALL includes a probabilistic forwarding
strategy designed to evenly distribute traffic to each
available port, rather than only selecting the best port as
in other schemes.

2) We propose a data-driven load-balancing method.
Following a data-driven approach, we found an accurate
function to fit the congestion degree to queue behavior
and applied it to improve the performance of QALL.

3) We used Mininet+BMv2 to test QALL on actual
DCN traffic workloads. The experimental results demon-
strate that QALL performed better than several existing
schemes in terms of lower flow completion time
(FCT), shorter decision delay, and smaller load-sharing
accuracy. Moreover, QALL does not depend on the
symmetrical characteristics of the network topology.

The remainder of this article is organized as follows. In
Section II, we review some relevant background and related
studies. In Section III, we present some observations and
describe the motivation of this work. In Section IV, we present
system design of QALL along with a description of the
problem it is designed to solve. In Section V, we present a
data-driven version of QALL. In Section VI, we provide the
experimental results. In Section VII, we discuss some practical
issues and suggest several challenging directions for future
research. We conclude in Section VIII with a summary of our
findings.
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Fig. 1. Load balancing granularity.

II. BACKGROUND AND RELATED WORK

As shown in Fig. 1, load balancing can be performed per-
packet, per-flowlet, per-flowcell, and per-flow granularity. A
“flow” is a packet stream with the same 5-tuples header. In one
flow, a flowlet is a burst of packets that is separated in time
from other bursts by a sufficient gap — called the “flowlet
timeout” (Tinter in Fig. 1); a “flowcell” is a group of packets
with a fixed size (Csize in Fig. 1). Generally, despite suffering
the packet reordering in a flow under network asymmetry,
per-packet balancing can obtain high throughput owing to
its fine-grained scheduling. Although per-flowlet, per-flowcell,
and per-flow load balancing can avoid packet reordering, link
utilization cannot be maximized due to the inflexibility and
coarseness of these methods. In addition, they are all stateful
schemes that must record a flow state (e.g., 5-tuples); that is,
some memory is occupied.

Furthermore, decision location of load balancing (in this
article, referred as decision-maker) can be at the host (at the
end of the network), at a switch (in the core of the network), or
at a controller (at the top of the network). However, different
decision locations have different capabilities and views of the
network.

A. Load Balancing at Switch

1) Load Balancing at Programmable Switch: In terms
of per-flowlet load balancing, based on lazy evaluation,
CONGA [1] employed a customized leaf switch which has a
table to hold the link utilization seen along its outgoing paths.
Such link utilization is collected by receiving switches and
then piggybacked on traffic. However, its control loop typically
requires a few RTTs, and required customized switches. To
decrease the decision delay, HULA [2] periodically send
probing packets to proactively disseminate link utilization
information to all switches in network. However, such probing
adds some communication overhead.

In terms of per-packet, DRILL [4] determines the for-
warding path of every packet of a flow independently by
considering per port local queuing at the switches. In DRILL,
each forwarding engine randomly chooses d out of N possible
output ports, and finds the one with the current minimum
queue occupancy between these d samples and m least loaded
samples from previous time slots, and routes its packet to that
port. To avoid packet reordering under per-packet granularity,

QDAPS [13] selects paths for packets according to the queue-
ing delay of output buffer, and lets the packet arriving earlier
be forwarded before the later packets. Moreover, using the
“power-of-n-choices” paradigm, QDAPS alleviate the impact
of herd behavior under multiple forwarding engines. However,
the complexity of QDAPS is a challenge to switches, for
example, QDAPS’s CPU utilization and memory utilization
increase 33% and 64% than ECMP’s respectively.

Contra [17] enforces performance-aware routing policies,
where a compiler analyzes a desired policy in conjunction
with the network topology, and decomposes them into switch-
local Programming Protocol-independent Packet Processors
(P4) programs. These programs generate probes to collect path
metrics, and dynamically choose the best paths along which
to forward traffic.

However, one common limitation of these solutions
(CONGA, HULA, Contra, DRILL, etc.) on programmable
switch is that they only consider use a single “best” path
at any given time, and this leads to the “best” path to be
quickly congested. The benefits of using multiple paths have
been demonstrated by many works on the controller (e.g.,
HALO [41]). W-ECMP [10], DASH [14], Closer [29], and
CLB [27] aim to balance load dynamically across multiple
paths in the data plane.

In terms of per-flowlet, as a weighted-cost multipath mech-
anism (WCMP), W-ECMP [10] uses the path’s utilization
as the probability of choosing a path other than the best
path, thus it is not as sensitive to the frequency of state
update compared with CONGA and HULA. However, W-
ECMP take a long time to converge to new weights (i.e.,
large decision delay). For this reason, DASH [14] presents
a hash-based data structure that quickly achieves adaptive
traffic splitting in programmable data planes to balance traffic
across multiple paths. Where, DASH uses the utilization of
bottleneck link as its decision basis. Closer [29] leverages
in-band network telemetry (INT) to obtain precise link state,
and employs WCMP at the network edge to proactively map
the flows to the appropriate paths and avoid the excessive
congestion of a single link. CLB [27] uses WCMP for traffic-
aware load balancing over many paths at a coarse-grained
precision.

To adapt to different levels of burst in DCN, IntFlow [30]
integrates end-host based per-packet flow state monitoring
with flowlet switching in programmable switches. IntFlow’s
core idea is that proactively rerouting flows experiencing
network congestion or failures, while performing cautious
flowlet switching for small flows with high sending rate.

Different from other works based on programmable switch,
QALL uses probabilistic selection algorithm to distribute
load across multiple paths. Besides, QALL’s key idea is that
selecting egress port according to the queue occupancy in
conjunction with dequeue time interval and queuing trend
instead of a single network state metric (e.g., queue occupancy
or link utilization or FCT).

2) Load Balancing at Traditional Switch: In terms of
per-flow, ECMP [3] is widely used in DCN and spreads
traffic uniformly across multiple paths. However, because of
congestion-oblivious, it is well-known that ECMP performs
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poorly when there is asymmetry either in the network topology
or the flow sizes [43]. In remote direct memory access
(RDMA) supported DCN, Dart [35] isolates the common case
of receiver congestion, and further subdivides the remaining
in-network congestion into the simpler spatially-localized and
the harder spatially-dispersed cases. And then quickly allevi-
ating congestion with the idea of divide-and-specialize. Where
Dart uses the local congestion information as its decision basis.

In terms of per-flowlet, LetFlow [5] is a simple congestion-
oblivious approach. LetFlow relies on the natural property
of flowlets which allows them to shrink or expand (in size)
according to available capacity over paths. However, due to the
randomness of LetFlow scheduling, the optimal load balancing
performance cannot be achieved. In summary, most per-flowlet
load-balancing schemes depend on a proper static setting of
the flowlet gap, which decides when new flowlets are detected.
While a too small gap may result in reordering, a too large gap
leads to missed load-balancing opportunities [31]. FlowDyn
[31] and Flex [9] can dynamically adapt the flowlet gap. Under
a switch-host collaborative paradigm, Flex [9] split the flow
into flowlets at the host based on the adaptive timeout., and
then tell the flowlet results to switches by marking the adjacent
flowlets of the same flow.

In terms of per-packet, some methods are proposed to mit-
igate packet reordering. For example, (i) RMC [12] based on
network coding can effectively solve the reordering problem,
but it also introduces too many redundant coding packets,
which leads to too much extra traffic overhead, long queuing
delay and even packet loss. (ii)To address this problem,
OPER [26] uses opportunistic redundant packets which are
replaceable by the data packets in the switches under heavy
congestion.

Lots of load balancing schemes, from ECMP [3] to LetFlow
[5], to Presto [8], avoid packet reordering under asymmetric
topology by balancing coarser units of traffic, but easily lead to
under-utilization of multiple paths. AG [18] adaptively adjusts
switching granularity according to the asymmetric degree of
multiple paths, to alleviate packet reordering.

B. Load Balancing at Controller

Considering the control overhead and decision delay, most
controller-based load balancing methods are per-flow granu-
larity. By using a central controller to monitor the network,
Hedera [6] detects long flows and reschedules them on a
lightly loaded path, but it is not friendly to short flows.
Shafiee and Ghaderi [19] dynamically adjusts the weight of
the link according to the link utilization, and assigns every
arriving traffic to the minimum weight path. However, due
to depending on frequently updating link weight, Shafiee’s
performance is greatly affected by the speed of updating
weight and calculating minimum weight path.

DeepRLB [28] and DRL-PLink [36] deploy the deep
deterministic policy gradient (DDPG) algorithm on soft-
ware defined networking (SDN) controller to achieve load
balancing. DRL-PLink [36] establishes some corresponding
private-links for different types of flows to isolate them such
that the competition among different types of flows can

decrease accordingly. Where DDPG is used to adaptively and
intelligently allocate bandwidth resources for these private-
links, by observing FCT.

For SDN-enabled hybrid optical/electrical DCN,
DDMP [22] dynamically adjusts traffic distribution according
to the inverse ratio of the buffer occupancy. Where the SDN
controller guarantees the capacity of the scheduling buffers
and reconfiguring the switch fabric.

