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Abstract—The rapid advancement of mobile edge comput-
ing (MEC) networks has enabled the augmentation of the
computational power of mobile devices (MDs) by offloading com-
putationally intensive tasks to resource-rich edge nodes. This
paper discusses the decision-making process for task offloading
and resource allocation among multiple mobile devices connected
to a base station. The primary objective is to minimize the time
taken to complete tasks while simultaneously reducing energy
consumption on the device under a time-varying wireless fading
channel. This objective is formulated as an energy-efficiency cost
(EEC) minimization problem, which cannot be solved by conven-
tional methods. To address this challenge, we propose a dynamic
offloading decision algorithm of dependent tasks (DODA-DT)
that adjusts local task execution based on edge node status. The
proposed algorithm facilitates fair competition among all devices
for edge resources. Additionally, we use a deep reinforcement
learning (DRL) algorithm based on an actor-critic learning struc-
ture to train the system to quickly identify near-optimal solutions.
Numerical simulations demonstrate that the proposed algorithm
effectively reduces the total cost of the task in comparison to
previous algorithms.

Index Terms—Mobile edge computing, task offloading,
optimization algorithm, deep reinforcement learning.

I. INTRODUCTION

IN RECENT years, the rapid progress of mobile communi-
cation technology has facilitated the growth of the Internet

of Things (IoT). IoT refers to a network of interconnected
devices on the cloud or at the edge of the network that
shares data, functions or enhances operations through stan-
dardized interoperable communication protocols. IoT devices
are becoming increasingly popular, especially smartphones and
wearable devices. According to Cisco’s prediction, the num-
ber of connected devices will reach 500 billion by 2030 [1].
Furthermore, IoT devices widely use 5G technology, which is
a cellular network that achieves a significant improvement in
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quality of service (QoS), such as higher throughput and lower
latency. Ericsson mobility report points out that the global 5G
subscriptions close to 1.3 billion in Q2 2023 [2]. This growth
in IoT indicates a greater demand for communication and com-
puting power. However, as mobile devices are designed to be
compact and affordable, their computing power and battery
power are typically limited. In many situations, users may not
have ready access to a power source. This problem makes
battery life a crucial factor in the design and use of mobile
devices.

To address the aforementioned issues, mobile devices begin
to use cloud computing. The traditional cloud computing
requires transfer of large amounts of data between mobile
devices and cloud servers, leading to susceptibility to network
bandwidth, wireless channels, and long distances. These fac-
tors result in high communication latency. In response, mobile
edge computing (MEC) technology emerges as a promising
solution. The MEC system consists of edge servers that are
deployed at the edge of the network alongside cellular base
stations (BS) or local wireless access points (AP) [3]. The edge
servers perform intensive computing tasks instead of mobile
devices by offloading tasks to the MEC server. This allows
the resource-constrained mobile devices to benefit from the
powerful computing capabilities of the resource-rich MEC
server. Through task offloading, the MEC system provides
a better quality of service and extends the battery life of
mobile devices. Compared to the traditional cloud comput-
ing, mobile edge computing can significantly reduce both cost
and transmission latency.

Nonetheless, it may not always be beneficial to offload all
applications to the MEC server because the performance of
the system can be affected by factors such as task transfer
speed, task data, and network latency. Offloading decisions
can have a significant impact on the performance and the price
of the system. Therefore, the decision to offload applications
to the MEC server should be considered carefully, especially
when channel conditions are time-varying, and task data is
involved. To tackle these issues, various methods have been
studied to make task offloading decisions. In [4], a study was
conducted on the joint exploration of user behavior charac-
teristics and MEC server pricing strategies, examining their
interaction and impact on determining the optimal user data
offloading strategy. Heuristic algorithms have been widely
used to alleviate such problems [5], [6], [7], [8], [9], [10], [11],
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but they may fall into a local optimum and require frequent
recalculations when the wireless channel changes. Deep neural
networks (DNNs) have shown potential to yield better results.
For instance, [12] discussed MECs that support reinforcement
learning (RL) and emphasized the challenges that different
RL algorithms can address. By applying RL on top of deep
learning, the model convergence can be sped up. Currently,
many studies address deep reinforcement learning (DRL) algo-
rithms [13], [14], [15], [16], [17], [18]. However, these studies
have not fully considered the amount of task data in the MEC
environment. Besides, by leveraging the advantages of value
estimation and policy optimization, the actor-critic network
offers a versatile and robust framework for reinforcement
learning applications [19]. Reference [20] utilized the actor-
critic algorithm, which is a policy-based one. In contrast to
their earlier work [21] that utilized the DQN algorithm, the
actor-critic network eliminates the need for extensive memory
for experience replay. This distinction highlights the advantage
of the actor-critic algorithm in terms of memory efficiency,
making it a more streamlined and practical choice for rein-
forcement learning tasks. Reference [22] utilized actor-critic
networks to effectively reduce content duplication, largely
improving global cache hit rates.

In addition, the tasks of mobile devices can be rigidly con-
strained by a sequential order [23], [24]. The execution of
a task may depend on the output of other tasks. Neglecting
the interdependencies between tasks can lead to a decrease in
performance. To address this issue, directed acyclic graphs are
commonly used to represent dependencies between tasks [23].
When a large number of task data arrive at the edge and the
local devices have completed small tasks, this may result in
waiting time between tasks. This in turn leads to a decrease
in computing power in the system. Motivated by this limita-
tion, we can reduce the waiting time by adjusting the devices’
frequency. In this way, computing resources can be utilized
more efficiently.

