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Abstract—Predicting the behavior of real-time traffic
(e.g., VoIP) in mobility scenarios could help the operators to
better plan their network infrastructures and to optimize the
allocation of resources. Accordingly, in this work the authors pro-
pose a forecasting analysis of crucial QoS/QoE descriptors (some
of which neglected in the technical literature) of VoIP traffic in a
real mobile environment. The problem is formulated in terms of
a multivariate time series analysis. Such a formalization allows
to discover and model the temporal relationships among various
descriptors and to forecast their behaviors for future periods.
Techniques such as Vector Autoregressive models and machine
learning (deep-based and tree-based) approaches are employed
and compared in terms of performance and time complexity, by
reframing the multivariate time series problem into a supervised
learning one. Moreover, a series of auxiliary analyses (stationar-
ity, orthogonal impulse responses, etc.) are performed to discover
the analytical structure of the time series and to provide deep
insights about their relationships. The whole theoretical analysis
has an experimental counterpart since a set of trials across a
real-world LTE-Advanced environment has been performed to
collect, post-process and analyze about 600,000 voice packets,
organized per flow and differentiated per codec.

Index Terms—VolP traffic characterization, multivariate time
series forecasting, machine learning for time series forecasting,
mobility scenarios.

I. INTRODUCTION AND MOTIVATION

ERFORMANCE prediction of real-time traffic (such as
VoIP) is a crucial topic in the network management
field. Predicting and optimizing Quality of Service (QoS)
and Quality of Experience (QoE) metrics allows to better
dimensioning network infrastructures, improving the battery
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life of devices, and optimizing the resource allocation strate-
gies [1], [2]. This is even more critical in cellular environ-
ments, where the high unpredictability of variables such as
the interference, but also the concurrency of real-time ses-
sions, and the time-varying load of mobile network nodes pose
intriguing challenges.

We tackle these issues through a multivariate predictive time
series analysis of VoIP traffic across an urban LTE-A environ-
ment. At the moment, LTE represents the dominant broadband
technology, accounting for 57% of users worldwide [3]. Older
technologies such as 2G and 3G continue to be intensively
used for their robustness, with about 38% of subscriptions;
whereas 5G accounts for about 5% of subscriptions due to
its market immaturity. Interestingly, one of the most adopted
deployment today is the Non-Standalone (NSA) 5G, where a
substantial part of LTE core network is reused to implement
voice-based services such as VoLTE [4].

The access to LTE technology has stimulated a series of
studies devoted to analyzing the performance of QoS/QoE
metrics involving, for example: various deployment strate-
gies [5], resource allocation [6], probabilistic models [7], and
coexistence with other technologies [8].

On the other hand, the main contribution offered in this
work pertains to a multivariate time series characterization of
the dynamic (time-varying) behavior of crucial VoIP metrics
which mutually influence each other. Such a cross-dependency
has a great impact on forecasting, since the future values of a
specific metric (e.g., the bandwidth consumption) will depend
not only on the temporal evolution of the same metric, but also
on the evolution of other metrics (e.g., round-trip time, jitter)
for a given VoIP flow. Accordingly, we formalize analytically
such a cross-dependency by means of a vector autoregressive
(VAR) model, along with a set of analyses (e.g., stationarity,
causality) useful to capture some insights characterizing the
mutual influence among the metrics at stake. Such a formal-
ization is then compared to classic (e.g., tree-based) and novel
(e.g., deep-based) machine learning approaches.

As a first step, we carry out an experimental campaign to
collect real-world mobile VoIP traffic deriving variables such
as bandwidth consumption, mean opinion score (MOS) and
signal-to-noise ratio (SNR), among others. In a second step,
we perform a predictive analysis aimed at discovering tem-
poral dependencies among the variables and forecast their
behavior in future time periods. At this aim, we consider two
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approaches: i) a statistical approach relying on VAR mod-
els, useful to analytically describe the dependencies among
interrelated time series; and ii) a machine learning approach,
employed by turning a time series structure into a supervised
learning problem. It is worth noting that a time series analy-
sis would be of little use when dealing with data collected
in controlled environments (e.g., testbeds). In such a case,
in fact, the forecast would be biased since it is possible to
manually tune quantities such as interference or noise fig-
ures. Conversely, in real settings we deal with uncontrollable
variables, which impact the overall performance, such as: time-
varying load of radio and network nodes; physical obstacles;
weather conditions; and hand over procedures.

The paper is organized as follows. Section II proposes
an overview of similar works, highlighting how our work
contributes to the state-of-the-art. In Section III, we offer a
description of the experimental environment along with details
about the time series construction. In Section IV, we formulate
the problem in terms of multivariate time series character-
ization, and we introduce statistical and machine learning
(ML) based models. In Section V, we present the experimen-
tal comparison among the different forecasting techniques by
taking into account both performance and times. Section VI
concludes the work along with some ideas for future research.

II. RELATED WORK AND OFFERED CONTRIBUTION

Due to the rapid evolution of telecommunication infras-
tructures, themes involving the network traffic characterization
are becoming decisive from a network management point of
view. QoS and QoE metrics, for instance, are typically used
as benchmarks to evaluate the quality of a network service;
thus, predicting their behavior is crucial to the aim of network
optimization and protocol design. Accordingly, in this section
we propose an excursus of relevant works in the field of traf-
fic characterization/forecasting, where we highlight a set of
novelties emerging from our work along different directions.

A first aspect concerns the network traffic forecasting
through statistical models, where a common trend is to
exploit autoregressive moving average (ARMA) [9], [10] or
autoregressive integrated moving average (ARIMA) mod-
els [11], [12], [13]. Although based on a robust methodology,
ARMA and ARIMA models allow to characterize the behav-
ior of individual network variables (in terms of univariate time
series models), but are not able to capture the mutual influ-
ence among the variables, which is crucial, for example, to
understand the interdependency between objective indicators
(e.g., bandwidth) and subjective ones (e.g., MOS).

A univariate time series perspective is adopted also by that
part of the technical literature which employs machine learn-
ing models for network traffic forecasting, including neural
networks [14]; support vector machines [15]; general super-
vised models [16]; deep learning models [17], [18], [19], [20],
[21], [22], [23].

To fill this gap, we formulate the problem in terms of
a multivariate time series, where each variable is expressed
as a function of values of the variable itself and values of
the other variables. This approach allows to characterize the

interdependency among variables by enabling joint analyses
(e.g., orthogonal impulse response analysis) which would have
no meaning in a univariate setting.

Another limitation which emerges in the part of the techni-
cal literature focusing on traffic characterization (especially in
mobile environments as in our case) is the lack of real-world
data. This issue is typically faced through the usage of network
simulators, where many variables or models are artificially
generated (e.g., mobility models, interference, packet loss,
data burst, weather conditions, and many others). Examples
include: [24] and [25], where LTE environments are simu-
lated through NS-2; and [26], [27], [28], where some LTE
metrics are characterized via NS-3. Other works employ cus-
tomized LTE simulators to model QoE [29], [30] and QoS
indicators [32], [33], respectively.

Even when network experiments are carried out within real
mobile scenarios [34], [35], [36], [37], a set of limited metrics
are considered, often due to the fact that standard communica-
tion protocols (e.g., RTP/RTCP) allow to natively collect only
classic metrics, typically relating to bandwidth consumption
or network delay. To overcome such restrictions we have set
up an experimental campaign where, through the RTP Control
Protocol Extended Reports (RTCP-XR), we are able to analyze
QoS/QoE metrics that are usually neglected in traffic char-
acterization, including MOS, round trip delay, playout delay
buffer, and SNR.

In summary, the following contributions emerge from our
work. First, we formalize the multivariate time series problem
of mobile VoIP traffic through the VAR model, which allows to
govern analytically the forecasting process. Moreover, through
specific analyses including the Dickey-Fuller test, the OLS-
CUSUM test and the orthogonal impulse response, we are able
to discover interesting insights and hidden relationships among
the considered VoIP metrics. Then, we turn a set of machine
learning techniques (random forest, recurrent networks, etc.)
into forecasting methods, by reframing the multivariate time
series problem into a supervised learning one through a sliding
window approach. This step is needed to evaluate and compare
performance and time complexity of the statistical approach
against the learning-based ones. Finally, we remark that the
whole time series analysis relies on an experimental campaign
carried on a real-world LTE-A network. During this campaign
we: i) collect and elaborate a series of VoIP flows exploiting
different voice codecs; ii) elaborate a set of performance met-
rics (most of them neglected in classic literature) through the
support of the RTCP-XR protocol.