C. Load Balancing at End-Host

More easily being deployed on end-hosts by a software
update, the multipath TCP (MPTCP) leverages multiple
sub-flows for data transmission. However, in practice,
using multiple sub-flows is efficient only under inter-rack.
DCMPTCP [32] aims to improve the efficiency of MPTCP, for
example, preventing MPTCP from establishing multiple sub-
flows for rack-local traffic; estimating flow size, with which
inter-rack flows can leverage multipath in a smarter way.
HPCC [45] uses INT to collect queue information in switches
to achieve high precision congestion control in DCN.

In terms of per-packet, NDP [21] is a DCN transport proto-
col which limits the aggregate transmission rate of all incast
senders by maintaining a PULL queue at the receiver. In terms
of per-flow, to an asymmetric DCN topology, FlowFurl [34]
reroutes the flows by combining link failure and congestion
information.

In terms of per-packet/per-flow, Zhang et al. [20] monitor
path conditions at the end-hosts by sending probe packets
between end-host pairs periodically, and reroute flows affected
by failures or congestion caused by asymmetries. Specially,
in Zhang et al. [20], short flows and long flows use per-flow
granularity and per-packet granularity, respectively.

In terms of per-flowlet, Clove [7] employs Paris tracer-
oute [11] to obtain all paths conditions traversing the network.
Where, each source leaf node collects the path conditions
information to the destination leaf by sending a probe packet,
and this information is brought back to the source leaf node
by ECN or custom packet headers. Clove relies on ECMP in
physical switches.

Besides, few works achieve per-flowcell granularity. For
example, without needing sensing congestion, Presto [8]
breaks flow into small near-uniform units of data (called
flowcell), where, in end-host, flowcells are assigned over
multiple paths very evenly by iterating over paths in a round-
robin. However, Presto has the difficulty with asymmetric
scenarios, and cannot interact well with unbalanced legacy
traffic.

III. SOME OBSERVATIONS AND MOTIVATIONS

From this overview, we can identify some challenges and
make some notable observations regarding existing methods.

A. Challenges

Challenge 1: Which network state serves as a better
decision basis. In general, all approaches to load balanc-
ing require the state of the network as the basis for their
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decision-making, regardless of whether they are controller-
based, end-host-based, or switch-based, except for a few
methods that do not need to perform sensing. Briefly, network
states can be classified into two types: device states (e.g., the
queue occupancy of switches, link utilization, and physical
bandwidth of links) and traffic states (e.g., flow-level FCT,
packet-level delay, jitter, and loss rate). These can provide
different types of useful information for decision-making, and
their associated cost of measurement differs.

However, most previous studies have used a single metric
(e.g., queue occupancy, link utilization, or FCT) as their
decision basis. In fact, these metrics reflect only the current
state of the network. That is, these metrics do not fully
reflect the degree of network congestion. Because queuing
is a result of both historical effects and the current state of
the network [42], we argue that the evolutionary process by
which the current network state was reached (i.e., how the
network reached its current state and how long this took)
should be considered as the decision basis. However, to the
best of our knowledge, no previous studies have considered
this evolutionary process.

Challenge 2: How to avoid network shock. Previous
load-balancing schemes (e.g., CONGA, HULA, Contra, and
DRILL) typically adopt a coarse-grained port selection strat-
egy that tends to directly schedule all traffic along a single
“best” path (the port with the smallest queue occupancy
or the path with the lowest link utilization) at any given
time. Such strategies may easily lead to the “best” path
quickly becoming excessively congested, and may also result
in frequent rerouting, which leads to the network state to
fluctuate widely and change over frequently. For example,
under per-flowlet granularity, link utilizations vary over time
and from one another by up to 2× [43]. In addition, frequent
rerouting within a flow can mix ACKs belonging to different
paths in congestion control protocols, which adversely affects
the flow rate control [30]. This study refers to the frequent
rerouting of traffic as network shock, which can be evaluated
by the Variance of the queue occupancy.

Challenge 3: How to decrease the decision delay to
meet high bandwidth and microbursts requirements. In
DCNs, to meet line-speed forwarding and ultra-low end-to-end
latency requirements (∼10’s of μs), the processing time within
a switch is required to be smaller and smaller when bandwidth
become higher and higher (>10 Gbps). Moreover, microbursts
(short-lived traffic spikes that last for less than a millisecond)
quickly cause queues of switches to become fully utilized,
leading to immediate packet loss and subsequent periods of
unexpectedly high packet delay [24]. Measuring and managing
microbursts is challenging because of their short lifespans,
frequent occurrence at irregular intervals, and diverse and ever-
changing root causes (e.g., applications and TCP artifacts such
as ACK compression) [46]. For example, at Facebook, more
than 70% of microbursts last for less than a few tens of
microseconds, which is significantly shorter than the frequency
of most deployed measurement frameworks [47]. The two
main methods in current use to manage microbursts include
absorbing the microbursts by adding sufficient buffer space
at switches [48] and load balancing [4]. The former may

incur high costs and fail under load and at scale. However,
most existing load-balancing methods [1], [2], [6], [7], [8],
[19], [20], [21] that are performed on large timescales react
slowly to microbursts. A few methods have aimed to achieve
microburst tolerance on switches at short timescales, such as
DRILL [4] and Vertigo [46]. DRILL performs micro load
balancing to distribute a load as evenly as possible on a
microsecond timescale. Thus, we argue that switches (the
network core) should take corrective action in response to
microbursts in situ and in real-time before a situation worsens.

Challenge 4: How to address constraints of pro-
grammable switches. To achieve packet processing with a
high line-speed, programmable switches have many constraints
on the algorithms that can be implemented [23]. Some of
these constraints are highlighted below to clarify the design
challenges and decisions involved in QALL.

(i) Programmable switches can perform only limited oper-
ations (e.g., missing division and floating-point arithmetic
operations [44]) and programming models (e.g., missing
loops). In this study, we used shift and addition/subtraction
operations to replace division equivalently. We also use a
random function to avoid floating-point operations (more
details are presented in Sections IV-C and IV-D, respectively).

(ii) Programmable switches provide relatively limited
computational and memory resources to support application-
specific tasks. For example, in a typical programmable switch
(e.g., with an Intel Tofino), each stage can access only ∼10
MB of stateful memory (e.g., registers) [24]. To save the
memory, we use a hash operation to replace storing data.

(iii) In most commodity programmable switches, queue
behaviors (i.e., the decision basis in QALL) are gen-
erally available in the egress pipeline. However, the
load-balancing decision location must be within the ingress
pipeline. The decision basis must be transmitted to the load-
balancing decision location using a P4 clone operation [25].
Thus, a space-time mismatch obtains between the load-
balancing decision location and its decision basis. That is, the
network state reflected by the decision basis is slightly out of
date compared to the time at which decisions are made. This
naturally reduces the accuracy of decision-making processes.
To address this space-time mismatch, we apply an updating
period factor (Tb) to adjust the freshness of the decision basis
as discussed in Section IV-E.

B. Observations

In essence, by constantly adjusting the transmission path for
traffic, the load-balancing scheme aims to achieve a reasonable
space-time distribution of traffic in the network. Because
switches are forwarding nodes on the transmission path,
variations in the traffic distribution in a network eventually
lead to changes in the queue behavior of the switches. Thus,
we aim to find the relationship between egress traffic and
queue behavior.

As shown in Fig. 2, queue occupancy (denoted by L) is
defined as the proportion of the queue depth of the egress
port to its total queue length when packets enter the queue of
the egress port. The dequeue time interval (denoted by T) is
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Fig. 2. The queue occupancy and dequeue time interval.

Fig. 3. The relationship between the egress traffic, queue occupancy and
dequeue time interval of ports.

defined as the time difference between two packets leaving the
queue of the egress port, and the queuing trend is defined as
whether the current queue occupancy is formed by an increase
from small to large or by a reduction from large to small. For
example, when the current queue occupancy is 50%, it may
be reduced from 60% to 50% or increased from 40% to 50%.

First, we build a traffic observation dataset under actual
DCN workloads. Where we continually observe the running
process of the DCN (shown in Fig. 7) with typical setups.
Specially, ECMP is adopted as the load-balancing scheme,
and two types of widely used workloads (i.e., Data Ming and
Web Search) whose traffic distributions are shown in Fig. 8
are loaded into servers h1-h32 as the background traffic. Half
of these hosts were configured as senders, and the other half
receivers. Because almost all traffic within a network passes
through spine switches, collecting traffic data at spine switches
suffices to determine the running process of the network. We
collected 200,000 groups of data on egress traffic (kbps), queue
occupancy (%), and dequeue time interval (us) of egress ports
of S1 and S2, as shown in Fig. 7. Second, data preprocessing
was performed on the observation dataset to obtain normalized
values such as maximum and minimum normalization and
data cleansing. Fig. 3 shows their envelopes, and we note the
following observations.

Observation 1: The egress traffic of a given port was pos-
itively correlated with egress queue occupancy. The Pearson
correlation coefficient reached up to 0.7824.

Observation 2: The egress traffic of a given port was
negatively correlated with egress dequeue time interval. The
Pearson correlation coefficient reached up to −0.7308.