For the optimization problem of making offloading deci-
sions, there are several crucial questions that need to be
addressed. These questions include determining the most
suitable applications for offloading to the edge server, devis-
ing effective collaboration strategies for different devices to
achieve low energy costs in the system, and allocating com-
puting resources appropriately for tasks given the limited
resources of the edge server. Our approach formulates the
problem as an energy-efficiency cost (EEC) minimization
problem. We leverage the power of deep reinforcement learn-
ing (DRL) to formulate the offloading decision. The dynamic
parameters in MEC environments make DRL an attractive
solution due to its ability to map input system parameters
directly to output offloading decisions using a deep neu-
ral network (DNN). Compared to other papers, the main
contributions are:

• We consider the problem of minimizing EEC in a
single base station environment. In this system, we
make offloading decisions and allocate resources between
multiple mobile devices;

• By reducing the waiting time of local devices, we
are able to improve the computational power of the

entire system. Furthermore, we have taken into account
the interdependence between tasks, ensuring that the
optimization process is comprehensive and effective;

• We believe that the computing power at the edge is not
unlimited. We allocate computing resources reasonably
based on the specific situation of each time slot.

The remainder of this paper is structured as follows. In
Section II, we provide a review of relevant literature. In
Section III, we introduce our system model, computational
model, and the energy-efficiency cost minimization problem.
Section IV outlines our proposed dynamic offloading decision
algorithm for dependent tasks (DODA-DT). In Section V, we
present the results of our experiments conducted on a relevant
platform. In Section VI, we conclude this paper.

II. RELATED WORK

Recent research has focused on developing task offloading
strategies for MEC. Efficient one-dimensional search algo-
rithms have been proposed to find the optimal task scheduling
policy under power constraints [25], while others have defined
the problem of offloading dependent tasks using a service
cache to reduce execution latency [26]. Resource allocation
has also been considered by deriving offloading priorities [27].
However, none of these studies considered both latency and
energy consumption simultaneously.

Multiple studies have explored the multi-user scenario after
factoring in energy consumption and latency. Reference [8]
introduced a mapping scheme between basic resource equip-
ment and application modules, followed by a heuristic
dynamic task processing algorithm that reduces task latency
time and system power consumption. In a scenario where
there are multiple users and servers, [9] designed a two-
stage heuristic algorithm based on a genetic algorithm to
find a stable convergent solution to the joint optimization
problem of task offloading and resource allocation. By weigh-
ing task latency and energy consumption between a base
station service and multiple users, [11] used a heuristic algo-
rithm to make the approximate optimal offloading decision
and resource allocation. In a multi-user MEC network with
multiple computational access points, where computational
power varied over time, [13] used a deep Q network to
obtain the task offloading decision and negotiate the time and
energy consumption. In a network environment with multiple
non-cooperative mobile devices and multiple edge devices,
where tasks were constrained by mobile device power, [14]
used deep reinforcement learning to design offloading poli-
cies that minimized task discard rate, execution latency, and
energy consumption. Additionally, the data queue formed by
tasks generated by the application impacts users’ offloading
decisions and MEC performance. To optimize the offloading
threshold of multiple intelligences with respect to task queues
at the application layer, along with wireless interference at
the physical layer, [28] proposes an approach to improve the
expected offloading rate for MECs.

The studies mentioned in the previous text have attempted
to address the challenge of task dependencies in mobile edge
computing (MEC) to improve the performance of the system.
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One approach is to use heuristic algorithms to optimize task
scheduling and offloading decisions while taking into account
the limited computing power of the edge server. For exam-
ple, [5] proposed a heuristic algorithm to schedule dynamic tasks
with dependencies, while considering the computing power of
the edge server. Reference [6] partitioned tasks into sub-tasks
and used an analytical offloading decision for each sub-task
to optimize the critical path of a weighted directed acyclic
graph. Another approach is to consider the heterogeneity of
offloading tasks and dynamic task offloading and schedul-
ing. Reference [29] divided the problem into sub-problems
to produce the best solution when the main problem and the
yielded sub-problems converged, thereby reducing task execu-
tion latency while regarding energy as a constraint. In addition,
parallelism of tasks at the same level of dependencies can
also be used to improve system performance. Reference [7]
proposed a parallel transfer and execution scheme for tasks
on the mobile device side, while using a heuristic algorithm
to design offloading algorithms between tasks with different
priorities. Reference [28] integrated the synergy of cloud and
mobile edge computing to design an iterative heuristic algo-
rithm for dynamic offloading decisions. Therefore, nowadays
researchers are exploring various approaches to address the
challenge of task dependencies in MEC to improve system
performance, and parallelism of tasks at the same level of
dependencies is a potential area for future research.

DRL algorithms based on actor-critic learning structures
have also been proposed to reduce energy and time overheads,
as shown in [15], [16], [17]. Reference [15] focused on a sin-
gle mobile device using an MEC server and proposed the idea
of lead time, which considered more detailed dependencies
between tasks. In contrast, our paper mainly focuses on rela-
tionships between mobile devices. References [16], [17] dealt
with random task arrival in a certain time, which may lead to
uneven allocations of resources if a mobile device generated
a large number of tasks with dependencies in a short period
of time, except for the first time when all tasks arrived at the
edge server at the same time.

Considering the above factors and the advantages of actor-
critic network [17], [18], we adopt a DRL algorithm based on
an actor-critic learning structure for making offloading deci-
sions to optimize the energy-efficiency cost by taking into
account both energy consumption and latency. Additionally,
we introduce a time slot mechanism by setting the execu-
tion return time of the last executed task at the edge for each
round, and adjusting the CPU frequency of mobile devices for
local computing. Each device will prepare for the computing
resources of the edge server in each time slot, thereby enhanc-
ing the overall computing capability of the system. There are
also many papers on the three-layer architecture for cloud edge
collaboration currently [30], [31]. In this paper, we mainly
focus on the optimization relationship between the edge server
and mobile devices. In future work, we will also consider
cloud computing.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section includes system model, communication model,
computation model and problem formulation with task

Fig. 1. Illustration of mobile edge computing with multiple mobile devices.

dependency. The system model represents the MEC environ-
ment in this paper. Communication model defines how mobile
devices and edge servers communicate with each other. The
calculation model characterizes the latency and energy cost
when performing tasks at the edge and local. Problem formu-
lation refers to the process of optimizing the energy-efficiency
cost in the whole system.