III. NETWORK SCENARIO AND TIME
SERIES CONSTRUCTION

The location chosen for mobile VoIP traffic collection
and analysis is an urban area (about 2000 people/km2) near
Salerno (Italy). Figure 1 shows the area map derived from
cellmapper [38], a crowd-sourced cellular tower and coverage
mapping service. The number of evolved nodes B (eNB) aimed
at handling radio links amounts approximately to 100. All the
VoIP traffic is collected between two nodes: a mobile node (a
car traveling at about 60 km/h) and a fixed node with a station



DI MAURO et al.: MULTIVARIATE TIME SERIES CHARACTERIZATION AND FORECASTING OF VoIP TRAFFIC 853

@NB ID 76695
Bands 13

Mobile User

oNB ID 77016 /'
Bands 20

LTE-A
Tower ID

3 ,mn.m—n‘
s =
“ I‘ ‘.Nﬂ 076101
“ “ 2 - | Bands 13,20
. 2]
Mobile Paths
—

5 .

oNB ID )
Bands 3.
Bar

| Fixed User +
VolIP Data Collection
and Elaboration

Fig. 1. Experimental setting including a mobile user (top-left) and a fixed
user with a control server for data collection and elaboration (bottom-right).
Main parameters are summarized in the bottom-left table.

TABLE I
SOME DATASET STATISTICS

Codec RTP pkts Stream length (s) Lost pkts
G.722 55890 566 0.36%
G.729 28045 447 0.4%
MPEG-16 39181 654 0.2%
OPUS 39425 405 0.4%
GSM 38357 434 1.3%
Speex-8 43128 436 0.2%

to collect/elaborate the VoIP flows. The distance between the
two nodes ranges from 30 to 70 kilometers. Both nodes are
equipped with Linphone [39], one of the few softphones sup-
porting the RTCP-XR protocol defined in the RFC 3611 [40].
Such a protocol allows to gather a rich set of metrics not avail-
able through the classic RTCP protocol, such as MOS, SNR,
round trip delay (or round trip time), and playout delay buffer.

The overall collected flows amount to about 600,000 voice
packets, and are divided per codecs, including the following
ones: G.722 (64 kb/s of bit rate and 16 KHz of sampling rate);
G.729 (8 kb/s of bit rate and 8 KHz of sampling rate); MPEG-
16 (16 kb/s of bit rate and 16 KHz of sampling rate); OPUS
(6 to 128 kb/s of bit rate and 48 KHz of sampling rate); GSM
(8 kb/s of bit rate and 8 KHz of sampling rate); and SPX-
8000 (8 kb/s of bit rate and 8 KHz of sampling rate). Such a
choice is justified by the fact that each codec is able to react
differently to diverse network conditions (e.g., the consumed
bandwidth or the playout delay buffer) and accordingly adjust
the quality of the voice flow. In this way, we obtain a more
ample view of the time-based variables behavior and how these
are influenced by the different codecs. In Table I we report
some useful information about the collected dataset includ-
ing: codec type (first column), number of RTP packets per
VoIP conversation (second column), stream length, namely, the

duration of conversation (third column), lost packets (fourth
column). We derive such information from RTP stream statis-
tics section available in Wireshark, the open source sniffer
tool aimed at network traffic inspection [41]. Upon collect-
ing the traffic, we have performed a post-processing stage to
extract and process six crucial time-based variables. Precisely,
for each voice flow (namely for each codec) we built a (6 x 1)
time-based vector y; = (y1¢,---, Ygt) " whose components are
the following six time series:

e Y14 time series representing the MOS, which quanti-
fies the human subjective experience of a voice call in
a dimensionless range between 1 (low perceived qual-
ity) and 5 (high perceived quality); this metric has
been derived from the R-factor (R), a QoE indica-
tor obtainable via RTCP-XR. Then, we have applied
the conversion formula provided by ITU-T G.107
standard [42] to derive the MOS, namely: MOS =
1 + 0.035R + 7-107%-R(R — 60)(100 — R).

e o time series representing the bandwidth (often BW for
brevity) which provides information about the bandwidth
consumption and is measured in kb/s;

e y3;: time series representing the round-trip time (RTT),
a key performance indicator measuring the time interval
(in ms) of a voice packet sent from a source and the ack
received from the destination;

e Y4 time series representing the jitfer (measured in
ms), namely the variation in voice packet latency eval-
uated through the formula: Jp, = |[(tr(p) — te(n)) —
(tr(n—1) — tt(n—1))| which quantifies the jitter of the
n-th packet depending on the transmitting (¢ (,,)) and on
the receiving (tr(,,)) time;

e Y5+ time series representing the playout delay buffer
(often Buffer for brevity and measured in ms), a mecha-
nism to compensate for the encountered jitter by buffering
voice packets and playing them out in a steady stream;

e Yg:- time series representing the signal-to-noise ratio
(SNR), defined as the ratio between the power of a signal
and the power of the background noise, and measured in
decibel (dB).

Figure 2 shows all the six time series for a single voice flow
(G.722 codec). Please note that this representation is meant
to offer just a big picture of time series behaviors, since the
measurements units are different for each series (e.g., the band-
width is measured in kb/s, the RTT in ms, the SNR in dB,
etc.). At this aim, MOS and jitter have been magnified into
two separate insets (MOS in grey and jitter in light blue) to
better appreciate their behaviors. We can preliminarily notice
some interesting facts. For instance, it is immediate to see
how the RTT time series (in green) has two noteworthy peaks
(approximately at t = 30 and # = 415 seconds) probably due to
some obstacles in the VoIP flow path. Yet, the bandwidth time
series (in red) seems to be quite stable (around 80 kb/s) with a
peak at about = 360 seconds and a more irregular behavior
after + = 450 seconds, probably due to a more unstable con-
nection. Finally, the jitter time series is more or less regular
and lying below 40 ms, as prescribed by telco standards for
VoIP flows [43]. In order to inspect data variability for this
flow, we also report a box-plot representation in Fig. 3. Such
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Fig. 2. Time series behavior (Codec G.722 flow) of the six crucial variables: MOS, Bandwidth, RTT, Jitter, Playout Delay Buffer, SNR.
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Fig. 3. Box-plot representation of time series (Codec G.722 flow).

a representation reveals that metrics such a MOS and SNR
seem to be quite stable having 8 and 2 outliers (onto a stream
length of 566 s, see Table I). The reason is that MOS naturally
varies in a bounded range of values, whereas SNR is typi-
cally regularized thanks to the underlying codec. Remaining
metrics exhibit more instability basically due to the uncontrol-
lable external factors (e.g., interferences, mobility) thus, the
number of outliers is greater: BW (39), RTT (36), Jitter (52),
Buffer (97). We finally note that, to add more value to our
work we make available: i) raw datasets divided per codec
(as described in Table I); ii) post-processed datasets useful to
directly test a given forecasting technique [44].

IV. PROBLEM FORMULATION AND FORECASTING MODELS

In this section we examine in depth the problem of multi-
variate time series forecasting, by exploiting different tech-
niques. Basically, through such a formalization, we try to
predict future values of the time series on the basis of the

current information set, namely the set consisting of current
and past values of the series.

Let y1¢, y2¢,---, YNt be a set of N related variables. The
forecast of the n-th variable y, 7, g at the end of period T
can be expressed as:

Un, 741 =y, 92,1,
Y1, T—1,Y2,T—1 - - -

yYN, T
7yN,T—17"')7 (D

where H is the forecast horizon (number of future samples
to predict), whereas f(-) is a function of the past observa-
tions and can be: i) a statistical model, or ii) derived by a
machine learning algorithm. One of the most powerful classes
of statistical multivariate models for time series forecasting
is represented by the vector autoregressive (VAR) models. In
contrast, machine learning models exploit their data-driven
features to give a prediction of future values of a time series.
It is useful to anticipate that to exploit a VAR model correctly,
some preliminary analyses are needed (e.g., stationarity, resid-
ual correlation, etc.). Thus, in the next section we formally
introduce the VAR model along with its employment into the
multivariate time series field.