Clearly, Observations 1–21 demonstrate some inherent facts
obtained in practice. For Observation 1, the queue occupancy

1In the Observations 1–2, the egress traffic, egress queue occupancy, and
egress dequeue time interval refer to the state of the same egress port.

of an egress port indicates the current queue state of the port
when packets arrive, and the queue depth reflects the current
status of the egress traffic of the port (i.e., the longer the queue
depth of a port, the greater its egress traffic). Therefore, the
smaller the queue occupancy, the lower the egress traffic. This
observation is also consistent with the conclusions of queuing
theory [49]. It should be noted that this observation is true
only when there is queueing in the network. When the load of
the entire network is extremely light such that all egress ports
of the entire network have no queueing simultaneously (the
queue occupancy of all egress ports is zero), this observation
is not necessarily true. Of course, under this case, there is no
need for load balancing scheme.

By the same token, for Observation 2, the egress dequeue
time interval indicates the time required to form the current
queue state. When the queue occupancy is certain, a longer
egress dequeue time interval actually implies that packets are
allocated by a longer time interval to the link corresponding
with this egress port; in other words, the link is lighter.
Therefore, in most cases, the longer the egress dequeue time
interval, the less the egress traffic. For example, during an
observing time (referred to as R seconds), if M packets are
dispatched to the corresponding link of an egress port, where
the size of all packets is S bits and their transmission delay is t
seconds, thus, the egress traffic of this egress port is expressed
as follows,

E_traffic =
M × S

R
=

M × S
∑M−1

j=1 Tj + t
(bit/s) (1)

where Tj is the dequeue time interval between the j th and
(j + 1)th packet. Obviously, from equation (1), when Tj is
larger, the egress traffic is naturally less. When we let the
observation time R be sufficiently short (e.g., there is only
one packet during R), the egress traffic approaches S

Tj
(bit/s).

Thus, the negative correlation between egress traffic and egress
dequeue time interval is expected. Considering the observed
correlation between egress traffic and dequeue time interval
is a moderate instead of extremely high level (the Pearson
correlation coefficient reached up to −0.7308), we cannot
completely conclude that a longer dequeue time interval
indicates a lighter load. We discuss some special cases further
in Section VII-C.

C. Motivations

Inspired by these observations, we followed several moti-
vations to address the abovementioned challenges.

Motivation 1: Decision basis integrating with the current
and future network states. In short, the load-balancing strategy
is actually the choice of port, which determines the egress traf-
fic of a given port (i.e., the corresponding link). Furthermore,
the egress traffic of a port largely determines the congestion
degree (or load) of a switch connected to the port. Clearly,
the greater the egress traffic, the higher the congestion degree.
Thus, Observations 1 and 2 show that the queue occupancy
and egress dequeue time interval of a port can reflect the
current congestion degree of the network connected to this
port.
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Furthermore, the current dequeue time interval actually
reflects the number of historical packets injected into the
corresponding link in the past; thus, it can also reflect the
future congestion degree (more accurately, the congestion
degree in this study mainly refers to the link load) of a given
link. Therefore, when we take dequeue time interval as a
decision basis of load balancing, it is actually based on an
implicit congestion prediction.

Thus, when we consider the queue occupancy and dequeue
time interval together as the decision basis, we actually con-
sider the current and future congestion degree as a whole, and
actually achieve the cooperation between switches either with-
out depending on controllers or without explicit information
transmission between switches.

Simultaneously, the queuing trend should be a part of
the decision basis. If the current queue occupancy results
from a growth, this indicates that the queue is increasing
and the network congestion may be expected to become
more severe; if the current queue occupancy results from
a reduction, this indicates that the queue is decreasing and
the network congestion may be expected to gradually ease.
The load-balancing strategies applied in each case should
differ.

In summary, compared with link utilization and FCT, queue
occupancy, dequeue time interval, and queuing trend can more
directly reflect current and future network congestion degrees
from the bottom; moreover, the cost of measuring them in
PDP is less.

Therefore, to address Challenge 1, based on the inherent
relationship between the network’s congestion degree and
switches’ queue behavior, our proposed approach uses queue
behavior as the decision basis for load balancing. To summa-
rize, our decision basis for load balancing creatively considers
the evolutionary process that occurred to reach the current
queue state, including how to arrive (i.e., queuing trend) and
how long it took to arrive (i.e., dequeue time interval) at the
current queue state (i.e., queue occupancy).

Motivation 2: Distributing traffic evenly instead of through
the best path. In order to avoid network shock in Challenge 2
to achieve better load balancing, we designed a probabilistic
forwarding strategy that distributes traffic evenly to each
available port instead of selecting only the best port.

Motivation 3: The first observer is the first decision-maker.
To decrease decision delays, decision-makers should be placed
close to the network state that needs to be accessed, which
may be described as data locality. The programmable switch
located at the core of a network can directly and accurately
observe the network behaviors of all flows that pass through
the switch over short timescales. This programmability can
support flexible load balancing strategies directly inside PDPs.
Thus, to address Challenge 3, we employ programmable
switches as the key decision-maker.

IV. SYSTEM DESIGN OF QALL

A. Problem Statement

Considering a DCN with V switches and N hosts, we model
the network as a directed graph G = (V, E). Any two hosts

Fig. 4. Framework of QALL.

among N hosts are referred toas an end-to-end host pair. In
DCNs, communication for an end-to-end host pair contains a
set of candidate paths where the K-shortest paths (KSP) [37]
algorithm is used to calculate the candidate paths. By default,
all queues in switches use first-in-first-out (FIFO). Therefore,
its length increases when a new packet is inserted into a queue
and decreases when dequeuing packets.

Programmable switches adopt a packet-triggered work
scheme; that is, the execution of a P4 program for the load-
balancing algorithm is triggered by a packet arrival event
instead of by a strict period (periodically). This scheme
involves some constraints on the P4 programming of the load-
balancing algorithms.

B. Workflow of QALL

Inspired by above-mentioned motivations, based on its
queue behavior fine measured, the data plane of programmable
switches probabilistically selects egress ports for traffic to
achieve per-packet and per-flowlet load balancing. To summa-
rize, the key idea of QALL is that the more idle a given port
is (i.e., the lower the queue occupancy of the port and the
greater its dequeue time interval), the greater the probability
of its being selected, so the traffic is preferentially transferred
to the idle port.

As shown in Fig. 4, QALL includes state collection, state
return, congestion index estimation, and probabilistic forward-
ing modules. The first two modules (responsible for accessing
the load-balancing decision basis (i.e., queue behaviors)) are
implemented on the egress pipeline of the PDP, whereas
the latter two modules (the load-balancing decision location)
are deployed on the ingress pipeline of the PDP. The state
collection and state return modules “periodically”2 send the
ingress pipeline queue behavior data of each egress port, which
are used to compute the congestion index using the congestion
index estimation module, and the probabilistic forwarding
module uses this index to select an egress port.

QALL can achieve per-packet and per-flowlet load balanc-
ing. As shown in Algorithm 1, when packet j arrives at ingress
port i, the following processing is triggered:

1) The ingress pipeline determines whether the packet j
is a clone or a normal packet. The clone packet is
generated by the P4 clone operation and implemented
through recirculation feature that sends a packet (i.e.,
clone packet) back to the ingress pipeline from the egress
pipeline.

2Under the packet-triggered work scheme, strict periodicity is impossible.
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Algorithm 1 QALL
Function QALL(packet, register): A packet arrives a ingress
port // Packet-triggered work scheme
/*In ingress pipeline processing*/

1: If clone_packet then
2: Queue_register.Write(Egress_port)

// Updating the queue behavior data of corresponding
egress port

3: Drop(clone_packet) // Discarding the clone packet.
4: else
5: Finding all available egress ports [P] according to the

ingress port
6: Congestion_module([P]): // Congestion index estima-

tion module
7: Queue_info= Queue_register.Read([P])

// Obtaining the queue behavior data of [P]
8: C[P]=Compute(Queue_info)//Computing congestion

index C[P] for [P].
9: Return

/* Per-packet granularity */
10: Egress_port= Probability(C[P])

//Probabilistic forwarding module, and Algorithm 2 shows
more details.
/* Per-flowlet granularity */

11: Flowlet_index=Hash(packet’s five-tuples) //Generating a
flowlet index

12: T1=standard_metadata.ingress_timestamp//Getting the
entry timestamp of current packet

13: T2=Timestamp_flowlet_register.Read(Flowlet_index)
//Getting the entry timestamp of previous packet

14: ΔT1 = T1 − T2 //Computing the time interval between
two packets ΔT

15: If ΔT1 > Tinter //Determining whether the time interval
is larger than Tinter then

16: Creating a new flowlet
17: Egress_port= Probability(C[P])//Algorithm 2 shows

Probability()
18: Egress_register.Write(Flowlet_index, Egress_port)

// Updating the forwarding port of current flowlet.
19: Else //The packet belongs to an existing flowlet
20: Egress_port= Egress_register.Read(Flowlet_index)

// Obtaining the forwarding port of current flowlet
21: Return

/* In egress pipeline processing */
22: collect_feedback(clone_packet, Queue_info)

//State collection and return module: Algorithm 3
shows their more details.