A. System Model

We consider that the MEC network has a single MEC server
and a set of cellular base stations. As shown in Fig. 1, these
cellular base stations can be represented by either a macro cell
(eNB) or a small cell (SCeNB). For simplicity and general-
ity, we will use eNB to represent any type of base station. In
order to achieve flexible routing and communication between
eNBs, we believe that the core cellular network is implemented
through Software Defined Network (SDN) technology. SDN
simplifies network management by centralizing control logic
in a centralized entity called an SDN controller. The MEC
server is able to perform multiple tasks simultaneously with a
stable power supply. In this model, there are N mobile devices,
the grid queue next to the devices denotes a set of compu-
tationally intensive tasks with dependencies. The grid with
the same color indicates that the tasks are at the same layer.
Different layers mean that one task may require the output data
of the other tasks. In each time slot, all devices take out a task
to participate in the offloading decision. These tasks do not
have additional weights assigned by priority. To mitigate the
impact of the fluctuating task data on the accuracy of energy
efficiency cost changes, we establish an iterative approach by
designating consecutive M time slots as an iteration. We com-
pute the total energy efficiency cost once within each iteration.
This means that each device has M tasks to be performed in
each iteration.

Fig. 2 illustrates a concrete example of specific usage sce-
narios and representation methods used for task dependencies.
Fig. 2(a) shows an office identity authentication system, which
includes fingerprint, ID card authentication and face detection.
The tasks in the authentication process are dependent but these
three authentication actions are independent of each other. We
express the system as a directed acyclic graph in Fig. 2(b).
Each node i corresponds to a task and a directed edge e(i, j)
represents the constraint that task j cannot be executed until
its preceding task i is completed. A specific example is that
task F needs to be executed after task C. Meanwhile, Task H
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Fig. 2. Description of dependencies between tasks (a) An authentication
process of office system; (b) The office system represented by directed acyclic
graphs.

and Task I require the execution results of Task F. In addition,
there are many applications with task dependencies (i.e., Chess
or online games). These applications can also be represented
by directed acyclic graphs.

When we utilize a directed acyclic graph to represent the
input-output relationships of tasks, we ignore cyclic graphs
since their tasks can be called recursively and we treat them as
a single task. There are two commonly used offloading models
for MEC, namely, the partial offloading model and the binary
offloading model, depending on the nature of the task [32].
We choose to use the binary offloading model for our study
since it is a commonly used model for MEC environments.
This model categorizes tasks into two types: offloaded to the
edge server and those executed locally. We assumed that all
tasks in our study were fine-grained, meaning that they were
composed of small, independent tasks that could be executed
within a short time frame. This assumption allowed us to sim-
plify the problem and focus on the offloading decision-making
process without considering the impact of task partitioning.
Task granularity can affect the offloading decision and impact
the system’s overall energy efficiency. More specifically, each
mobile device generates a set of tasks with dependencies,
which are then grouped into an execution stage. This group-
ing can be indicated by the dotted box in Fig. 2(b). Tasks
from a particular stage are eligible for making task offload-
ing decisions in predetermined time slots. However, if the
previous group of tasks is not yet completed, the next group
cannot be selected. This design choice eliminates the need for
additional scheduling requirements, allowing for more efficient
execution of tasks at the server. Notably, the last task in each
group requires additional consideration due to its dependen-
cies. We address this issue in our proposed system and present
a solution which will be discussed later.

B. Communication Model

This subsection introduces the wireless communication
model between the edge server and mobile devices. We use
at ,i in {0, 1} to denote whether or not the ith mobile device
(MDi ) is going to offload the task in time slot t. Specifically,

the at ,i = 1 means that the task is offloaded to the edge via
the wireless network. Otherwise, the task is executed locally.

When task offloading occurs in an MEC environment, the
bandwidth is shared orthogonally by all mobile devices where
offloading occurs, e.g., via single carrier frequency division
multiple access (SC-FDMA). In one iteration, the channel
bandwidth Wt occupied by each mobile device depends on
the number of devices that executed for time slot t offloading:

Wt =
B

∑
i∈N at ,i

s .t . 0 ≤ t ≤ M ,

0 ≤ i ≤ N . (1)

where B denotes the bandwidth between the mobile devices
and the edge server. The channel transmission rate follows:

Rt ,i = Wt log2

(

1 +
psendht ,i

σ2

)

(2)

where ht ,i denotes the channel gain between the ith mobile
device and the edge server in time slot t. Mobility of the
devices is also taken into consideration. We assume that
the service area is fixed and mobile devices remain within
it, the channel gain varies with the time slot. In the block
fading assumption, the channel gain ht ,i remains constant for
a short duration while uploading a computation-intensive task,
but it varies across different task executions. In each time slot,
we denote psend as the transmit power of the mobile device
during the task upload to the edge server, while σ2 represents
the channel noise power density.

Besides, the location of the devices is a crucial issue that
needs factoring. It is important to note that the devices will
stay within the service area of the MEC server. Due to the
differences in distance and obstacles between each device and
the MEC server, their channel gain will fluctuate as they move.
To address this issue, we adopt the Rayleigh fading channel
model, which is commonly used to address channel fading in
urban environments. Integrating this model ensures that our
results are more accurate and reliable. Therefore, consider-
ing the interferences in the network, we use di to denote the
distance between the ith mobile device and the edge sever
for wireless access. We assume the average channel gain hu
to follow the path consumption model. To generate the time-
varying wireless channel gain ht ,i = ht ,1, ht ,2 . . . ht ,n , we use
the Rayleigh fading channel model as ht ,i = αt ,ihu , where
αt ,i is an independent random channel fading factor following
the unit average exponential distribution. Then ht ,i is

ht ,i = αt ,ihu = αt ,iAd

(
3 ∗ 108
4πfcdi

)de

, (3)

where Ad denotes the antenna gain, fc denotes the carrier
frequency, and de denotes the path loss index. We assume
that the channel gain remains constant in each time slot, and
that the channel gain changes independently with the time slot.