We should clarify that the term variable used in the clas-
sic statistics field is equivalent to the term feature typically
encountered in the machine learning realm. To adopt a uni-
form notation, we will use the term variable (or time variable),
to highlight the temporal dependency.

A. Vector Autoregressive Model

The vector autoregressive model is a generalization of the
univariate autoregressive (AR) model used for time series
prediction. In the classic AR model, a value from a time series
is expressed in terms of its preceding values. The number
of preceding values chosen for the prediction is called order
or lag. We remark that, in cases where more time series are
present, the AR model does not allow to capture their mutual
influence. Conversely, in the VAR model a value from a time
series can be expressed in terms of preceding values of the
time series itself and the preceding values of other time series.
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It results in a multivariate time series prediction problem since
multiple time series can influence each other.

Let y¢ = (y1¢, Y2t,---> Yne) T be an (N x 1) vector of time
series. The p-lag vector autoregressive model VAR(p) has the
following form:

y=c+ Pyt 1 +Poyr 2+ +Ppyr—pte, (2

where ¢ = (cq,...,cn)7T denotes an (N x 1) vector of con-
stants, ®;, an (N x N) matrix of autoregressive coefficients
(k = 1,...,p) estimated by estimating each equation by
Ordinary Least Squares (OLS), and ¢; = (e1¢,...,€n) " an
(N x 1) unobservable zero mean white noise (or residual)
vector process with non singular covariance matrix >, =
E(eref ), being E(-) the expectation operator. Let (bg-c) be the
element of ®;, at row i and column j. For instance, a bivariate
VAR(2) model can be expressed in the following matrix form:

yie| _ e ¢511) 925511) Y1e—1
or] Lo M 4| [y
Y ¢12 ¢22 Y

o ¢§%’] fs] o]

* qsg) ¢)§22) Y2t—2 €2t

3)

The preliminary operation to perform when employing a
VAR model is to determine the best lag p*, which allows to
build a VAR(p*) model embodying most of information of the
N-dimensional time series. Choosing the optimal lag length is
not trivial since many criteria exist (often contradicting each
other). We start by applying the Akaike Information Criterion
(AIC) [45], a selection rule aimed at minimizing the forecast
mean square error (MSE). Specifically, the approach is to fit
VAR(p) models having orders p = 0,..., pmqz and pick the
value of p which minimizes the criterion.

Formally, the AIC criterion obeys to the following rule:

2pN?

L )
being L the time series length and |S¢| = L1 Zthl érél the
determinant of covariance matrix of the residuals estimated
by OLS. The results of the AIC criterion applied to our VAR
model made of 6 time series is shown in Fig. 4. We can see
that the order p which minimizes the AIC criterion amounts
to 11. Actually, when choosing the optimal lag for a VAR
model, the lag resulting from a selection criteria (e.g., the
AIC) represents only a preliminary choice.

Often, such a value must be adjusted to encounter also other
needs [46], such as minimizing the residual correlations as
explained in the next subsection.

1) Residual Analysis: When fitting a model to time series
data, it is likely to find autocorrelation in the residuals (dif-
ferences between observed and fitted values). In such a case,
the model violates the assumption of no autocorrelation in the
errors, and the forecast can be inaccurate [47]. A powerful
residuals-autocorrelation test is the Breusch-Godfrey test [48]
(also referred to as Lagrange Multiplier, LM test in brief),
which considers the VAR model of the error vector

AIC(p) = 1og’ie

+ “4)

et =Viep 1+ -+ Upe_p + v, &)

AIC Value

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Lags

Fig. 4. AIC values for different lags applied to the considered multivariate
time series model.

where £ is the maximum lag of the error model and v; a white
noise at time . In the LM test, the null hypothesis Hg is that
there is no residual autocorrelation, whereas the alternative
hypothesis #, is that residual autocorrelation exists:

Ho: Wy =--=0; =0,
(0)
Ha : Ve #0 for at least one £ € {1,...,h}.

A common way to compute the LM test statistic based on
the residuals of the VAR(p) model is to take into account the
following auxiliary regression model [49]:

E=c+ Py 1+ -+ Ppyrp +F V&1 + ...
+ Upépp +0f, (7

where the €; represent the residuals from the original VAR(p)
model (where é; = 0 for ¢ < 0), and v is an auxiliary error
term. Accordingly, the LM statistic can be computed as

Quar(h) = L(N — (5715, )). ®)

where 3, = L 575 | 05557 are the residuals from the esti-
mated auxiliary model and tr(-) is the trace of a matrix. Under
the null hypothesis of no autocorrelation, it is possible to

show [55] that Qs (h) N x2(hN?) where <, indicates the
convergence in distribution (as L — oo). Moreover, a cor-
rection has been proposed by Edgerton and Shukur [50] that
exploits the F statistic (based on the Fisher-Snedecor distri-
bution F(m,[) with m and [ degrees of freedom) in place of
the x2, showing interesting results especially in unstable VAR
models [51]. Accordingly, the Edgerton-Shukur (ES) statistic
has the following form:

F(hN?,B), 9)

where =L —N(1+h)+1/2[N(h—1)—1].

Once we have chosen the optimal lag value suggested by
AIC criterion (p = 11), we tested the residual correlation
through the hypothesis test (6). Such a test has been imple-
mented by exploiting both 2 statistic of the LM test and F
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TABLE 11
RESULTS (IN TERMS OF P-VALUES) FOR MODELS WITH p = 11 AND
p = 12 LAGS, RESPECTIVELY. TWO RESIDUAL CORRELATION TESTS
HAVE BEEN CONSIDERED: LAGRANGE MULTIPLIER (LM) BASED ON THE
X2 STATISTIC, AND EDGERTON-SHUKUR (ES) BASED ON THE F
STATISTIC, BOTH COMPUTED UNDER THE NULL HYPOTHESIS

lag length=11 | lag length=12

& p-value (LM) p-value (ES) \ & p-value (LM) p-value (ES)
1 0.0067 0.031 1 0.328 0.56
2 0.0044 0.036 2 0.520 0.81
3 0.0601 0.278 3 0.604 0.90
4 0.0518 0.305 4 0.642 0.94
5 0.1336 0.554 5 0.538 0.93
6 0.2292 0.733 6 0.244 0.78
7 0.1062 0.582 7 0.336 0.89
8 0.1414 0.691 8 0.399 0.93
9 0.0182 0.310 9 0.125 0.75
10 0.0097 0.255 10 0.107 0.75

statistic of the Edgerton-Shukur test. The results are shown in
Table II - left side - in terms of p-values. Moreover, as sug-
gested by credited literature [47], [52], [55], we choose a not
so large value for i, namely 7 = 10.

By choosing a type I error probability o = 0.05 to reject the
null hypothesis when it is actually true, a p-value lower than «
allows us to reject the null hypothesis (no residual correlation),
and thus to accept the alternative hypothesis H, with an error
probability of 95%, at most. We highlight in red the p-values
in correspondence of £ values where the alternative hypothesis
(presence of residual correlation) #, of test (6) is accepted,
given o = 0.05. Such a condition occurs in both LM and ES
tests, but the latter seems to be more “conservative” and allows
to reject the null hypothesis less frequently than LM test. We
explore also some higher lags' and we find interesting results
for p = 12, which represents the second optimal choice from
the AIC criterion (see Fig. 4).

The corresponding results in terms of p-values are shown
in Table II - right side. It is possible to notice that the null
hypothesis of no residual correlation is satisfied for all values
of ¢ in the case of the ES test, with p-values significantly
higher than 0.05. Remarkably, also in the case of the LM test
we have p-values higher than 0.05. As mentioned before, we
have also tried to further increase the order p of the VAR(p)
model, but we obtained more p-values allowing to reject the
Ho hypothesis of no serial correlation (needed for accurate
forecasting) than those obtained for the lag length amounting
to 12, which was finally elected as the optimal choice.

