
4600 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 4, DECEMBER 2023

A Collaborative Computation and Offloading
for Compute-Intensive and Latency-Sensitive

Dependency-Aware Tasks in Dew-Enabled
Vehicular Fog Computing: A Federated

Deep Q-Learning Approach
Kaushik Mishra, Member, IEEE, Goluguri N. V. Rajareddy , Umashankar Ghugar, Member, IEEE,

Gurpreet Singh Chhabra , and Amir H. Gandomi , Senior Member, IEEE

Abstract—The demand for vehicular networks is prolifically
emerging as it supports advancing in capabilities and quali-
ties of vehicle services. However, this vehicular network cannot
solely carry out latency-sensitive and compute-intensive tasks,
as the slightest delay may cause any catastrophe. Therefore,
fog computing can be a viable solution as an integration to
address the aforementioned challenges. Moreover, it comple-
ments Cloud computing as it reduces the incurred latency and
ingress traffic by shifting the computing resources to the edge
of the network. This work investigated task offloading methods
in Vehicular Fog Computing (VFC) networks and proposes a
Federated learning-supported Deep Q-Learning-based (FedDQL)
technique for optimal offloading of tasks in a collaborative
computing paradigm. The proposed offloading method in the
VFC network performs computations, communications, offload-
ing, and resource utilization considering the latency and energy
consumption. The trade-offs between latency and computing and
communication constraints were considered in this scenario. The
FedDQL scheme was validated for dependent task sets to analyze
the efficacy of this method. Finally, the results of extensive simu-
lations provide evidence that the proposed method outperforms
others with an average improvement of 49%, 34.3%, 29.2%,
16.2% and 8.21%, respectively.

Index Terms—Deep reinforcement learning, federated learning,
mobile fog computing, q-learning, vehicular fog computing, task
dependency, task offloading.

I. INTRODUCTION

VEHICULAR networks play a consequential part in smart
transportation systems due to the rapid evolvement of
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the Internet of Things (IoT). These vehicular networks facil-
itate numerous advanced yet complex applications, such as
automatic driving, crash detection, AR&VR-enabled intel-
ligent applications, and other interactive modules for pas-
sengers. These applications need intensive computations on
resources and interactive communications, which are criti-
cal challenges for vehicular networks requiring rich complex
services. Besides, the ingress traffic on the road makes the
computations/communications difficult with the limited capa-
bilities of vehicles. These applications on vehicles are required
to handle latency-sensitive data without delay, for which the
network connectivity must be stable and accelerated to han-
dle such tasks within a deterministic span of time. However,
the slightest delay in communication between vehicles may
cause a catastrophe. Therefore, the vehicular network cannot
solely be responsible for these latency-sensitive and compute-
intensive tasks, thus a high-end computing paradigm-based
vehicular network is required.

Cloud computing has been viewed as a viable solution
to address these issues for vehicular networks [1], [2]. On
this Cloud-based vehicular network, tasks are offloaded to
the Cloud for computation and storage due to the high com-
puting capabilities of Cloud VMs. However, the existence
of the physical gap between the vehicles and the Cloud
server results in a significant latency gap, which reduces the
performance and efficiency of task offloading. Thus, it requires
a decentralized architecture and full-fledged paradigm that
reduces the incurred latency and copes with the compute- and
time-intensive and latency-sensitive tasks requiring complex
requirements in complementary with Cloud computing.

Fog-based vehicular computing (VFC) is a cutting-edge
computing paradigm to address the innate loopholes of the
Cloud-based vehicular network [3], [4]. To tackle the require-
ments of complex tasks, VFC has been envisioned as a
potential solution, providing both on-demand computation and
communication resources. Integrating Fog computing with
Cloud computing considerably reduces the latency and traf-
fic density as well as improves the users’ response time.
The computation and communication at/to the Fog computing
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work in parallel with the services provided at the edge of
the network through the Mobile Edge Computing (MEC) or
Mobile Fog Computing (MFC) servers equipped in each Road
Side Unit (RSU) and Access Points (APs) [5]. However, these
RSUs have much less capacity in terms of power, storage and
computation. The computation of high-intensive tasks causes
high energy consumption at RSUs. In the VFC network, the
Fog servers are coupled with RSUs or deployed as a sepa-
rate entity. In this work, we consider the decoupling mode
of Fog servers due to the flexibility in the computations of
tasks with disparate requirements. The Fog layer encompasses
both homogeneous and heterogeneous Fog nodes to cope with
compute-intensive and latency-sensitive tasks. The computa-
tional capabilities of Fog nodes change depending upon the
vehicular specifications. In architecture, each RSU keeps in
touch with all the Fog servers and their corresponding Fog
nodes. At a given time, one Fog server may be connected to
several RSUs, but each RSU is only ever connected to one Fog
server. An RSU either computes locally or offloads a request
to the Fog server for processing when it receives one.