C. Computation Model

In this subsection, we will present the computational models
in local devices and edge computing. We assume that after the
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offloading tasks are executed, the edge server returns them to
the mobile devices as a whole. In time slot t, if at ,i = 1, we
will use Dt ,i to represent the ith device’s task data or we will
use Lt ,i . They are presented as the number of CPU cycles
required to accomplish the tasks. It is worth noting that we
use Dt ,i and Lt ,i to represent different states of task data,
although their values are the same. It is important to highlight
that these values do not necessarily indicate the actual amount
of data executed, as we will explain later.

1) Edge Computing: In our analysis of task offloading on
the edge side, we take into consideration both the delay of
task offloading and the delay of task execution. They form the
total delay together.

In alignment with prior research [11], [23], the exclusion
of the time and energy consumption related to transmitting
computation results back to the mobile device is warranted.
This decision arises from the observation that input data,
such as images or videos, tends to possess considerable size,
demanding substantial computational resources for processing.
Conversely, the resulting output data typically assumes a much
smaller scale, exemplified by a solitary classification label for
an image or a concise summary of a video clip. Consequently,
the time and energy entailed in transmitting the output data
back to the mobile device can be considered inconsequen-
tial when compared with the time and energy expended in
processing the input data. This is an important consideration
when optimizing task offloading strategies in edge computing
systems. It allows us to focus primarily on reducing the delay
and energy consumption of task offloading and execution,
without being overly concerned with the transmission of the
results back to the mobile device. Then, the task transmission
latency for device i can be obtained from

Tu
t ,i =

φDt ,i

Rt ,i
=

φDt ,i

Wt log2
(
1 + psendht ,i/σ2

) . (4)

Parameter φ > 0 denotes the number of computation cycles
needed to process one bit of raw data. We consider that
F e denotes the maximum computational frequency that the
edge can provide. The optimal utilization of computational
resources at the edge entails the allocation of said resources in
accordance with the task data. Through this method, a majority
of tasks executed at the edge yield outcomes simultaneously,
narrowing the gaps stemming from the time it takes for devices
to transmit their respective tasks. The purpose of setting up the
edge end in this way is to enhance fairness between devices.
At the beginning of each time slot, all devices have the ability
to compete for computing resources at the edge. Therefore,
the total latency of a device whose offloading task data is Lt ,i

in time slot t is

T e
t ,i =

φDt ,i

Rt ,i
+

∑
i∈N Dt ,i

F e

=
φDt ,i

Wt log2
(
1 + psendht ,i/σ2

) +

∑
i∈N Dt ,i

F e . (5)

We consider energy consumption as a significant factor in
the performance of the system. We divide the energy con-
sumption into two parts: the energy consumption of local task
execution and the energy consumption of task offloading. We

do not consider the energy consumption for executing tasks on
the edge server because it is typically equipped with a power
supply and has sufficient energy for task execution. Thus, the
energy consumption of task offloading is

Eu
t ,i = psend

φDt ,i

Rt ,i

= psend
φDt ,i

Wt log2
(
1 + psendht ,i/σ2

) . (6)

2) Local Computing: If a task on MDi is computed locally,
the execution on the local device will be influenced by the edge
device. The edge sever returns the expected time slot Ts to
the local device, as follows:

Ts =

∑
i∈N Dt ,i

F e + Tu
t ,m (7)

where Tu
t ,m denotes the maximum transmission latency among

all devices in which the offloading execution occurs during
this time slot. Tu

t ,m can be obtained by max{Tu
t ,i} and Tu

t ,i
is calculated by equation (4). It is worth noting that Ts is
dynamically changing according to the environment in dif-
ferent time slots. MD i uses dynamic voltage and frequency
scaling (DVFS) to adjust the chip voltage according to Ts and
its own task data. By changing its own frequency, the power of
MDi can be adjusted to change the energy consumption. The
CPU frequency f lt ,i calculated locally by MD i can be written
as

f lt ,i =

⌈
Lr
t ,i

Ts

⌉

=

⌈
Lr
t ,i∑

i∈N Dt ,i/F e + Tu
t ,m

⌉

(8)

where Lr
t ,i represents the actual task data performed locally by

the device. The CPU frequency f lt ,i is the frequency supported
by the system by searching from the table (voltage-frequency
table). f lt ,i has a limitation f lt ,i ∈ (0,F l ], where F l denotes the
maximum frequency of executing tasks locally. The maximum
processing capacity of task data will also change with the
change of frequency. Maximum data processed by the local
device in time Ts can be obtained from

Lmax
t ,i =

(∑
i∈N Dt ,i

F e + Tu
t ,m

)

∗ F l . (9)

If the local task data Lt ,i ≤ Lmax
t ,i , then we adjust the exe-

cution frequency to make Lr
t ,i = Lt ,i . If Lt ,i > Lmax

t ,i , then
Lr
t ,i = Lmax

t ,i . The remaining task data that cannot be com-

pleted with the maximum frequency F l in this time slot is
merged with the task data in the next time slot. However, the
task here need to be at the same layer in directed acyclic
graph. If this is the last task at this layer, the task will be
forced to complete before proceeding to the next time slot.
That means the latency Ts of the last task of each directed
acyclic graph needs to be executed is (Lt ,i + Lleft )/F

l , where
Lleft represents the remaining data from the previous task.