2) Stationarity: When dealing with VAR models, another
important operation consists in removing possible trending
behaviors of the involved variables to avoid spurious regres-
sions. Otherwise stated, we have to guarantee the stationarity
of the time series, meaning that first and second moments
must be time invariant. Pragmatically, the stationarity check is
often performed through OLS-based unit root tests. In partic-
ular, Dickey and Fuller [53] developed a procedure (DF) for
testing whether a variable has a unit root or, equivalently, that
the variable follows a random walk.

Too much high values of lags could lead the system to an overfitting.

TABLE III
AUGMENTED DICKEY-FULLER TEST PER VARIABLE

| Variable | test statistic (6) | p-value |
MOS -3.445 9.501 - 1073
Bandwidth -7.974 2.718 - 10712
RTT -2.934 4.149 - 1072
Jitter -4.157 7.780 - 10~%
Buffer -2.638 8.525 - 1072
SNR -3.192 2.044 - 102

We use the augmented Dickey-Fuller test (which, differently
form classic DF, includes higher-order autoregressive terms in
the regression) where the following test model (in its more
general form, see [54]) is considered:

P
Ayt =wo+wit+0y1+ Y SpAy_p + e,
k=1

(10)

where: Ay = y; — y;—1 is the difference operator, wqg is
the intercept term (constant), wit is the time trend, and p the
lag of the autoregressive process. Finally, the test statistic on
the 6 coefficient is used to test whether the data need to be
differenced to make it stationary. The DF test is the following:

Ho : 6 =0 (null hypothesis)  non-stationarity,
H, : 0 <0 (alternative hypothesis) stationarity .

(1)

For our experiments, we have performed the augmented DF
test for each variable, verifying that the variables are stationary
at first differences, thus, there is no need to apply the differ-
entiation operator. The results are reported in Table III, where
the negative values of 6 (second column) for each variable and
the corresponding low p-values (third column) suggest to reject
the null hypothesis, and to accept the stationarity hypothesis
by assuming a type I error probability of 0.05.

3) Stability: Stability conditions are typically required to
avoid explosive solutions of the stochastic difference equa-
tions characterizing a time series expressed in terms of an
autoregressive part and a moving average part. At this aim, it
is possible to show [52], [55] that the VAR(p) process (2) can
be written in the following Np— dimensional VAR(1) form:

Yt c Q1 Py ... Pp1 Pp €t
Yi_1 0 Iy 0 ... 0 0 0
yi—2 | = (0| 4|0 Iy 0 01 v,_1+]|0],
Yiepi1 0 0 0 .. Iy 0 0

———

Y @*

(12)

being I the order N identity matrix. The process Y} is stable
if the eigenvalues of the companion matrix ®* in (12) have
modulus less than one. Such a property is satisfied for the con-
sidered VAR(p) model as can be observed in Fig. 5. Although
such an analysis is formally correct to verify the stability con-
dition, it does not allow to capture the behavior in the time
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domain. Accordingly, we perform in addition an OLS-based
cumulative sum (CUSUM) test [56]. Through such a test, it is
possible to evaluate the cumulative sums of residuals resulting
from the VAR model in order to highlight potential structural
changes (a.k.a. structural breaks) in the residuals which can
lead to a non-stationary behavior. The test is based on the
intuition that if the VAR model coefficients (the autoregres-
sive coefficients) change over the time, the accuracy of the
one-step-ahead forecast will decrease and the forecast error
will increase.

The panels of Fig. 6 show the results of the OLS-based
CUSUM test for all the six variables. The x-axis represents
the normalized time between O and 1, where the y-axis reports
the cumulative sums of residuals (interpretable as random
processes). It is possible to notice that all the processes are
substantially stable with oscillations around the zero value.
A slight exception is represented by SNR where is it possi-
ble to see some little drifts from the stability value but never
exceeding the 95% confidence boundaries (red lines).

4) Time Series Relationships: One of the most interesting
aspects when dealing with VAR models is to understand how
the time series composing the process are mutually influenced.
Precisely, it is useful to know the response of one variable to an
external disturbance (unit impulse or unit shock in the econo-
metrics jargon) of another variable, which allows to examine
more in-depth the cause/effect relation among the involved

variables. In particular, if we observe a reaction of one vari-
able to an impulse in another variable, the latter will be causal
for the former [55]. In many real-world cases, there is a cor-
relation among the variables in a system. This means that an
impulse of one variable should be accompanied by an impulse
of some other variables correlated with the modified one. In
other words, the impulse response allows to trace the trans-
mission of a single shock within a system of equations [57].
Often, it is interesting to isolate the effect of a single variable
shock onto another variable of the system to better capture the
interdependencies. At this aim, we implement the orthogonal
impulse response functions (OIRF) method [58] which allows
to rewrite the process (2) as:

oo o0
ye=c+Y ®PPTe_j=c+y O, (13)
=0 1=0

where: X = PP7T being P a lower triangular nonsingu-
lar matrix with positive diagonal elements (also known as
Choleski decomposition, see [55, Appendix A.9.3]), ©, =
®,P and w; = Pilet being a white noise with covariance
matrix ¥, = E(wsw;") = Ig. Since the white noise errors
w; have uncorrelated components wy¢, . . . , Wiy With unit vari-
ance Ig, they are often known as orthogonal residuals or
innovations. Thus, it is reasonable to assume that a change
in one component of w; has no effect on the other compo-
nents due to orthogonality. In particular, the jk-th element of
©; is assumed to represent the effect on variable j of one unit
innovation (namely, one unit standard deviation) in the k-th
variable that has occurred i periods before.

In our setting, we have 6 variables resulting in 36 orthogonal
impulse responses” as shown in the panels of Fig. 7. The
causal variables are grouped per columns. The x-axis reports the
observation period, thus it is possible to evaluate the disturbance
effects for various observation periods (25 in our case). The
blue continuous curves represent the oscillating values of the
affected variables around their stability point (horizontal black
line at 0), namely if the impulse were not applied at all. The
black dashed curves surrounding the blue ones represent the
asymptotic confidence intervals at 95% confidence level. Such an
analysis has the merit of highlighting some relationships among
variables which are often hidden at a first sight. For example,
the sub-figure in the first row and second column allows to
visualize the effect of a bandwidth shock on the MOS variable
(BW — MOS). In particular, itis possible to see that a bandwidth
impulse causes a slight increase of the MOS by approximately
0.006 units of innovation after about 15 observation periods.
Then, it decreases. Likewise, a BW impulse causes a decrease
of a couple of units of innovation in Jitter after 10 observation
periods before exhausting its effect. Such behaviors are in line
with the fact that having more bandwidth is typically beneficial
for other metrics. It is useful to notice that, after a shock, some
variables can have a decrease before raising up to their stability
point. This is the case of Jitter and Buffer after a MOS impulse
which experiment a decrease of 2.5 and —5 units of innovation,
respectively (MOS — Jitter and MOS — Buffer sub-figures).

2Historically, such an analysis considers also the effect of an impulse
response of a variable on itself.
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Also in this case, we can reasonably admit that a better voice
quality can be associated to lower values of jitter which, in
turn, is associated to smaller values of the playout delay buffer.
Interestingly, the mutual influence between two variables can
be quite different when the “causing” and “caused” roles are
inverted. For example, in the RTT—BW case, an RTT shock
causes a slight oscillation of BW (with a peak of about 2 units
of innovation around an observation period amounting to 5)
before decaying rapidly to the stability point. In contrast, a
BW shock causes a substantial decrease in RTT (BW—RTT)
with two peaks (around —50 and 45 units of innovation) and a
slower re-stabilization. Such apparently unusual behavior can
be explained by the fact that BW (red curve in Fig. 2) exhibits
a certain robustness, thus it is not dramatically impaired by
unit shocks, whereas RTT (green curve in Fig. 2) appears to
be more sensitive due to its oscillating behavior, and is then
more susceptible to exogenous interventions.