2) For clone packets, after the queue behavior data of
the corresponding egress port is updated, packet j is
discarded (Lines 1–3).

3) For normal packets, the load-balancing algorithm (per-
packet or per-flowlet) is executed.

The algorithm finds all the available egress ports corre-
sponding to the established candidate paths (denoted by [P])
according to the ingress port (Line 5). The congestion index

Algorithm 2 Probabilistic Forwarding Module in QALL
Function Probability (congestion index for ports set [P])

1: C[P]= congestion index for ports set [P]
2: W[P]=Weight(C[P])

//Converting the congestion index into corresponding
weight as shown equation (6).

3: W_total=Sum(W[P])
4: Grid_ID =Random(W_total)
5: Using Grid_ID to determine egress port: packet is for-

warded from the egress port to which the Grid_ID
belongs.

6: Return

Algorithm 3 State Collection and Return Module in QALL
Function collect_feedback(packet,register): A packet
arrives egress port Egress_port // Packet-triggered work
scheme

1: T1=standard_metadata.egress_timestamp //Obtaining the
arriving time of the packet.

2: T2=Timestamp_port_register.Read(Egress_port)
//Obtaining the previous cloning time corresponding with
Egress_port.

3: ΔT2 = T1 − T2 //Computing the time interval.
4: if ΔT2≤Tb // The updating time has not come.
5: Continue collecting Egress_port‘s queue behavior

(Queue_info), which is saved in switch’s registers.
6: Else //The updating time has come
7: Clone (Queue_info)
8: Timestamp_port_register.Write(Egress_port) //The

cloning time corresponding with Egress_port is recorded

estimation module computes the congestion index (denoted by
C[P]) of each available egress port (Lines 6–9).

In the case of per-packet processing, the probabilistic
forwarding module uses the index C[P] to select an egress
port for packet j (Lines 10, more details are in Algorithm 2).

In the case of per-flowlet processing, whether packet j
should be divided into a new flowlet or assigned to an existing
flowlet is determined according to the time interval ΔT1

between two packets (Lines 11–14). If the time interval is
larger than the flowlet threshold Tinter (Tinter can be set to
a value of the end-to-end delay level; in this study, Tinter =
10ms), we create a new flowlet and select an egress port
for packet j (Lines 15–18); otherwise, we follow an existing
flowlet to forward packet j (Line 20).

Regardless of whether per-packet or per-flowlet granularity
is applied, the state collection and return module in the egress
pipeline sends the ingress pipeline the queue behavior data
of each egress port (Line 22; more details can be found in
Algorithm 3).

C. Congestion Index Estimation Module

The congestion degree estimated by the congestion index
estimation module is the decision basis for forwarding pack-
ets. Hence, the accuracy of this module directly affects the
performance of the load-balancing strategy. Our proposed
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approach uses the congestion index to evaluate the congestion
degree of a network, where the higher the congestion index, the
more severe the congestion degree. Thus, following Motivation
1 and Observations 1–2, which showed a positively/negatively
correlated relationship between egress traffic, queue occu-
pancy, and dequeue time interval, the equation for estimating
the congestion index can be expressed as

Ci = Li/T i × Vi , (2)

where Ci is the congestion index of egress port i, Li (0≤
Li ≤1) is the queue occupancy of egress port i, and Ti is
dequeue time interval of egress port i (it is an integer in us in
programmable switch). Evidently, Equation (2) is applicable to
any topology or traffic pattern. That is, QALL performs well
not only for symmetrical topologies, but also for asymmetrical
topologies.

L/T reflects the speed at which the queue depth changes.
Thus, a port with a lower L/T should be selected preferentially.
Vi is the queuing trend of egress port i. Given that the con-
gestion degree decreases when the queuing trend decreases,
ports with decreasing queuing trend should be selected pref-
erentially. Thus, considering Equations (5) and (6), we should
use the following rule to set the value of Vi (i.e., the weight
of the congestion index): the value of Vi in cases of the queue
occupancy increasing is larger than that in case of the queue
occupancy decreasing. For example, in this study, Vi = 2
when queue occupancy is increasing, and Vi = 1 when the
queue occupancy is decreasing. In other words, the weight in
cases of the increasing is double that in case of the decreasing.

Considering that the programmable switch does not support
division operations, and to maintain the negative correlation
between C and T, by introducing the normalization factor τ ,
we simplify equation (2) to perform multiplication, shift, and
addition/subtraction operations as follows.

Ci = Li × 1− T i/τ × Vi , (3)

where τ is the time constant that is used to normalize dequeue
time interval T to [0,1]. We should apply the following rule
to set the value of τ : τ should be set a value of end-to-end
delay level to ensure that it is greater than T. As an example,
τ is ∼10 ms in this study.

Furthermore, considering that programmable switches do
not support floating-point operations, we simplify the normal-
ization in Equation (3) to a subtraction operation such that the
operation results are guaranteed to be integers. Thus, the final
equation for estimating congestion index can be expressed as

Ci = Li × (τ − Ti )× Vi . (4)

Compared with other methods that depend only on
the queue occupancy to estimate the congestion degree,
Equation (4) can reflect the network congestion degree more
accurately and perform load balancing more effectively. More
importantly, the congestion index can be calculated directly
from the local queue behavior. Specifically, we let Cmax be
the maximum value of Ci , which indicates the most severe
congestion degree. Therefore, Cmax is the value of Ci when
Li = 1, Ti = 0, and Vi = 2.

Fig. 5. Probabilistic selecting the egress port in a selecting grid manner.

D. Probabilistic Forwarding Module

The probabilistic forwarding module determines the prob-
ability of port selection according to the congestion index
computed using Equation (4) to evenly schedule traffic to
each available port. In this study, the probability of egress
port i being selected for forward packets (denoted as Pi ) is
computed as follows,

Pi = Wi/

(
∑

Wi

)

, (5)

where the traffic forwarding weight of egress port i is referred
to as Wi , which decreases with an increase in congestion index
Ci . Furthermore, Wi can be determined by

Wi = Cmax − Ci , (6)

Equation (5) depends on the division operation and Pi

may be a floating-point value. However, programmable
switches do not support floating point operations. Thus, our
proposed approach uses a random function provided in the
programmable switch to realize a uniform distribution, to
achieve the probabilistic forwarding described in Equation (5).
Specifically, we select the forwarded egress port with a
selection grid manner. As shown in Fig. 5 and Algorithm 2, the
traffic forwarding weight of egress port i is represented by Wi

grids (Line 2), and a switch has ΣWi grids, which is identified
by 1, 2, 3. . .ΣWi (Line 3). The random function randomly
generates a grid identifier (Grid_ID) among [1, ΣWi ] (Line 4),
and the packet is forwarded from the egress port (Egress_port)
to which the grid identifier belongs (Line 5).

E. State Collection and State Return Module

The state collection and state return modules are responsible
for the “regular” collection of the queue behavior of the
egress port and send the data to the ingress pipeline. In fact,
the frequency with which these behavior data are collected
and sent determines the freshness of the decision basis for
load balancing. However, excessively frequent state collection
and sending result in additional overhead on the switch.
Thus, we set an adjustable updating period factor (Tb) to
achieve a tradeoff between performance and overhead. In this
study, Tb = 1ms. Further details regarding the overhead are
provided in Section VI-F.

As shown in Algorithm 3, following the decision of the
probabilistic forwarding module, a packet is scheduled to an
egress port (Egress_port), and this event triggers the system
to compute the time interval between this event and the last
update event (ΔT2, Lines 1–3). If ΔT2 is less than Tb , the
state collection module continues to collect the Egress_port‘s
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Fig. 6. The format of clone packet in QALL.

queue behavior and saves the data in corresponding registers
of the switch (Lines 4–5).

If ΔT2 exceeds Tb , the state return module reads
Egress_port‘s queue behavior data stored in the register and
sends a clone packet that piggybacks with this data to the
ingress pipeline of the switch (Lines 6–7). Finally, the cloning
time is recorded by a register (Line 8). When this clone packet
arrives at the ingress pipeline, update and discard operations
are performed according to lines 1–3 in Algorithm 1. As shown
in Fig. 6, the clone packet comprises 10 bytes, where Egress
port index refers to the egress port to which the piggybacked
queue behavior data corresponds.

V. DATA-DRIVEN QALL

The proposed load-balancing strategy allocates traffic
by estimating the congestion degree of each egress port.
Therefore, the accuracy of estimating the congestion index is
crucial to determine the effectiveness of the load-balancing
strategy. We designed QALL based on a qualitative analysis
of the correlation between egress traffic, queue occupancy,
and dequeue time interval. Subsequent experimental results
confirmed that QALL performed well. Furthermore, based on
the data-driven concept, this section aims to quantitatively fit
the relationship between these variables through a regression
analysis, so as to estimate the congestion index more accu-
rately and further improve QALL’s performance.

A. Data-Driven Congestion Index Estimation

To achieve above-mentioned fit, we used 150000 groups
and 50000 groups of the observation dataset as a training and
testing sets, respectively.