A. Problem Definition

The VFC imposes several challenges. The first and most
challenging issue is unstable network connectivity. Internet con-
nectivity is an indispensable part of vehicular networks needed
for transmitting any request. Unstable network connectivity
may lead to a catastrophic situation. Therefore, a Dew-enabled
Internet of Things is facilitated in this architecture.

The second most prominent challenge is the high consump-
tion of energy by the RSUs [6]. A considerable amount of
energy is consumed by the RSUs during the offloading of the
requests and processing of some requests locally. The incurred
consumption is dependent on the quality of the medium con-
nected to the Fog servers and the arrival rate of the requests
at the RSUs. Although it processes some requests locally, it
also consumes energy due to the disparate specifications and
requirements of requests. Hence, there is a need for an optimal
association among RSUs and Fog servers to reduce energy
consumption.

A third challenge is the dispersion of the loads uniformly
across Fog nodes to improve the QoS. Khattak et al. [7]
and Kai et al. [8] proposed the integration of the princi-
ples of Fog computing with the vehicular ad-hoc network.
However, the load balancing among Fog nodes in terms of
QoS was not considered. Though the loads are of different
configurations, these require to be offloaded uniformly across
Fog nodes to prevent overloaded or underloaded conditions.
The computation of loads depends on the arrival rate and
requirements of each request at the corresponding RSU. The
overloaded/underloaded condition arises due to the involve-
ment of the different arrival rates at RSUs. In order to increase
QoS (resource usage), the collaboration between RSUs and
Fog servers must be established in order to significantly reduce
the load imbalance.

The system costs also pose another challenge in these vehic-
ular networks. The communication and computation costs
together make the system costs. Earlier, RSUs were powered

by renewable energy for the offloading and the MFC servers
were generating profits from them. However, since the exist-
ing resources have become scarcer due to the rapid ingress of
traffic with other challenges nowadays, the vehicles can lease
the resources to facilitate the task offloading.

B. Motivation

Deep learning (DL), a subset of the Machine Learning (ML)
domain, is a promising solution to address complex prob-
lems. AI is an enabler for DL to mimic the learning process.
Deep Reinforcement Learning (DRL) combines DL and RL,
making use of DL’s noncognitive behaviour and RL’s abil-
ity to make decisions [9]. DRL interacts with the vehicles
directly and obtains the optimal scheduling/offloading strat-
egy mapping. Based on the existing literature, several works
have used DRL to find the optimal offloading decision. For
instance, Yao et al. [9] proposed a hybrid resource allocation
strategy for VFC using reinforcement learning with heuristic
information. Qu et al. [10] proposed a DMRO algorithm inte-
grating DNN with Q-learning and meta-learning approaches
to identify the optimal offloading decisions. Ning et al. [11]
devised a resource management algorithm using DRL for
VEC. To meliorate the effectiveness of vehicular networks
(VNs), Maan and Chaba [12] devised a strategy using a Deep
Q-network for offloading. To optimize the total utility of VEC,
Liu et al. [13] implemented a combined offloading strategy uti-
lizing Q-learning and DRL together. He et al. [14] proposed
an offloading method using DRL to improve the Quality of
Experience (QoE) for the Internet of Vehicles. However, load
balancing was not considered by the aforementioned strategies
while allocating the tasks from vehicles, leading to insignifi-
cant resource utilization and latency overhead. The traditional
ML methods utilize a central server to collect and process
the data. However, the central server gets overloaded with
computation and communication overheads. Because data pri-
vacy is also an indispensable part of data acquisition, the
efficiency and accuracy of ML techniques largely depend on
the data’s size and the central server’s capacity, which exhibit
challenges in achieving optimal and accurate results with data
confidentiality. In order to address the aforementioned issue
of traditional ML and DRL techniques, this work proposes
a Federated learning-supported Deep Q-learning offloading
strategy that facilitates the uploading of data collaboratively
into a global model without sharing the raw data [15].