B. Learning Models for Time Series Forecasting

The application of machine learning techniques to time
series forecasting is a recent issue with interesting applica-
tions to econometrics [61]. When dealing with time series, in
fact, the temporal information is crucial, whereas a machine
learning dataset is typically a list of information equally treated
from a time perspective. This notwithstanding, it is possible to
manipulate these models (especially supervised ones) to train
on historical time series data and provide future predictions.
Moreover, some deep learning methods have been explicitly
designed to take into account temporal information through
memory-based cells, as detailed below.

Recurrent Neural Networks (RNNs): such a technique relies
on a network architecture able to handle variable-length
sequences naturally. In such a way, through the RNNs it is
possible to track the state of a system (by retaining past
information) and update its state as the time elapses. The
memory state is recursively updated with new observations,
thus the hidden state z at time ¢ can be represented as a func-
tion of the input at time 7 and the previous hidden state at time
t — 1, namely:

2(t) = f(z(t = 1),y(1)),

that, in turn, is used to evaluate the output (namely, the
prediction):

(14)

U1 = g(2(1))- (15)

A weak point of RNNs is to manage long-range dependen-
cies connected with transferring information from earlier to
later times steps across too long sequences (known as the
vanishing gradient problem [60]). Such an issue can be solved
through the techniques explained below. The following hyper-
parameters have been used for RNN: 30 RNN units; dropout
rate amounting to 0.25; Adam optimization algorithm (learning
rate = 0.1); tanh activation function; 30 epochs.

Long Short-Term Memory (LSTM): represents an evolved
RNN network [62] with some internal state cells acting as
long-term or short-term memory cells. The output of the
LSTM network is modulated by the state of these cells and
by three gates which tune the information flow: the input gate
responsible to update the cell state; the forget gate in charge
of keeping or discarding information on the basis of the input
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data y(f) and the previous hidden state z(r — 1); the output
gate which takes decision about which information to pass to
the next LSTM unit. The hidden state at time ¢ is:

z(t) = o(t) - tanh(c(t)), (16)

being o(?) the output gate, and c(¢) the cell state at time t.
The following hyper-parameters have been used for LSTM:
30 LSTM units; dropout rate amounting to 0.25; Adam
optimization algorithm (learning rate = 0.1); tanh activation
function; 30 epochs.

Gated Recurrent Unit (GRU): a lighter version of
LSTM [63] with two gates. The update gate which embodies
functionalities offered by the LSTM forget and input gates.
The reset gate which is in charge of deciding how much past
information to forget. The GRU hidden state can expressed as:

2(t) = (1 —u(t))z(t = 1) + u(t)2(1),

where u(?) is the update gate which decides about the updating
amount of its candidate activation Z(¢). The following hyper-
parameters have been used for GRU: 30 GRU units; dropout
rate amounting to 0.25; Adam optimization algorithm (learning
rate = 0.1); tanh activation function; 30 epochs.

Convolutional Neural Networks (CNN): they are typically
used when dealing with classification problems involving spa-
tial information where an image matrix (2D array) is provided
to the CNN structure. On the other hand, when dealing with
time-series problems, CNNs can be feed with a 1D array since
only temporal dimension must be taken into account. Also
when applied to temporal data, the CNN uses: i) the convo-
lutional layer aimed at applying filtering to derive the most
representative features; ii) the pooling layer to reduce the size
of the series while preserving important extracted from con-
volutional layers; iii) the fully connected layer to map the
features extracted by the network into specific classes or val-
ues. The following hyper-parameters have been used for CNN:
30 CNN filters (each of which with size 6); dropout rate
amounting to 0.25; Adam optimization algorithm (learning rate
= 0.1); tanh activation function; 30 epochs.

Multi Layer Perceptron (MLP): it is the most common form
of neural networks and one of the first to be exploited in
time series forecasting problems. The lagged observations (say
x;) are used as inputs of an MLP structure to evaluate the
forecast gy11:

a7)

n
%H=¢<§jwm+b> (18)

i=1
where ¢(-) is an activation function (e.g., sigmoid, linear,
etc.) to produce the output, and w; and b are the weights
and bias, respectively. The input data activate the hidden lay-
ers (intermediate layers) by following the forward activation
direction, and, in turn, hidden layers neurons feed forward
into output neurons. The MLP process is regulated by the
backpropagation, a mechanism able to update neurons weights
to progressively minimize the error. The following hyper-
parameters have been used for MLP: 30 dense units; dropout
rate amounting to 0.25; Adam optimization algorithm (learning
rate = 0.1); tanh activation function; 30 epochs.

Random Forest (RF): a technique based on the bootstrap
aggregation over decision trees. In practice, during the training
stage, each tree within a random forest learns from random
samples drawn with replacement (bootstrapping) so as to reach
a lower variance. For each sample b, b = 1,. .., B, the desired
forecast is the average of forecasts of each tree applied to the
input data z;, namely

B
i1 =3 > o). (19)
b=1
The following hyper-parameters have been used for RF: 30
estimators (or trees); 10 as the maximum depth of the tree.
Extreme Gradient Boosting (XGB): an improved version of
gradient boosting, an iterative technique allowing to fit a deci-
sion tree on the residuals obtained from a base learner aimed at
improving the prediction model by adding new decision trees.
The output forecast can be written as:

K
o1 =Y fe(x), (20)
k=1
where K is the number of trees and f; is the base learner.
An objective function is used to train the model by measur-
ing how well it fits the training data. The following main
hyper-parameter has been used for XGB in our experiment:
30 gradient boosted trees.

V. EXPERIMENTAL FORECASTING RESULTS

In this section we present a comparative analysis of the
methods described in the previous section based on the exper-
imental measurements. Before delving into details of the
numerical results, we need to provide some clarifications about
the processing we have performed on the gathered data.

A preliminary operation is to re-frame the time series fore-
casting into a supervised learning problem. We first split the
multivariate time series into training and testing sets, by adopt-
ing the classic 70/30 split (70% of data is used for training,
30% for testing) as shown in Fig. 8. It is useful to high-
light that the classic k-fold cross validation method cannot
be applied in this setting, which assumes that there is no rela-
tionship among the observations. In contrast, when dealing
with time series problems, the temporal continuum has to be
preserved. Accordingly, we adopt the sliding window mecha-
nism where a part of the input sequence (window of lagged
values represented by the past observations within shaded blue
area in Fig. 8) is used to forecast new samples (future obser-
vations within shaded red area in Fig. 8). The sliding window
approach has been profitably employed also in other fields
involving time series forecasting such as the smart manufac-
turing [64] or radar [65]. Moreover, as in the aforementioned
works, we perform the so-called one-step forecasting where
the prediction is made one step at a time to avoid the forecast
uncertainty [47].

As regards the tuning of the various learning-based tech-
niques, we have empirically chosen their structures so that the
resulting accuracy would be in the same range of the VAR
model (which does not require any fine tuning other than the
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choice of the optimal lag p*). Such an approach is in line to
what suggested by credited literature [66].

We start by visually analyzing the behavior of the various
presented techniques for two specific VoIP flows identified
by their specific codecs, namely G.722 and G.729 (for space
constraints we omit the visualization for remaining codecs but
a summary of performance results for each codec is reported
in the Table IV). The two aforementioned codecs represent
two extreme trade-off choices between conversation quality
and bandwidth utilization. Indeed, among the codecs used in
our experiments, G.722 provides the better audio quality (for
instance, in terms of MOS) but the bandwidth consumption is
not very efficient (bit rate of 64 kb/s). In contrast, G.729 offers
a slightly lower audio quality but allows a greater bandwidth
saving with just 8 kb/s of bit rate.

The panels of Figs. 9 and 10 show the temporal behavior
of each variable for codecs G.722 and G.729, respectively.
Superimposed onto the actual values of variables (black dashed
lines) we report, with different colors as specified in the figures
legends, the behavior of each forecasting technique described
in the previous section. In each panel of Figs. 9 and 10, the
forecasting zone (the gray area on the right) defines the area
where each technique tries to predict future values.