For example, in Fig. 2(b), task D, task G and task I need
particularly considering. If they are selected to execute locally
during this time slot and are not completed with the time
returned at the edge, we will need to wait for their task exe-
cution to complete before next time slot. For other tasks, if
there is an unfinished part of the local execution in the time
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slot returned at the edge, we will merge it with the next task.
This also potentially increases the data of this task in next
time slot, thereby enhancing its competitiveness against edge
resources. We derive the power to show the process of adjust-
ing the frequency of mobile devices and thus affecting the
energy consumption of devices. Local device’s power plt ,i can
be measured by

plt ,i = k
(
f lt ,i

)3
(10)

where k is the effective exchange capacitance value, limited
by the chip architecture. If the local energy is sufficient, the
energy consumption for device i will be:

E l
t ,i = plt ,i ∗ Ts = k

(
f lt ,i

)3
Ts . (11)

D. Problem Formulation With Task Dependency

To minimize the energy-efficiency cost of all devices, the
weighted sum of the latency and energy consumption is used
by the system. The total energy-efficiency cost formula in the
system in one time slot is:

Zevl = βt

⎛

⎜
⎝

N∑

at,i=1,

i=1

T e
t ,i +

N∑

at,i=0,

i=1

Ts

⎞

⎟
⎠

+ βe

⎛

⎜
⎝

N∑

at,i=1,

i=1

Eu
t ,i +

N∑

at,i=0,

i=1

k
Lt ,i

3

(Ts)
2

⎞

⎟
⎠, (12)

where for the weighting method of the multi-objective
optimization problem. As researchers in this field, we adopt
the practice of setting 0 < βt < 1, and 0 < βe < 1 similar
to existing works [15]. Here, βt and βe denote the weights
given to computation completion time and energy consump-
tion, respectively. We assume that these weights are related
by βt+βe=1. All mobile devices can select different weights
based on specific needs together. For instance, all devices with
low battery energy would be more inclined towards low energy
consumption, while latency-sensitive devices would prefer a
higher βt to reduce execution time. It is worth noting that
Zevl does not represent the actual energy-efficiency cost in the
system. When calculating energy consumption at the local, we
use the total amount of task data for device i. This approach
effectively prevents the false low energy consumption in time
slot t, where only a small amount of data is offloaded to
the edge in the system, resulting in a large amount of data
left locally until the next slot. After making the offloading
decision, we calculate the actual EEC of the system as

Costsys,t = βt

⎛

⎜
⎝

N∑

at,i=1,

i=1

T e
t ,i +

N∑

at,i=0,

i=1

Ts

⎞

⎟
⎠

+ βe

⎛

⎜
⎝

N∑

at,i=1,

i=1

Eu
t ,i +

N∑

at,i=0,

i=1

E l
t ,i

⎞

⎟
⎠. (13)

Then, we will give the total energy-efficiency cost for one
iteration. The EEC formula of the system at the edge is
calculated in the same way as the traditional method:

Costedge = βt

M∑

t=1

N∑

at,i=1,

i=1

T e
t ,i + βe

M∑

t=1

N∑

at,i=1,

i=1

Eu
t ,i . (14)

When we determine the offloading decision, the optimized
algorithm results in a distinction while performing tasks on the
local side. In our optimization algorithm, the overall energy-
efficiency cost of the system is

Costsys = Costedge + βt

M∑

t=1

N∑

at,i=0,

i=1

Ts

+ βe

M∑

t=1

N∑

at,i=0,

i=1

k
Lr
t ,i

3

(Ts)
2
. (15)

According to equation (15), the local system’s EEC is a
quadratic function of the latency on edge. The more tasks
from less devices are offloaded at the edge server, the more
local energy consumption can be reduced. If the traditional
algorithm is used to process these task data, it is not necessary
to consider the frequency adjustment of devices performing
tasks locally. The latency and energy consumption generated
by traditional resource allocation formula is

Cost tro = Costedge + βt

M∑

t=1

N∑

as=0,
i=1

Lt ,i

F l

+ βe

M∑

t=1

N∑

as=0,
i=1

kLt ,iF
l 2. (16)

Equation (16) represents the energy efficiency cost of the
traditional algorithm, which is an important parameter to
consider in our later comparison of algorithms. Due to the
absence of frequency adjustment for mobile devices, the tra-
ditional algorithms may consume more energy than the
optimized ones. This makes the traditional algorithm less
suitable for resource-constrained equipment with limited bat-
tery life. Later in our comparison, we will calculate energy
efficiency cost of DQN algorithm through this equation. It
will be used to evaluate the performance of our proposed
algorithm, DODA-DT, against other algorithms. The compar-
ison will shed light on the advantages of our algorithm over
traditional cloud computing models. In Table I, we have sum-
marized all the notation that appear in this chapter and their
meanings.

IV. OPTIMIZATION OF DEPENDENT TASK OFFLOADING

In this section, a DRL-based algorithm is proposed to
solve the combined optimization problem for various task data
and wireless channels. The aim is to generate an offload-
ing decision in a multi-device mobile edge network swiftly.
The algorithm makes decisions in an environment where
both channel gain and device data are dynamically changing.
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TABLE I
NOTATIONS

The optimal offloading decision theoretically can be selected
among 2N offloading decisions. However, in the multi-device
scenario, as the number of mobile devices increases, the

Algorithm 1 Offloading Decision of Dependency Tasks
1: Initialize the DNN;
2: Initialize the experience replay memory;
3: Set memory size, Mem ← 3N ;
4: Initialize the EEC queue Qs ;
5: for t = 1, 2, . . . ,M do
6: Empty Sac ;
7: Input parameters into the DNN;
8: Get the offloading parameters Xs ;
9: Convert Xs to a set of candidate binary offloading

actions Sac with algorithm 2;
10: for As in Sac do
11: Update the EEC queue Qt with equation (12);
12: end for
13: Select the best action Âs with the lowest cost in Qt ;
14: Execute the offloading decision Âs

15: Save the cost in the queue Qs with equation (13);
16: Update experience replay memory with {L, h, Âs};
17: if mod(t , δ) = 0 then
18: Randomly select batches from memory;
19: Train the DNN with the batches;
20: Update gradient LS (θt ) using Adam algorithm;
21: end if
22: end for
23: Save the sum of Qs as the result of one iteration;

search space grows exponentially. In a mobile edge computing
environment where parameters are ever-changing, the existing
offloading decisions necessitate frequent iterations. This leads
to slow convergence and high computational effort.