Our work aimed to analyze the task-offloading strat-
egy in two scenarios: (1) considering cooperative and non-
cooperative MFC servers, and (2) considering task depen-
dency. In the first case, when a vehicle passes through an
RSU, the tasks related to the respective vehicle are indepen-
dently computed by the MFC server associated with that RSU.
On the contrary, when many vehicles offload their tasks to the
RSU, the RSU chooses whether to compute such tasks locally
or transfer them to the next RSU (located in the direction of
the moving vehicle) deployed at Fog servers for computation.
Hence, the computation is being performed cooperatively. In
the second case, we consider dependent tasks for computation.
In vehicular networks, vehicles generate a huge amount of
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Fig. 1. (a) Representation of a task through a DAG; (b) Fine-grained task
offloading.

tasks with heterogeneous requirements that need parallel exe-
cution and, hence, are divided into many sub-tasks. Each
sub-task is then processed by different computing nodes based
on the offloading strategy to reduce both the computation and
response time. Figure 1(a) represents the inter-sub-dependency
of a task through a Directed Acyclic Graph (DAG), where
the task is divided into seven sub-tasks. Figure 1(b) shows
the fine-grained task scheduling in the Vehicle-VFC-Cloud
collaborative framework.

C. Contribution

As mentioned, this paper proposes a Dew-enabled Federated
learning-supported Deep Q-learning-based (FedDQL) offload-
ing method for compute-intensive and latency-sensitive depen-
dent tasks for a collaborative DIoT-Edge-Fog-Cloud frame-
work. This strategy collaboratively optimizes the latency and
computations for its intended tasks by reducing the energy
consumption of MFC servers. Moreover, the computation
loads are uniformly distributed across Fog nodes to prevent
load imbalance and, thus, maximize resource utilization. The
Fog nodes in the Fog layer are grouped into clusters, each
of which contains a homogeneous Fog server, heterogeneous
Fog server, Fog nodes, and numerous RSUs. In addition, each
cluster has a DQL agent to train the DQL to determine the
offloading decisions. A collaborative framework is proposed
for tasks offloading in Vehicular Fog Computing. Intermediate
nodes, such as routers, gateways, or switches, are deployed on
the edge of the network along with a classifier to classify
the incoming requests and offload them to the target lay-
ers for computation. The Fuzzy classifier is a classifier that
determines the target layer for offloading based on the tasks’
requirements, including network bandwidth, size in MI, CPU,
resource utilization, etc.

The contributions of this paper are delineated as follows:
• Modelling the framework with the principles of Dew

computing in order to enable the Internet of Vehicles for
uninterrupted task offloading;

• Proposing a collaborative Dew-enabled IoT-Edge-Fog-
Cloud computing framework for efficient offloading of
tasks, where a DAG depicts the interdependencies among
sub-tasks;

• Proposing a Federated learning-supported Deep
Q-learning algorithm for dependency-aware task
offloading;

• Considering load-balancing, resource utilization, energy
consumption, response time (latency), and deadline as
QoS metrics to appraise the efficacy of the implemented
method; and

• Conducting an empirical assessment of the proposed
offloading strategy with other existing methods.

The rest of the paper is organized as follows. Section II
reviews the related research. Section III describes the com-
putational models and problem formulation for compute-
intensive and latency-sensitive dependency-aware task offload-
ing. The proposed Federated learning-supported Deep Q-
learning offloading strategy is elucidated in Section IV.
Section V provides an empirical assessment and analysis of the
considered QoS parameters for the proposed strategy. Finally,
Section VI concludes the paper and highlights future research
directions.

II. RELATED RESEARCH

The VANET model has been extended to Vehicular Fog
Computing (VFC) by enabling the core principles of Fog com-
puting for the effective offloading of latency-sensitive tasks to
compute-intensive vehicles. It facilitates reducing energy con-
sumption, response time, load balancing, and latency while
improving resource utilization and, thus, performance. The
related research boils down to two primary aspects: (1) Fog
computing in vehicular networks, and (2) deep learning for
task offloading. The existing works for both of these aspects
are briefly summarized as follows.

A. Fog-Assisted Vehicular Networks

A great deal of work has addressed the issues related to
vehicular networks using the appealing characteristics of Fog
computing in collaboration with the Cloud [16], [17], [18],
[19]. For instance, to reduce the total response time of delay-
sensitive tasks, the authors of [16] proposed a heuristic-based
greedy scheduling algorithm for a three-layered VFC archi-
tecture for offloading tasks. Next, a Fog-assisted vehicular
computing framework is presented in [17], which is utilized
as a testbed for controlling the ingress traffic on the roads.
The authors stated that the computations are performed by the
RSUs deployed along the road with the assistance of mobile
vehicles to meet the demand of the ever-increasing growth of
compute-intensive tasks by smart vehicles. To identify conges-
tion among vehicles, [18] proposed a Fog-enabled framework
to process the sensed data locally by optimizing the commu-
nication. To preserve the privacy of VFC, the authors of [19]
introduced a real-time framework called GALAXY supported
by Federated learning without the aid of the Cloud.