1) Data-Driven Methods: Many data-driven methods, such
as neural networks [38] and least-squares methods [39], can be
used to describe the relationships between variables. However,
the outputs of neural network models trained using large
volumes of data are generally not interpretable. The greatest
advantage of the least- squares method is that we can obtain
an explicit fitting function that explains the relationships
between these variables. Based on this explicit function, a
programmable switch can be used to design a congestion
index estimation module and realize a load-balancing strategy.
Therefore, we chose least-squares polynomial linear regression
and least-squares polynomial nonlinear regression to fit the
relationship between egress traffic, queue occupancy, and
dequeue time interval in this study.

The basic principle of least-squares for fitting data is to
use a polynomial function to approximate discrete sequences
(X, Y). We assume that Yi is the i th sample of the fitted
object and Xki is the k th feature of the i th sample in X. This
approach is used to obtain the polynomial function f (Xi ) =
a0 + a1X1i + a2X2i + · · · + akXki such that the sum of the

squares of the differences between f (Xi ) and Yi is minimized.
That is, Equation (7) is minimized.

E =

n∑

i=1

(f (Xi )− Yi )
2

=

n∑

i=1

(a0 + a1X1i + a2X2i + · · ·+ akXki − Yi )
2. (7)

In terms of fitting high-order polynomial regression, this
approach is a non-linear regression model. In our proposed
method, the higher-order independent variable in the poly-
nomial is converted into a separate feature. For example,
for feature X1, if the sample data are [0, 1, 3], then for
the quadratic and cubic terms of X1, it is regarded as an
independent feature, that is, the sample [0, 1, 9] and [0, 1, 27],
respectively. In this way, these three features are input as inde-
pendent features so that the nonlinear polynomial regression
model is converted into a multivariate linear regression model,
and the fitting equation is obtained by solving.

In this study, the egress traffic is taken as Y, the queue
occupancy L and dequeue time interval T are taken as X, and
then the explicit function Y=f (X) is fitted as the estimated
congestion index. The congestion index can be calculated
directly from the local queue behavior.

2) Fitting Results: Considering that the queuing trend is an
attribute contained in the queue occupancy itself, to reduce
the complexity of the fitting process, we did not add a
queuing trend to fit the congestion index. Therefore, using
the training set of the observation dataset, L and T were
fitted as egress traffic based on least-squares polynomial linear
regression, polynomial quadratic regression, and polynomial
cubic regression which are referred to as C-linear, C-poly2,
and C-poly3, respectively.

The fitting equation for bivariate polynomial linear regres-
sion is shown in Equation (8) below.

C -linear = 0.167 + 0.261× L− 0.468× T . (8)

The fitting equation for the bivariate quadratic polynomial
regression is shown in Equation (9).

C -poly2− 0.175 + 0.797× L − 0.896

× T − 1.068× L2 + 1.422× L× T + 0.845× T 2. (9)

The fitting equation for the bivariate cubic polynomial regres-
sion is shown in equation (10).

C -poly3 = 0.186 + 0.892× L− 1.446× T

− 2.514L2 + 18.873× L× T + 3.472× T2 + 1.654

× L3 − 22.944× L2 × T − 58.49× L× T2 − 2.254× T3.

(10)

It may be observed that equation (8)–(10) based on data-
driven approaches and equation (4) based on theoretical
derivation all show the correlation between the egress traffic,
queue occupancy, and dequeue time interval. In particular,
Equations (8)–(10) further quantitatively determine the weight
of each variable in the equation to estimate the congestion
index; thus, they can estimate the degree of congestion more
accurately.
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TABLE I
FITTING ACCURACY

Simultaneously, we observed how the power of the fit-
ting function affected the fitting accuracy. Table I shows the
Goodness of Fit (R2) and Mean Relative Error (MRE) for
the test set of observation dataset, which are widely used to
evaluate fitting.

From Table I, it may be observed that R2 and MRE
improved to different degrees when the power of the fitting
function was greater, indicating an improved fitting accuracy.
However, the fitting accuracy did not improve significantly
after cubic fitting, and the required computing resources
increased exponentially with increasing power. Considering
the limited computing resources of programmable switches,
if a large amount of computing resources are consumed to
compute the congestion index, the performance of forwarding
normal packets decreases accordingly.

Therefore, we used primary power, quadratic, and cubic
fitting to estimate the congestion index. Considering that
programmable switches do not support floating-point opera-
tions, we multiplied the right side of Equations (8)–(10) by a
scaling factor (100) and then truncated and rounded the data,
converting the floating-point values to integers. Thus, the final
equation used to estimate the congestion index is as follows.

C -linear = 16 + 26× L− 46× T , (11)

C -poly2 = 17 + 79× L− 89× T − 106× L× L

+ 142× L× T + 84× T × T , (12)

C -poly3 = 18 + 89× L− 144× T − 251× L× L

+ 188× L× T + 347× T × T ,

+ 165× L× L× L− 2294× L× L× T

− 5849× L× T × T − 225× T × T × T .

(13)

B. Data-Driven Load Balancing Scheme

To further improve the performance of QALL, Equation (4)
can be replaced by Equations (11), (12), and (13) respec-
tively, while the state collection, state return, and probabilistic
forwarding modules remain unchanged. As an example, we
aimed to optimize the per-packet granularity QALL-Pkt.
These schemes that use C-linear, C-poly2, and C-poly3 for
QALL-Pkt are referred to as QALL-linear, QALL-poly2, and
QALL-poly3, respectively. Obviously, we can also optimize
the per-flowlet granularity of QALL-Flowlet with the same
method.

VI. EXPERIMENT EVALUATION

A. System Development

Following the experimental setup adopted in QDAPS [13],
Contra [17], and CLB [27], etc., we evaluated the performance

Fig. 7. Topology used in evaluation.

Fig. 8. Traffic distributions of DM and WS workload.

of QALL on a large-scale DCN constructed with Mininet+
BMv2, where Mininet was used to create a leaf-spine topology
(Fig. 7) and BMv2 was installed as the software programmable
switch. We implemented QALL using programming protocol-
independent packet processors (P4). Each switch port included
only a single FIFO queue. As shown in Fig. 7, follow-
ing CONGA [1] and Clove [7], we used a two-tier Clos
topology with two spine switches (S1 and S2) connect-
ing two leaf switches (L1 and L2) under a set of actual
DCN traffic workloads to test the proposed QALL method.
Routing was performed such that all traffic received by a
spine switch from one of the leaf switches was forwarded
towards the other leaf switch. Each leaf switch was connected
to either spine by two 400 Mbps links. This yielded a
total of 1600 Mbps for the bisection bandwidth. Each leaf
was connected to 16 servers with 100 Mbps links. This
ensures that the network avoids oversubscribing, and the
16 servers on one leaf can saturate the 1600Mbps bandwidth
together.

B. Actual DCN Traffic Workloads

Following the majority of studies on this subject [1], [2],
[4], [5], we simulated actual DCN traffic using two types
of widely used workloads, including Web-search (WS) and
data-mining (DM) workloads. Fig. 8 shows the cumulative
distribution function (CDF) of the flow sizes from the WS and
DM workloads. In these workloads, most of the flows were
mice flows with a size of less than 100 KB, whereas a smaller
number of flows were elephant flows larger than 10MB. For
example, in the WS workload, more than 60% of the flows
were mice flows, and 25% were elephant flows. It may be
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observed in the DM workload that 80% of the flows were mice
flows and 10% were elephant flows.

The flows arrive according to the Poisson process with flow
arrival rates λ (flows/s), and the source and destination of each
flow are selected uniformly at random. To emulate various
degrees of load, we scaled the flow interarrival times. That is,
we used different values of λ to simulate different traffic load
levels ρ, where ρ =

λ×E(F )
Link bandwidth and E(F) is the average

flow size, and Link bandwidth is the bandwidth of the link.
In this study, we varied λ and E(F) dynamically to let ρ be
10%-90%, and the default value of ρ was 70%.

C. Performance Evaluation Methodology

The QALL under per-packet granularity is referred to as
QALL-Pkt, and QALL under per-flowlet granularity is referred
to as QALL-Flowlet. Because QALL is a per-packet/per-flow
granularity load-balancing method located at switches, we
compared QALL with other load-balancing schemes located
at switches, including a typical per-packet scheme (DRILL),
two typical per-flowlet schemes (CONGA and LetFlow), and
a typical per-flow scheme (ECMP). We used decision delay,
flow completion time (FCT), network shock (evaluated by the
Variance of queue occupancy), load sharing accuracy, packet
reordering (evaluated by the number of TCP duplicate ACKs),
and system overhead (evaluated by the resource and control
loop overhead) to test their performance at scale.

The load sharing accuracy varies over time, and the
load sharing accuracy at i th time slot is defined as Pi =
UMax

i −UMin
i

UMin
i

=
UMax

i

UMin
i

− 1, where UMax
i =Max{Ui1, Ui2,. . .