In order to highlight the behavior of VAR compared to
the learning techniques, we also report, in shaded pale red,
the 95% forecast intervals (for the VAR) which represent
an estimate of the intervals where we expect a future value
will fall. Since the interval width amounts to 1.96 - o, (with
oc the standard deviation of residuals for each time series,
see [55]), the shape and the width of each interval strongly
depends on the residuals behavior. For instance, as regards
the MOS - G.722 codec case (see the first panel in Fig. 9),
the low residual standard deviation directly results in a nar-
row forecast interval. Conversely, the unexpected peak of RTT
- G.722 codec case (see the third panel in Fig. 9) at about
415 seconds has a negative impact on the prediction accuracy
(for all examined techniques) and, in turn, implies a growth
of residual standard deviation. This directly translates into a
broad forecast interval.

The first aspect to highlight is that the actual behavior of
variables basically depends on two factors which impact on
the performance forecast: the codec type and the network

conditions. For instance, the overall bandwidth consumption
amounts, on average, to 90 kb/s in the G.722 case (top-middle
panel of Fig. 9), whereas it is around 30 kb/s in the G.729
case (top-middle panel of Fig. 10). In principle, this implies
that more fluctuations are possible in the G.722 case due to
a wider span of values. Unfortunately, even if a codec is able
to guarantee a kind of temporal “stability”, the high unpre-
dictability of network conditions is the main responsible of
fluctuations which are very challenging to predict due to their
extremely time-variant behavior.

This notwithstanding, in both Figs. 9 and 10 we can observe
that each technique is able to produce a satisfying forecast of
the original variables by remaining within the area delimited
by the forecast intervals.

By visual inspection, we observe that the VAR (red curve)
shows good performance when the time series do not exhibit
excessive fluctuations. This notwithstanding, when important
fluctuations are present, the VAR model is able to follow the
mean value of the oscillating time series (see, for instance,
the case of MOS - G.729 codec case). The reason is that
VAR is governed by a set of linear equations (see (2)), thus
it can suffer when representing some non-linear behaviors.
Occasionally, also the MLP technique shows slight difficulty
to fit the original values, once again due to the underlying lin-
ear model (see (18)). Such a behavior emerges in particular in
Fig. 9 where the MLP prediction moves a bit away from the
corresponding forecast intervals. Conversely, remaining tech-
niques show enough good adaptation to fluctuations, and, in
particular, the deep-based techniques whose internal structure
allows to keep the state at time ¢ —1 to improve the prediction
at time .

To better quantify the behavior of each technique, we have
evaluated the performance for each voice flow (namely for
each codec), for each technique, and for each time-based
variable as shown in Table IV. Each sub-table contains the
performance per voice flow in terms of test Root Mean Square
Error (RMSE), test Mean Absolute value of Errors (MAE),
Mean Absolute Percentage Error, defined, respectively, as

- N2
RMSE; = \/Zle(ng — 1) 7

(21)

L L
MAE] — Ztil |yjt yjt‘7 (22)

L
100 <= | yjt — 3

MAPE; = — S| 2222, (23)

L= v
Such metrics are computed for each time series j = 1,..., N,

with N = 6 and L the time series length. These three indicators
are often used jointly when evaluating the forecasting accu-
racy. The RMSE is a quadratic score rule which gives a
relatively high weight to large errors since these errors are
squared before they are averaged. The MAE is a linear score
rule designed to equally weight the individual differences.
The MAPE includes a normalization to actual values and
is expressed as percentage. Being such an indicator often
used as a summarizing metric, to easily pinpoint the best
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Fig. 9. G.722 codec: Multivariate time series forecasting for: MOS, Bandwidth, RTT, Jitter, Buffer, SNR, along with the 95% forecasting intervals in shaded
pale red. In the gray area on the right, the results of forecasting for each technique.
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Fig. 10. G.729 codec: Multivariate time series forecasting for: MOS, Bandwidth, RTT, Jitter, Buffer, SNR, along with the 95% forecasting intervals in shaded
pale red. In the gray area on the right, the results of forecasting for each technique.

forecasting technique in Table IV, the corresponding MAPE
value is indicated in red.

For each voice flow we have repeated a lag analysis (just
as seen in Section IV-A), and we have reported the optimal
lag value p* close to VAR model in each sub-table of
Table 1V.

Let us start to notice some general facts valid for all the
experiments. For each voice flow, we can notice that the three
performance indicators (RMSE, MAE, and MAPE) exhibit
very different ranges for each variable. For instance, in the
case of MOS, RMSE and MAE never reach the value 1. This
is due to the fact that all the chosen codecs guarantee a good
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TABLE IV
PERFORMANCE METRICS (RMSE, MAE, MAPE) PER CODEC (VOICE FLOWS)

Voice Track #1 (G.722 codec)

Voice Track #2 (G.729 codec)

Voice Track #3 (MPEG-16 codec)

VAR(p*=12) MOS BW RTT  Jitter Buffer SNR VAR(p*=13) MOS BW RIT Jitter Buffer SNR VAR(p*=11) MOS BW RTT  Jitter Buffer SNR
RMSE 0.017 14.01 10.41 3252 4874 11.41 RMSE 0.011 357 662 2199 58.1 727 RMSE 0.006 397 3499 3407 63.12 9.17
MAE 0.0149 632 53.72 14.64 37.7 10.3 MAE 0.01 252 565 19.41 453 5.55 MAE 0.003 2.84 105.5 19.8 434 7.86

MAPE (%) 0.3 8.0 16.0 14.0 31.0 68.0 MAPE (%) 0.2 170 320 27.0 24.0 165.0 MAPE (%) 0.07 9.7 23.0 11.0 44.0 94.0
RNN MOS BW RTT  Jitter Buffer SNR RNN MOS BW RTT Jitter Buffer SNR RNN MOS BW  RTT Jitter Buffer SNR
RMSE 0.044 2478 162.73 26.46 35.8 10.42 RMSE 0.04 6.21 64.4 28.4 52.5 5.03 RMSE 0.007 5.18 3255 75.8 68.7 12.4
MAE 0.038 1931 58.62 177 2354 944 MAE 004 569 489 255 49.8 2.37 MAE 0.006 408 1544 633 62.4 11.1

MAPE (%) 0.86 22.8 21.0 21.6 24.4 65.0 MAPE (%) 1.0 260 230 35.0 29.0 35.0 MAPE (%) 0.14 14.0 64.0 38.0 113.0 65.0
LSTM MOS BW RTT  Jitter Buffer SNR LSTM MOS BW RTT Jitter Buffer SNR LSTM MOS BW RTT  Jitter Buffer SNR
RMSE 0.016  14.05 14221 1629 33.73 573 RMSE 0.065 397 3369 218 14.8 4.58 RMSE 0.006 4.23 229.15 3279 41.76 6.31
MAE 0.007 6.78 53.25 7.79 20.13 4.92 MAE 0.063 3.04 2219 19.2 9.43 3.21 MAE 0.003 275 67.1 20.83 18.83 3.55

MAPE (%) 0.16 9.3 229 8.8 15.7 39.0 MAPE (%) 1.4 180 11.0 26.0 4.9 90.0 MAPE (%) 0.07 9.0 16.4 12.0 14.0 88.0
GRU MOS BW RTIT  Jitter Buffer SNR GRU MOS BW RIT Jitter Buffer SNR GRU MOS BW RTT  Jitter Buffer SNR
RMSE 0.016 14.04 148.67 1694  24.05 4.04 RMSE 0.04 524 3136 11.5 35.8 4.71 RMSE 0.004 439 23575 27.1 34.52 5.79
MAE 0.011 6.82 52.37 7.34 13.25 3.14 MAE 0.038 4.62 187 8.25 33.17 3.22 MAE 0.003 3.1 74.5 15.08 18.46 3.97

MAPE (%) 0.26 9.4 20.5 7.3 11.0 31.0 MAPE (%) 0.9 220 100 11.0 19.0 69.0 MAPE (%) 0.06 9.6 20.0 8.0 15.0 79.0
CNN MOS BW RTT  Jitter Buffer SNR CNN MOS BW RTT Jitter Buffer SNR CNN MOS BW  RTT  Jitter Buffer SNR
RMSE 0.03 1436 14584 2286  27.06 5.88 RMSE 0.024 325 3765 18.96 27.6 4.63 RMSE 0.0045 435 198.99 2554 21.4 5.82
MAE 0.017 7.26 48.78 11.36 16.97 5.16 MAE 0.018 1.8 3031 16.3 22.36 3.21 MAE 0.0026  2.86 66.4 14.45 13.45 3.79