The algorithm’s structure is illustrated in Fig. 3, where we
have implemented an actor-critic based network to determine
offloading decisions. Our algorithm has three major modules:
the actor module, which receives input parameters and pro-
duces a set of potential offloading actions; the critic module,
which identifies the optimal offloading action; and the policy
update module, which updates the system’s states following
the execution of offloading actions. These modules function
in a sequential and iterative manner. The overall process of
the algorithm is shown in Algorithm 1.

A. Actor Module

The actor module is used to generate offloading param-
eters xt . In time slot t, we take the task data and channel
gain of the mobile device as input parameters for the DNN.
Then the DNN outputs a set of candidate offloading parame-
ters Xs = {xt ,i ∈ (0, 1), i = 1, 2, . . . ,N }. While constructing
the model, we adopt a sigmoid function where each offload-
ing parameter is a value between 0 and 1. By utilizing a
threshold of 0.5, we generate an alternative set of offloading
actions using the binary representation {0,1} for these offload-
ing parameters. As = {at ,i ∈ {0, 1}, i = 1, 2, . . . ,N } denotes
the alternative offloading policy. In the subsequent algorithm,
each time slot will generate 2N + 1 kinds of alternative
strategies. This collection uses Sac .

When generating alternative strategies from DNN output
parameters, the accuracy of the results improves with an
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Fig. 3. The schematics of the proposed offloading decision algorithm.

increase in the number of alternative strategies. However, such
increment may potentially negate the advantage of DNN’s
quick response time. To leverage the generated data fea-
tures fully, we propose a strategy that generates alternative
strategies by comparing the data itself. DODA-DT algorithm
produces more diverse results than traditional KNN clustering
and ensures the order of DNN output parameters. The order-
preserving quantization method, initially introduced in [33],
was applied to explore the output of the DNN. The method is
designed to maintain the order of all elements in a vector both
before and after quantization. Specifically, for each alternative
set of offloading actions As in WD i the first offloading policy
is determined as

at ,i =

{
1, xt ,i > 0.5
0, xt ,i ≤ 0.5

(17)

In our approach, we generate the first offloading policy
and then proceed to compare all offloading actions with each
parameter of its own. To do this, we take each parameter in
the set as a standard, resulting in N + 1 alternative offload-
ing parameters Xt . The new alternative offloading decision is
obtained using equation below

at ,i =

⎧
⎪⎪⎨

⎪⎪⎩

1, xt ,i > xt ,j ,
1, xt ,i = xt ,j , xt ,j ≤ 0.5,
0, xt ,i < xt ,j ,
0, xt ,i = xt ,j , xt ,j > 0.5.

(18)

where xt ,i is the parameters for comparison and xt ,j is
the standard. In order to explore more possible results and
prevent the model from converging too fast and falling into
a local optimum solution, we design two types of Gaussian
noise noiseb ∼ N (0, 1), noise l ∼ N (0, 0.5), and differ-
ent approaches to use these two types of noise. Specifically,
the Gaussian noise noiseb is added into each round along
with the original DNN output parameters for the above binary
quantization execution, generating a total of 2N + 1 alter-
natives in each time slot. In each cycle ϕ, the Gaussian
noise noise l ∼ N (0, 0.5) no longer uses noiseb , and noise l
is added to the DNN-generated parameters N times. Said
parameters are quantised together with the original DNN out-
put parameters, generating 2N + 1 alternatives, as seen in

Algorithm 2 Generating Offloading Action Candidates
1: Initialize offloading parameters from DNN relaxation Xs ;
2: Initialize and empty the list Sac ;
3: Convert Xs to a set of candidate binary offloading actions

As with equation (17) (18);
4: Add As to Sac ;
5: if mod(t , ϕ) = 0 then
6: for i = 1, 2, . . . ,N do
7: Xa1 = Xs + noiseb + noise l ;
8: Convert Xa1 to As1 with equation (17);
9: Add As1 to Sac ;

10: end for
11: else
12: Xa2 = Xs + noiseb ;
13: for i = 1, 2, . . . ,N do
14: Convert Xa2 to As2 with equation (18);
15: Add As2 to Sac ;
16: end for
17: end if
18: return Candidate offloading actions Sac ;

Algorithm 2. Then the actor network will send these candidate
offloading actions to the critic network.

B. Critic Module

After the actor module generates a set of candidate offload-
ing actions, the critic module in our algorithm evaluates these
actions and selects the best one, denoted as Âs , based on the
model information.

Specifically, the critic network calculates the possible run-
ning time required based on the current channel conditions of
the task selected for offloading, from which the decision with
the lowest energy-efficiency cost is chosen as the offloading
solution. The critic network uses the Zevl function to pro-
cess the offloading decisions set Sac and then select the best
offloading decision Âs .

When executing the offloading decision Âs , the local
devices are adjusted according to the Âs , adjusting the
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frequency according to equation (13) and recording the
energy-efficiency cost in time slot t. We can observe the actual
energy efficiency cost denoted by Costsys,t (the calculation
method is in Section III). Then, we utilize Costsys,t to accu-
rately calculate the energy-efficiency cost in the system and
store it.