Uij ,. . . }, UMin
i =Min{Ui1, Ui2,. . . Uij ,. . . }, and Uij is the

link utilization of the j th link at the i th time slot. In other
words, UMax

i and UMin
i are the link utilization of the busiest

and idlest links at the i th time slot, respectively. The definition
actually reflects the difference between the lightly loaded and
heavily loaded links; evidently, the closer the load-sharing
accuracy is to 0, the better the load balance. Thus, our results
suggest that the load sharing accuracy can quantify the level of
load balancing in a DCN. Network operators prefer lower load
sharing accuracy, which implies maximizing link utilization
without packet loss and reducing investment costs.

In short, decision delay is a metric for evaluating the
ability of the load-balancing scheme to cope with microbursts,
FCT is a metric for evaluating the quality of experience
for users, load sharing accuracy is a metric for evaluating
the resource utilization efficiency of network operators, and
system overhead is a metric for evaluating QALL’s scalability.

D. Experimental Results

1) Decision Delay: In this study, decision delay refers to
the time required to update the decision basis. Because the
traffic load can change on a very small timescale, a long
decision delay leads to a corresponding deviation from the
expected load distribution for a longer duration. The decision
delays for QALL, DRILL, CONGA, HULA, LetFlow, and
ECMP are presented in Table II.

TABLE II
DECISION DELAY OF DIFFERENT SCHEMES

In CONGA, the decision-maker is the source leaf switch,
where the destination leaf switches use a piggybacking
network state manner to update its decision basis. Therefore,
the decision delay depends on the normal traffic from the des-
tination host to the source host. If the destination temporarily
does not send packets to the source host, the decision delay
increases significantly.

In HULA, each switch is a decision-maker, and probes are
used to proactively disseminate link utilization information to
all switches in the network. Without waiting for piggyback
from the destination leaf switch, HULA’s decision delay
decreased compared with that of CONGA. HULA’s decision
delay depends on the time required for the probe packets to
reach each switch from the leaf switch and is greatly affected
by the network state.

In QALL and DRILL, the decision basis is updated directly
within the local switch. Their decision delay comprises only
the cloning time from the egress pipeline to the ingress
pipeline. Thus, their decision delay was less than those of
CONGA and HULA.

Compared with CONGA and HULA, QALL’s decision
delay was at least 96.8% and 74.3%–92.8% less, respectively.
In particular, the decision delay of QALL was slightly shorter
than that of DRILL, primarily because DRILL needs to
read the congestion state from the registers multiple times
and compare the ports corresponding to the minimum value.
Compared to QALL, these operations require more processing
delays.

LetFlow and ECMP do not need to sense the network state,
instead directly forward traffic through a prepared fixed flow
table. Thus, the decision delay is close to zero. However, such
hardwired mapping without sensing is definitely performed at
the expense of performance.

2) Average FCT Under Symmetrical Topology: Fig. 9 and
Fig. 10 show the average FCT of QALL, DRILL, CONGA,
LetFlow, and ECMP under different load levels.

We found that (i) the smaller the load-balancing gran-
ularity, the smaller the FCT, where QALL-Pkt <DRILL<
QALL-Flowlet <CONGA <LetFlow <ECMP. In fact, this
result is relatively straightforward. A smaller load-balancing
granularity was found to result in a better chance of evenly
distributing traffic to each available path. (ii) Under the
same load-balancing granularity, congestion-aware schemes
such as CONGA and QALL-Flowlet can perform better than
non-congestion-aware load-balancing schemes (e.g., LetFlow).
This is the case because congestion-aware schemes can sched-
ule traffic according to the network state and have a better
chance of allocating traffic to paths with lighter loads, rather
than simply distributing traffic randomly to paths.
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Fig. 9. Average FCT for data-mining under symmetrical topology.

Fig. 10. Average FCT for Web-search under symmetrical topology.

Fig. 9 shows the average FCT for data-mining, where
QALL-Pkt performed best, as expected. The FCT of QALL-
Pkt was lower by up to 51.7%, 43.1%, and 41.4% compared
with those of ECMP, LetFlow, and CONGA, respectively. In
terms of per-flowlet, the FCT of QALL-Flowlet was lower by
up to 30.3% and 26.9% compared with that of LetFlow and
CONGA, respectively. The main reason that QALL-Flowlet
outperformed CONGA is that, depending on the manner of
piggybacking, CONGA is a passive congestion-aware method
and does not update the congestion state in time, whereas
QALL is based on active clone packets for congestion-aware
traffic management, which can update the congestion state in
a more timely manner.

In terms of per-packet, the FCT of QALL-Pkt was lower
by up to 26.4% compared with that of DRILL. The main
reason for this result is that (i) equation (4) is a better
method for estimating congestion, which creatively takes into
account the process of how the current queue state was
reached. (ii) Thanking for equation (3)–(4), a better method
for evenly distributing the traffic to each available port, instead
of selecting only the best port, as in DRILL.

Fig. 10 shows the average FCT for Web-search, which
exhibited more elephant flows than data mining. As expected,
QALL-Pkt yields the best results. The FCT of QALL-Pkt
was lower by up to 51.4%, 42.9%, and 35.8% compared
with ECMP, LetFlow, and CONGA, respectively. In terms of
per-flowlet, the FCT of QALL-Flowlet was reduced by up
to 35.8% and 25.4% compared with LetFlow and CONGA,
respectively. In terms of per-packet, the FCT of QALL-Pkt
was reduced by up to 21.5% compared with that of DRILL.

Finally, from Fig. 9 and Fig. 10, under both data mining
and Web search, it may be observed that the advantages

Fig. 11. Average FCT for data-mining under asymmetrical topology.

Fig. 12. Average FCT for Web-search under asymmetrical topology.

of per-packet QALL-Pkt compared with the other schemes
increased with increasing load. That is, performance under per-
packet granularity can be ensured in the case of a heavy load,
which mainly benefits from the fine-grained load-balancing
strategy, and traffic can still be evenly distributed to each
available port.

3) Average FCT Under Asymmetrical Topology: To sim-
ulate asymmetry in the baseline symmetric topology, we
disabled one of the 400Mbps links connecting the spine S2
with leaf switch L2. The average FCT under the asymmetric
topology is shown in Fig. 11 and Fig. 12. We can see that the
FCT of all schemes increased rapidly with the increase in load
after the load level was greater than 50% and is larger than
that of the symmetrical topology under the same load level.

Fig. 11 shows the average FCT for data-mining, where
QALL-Pkt performed the best, as expected. The FCT of
QALL-Pkt was lower by at most 61.4%, 57.3%, and 49.7%
compared with those of ECMP, LetFlow, and CONGA, respec-
tively. In terms of per-flowlet, the FCT of QALL-Flowlet was
lower by at most 43.8% and 24.7% compared with that of
LetFlow and CONGA, respectively. In terms of per-packet, the
FCT of QALL-Pkt was lower by at most 23% compared with
that of DRILL.

Fig. 12 shows the average FCT for Web-search which has
more elephant flows than data-mining. As expected, QALL-
Pkt yields the best results. The FCT of QALL-Pkt was
reduced by at most 53.1%, 49.2%, and 42.1% compared with
that of ECMP, LetFlow, and CONGA, respectively. In terms
of per-flowlet, the FCT of QALL-Flowlet was lower by at
most 25.9% and 11.5% compared with those of LetFlow and
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Fig. 13. 99th percentile FCT for data-mining under asymmetrical topology.

Fig. 14. 99th percentile FCT for Web-search under asymmetrical topology.

CONGA, respectively. In terms of per-packet, the FCT of
QALL-Pkt was up to 15.4% lower than that of DRILL.

In factually, a symmetric topology naturally has a certain
load balancing ability; for example, ECMP depends on this
feature to achieve load balancing. In an asymmetric topology,
the available bandwidth is reduced, which tests the capabilities
of the load balancing strategy further. However, based on more
accurately estimating congestion, more evenly distributing
traffic, and locally making decisions, QALL can still achieve
better load balancing performance under an asymmetric topol-
ogy with a heavy traffic load. Thus, for most load levels,
the advantage of QALL compared to other schemes under an
asymmetric topology was larger than that under a symmetric
topology, especially compared to ECMP.

4) 99th Percentile FCT Under Asymmetrical Topology:
Different from average FCT, from another view, we used
the 99th percentile FCT to evaluate the tail latency of load
balancing. As an example, Fig. 13 and Fig. 14 show the 99th
percentile FCT under asymmetrical topology where QALL-
Pkt was the best. In fact, there was also a similar result under
a symmetrical topology.

Fig. 13 shows the 99th percentile FCT for data-mining.
The 99th percentile FCT of QALL-Pkt was lower by at most
52.9%, 43.7%, and 35.7% compared with those of ECMP,
LetFlow, and CONGA, respectively. In terms of per-flowlet,
the 99th percentile FCT of QALL-Flowlet was reduced by
at most 25.9% and 15.4% compared with that of LetFlow
and CONGA, respectively. In terms of per-packet, the 99th
percentile FCT of QALL-Pkt was reduced by at most 9.7%
compared with that of DRILL.