MAPE (%) 0.4 9.7 19.0 11.8 143 42.0 MAPE (%) 0.4 14.0 17.0 23.0 12.0 80.0 MAPE (%) 0.061 9.4 23.0 6.7 15.0 72.0
MLP MOS BW RTT  Jitter Buffer SNR MLP MOS BW RTT Jitter Buffer SNR MLP MOS BW RTT  Jitter Buffer SNR
RMSE 0.03 5032 181.8 33.06  68.10 8.63 RMSE 005 359 575 2279 30.62 4.61 RMSE 0.004 486 231.6 42.13 39.4 8.25
MAE 0.02 28.81 81.09 18.14 4197 6.57 MAE 005 219 498 2023 25.7 3.44 MAE 0.0025 3.33 743 21.3 234 2.7

MAPE (%) 0.4 35.0 40.0 19.0 34.0 54.0 MAPE (%) 1.1 17.0  30.0 28.0 15.0 118.0 MAPE (%) 0.06 11.0 21.0 12.0 22.0 49.0

RF MOS BW RIT  Jitter Buffer SNR RF MOS BW RIT Jitter Buffer SNR RF MOS BW RTT  Jitter Buffer SNR
RMSE 0025 1515 16739 29.64 3339  8.03 RMSE 005 514 4565 2756 1725 541 RMSE 0.006 438 3327 305 23.3 5.93
MAE 0.023 7.6 53.08 18.5 23.65 6.27 MAE 0.043 3.87 3497 25.16 12.41 3.89 MAE 0.002 2.8 93.1 18.6 15.2 4.15

MAPE (%) 0.52 10.0 17.0 22.0 20.0 50.0 MAPE (%) 1.0 21.0 19.0 34.0 7.0 112.0 MAPE (%) 0.05 9.0 17.0 10.0 17.0 54.0
XGB MOS BW RTT  Jitter Buffer SNR XGB MOS BW RTT Jitter Buffer SNR XGB MOS BW RTT  Jitter Buffer SNR
RMSE 0.017 1441 160.57 2928 20.78 6.28 RMSE 0.010 457 569 9.45 19.75 4.18 RMSE 0.007 451 27072 226 17.75 7.32
MAE 0.012 6.55 47.1 13.77 11.21 4.46 MAE 0.004 32 37.5 575 14.18 2.57 MAE 0.0019  3.01 60.1 1.24 8.91 4.62

MAPE (%) 0.27 9.5 14.5 13.0 10.0 37.0 MAPE (%) 0.1 170 21.0 7.0 8.0 82.0 MAPE (%) 0.04 9.8 11.0 5.0 9.2 58.0

Voice Track #4 (OPUS codec) Voice Track #5 (GSM codec) Voice Track #6 (SPX8000 codec)

VAR(p*=11) MOS BW RIT  Jitter Buffer SNR VAR(p*=5) MOS BW RTT Jitter Buffer SNR VAR(p*=8) MOS BW RTT  Jitter Buffer SNR
RMSE 0.02 32 222 67.9 78.1 6.67 RMSE 0.06 3.7 375 7.6 60.0 10.6 RMSE 0.02 49 108.4 30.2 1233 8.7
MAE 0.02 1.58 18.2 60.1 77.3 5.01 MAE 0.06 1.5 21.5 6.3 42.8 33 MAE 0.014 39 56.8 18.5 109.2 6.4

MAPE (%) 0.4 3.1 15.0 13.0 177.0 48.0 MAPE (%) 1.3 25.0 13.0 8.0 38.0 170.0 MAPE (%) 0.3 13.0 23.0 17.0 58.0 26.0
RNN MOS BW RTT  Jitter Buffer SNR RNN MOS BW RTT Jitter Buffer SNR RNN MOS BW RTT Jitter Buffer SNR
RMSE 0.04 3.25 37.8 201.1 40.35 59 RMSE 0.06 128 46.8 22.0 35.7 9.26 RMSE 0.06 5.14 110.0 47.6 110.7 8.01
MAE 0.04 1.62 35.8 198.1 389 49 MAE 0.05 11.8 432 21.6 26.5 83 MAE 0.06 42 50.2 40.1 96.4 6.34

MAPE (%) 0.8 32 28.0 420 90.0 61.0 MAPE (%) 1.0 40.0 30.0 29.0 30.0 260.0 MAPE (%) 14 14.0 17.0 40.0 50.0 28.0
LSTM MOS BW RTT  Jitter Buffer SNR LSTM MOS BW RTIT Jitter Buffer SNR LSTM MOS BW RTT  Jitter Buffer SNR
RMSE 0.016 3.25 8.05 27.97 16.73 3.96 RMSE 0.06 38 35.1 4.4 24.4 54 RMSE 0.016 49 80.8 16.7 63.7 6.5
MAE 0.016 1.53 6.4 22.8 15.63 278 MAE 0.06 1.9 20.5 34 14.4 39 MAE 0.013 3.8 30.8 10.5 45.8 4.6

MAPE (%) 0.37 32 5.0 5.0 36.0 32.0 MAPE (%) 13 250 120 4.0 15.0 80.0 MAPE (%) 0.3 120 14.0 10.0 20.0 20.0
GRU MOS BW RTT  Jitter Buffer SNR GRU MOS BW RTT Jitter Buffer SNR GRU MOS BW RTT Jitter Buffer SNR
RMSE 0.005 3.19 19.36 17.7 36.5 5.57 RMSE 0.04 38 335 4.1 20.4 49 RMSE 0.01 5.01 68.6 17.4 49.7 7.1
MAE 0.005 1.3 18.6 12.6 35.6 4.8 MAE 0.03 203 207 3.1 1.4 2.8 MAE 0.008  4.04 413 10.4 40.5 52

MAPE (%) 0.1 3.0 15.0 2.8 82.0 58.0 MAPE (%) 0.8 25.0 13.0 4.0 10.0 48.0 MAPE (%) 0.2 13.0 20.0 9.6 20.0 26.0
CNN MOS BW RTT  Jitter Buffer SNR CNN MOS BW RTT Jitter Buffer SNR CNN MOS BW RTT Jitter Buffer SNR
RMSE 0.008 3.44 10.1 23.9 13.1 438 RMSE 0.021 4.6 22.4 3.48 243 4.8 RMSE 0.02 526  55.01 13.3 26.3 6.78
MAE 0.008 1.84 825 19.6 11.5 332 MAE 0.018 3.0 15.1 2.72 11.5 3.05 MAE 002 414 332 8.6 18.4 53

MAPE (%) 0.2 4.0 6.0 4.0 26.0 42.0 MAPE (%) 0.4 30.0 8.0 3.7 11.0 70.0 MAPE (%) 0.2 13.0 17.0 9.0 9.7 26.0
MLP MOS BW RTT  Jitter Buffer SNR MLP MOS BW RTIT Jitter Buffer SNR MLP MOS BW RTT  Jitter Buffer SNR
RMSE 0.01 4.6 10.4 343 23.05 5.03 RMSE 0.06 4.1 323 34 21.6 49 RMSE 0.02 5.1 51.6 15.3 354 72
MAE 0.01 3.1 8.32 29.3 21.37 4.09 MAE 0.04 23 19.2 25 10.6 3.1 MAE 0.014 414 3126 9.9 27.1 57

MAPE (%) 0.2 6.0 6.0 6.0 48.0 50.0 MAPE (%) 09 250 120  3.65 11.0 70.0 MAPE (%) 0.3 13.0 160 11.0 15.0 26.0

RF MOS BW RTIT  Jitter Buffer SNR RF MOS BW RIT Jitter Buffer SNR RF MOS BW RTT  Jitter Buffer SNR
RMSE 0014 3.05 8.32 69.3 19.07 45 RMSE 006 37 363 6.0 422 5.1 RMSE 0.02 52 95.5 21.9 80.7 6.8
MAE 0.013 1.5 6.1 54.2 16.4 297 MAE 0.05 1.4 21.4 4.6 27.9 33 MAE 0.02 4.01 54.8 15.1 66.1 5.6

MAPE (%) 0.3 3.0 4.8 11.0 38.0 35.0 MAPE (%) 1.0 20.0 13.0 6.0 24.0 65.0 MAPE (%) 0.4 13.0 24.0 16.0 33.0 26.0
XGB MOS BW RTT  Jitter Buffer SNR XGB MOS BW RTT Jitter Buffer SNR XGB MOS BW  RTT  Jitter Buffer SNR
RMSE 0.004 34 6.5 474 6.7 5.1 RMSE 0.04 3.7 30.9 4.5 28.2 4.79 RMSE 0.01 5.6 100.9 23.6 79.8 6.8
MAE 0.003 1.64 4.4 355 55 3.34 MAE 0.01 149 142 2.4 17.1 29 MAE 0.006 44 54.5 133 66.3 4.4

MAPE (%) 0.07 34 3.5 7.0 12.0 33.0 MAPE (%) 0.2 25.0 7.0 3.6 23.0 50.0 MAPE (%) 0.1 14.0 20.0 13.0 30.0 18.0

perceived quality, with a MOS varying within a limited range
of values (MOS values never lie below 4). This directly reflects
into low values of all the indicators.