C. Policy Update Module

We update the parameters in the DNN by updating the
offloading policy. We design an experience replay memory
to store the past state-action pairs. In each time slot, the task
data collection of all devices L, channel gain set of all devices
h, and the offloading decision Âs generated in the actor-critic
network at t-th epoch as a whole {L, h, Âs}, are added to the
memory as new training data.

In our implementation, we begin training the DNN only
after collecting the data samples more than half of the memory
size. However, new data is constantly added to the memory
and will replace the old data once the memory is full. The
memory is used to train the DNN within the update interval
δ. Specifically, at intervals of t time slots, we engage in regular
training sessions with the DNN to prevent excessive fitting of
the model. When mod(t , ϕ) = 0, a random batch of data
samples (θt , Aτ ), τ ∈ S t is selected. The set S t represents
the set of time indices for the chosen samples. Subsequently,
we proceed to update the parameters of the DNN by using the
Adam algorithm, which aims to minimize the average cross-
entropy loss function LS (θt ) over the aforementioned data
samples. The loss function LS (θt ) can be represented as

LS
(
θt
)
= −1/|S t |

∑

τ∈S t

[
(Aτ )T log fθt (ξ

τ )

+ (1− Aτ )T log(1− fθt (ξ
τ ))
]
, (19)

where |S t | denotes the size of the sample batch, (.)T repre-
sents the transpose operator, which allows for the manipulation
of vectors and matrices, and log refers to the element-wise
logarithm operation performed on a vector.

The complexity of DODA-DT hinges on two crucial oper-
ations. Algorithm 1, with a complexity of O(M), contributes
to the complexity in one time slot. Secondly, the complex-
ity of invoking Algorithm 2 is O(N 2). As the value of N
increases, the running time of DODA-DT increases as well.
Worst-case scenario, the algorithm exhibits a complexity of
O(N 2+2N ) within a single time slot. Notably, in our exper-
iment, where each iteration comprises M time slots, the total
time complexity for one iteration amounts to O(N 2 × M ).
This time complexity configuration in practical scenarios
ensures nearly simultaneous execution, assuring a high level of
efficiency.

V. PERFORMANCE EVALUATION

In this section, our team evaluates the performance of
our algorithm through numerical simulations. We implement
and test the algorithm on PyTorch. As equation (3), We
assume di to be uniformly distributed between 8 meters and
12 meters, and the average channel gain hu to follow the

TABLE II
SIMULATION PARAMETERS

path consumption model. Ad = 3 denotes the antenna gain,
fc = 300 MHz denotes the carrier frequency, and de=2.8
denotes the path loss index. We set the wireless bandwidth
W to 16 MHz, the channel noise power σ2 to 10−26 W ,
and the power of the local transmitting task psend to 2W .
Additionally, we set the training interval δ to 20, memory
size M to 1024 MB, batch size to 128 MB, and the training
frequency ϕ of noise l to 20. Each layer’s tasks are randomly
assigned between 20 and 100, with the amount of data per
task Li randomly distributed between 10 MB and 120MB.
Each iteration has 400 time slots and we consider 400 iter-
ations. The maximum task execution frequency for mobile
devices F l to 0.5 GHz. The total task execution frequency
for edge servers F e is 10 GHz, and the weighting factor for
latency and power consumption is 0.5. The parameters used
in PyTorch are listed in Table II. The proposed actor network
uses a fully connected multilayer perceptron with two hidden
layers containing 120 and 80 hidden neurons, respectively. We
set the learning rate of the Adam optimizer to 0.01.

During the simulation, we generate random data and depen-
dency tasks for mobile devices and proceeded to group the
tasks using the breadth-first search approach. To reduce the
error caused by random task data, we will evaluate the energy-
efficiency cost every 400 time slots, which constitute one
iteration. In terms of balancing coefficients, since our algo-
rithm can optimize both delay and energy consumption, we
represent the coefficients as the ratio of the optimization results
of individual energy consumption to the optimization results
of individual delay. This allows for a comprehensive evalua-
tion and effective trade-off between these two essential factors.
Next, we evaluate the influence of various parameters in the
algorithm.

A. Influence of Parameters in the Algorithm

1) Impact of the Learning Rate: We examine the impact
of different learning rates on the performance of our proposed
model in Fig. 4(a). We observe that after 400 iterations, the
learning rate of 0.001 and 0.02 result in the premature con-
vergence of the model. A low learning rate may result in the
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Fig. 4. The energy-efficiency cost for the task graph with different parameters.

model being unable to jump out after entering local optima,
while a high one may cause a miss-out on an excellent
offloading action. Our results indicate that learning rate of
0.01 in the Adam optimizer is more effective than the ones
either too high (0.02) or too low (0.001).

2) Impact of the Noise Addition Frequency: As shown in
Fig. 4(b), it is observed that adjusting the addition interval of
noise l does not generally have a significant impact. However,
appropriate noise additions allow the exploration of more oper-
ational results and can sequentialize the parameters output by
the DNN. When ϕ = 5, much noise addition may make the
original DNN parameters unstable, resulting in chaotic judg-
ments. Too little noise addition (ϕ = 100) may limit the
exploration of new states. In our deep reinforcement learn-
ing model, the generated action state is used as the label, so
insufficient exploration of states can negatively impact model
convergence.