TABLE III
THE VARIANCE OF QUEUE OCCUPANCY

Fig. 14 shows the 99th percentile FCT for the Web-search
workload. The 99th percentile FCT of QALL-Pkt was lower
by up to 65.4%, 54.4%, and 44.9% compared with those
of ECMP, LetFlow, and CONGA, respectively. In terms of
per-flowlet, the 99th percentile FCT of QALL-Flowlet was
lower by at most 32.3% and 22.7% compared with those of
LetFlow and CONGA, respectively. In terms of per-packet, the
99th percentile FCT of QALL-Pkt was lower by up to 20.1%
compared with that of DRILL.

In summary, we can also see that the advantage of QALL
compared to other schemes under the Web-search was greater
than for data-mining workloads. However, Web-search have
more elephant flows than data-mining workloads. In other
words, in terms of the 99th percentile FCT, QALL can better
help elephant flows than mice flows, because the tail latency
is more important for elephant flows than for mice flows. At
the same time, in terms of the 99th percentile FCT, the fine-
grained schemes were better than the coarse-grained schemes,
and QALL-Pkt performed better than DRILL because DRILL
suffered from network shock caused by its coarse-grained port
selection strategy.

5) Network Shock Under Symmetrical Topology: Many
load-balancing schemes (e.g., CONGA, HULA, and DRILL)
usually adopt a coarse-grained port selection strategy. Such
a strategy easily results in frequent changeover of paths
(i.e., network shock). Such network shock will eventually be
manifested as a shock in queue occupancy. In this section, we
use the Variance of queue occupancy to evaluate the network
shock. As an example, for the relatively high load level (i.e.,
ρ =70%) under symmetrical topology, the Variance of queue
occupancy is shown in Table IV. In fact, we also obtained a
similar result under an asymmetrical topology.

In essence, the load balancing scheme aims to adjust and
finally achieve a reasonable space-time distribution of traffic in
the network. The change of traffic distribution in the network
eventually leads to a change in the queue behavior of the
switches. In other words, an unbalanced traffic distribution
leads to a large Variance in queue occupancy and affects
the FCT. Thus, from Table III, we can see that the pros and
cons of Variance under various schemes are basically the
same as the pros and cons of FCT as discussed above. The
Variance of QALL-Pkt was 1.5× and 2.4× lower than those of
LetFlow and ECMP, respectively. These results further verify
Motivation 1, in which QALL uses the relationship between
the congestion degree, queue occupancy, and dequeue time
interval as part of its decision basis.

More importantly, well-balanced and non-shocked queue
occupancies can allow the network delay across all paths
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Fig. 15. Load Sharing Accuracy.

between every source and destination pair to be similar,
thereby reducing packet reordering.

6) Load Sharing Accuracy: Network operators desire lower
load sharing accuracy (generally less than 5%). Under the
relatively high load level (i.e., ρ =70%), the load sharing
accuracy is shown in Fig. 15, where every 10s is one time
slot.

The load sharing accuracy of QALL can always be main-
tained within 5%, where the average load sharing accuracy
of QALL-Pkt and that of QALL-Flowlet was 1.414% and
2.8%, respectively. The average load sharing accuracy of
DRILL, CONGA, Flowlet, ECMP were 1.75%, 3.8%, 4.27%,
and 5.76%, respectively, and the load sharing accuracy of
ECMP was always higher than 5%. Obviously, these results
were caused by the decision delay. As shown in Table II,
the decision delay of QALL was the shortest, indicating that
QALL was able to perceive the network state in real time and
adapt to changing traffic patterns more flexibly. Clearly, the
help of sensing with a shorter decision delay inevitably leads
to a smaller load sharing accuracy and finally to a smaller
FCT and Variance in queue occupancy. Thus, as expected,
the advantages and disadvantages of load sharing accuracy
under various schemes are basically the same as those of the
FCT and Variance as mentioned above. These results further
verify Motivation 3, in which QALL had better data locality.
In short, these results confirm that QALL mitigated traffic
imbalance, which was reflected by performance improvements
as mentioned (i.e., lower FCT).

7) Average FCT of Data-Driven QALL: Fig. 16 and
Fig. 17 show the average FCT of QALL-Pkt, QALL-Linear,
QALL-Poly2, and QALL-Poly3 under a symmetrical topol-
ogy. We also obtained similar results under an asymmetrical
topology.

Compared with QALL-Pkt, QALL-Poly2 and QALL-Poly3
improved the average FCT; however, QALL-Linear did not
improve. For example, under data-mining and Web-search
with a load level of 80%, compared with QALL-Pkt, QALL-
Poly2 was reduced by at most 5.4% and 4.7%, respectively.
Under data-mining and Web-search with a load level of 80%,
compared with QALL-Pkt, QALL-Poly3 was reduced by up
to 7.8% and 4.9%, respectively. Finally, Fig. 16 and Fig. 17
show that the advantages of QALL-Poly2 and QALL-Poly3

Fig. 16. Average FCT of data-driven QALL for data-mining under
symmetrical topology.

Fig. 17. Average FCT of data-driven QALL for Web-search under
symmetrical topology.

compared with QALL-Pkt increase with increasing levels of
traffic load level for both data-mining and Web-search.

Obviously, the reason behind these results is the quantita-
tive fitting of the relationship between egress traffic, queue
occupancy, and the dequeue time interval. The Vi and τ
of QALL-Pkt are empirically determined according to some
reasonable rules. However, the Vi and τ of QALL-Linear,
QALL-Poly2, and QALL-Poly3 have been more accurately
determined by data-driven method. Table I shows that the
fitting accuracy improved when the power of the fitting
function increased. Correspondingly, in terms of average FCT,
the following trend was clearly evident: QALL-Poly3<QALL-
Poly2<QALL-Pkt ≈QALL-Linear. In short, the higher the
fitting accuracy, the lower the FCT. In particular, the fitting
accuracy of the primary power for QALL-Linear was too low
to help improve the FCT.

E. Packet Reordering

Packet reordering may trigger a duplicate ACK mecha-
nism and could thus degrade TCP performance. Because
TCP detects packet loss [4] and then reduces its transmis-
sion rate when duplicate ACKs exceed the retransmission
threshold. Many load-balancing schemes such as ECMP [3],
CONGA [1], and Presto [8] avoid packet reordering by balanc-
ing coarser units of traffic, but at the expense of performance.

It is well known that queuing delay is the main source
of network delay in DCNs [4]. In QALL, the well-balanced
load (Fig. 15) and extremely low variance of queue occupancy
(Table III) imply that packets experience almost identical
queuing delays regardless of the paths they take (i.e., packets
nearly always arrive in order despite traversing different paths).
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Fig. 18. Number of TCP duplicate ACKs under 70% load level.

Our experimental results confirm this hypothesis. Therefore,
packet reordering is minimal in QALL-Pkt. Fig. 18 shows the
amount of reordering measured in terms of the number of
TCP duplicate ACKs under a load level of 70%. We compared
QALL-Pkt to DRILL and per-packet Random (a typical no
load-awareness scheme), which forwards each packet along an
independent random shortest path.

Per-packet load balancing makes fine-grained forwarding
decisions for each packet independent of other packets of the
same flow. This is expected to cause excessive packet reorder-
ing. However, QALL-Pkt and DRILL can also cause minimal
packet reordering if the delays along multiple paths differ
by less than the time between packets in a flow [4]. Fig. 18
confirms that the degree of reordering under QALL-Pkt and
DRILL rarely reached the TCP retransmission threshold, even
under heavy load. For QALL-Pkt and DRILL, only 0.35%
and 0.41% of the flows have one or more duplicate ACKs,
respectively.

Furthermore, in terms of QALL-Pkt, only 0.018% of the
flows exceeded the typical TCP retransmission threshold of 3.
This was lower by 10.1% and 98.8% compared to DRILL and
per-packet Random, respectively. This observation confirms
that TCP performance is not significantly impacted and also
further explains why QALL’s FCT is low despite reordering.

In addition, when certain specialized applications are
required to eliminate all packet reordering, recent tech-
niques for building reordering-resilient network stacks can
address occasional reordering. For example, similar to prior
works [4], [8], we can optionally deploy a buffer in the host
generic receive offload (GRO) layer to restore the correct
ordering.

F. System Overhead

This section presents the system overhead added by load
balancing schemes to switches, including the resource and
control loop overheads.

1) The Resource Overhead: Table IV presents the addi-
tional CPU and memory utilizations added by the load
balancing schemes to the switches under a load level of 70%.
We can observe that QALL consumes the least resources
(whether CPU or memory) compared to DRILL, ECMP,
CONGA, and LetFlow. This small resource overhead does not
affect the line-speed forwarding of switches. On the one hand,
the reason behind these results is the extremely low complexity

TABLE IV
RESOURCE OVERHEAD OF LOAD-BALANCING SCHEMES

Fig. 19. Average FCT of QALL effected by the updating period factor under
symmetrical topology.

of QALL, because each switch in QALL independently makes
decision for load balancing according to the fine-grained-
measured local queue behavior, not requiring cooperating with
other switches (as shown in CONGA), or comparing with the
previous load state (as shown in DRILL). The time complexity
and space complexity of QALL is O (1) and O (P) respectively,
where P is the number of egress ports. However, the P is a very
small value which is less than 4 in the widely used leaf-spine
or Fat-tree topology. On the other hand, in order to further
improve the computing and storing efficiency, we use a hash
operation to replace directly storing the flowlet index based
on packet’s five-tuples, as shown in Line 11 of Algorithm 1.