Conversely, RTT varies within a great range of values with
some unusual peaks due to the temporary network conditions
(see, e.g., the peaks of RTT in green at about ¢ 30 s
and t = 415 s in Fig. 2). In such cases, all the forecasting
techniques are (obviously) not able to predict this behavior, thus
the prediction error is quite large. Such a condition directly
reflects onto performance indicators and, in particular, onto
RMSE whose values are high and hugely different between
them since RMSE tends to magnify large errors. Yet, the SNR

exhibits a quite standard smooth behavior with weak oscillations
and not unusual peaks. Thus, the performance indicators are not
dramatically high, indicating a satisfying forecasting accuracy.

Indeed, if we compare the performance accuracy for each
technique, we can observe that: VAR technique, as also men-
tioned before, could return satisfactory result when the time
series does not exhibit too many non-linearities; on average,
deep techniques such as LSTM, GRU, and CNN produce satis-
factory results (see MAPE values in red). For LSTM and GRU
the results are justified thanks to the presence of a memory-
based internal structure able to keep track of past values. For
CNN, results are justified by the presence of a convolutional
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Fig. 11. Box-plots of the elapsed times for each forecasting technique applied
to all the available voice flows.

structure able to derive the most significant temporal features.
Remaining deep based techniques (RNN and MLP) exhibit
less performing accuracy results due to their naive internal
structure which does not exploit any particular characteristic of
temporal data. Among standard machine learning techniques,
XGBoost exhibits the best performance since it relies on a
combination of ensemble models useful to improve the quality
of prediction.

The performance analysis should be complemented by a
time evaluation to better compare the considered techniques.
Figure 11 shows the results of such a comparison obtained
by exploiting a platform equipped with 2 virtual CPUs (Intel
Xeon @2.30 GHz) and 13 GB of RAM. In this time analy-
sis we take into account all the experiments (namely, all the
voice flows) in order to highlight possible variability through a
boxplot representation. First, such an analysis reveals that the
VAR technique is able to perform the forecasting in few mil-
liseconds as shown within the top-right inset. This is basically
due to the fact that VAR is built through a linear combination
of lagged values to forecast the next sample. In contrast, deep
methods require more time (in particular during the training
time) to perform the forecasting due to their internal structure
which can be more or less complicated (e.g., memory-based
cells, convolution operations). In the middle we find XGB
and RF which, relying on an optimized tree-based structure,
are quite fast. The boxplot representation also highlights that,
when using a technique with a complex internal structure
(typically, deep-based techniques) the time variability directly
increases. This is obviously connected to the fact that a more
complex structure may produce higher delays. This behavior is
captured through the inter-quartile range (IQR) defined as the
difference between third and first quartiles. Large IQR value
imply more dispersed values. In case of deep-based techniques
we observe the following IQR values: RNN (0.88), LSTM
(1.59), GRU (1.58), CNN (0.42), MLP (0.79). In case of stan-
dard learning techniques we have: RF (0.15), XGB (0.14).
Finally, VAR is the more stable having the smallest IQR value
amounting to 0.006.

A. Main Findings

Through the proposed assessment we are able to infer some
general considerations about the evaluated forecasting tech-
niques. First of all, we can reasonably say that there is not a
definitive winner, since the forecasting complexity does not
allow to select an outperforming technique in an absolute
sense. An insightful comparison can be made between the
statistical approach (represented by VAR) and the learning
techniques.

First, we highlight that the VAR method allows a com-
plete control on the analytical structure of each time series.
In particular, its ancillary analyses (e.g., residuals, impulse
response) provide deep insights about the time series composi-
tion and their mutual relationships. In contrast, the data-driven
approach adopted by learning techniques does not allow to
capture many analytical details. For instance, guaranteeing the
stationarity condition (not required by learning approaches)
allows to obtain useful descriptors (mean, variance, corre-
lation) of the future behavior of a time series. Conversely,
in case the stationarity condition is violated (namely if the
series is consistently increasing over time) the sample mean
and variance will grow with the sample size, and will tend to
underestimate the mean and variance in future periods.

Second, VAR is a good choice in case the time series
exhibits a good stability over time, or when the observation
time is wider than tens of minutes (e.g., per-month or per-
year). In this latter case, in fact, the temporal irregularities tend
to be smoother, and the linear combination of past lagged val-
ues offer better performance. Conversely, being intrinsically
adaptive, learning techniques are more responsive in pres-
ence of network parameters fluctuations. Furthermore, VAR
offers challenging performance in terms of compute times
due to the simplicity of the model. On the other hand, deep
recurrent methods (RNN, LSTM, GRU, CNN, MLP) exhibit
slower computation times along with high temporal uncer-
tainty (high IQR values) mainly due to the complex internal
structure. Among standard ML techniques, XGBoost offers an
interesting trade-off between accuracy and time.

We finally notice that, differently from all the learning tech-
niques, VAR does not need any hyper-parameter tuning (other
than the optimal lag) which, if not accurate, could lead to poor
performance.

VI. CONCLUSION

In this work we tackle the problem of forecasting mobile
VoIP traffic in a real cellular environment. The main purpose is
to provide precious information to network operators allowing
them to optimize the network planning in mobile environ-
ments. In particular, we characterize the temporal evolution
of the most important QoS/QoE descriptors of VoIP traf-
fic through a multivariate time series assessment. Forecasting
techniques such as Vector Autoregression and machine learn-
ing approaches have been compared to highlight pros and cons
both in terms of performance and times.

The work presents a series of novelty elements. First, we
propose a multivariate time series characterization of network
descriptors, an approach currently used by econometricians to
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model and predict the market stock evolution. Through such
an approach it is possible to analytically capture the interde-
pendencies among the stochastic processes which govern the
network variables behavior. Then, the time series problem has
been turned into a supervised learning framework through the
sliding window technique.

Such reframing of the problem is useful to: i) reinterpret
the classic concepts of training/test sets in terms of temporal
values of a time series aimed at forecasting future values of
network descriptors; ii) compare in a critical manner statistical
techniques (here represented by the VAR model) and machine
learning methods. Results show that VAR is the optimal choice
when a complete analytical control on the variables is needed,
when the network fluctuations are not so persistent, or when
strict elaboration time constraints are present. In contrast,
learning-based techniques provide excellent accuracy in case
of network instability due their data-driven approach.

Finally, the whole assessment is supported by an exper-
imental campaign in a real mobility LTE-A environment,
where through the evolved RTCP-XR protocol, we are able
to derive network metrics typically neglected in the literature
(e.g., MOS, SNR, playout delay buffer).

Such a work remains open for future investigations along
several directions: i) the main techniques adopted for this anal-
ysis could be extended to technologies such as 5G as they
become more pervasive and with the possibility of acquiring
data from real settings; i) many derived models could be used
as benchmark to design more realistic network simulators; ii7)
new parameters such as the car’s speed could be gathered and
related to the behavior of the VoIP metrics; iv) it could be
possible to repeat the whole analysis in a transformed domain
(e.g., wavelet domain in place of time domain).
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