B. Deep Learning for Task Offloading

In an aim to reduce the transmission power and latency, the
authors of [20] devised a collaborative optimization technique
to allocate tasks into Fog nodes in an IoT-Fog-Cloud archi-
tecture. For efficient resource management, [21] proposed a
two-fold technique for allocating tasks and managing vehicu-
lar resources optimally in a VFC. In the latter work, contract
theory and two-side matching games were formulated for
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resource management and task allocation, respectively. Using
an actor-critic-based DRL algorithm, the authors of [22]
devised an offloading algorithm considering priority in VFC by
predicting the dynamic pricing of vehicles. In [4], the authors
developed a resource allocation algorithm for parked and slow-
moving vehicles in VFC, aiming to reduce parked vehicle
service latency. The authors used a combined recurrent neu-
ral network (RNN) with DRL and, later, introduced a heuristic
strategy to expedite the convergence rate of RL algorithms. To
lessen the VM migration and reduce the power consumption
during migration, the authors of [23] devised a mechanism
called EnTruVe (ENergy and TRUst-aware VM allocation in
VEhicular Fog Computing). In addition, an analytical hierar-
chy process was used to determine an optimal VM based on
trust and latency, providing a large pool of vehicular fogs to
satisfy the requirements of VMs. In order to minimize the
computation-to-communication cost and latency, the authors
of [24] proposed a Fuzzy RL-based offloading algorithm that
elevates the learning process and maximizes the long-term
reward over the Q-learning algorithm. The authors of [25]
introduced a dynamic clustering-enabled clustering-based load
balancing approach. Moreover, the technique considers the
speed, direction, and position of moving vehicles to form
groups for making a pool of computing resources. In addi-
tion, it also employs a capacity-based load-balancing approach
for performing the distribution of loads between vehicles and
among the cluster of vehicles. To decide the target layers for
offloading, the authors of [26] proposed a Federated learning-
supported DRL mechanism for VFC, which learns through the
learning model among Fog nodes and vehicles, resulting in fast
convergence. Network overhead is also significantly reduced
due to the implementation of Federated learning, and thus, the
privacy of the users’ data is also preserved.

III. SYSTEM MODELS AND PROBLEM FORMULATION

Initially, this section introduces a dew-enabled VFC network
model for task offloading. Next, different system models,
including the vehicular task, communication, and computation
models, are elaborated. Furthermore, the problem formulation
with key objectives is discussed.

A. Dew-Enabled VFC Network Model

The proposed dew-enabled Vehicular Fog Computing
model, a collaborative task offloading network/communication
framework, is illustrated in Fig. 2. The model consists of five
layers: the bottom IoT layer, Dew layer, Edge layer, Fog layer,
followed by the Cloud layer. The roles and significance of each
layer in task offloading in a vehicular network are described
as follows.

At the ground layer, the IoT layer consists of numerous
Internet-enabled physical devices (vehicles), which generate
requests of disparate specifications. Vehicles also contain local
processing units. All communications take place through a sta-
ble Internet connection. However, a stable connection around
the clock seems impractical, and any catastrophe may arise
due to unstable connectivity. Therefore, the core principles

Fig. 2. Dew-enabled task offloading model.

of Dew computing are embedded for uninterrupted commu-
nication during unstable connectivity. Dew servers consist of
local host machines that contain Dew DBMS, Dew Client pro-
gram, and Dew interactive sites. Dew servers keep backups in
their storage and provide services when unstable connectiv-
ity occurs. Meanwhile, if the user updates any data then the
Dew server keeps it in the Dew DBMS and makes it reflected
on the user program when the connectivity becomes stable.
Therefore, these Dew-enabled IoT devices are deployed in the
geographical region for uninterrupted services for vehicular
networks.