2) The Control Loop Overhead: For every Tb (i.e., the
updating period factor), QALL sends a clone packet back to
the ingress pipeline from the egress pipeline (i.e., the control
loop). As shown in Fig. 6, a clone packet requires 10 bytes;
thus, the actual control loop overhead was 10

Tb
(bytes/s). In

this study, Tb was set to 1ms by default. We observed the
effect of a faster or slower control loop (i.e., a smaller or larger
Tb) on the control loop overhead introduced by the clone
packets and the accuracy of the decision. Obviously, the faster
the control loop (i.e., the lower the Tb), the fresher (more
accurate) the decision-making basis becomes, and the greater
the control loop overhead. A faster control loop implies that
QALL can better deal with cases of queue quickly building
up, such as microbursts.

As shown by Fig. 19, when the Tb is decreased from
1ms to 0.01ms, the control loop overhead is increased from
0.01MB/s to 1MB/s, however the average FCT is decreased
by up to 17%. In other words, the most control loop overhead
(i.e., 1MB/s) is also little very much to the switches. The
experimental results also confirmed that QALL can deal with
microbursts better at the cost of a small overhead when Tb
decreases. On the other hand, we can also see that, the
overhead decreases to 100B/s when the Tb is decreased to
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100ms, however QALL can yet reduce FCT compared to
ECMP, CONGA, LetFlow, and DRILL.

VII. PRACTICAL ISSUES AND FUTURE WORK

In this section, we analyze some relevant practical issues to
suggest some avenues for future research.

A. Improving Generalization of Data-Driven QALL

As discussed in Section V, data-driven QALL uses a fitting
function of egress traffic, queue occupancy, and dequeue
time interval to aid in making load-balancing decisions. The
experimental results show that the data-driven QALL method
performs better than the original QALL method. Specifically,
the greater the power of the fitting function, the better the
load-balancing performance. Such fitting is also a machine
learning-based method, but its generalization is relatively
poor. Because the fitted function is actually a tailored load-
balancing strategy for a specific traffic pattern (i.e., if the traffic
pattern changes, the fitting function becomes unsuitable and
the performance of load balancing worsens), further improve-
ment in the generalization of data-driven QALL should be
investigated in future research. The following ideas should be
considered to facilitate these investigations.

(1) Employing reinforcement learning techniques on
programmable switches to learn the queue behavior.
Reinforcement learning techniques have the self-learning abil-
ity to adapt to dynamically changing traffic patterns.

(2) In DCNs, there are four typical applications including
data-mining, Web-search, cache, and Hadoop. Thus, based on
the combination of the four main applications, there are at
most C 1

4 + C 2
4 + C 3

4 + C 4
4 = 15 patterns. For these 15

patterns, we can use least squares or other fitting methods to
fit 15 sets of fitting functions, similar to Equations (11)–(13),
which are one of these 15 patterns, and then store them in
each switch. When a certain pattern appears in the DCN, the
switches select the equation corresponding to the pattern and
use Equations (3) and (4) to perform load balancing.

B. Improving Performance

The space-time mismatch between the load-balancing deci-
sion location and its decision basis should be expected to
decrease the performance of QALL. In particular, the time
required by clone packets is the main factor in decision delay.
However, currently, a few commodity programmable switches
can access queue behavior in the ingress pipeline (e.g., Tofino
2 [40]). That is, removing the clone operation can reduce the
decision delay, and the decision basis can more accurately
reflect the state of the network. Based on the real-time network
states, we believe that the performance of QALL should be
further improved in future studies.

C. Discussions for Observations

Considering that the observed correlation between dequeue
time interval and egress traffic rate is moderate rather than
extremely high, the conclusion that a longer packet dequeue
time interval is indicative of a lighter load is not completely

fixed. There are a few special cases. One example is when
queue occupancy is high and dequeue time interval is long,
which may be an indication of the outgoing link potentially
being congested. Another example is when we further consider
the size of packets: a smaller number of large packets within
the same time window as a higher number of small packets
have an equal or greater likelihood of causing congestion. It
should be noted that Equations (2)–(4) only indicate the pos-
itively/negatively correlated relationship between C and L as
well as T, and this correlation is also rough and approximate.
Therefore, when L is high and T is long simultaneously in
Equations (2)–(4), C may be small or large (corresponding
to light or congested conditions), which is determined by the
relative value of L and T. In other words, Equations (2)–(4)
implicitly include the above-mentioned special cases. In addi-
tion, the observations in this study are based on experiments
in BMv2 software switches, and whether these observations
in hardware switch deployment hold true remains an open
issue. In the future, we will observe the queue behavior during
hardware switch deployment.

VIII. CONCLUSION

We observed that queue behavior on a switch can reflect the
current and future congestion degrees in a network. Therefore,
we have proposed an in-network load-balancing scheme called
QALL. In QALL, each switch independently selects the egress
port probabilistically, according to the fine-grained-measured
local queue behavior. The key concept is that QALL creatively
takes account the evolutionary process of reaching the current
queue state into its decision basis for load balancing. Based
on an accurate fitting of the queue behavior, we have also
proposed a data-driven QALL to improve the load-balancing
performance further. The experimental results under actual
DCN workloads show that QALL performed better than
several existing schemes in terms of lower FCT, shorter
decision delay, and smaller load sharing accuracy. In addition,
QALL does not depend on the symmetrical characteristics of
the network topology.

In future works, the following factors can be considered.
First, the experimental results show that data-driven QALL
can perform slightly better. One possible reason for this is
that there are insufficient training data to fit a more accurate
function. In fact, from R2 and MRE values in Table I, we
can see that the fitting function has room for improvement.
Because a higher fitting accuracy can result in a lower FCT,
we need to find a simpler fitting function with greater accuracy
to improve QALL. Second, we can further explore data-driven
QALL with better generalizations for different types of traffic
patterns.

APPENDIX

OBSERVING ELEPHANT FLOWS/MICE FLOWS ALONE

Considering only elephant flows and mice flows alone,
QALL exhibited excellent performance for data-mining and
Web-search traffic, under either symmetrical topology or
asymmetrical topology.
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Fig. 20. Average FCT for mice flows of data-mining under symmetrical
topology.

Fig. 21. Average FCT for elephant flows of data-mining under symmetrical
topology.

Fig. 22. Average FCT for mice flows of Web-search under symmetrical
topology.

Fig. 23. Average FCT for elephant flows of Web-search under symmetrical
topology.

A. Average FCT Under Symmetrical Topology

The average FCT under data-mining is shown in Fig. 20
and Fig. 21. For data-mining mice flows, the FCT of QALL-
Pkt was lower than that of ECMP, LetFlow, and CONGA by
up to 45.7%, 38.2%, and 33.8%, respectively. In terms of per-
packet, the FCT of QALL-Pkt was lower by up to 24.5%
compared with that of DRILL. In terms of per-flowlet, the FCT
of QALL-Flowlet was reduced by at most 20.4% and 10.7%
compared with that of LetFlow and CONGA, respectively.
For data-mining elephant flows, the FCT of QALL-Pkt was
reduced by 58%, 49.9%, 43.8%, and 19.2% compared with
that of ECMP, LetFlow, CONGA, and DRILL, respectively.
In terms of per-flowlet, the FCT of the QALL-Flowlet was
reduced by at most 16.9% and 11% compared with that of
LetFlow and CONGA, respectively.

Fig. 24. Average FCT for mice flows of data-mining under asymmetrical
topology.

Fig. 25. Average FCT for elephant flows of data-mining under asymmetrical
topology.

Fig. 26. Average FCT for mice flows of Web-search under asymmetrical
topology.

Fig. 27. Average FCT for elephant flows of Web-search under asymmetrical
topology.

The average FCT for Web search is shown in Figs. 22
and 23. For Web search mice flows, the FCT of QALL-Pkt
was lower by up to 42.45%, 23.3%, and 23.2% compared with
that of ECMP, LetFlow, and CONGA, respectively. In terms of
per-packet, the FCT of QALL-Pkt was lower by up to 18.8%
compared with that of DRILL. In terms of per-flowlet, the
FCT of QALL-Flowlet was lower by up to 25.4% and 16.1%
compared with that of LetFlow and CONGA, respectively. For
Web search elephant flows, the FCT of QALL-Pkt was reduced
by up to 53.39%, 48.7%, 42.2%, and 8.5% compared with
that of ECMP, LetFlow, CONGA, and DRILL, respectively. In
terms of per-flowlet, the FCT of QALL-Flowlet was reduced
by at most 20.7% and 5.8% compared with that of LetFlow
and CONGA, respectively.



LIU et al.: QALL: DISTRIBUTED QUEUE-BEHAVIOR-AWARE LOAD BALANCING 2321

B. Average FCT Under Asymmetrical Topology

The average FCT under Data Mining is shown in Fig. 24
and Fig. 25. The average FCT under Web-search is shown in
Fig. 26 and Fig. 27.
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