3) Impact of the Memory Size: We vary the memory size as
a parameter to evaluate its impact on the overall performance
of the system. Unlike batch size, the size of memory directly
affects the amount of training data available for model learn-
ing. A larger memory size enables storing more historical
records, so that the training of the model has more options.
However, the memory size should not be set too high as it
may lead to overfitting, where the model becomes too specific
to the training data and performs poorly. On the other hand,
a smaller memory size spells that the memory needs frequent
updating. Even though it is possible to update the parameters
of DNN in a timely manner, we will yet be largely confined
when selecting fewer records. As depicted in Fig. 4(c), we
observe that a appropriate memory size can accelerate the rate
of convergence of the model and make sufficient choices for
model training. Adequate model training can further approach
the optimal offloading action.

4) Impact of the Batch Size: To ensure that the DNN model
learns effectively, we conduct experiments with different batch
sizes and analyzed their impact on the model’s performance.
As shown in Fig. 4(d), we observe that the batch size has
a significant impact on the overall energy-efficiency of the
system. When setting that size to a smaller value such as 32,
DNN may not learn enough to produce accurate results and
lead to slow convergence. When setting to 1024, the model
becomes over-reliant on history records and fails to discover
new action states, leading to premature convergences and local
optima. Consequently, reasonable selection of batch size is a
requisite for the model to fully fathom out the aforementioned
states and strike a balance with the help of past experience.

Through the above experiments, in the subsequent program,
we will use the parameters that indicate the best performance,
namely, a learning rate of 0.01, ϕ = 20, memory size of 1024
MB, and a batch size of 128 MB.

B. Comparison With Other Algorithms

Finally, we compare the DADO-DT algorithm with the other
algorithms.

• All Edge Execution (AEE): All UEs offload their tasks
and they need to compete for limited communication and
computing resources.

• All Local Execution (ALE): In contrast to AEE, it does
not allow offloading and all tasks to be executed locally.

• Exhaustive Search (ES): We perform all possible opera-
tions on the system, find the lowest offloading decision,
and execute it.

• Execution Method without Different Noise Addition
(EMDAN): DODA-DT without different noise addition.

• Deep Q-Network Execution (DQN): In the context of
the DQN framework, the Q function is represented by
a deep neural network, serving as our modeling tool. As
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Fig. 5. Comparisons of EEC for different weights between execution time
and energy consumption.

each time slot t unfolds, the offloading decision process
regarding the next action hinges upon the evaluation of
the prevailing state. The current state, the chosen action,
the subsequent state, and the corresponding reward, are
recorded and stored within the memory pool. To ensure
continuous improvement, we extract batches of data on
a regular basis from the memory pool and utilize for
training purposes.

1) Influence of Different Weights: We investigate the effects
of adjusting the weights between execution time and energy
consumption in optimizing the performance of the system.
After adjusting the initial proportion of parameters based on
the optimization results of single optimization objective (i.e.,
single latency and single energy consumption), we reflect
the different focuses of multi-objective optimization through
appropriate weighting. As shown in Fig. 5(a), we observe that
the AEE algorithm and ALE algorithm generate extremely
high EEC. Due to the limitations of channel bandwidth and
network environment, offloading all tasks to the edge will
significantly reduce resource utilization. Executing all tasks
locally has also resulted in low usage of the edge. These two
algorithms have significantly higher EEC than the other four,
which also confirms the importance of offloading decision.

In Fig. 5(b), we compare the portions of EMDAN, DQN,
and DODA-DT algorithms that exceed the ES algorithm.
These excess EEC effectively reflect the gap with the best solu-
tion. Though the process of approaching a single optimization
goal may reduce this optimization effect, we find that the
DODA-DT algorithm has excellent performance under differ-
ent latency and energy consumption weights. Compared with

Fig. 6. Comparisons of EEC for different numbers of WDs.

Fig. 7. Comparisons of EEC for different task data.

the EMDAN algorithm, DODA-DT has a large number of
higher quality labels, so it can train the model faster and more
smoothly. Compared with the DQN algorithm, the DODA-DT
algorithm also has obvious advantages, and the performance
of the DODA-DT algorithm is comparable to that of the ES
algorithm in most cases.

2) Influence of the Number of Devices: Different numbers
of devices can lead to an increase in the amount of task data
in a time slot. At the same time, the increase in devices also
brings pressure to the communication network. The EEC of
AEE and ALE significantly increases with the increase of
device quantity. In Fig. 6, we compare the optimization EEC
of DQN, EMDAN, and DODA-DT algorithms that are relative
to the ES algorithm. As the number of devices increases, the
ES algorithm increases by 2N , meaning it becomes harder to
obtain the best offloading decision increases. When the number
of devices increases to a certain level, the main bottleneck of
the system may become competition for network channels. The
limited bandwidth and quality of wireless channels may grad-
ually weaken the advantages of the DODA-DT algorithm. This
leads to EMDAN and DQN algorithms gradually approaching
the results of DODA-DT algorithms.

3) Influence of the Task Data: In Fig. 7, we present the
impact of task data on the system performance. Specifically,
we vary the amount of task data for each device within a
given range L in one iteration. Our results indicate that the
proposed DODA-DT is robust and performs well under dif-
ferent amounts of task data. Moreover, when we expand the
range of task data, the advantages of our algorithm are even
more evident. In Fig. 7, we also find that the most effective
scenario of DODA-DT algorithm is that there are both tasks
with Big data and tasks with small data, which are more like
realistic situations. When the data of tasks maintains at a high
level, the gap between the three algorithms decreases due to
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the network resource constraints. In the future work, we will
consider using multiple edge servers to solve the problem of
resource constraints at the edge.

VI. CONCLUSION

This paper proposes a deep reinforcement learning-based
offloading decision strategy that maximizes the system’s com-
puting power.The DODA-DT algorithm enables all devices to
compete for the computing resources available in each time
slot, ensuring the fairness of all mobile devices to the max-
imum extent. Additionally, an order-preserving quantization
algorithm is used to deal with the output parameters of the
DNN, accelerating the convergence of the model. The exper-
imental results indicate that DODA-DT effectively enhances
the energy efficiency of the system.
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