Vehicles with Internet connectivity transmit requests to the
Cloud or Fog layer to be processed via the Edge layer. The
Edge layer is made up of plenty of intermediary nodes, includ-
ing routers, switches, or gateways, that are used to direct
the requested packets to the following layer immediately.
Additionally, it uses a Fuzzy logic classifier to categorize the
tasks in order to identify the target offloading layers based
on the requirements of each task. However, this layer exhibits
some challenges in terms of security, cost, connectivity, scala-
bility and complexity [8], [9], [11]. This concept is theoretical
and close to impossible in implementation. This layer is a
replica of how the computations can be done on the edge
of the network via intermediate nodes. The requests are then
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sent to the Cloud or Fog layer, depending on which one will
handle them. The Fog layer is an amalgamation of different
Fog nodes with homogeneous and heterogeneous resources.
These Fog nodes are computing nodes in terms of virtual
machines (VMs) to process requests either collaboratively or
locally in this layer. Furthermore, these computing nodes are
clustered together based on the computing capacity into two
groups: Collaborative Fog Nodes (CFNs), which is a collec-
tion of both homogenous and heterogeneous resources that
are able to handle tasks (or requests) with disparate specifica-
tions; and Local Fog Nodes (LFNs), which is a combination of
only homogeneous resources that is capable of handling tasks
with minimum completion time or requirements. Moreover,
this layer also deploys RSUs and MFC servers to communi-
cate among vehicles. Each RSU is embedded with an MFC
server and gathers service requests from vehicles within its
range while each MFC server processes tasks and subtasks
through offloading. Here, the nodes are geographically dis-
tributed facilitating the execution of the tasks in a distributed
way to leverage the centralized architecture of the Cloud data-
centre. The tasks with high requirements or tasks taking longer
to execute in the Fog layer are offloaded to the Cloud for pro-
cessing and storage. The Cloud datacentre encompasses the
physical machines (or hosts) and VMs out of hosts through
virtualization technology. The VMs are the computing entities
for enabling the scheduling and execution of high-end tasks.
The centralized architecture of the Cloud datacentre results
in high response time and latency overhead. The Fog layer
is introduced in the proposed framework to minimize these
issues.

We assume that the tasks are dependent in nature and,
hence, partitioned into subtasks. Furthermore, we assume that
N compute-intensive and latency-sensitive tasks are connected
with each vehicle and will be scheduled and computed within
a deterministic completion time. The number of RSUs is rep-
resented as R = {1, 2, 3, . . . , r , . . . ,R}, and the group of
vehicles is referred to as V = {1, 2, 3, . . . , v , . . . ,V }. The
variable T v

n refers to the nth task of the vehicle v.

B. Vehicular Task Model

This section introduces dependency-aware task offloading
for the vehicular task model. Interdependency among tasks is
considered as the tasks are not atomic. In other words, when
a task is broken down into subtasks, the processing of each
subtask is dependent upon its previous subtask’s execution.
The processing of each subtask is based on the requirements
of each subtask and is offloaded to the respective target layer
for processing (locally (vehicle) or via Fog or Cloud). The
subtasks of a task are represented through a Directed Acyclic
Graph (DAG) and modelled as G = (τ, ε), where τ is the
array of subtasks and ε is the pair of directed edges depicting
interdependencies between two subtasks. Let I = |τ | repre-
sent the total set of subtasks of a task T v

n . In DAG, a vertex
T v
n,i denotes the i th subtask of the nth task of the vehicle

v, and a directed edge (T v
n,i , T v

n,j ) indicates the interdepen-

dency between the i th subtask and j th subtask of T v
n . The

j th subtask can be executed only if the i th subtask has been
completed, where i , j ∈ I .

As shown in Fig. 1, the task T 3
2 (n = 1, 2, . . . n; v =

1, 2, . . . v) is broken down into seven subtasks, such as
T 3
2,1, T 3

2,2, T 3
2,3,T

3
2,4,T

3
2,5, T 3

2,6, and T 3
2,7 of the form

T v
n, i ;i=1,2,...,7. The subtask T 3

2, 1 is the entry subtask and
executes first, and T 3

2,7 is the exit subtask and executes at
the end until all its predecessor subtasks have been exe-
cuted. Each subtask T v

n,i is defined with four attributes, i.e.,
T v
n,i = 〈Lv

n,i , Dv
n,i , d

v
n,i ,C

v
n,i 〉, where 〈Lv

n,i 〉 denotes the
length of the subtask in MI, 〈Dv

n,i 〉 is the latency rate of the
subtask, 〈dvn,i 〉 is the deadline (hard or soft or firm) of the
subtask, and 〈C v

n,i 〉 is the number of resources required for
computation to execute T v

n,i .
In our approach, a task can be categorized into three classes,

namely crucial, high-end, and low-end tasks. We assume
that the crucial tasks are those which contain some crucial
information about the vehicle and, hence, can be computed
in the vehicle itself. High-end tasks are associated with some
priority and deadline. If the high-end tasks do not meet the
deadline, the outcome must not be considered or the task is
considered as failed. Low-priority tasks also have some prior-
ity and deadlines. Unlike high-priority tasks, if the low-priority
tasks do not meet the deadline, the outcome is still in use,
but the outcome will not be considered if the execution time
increases. If the execution of a task is longer than usual, then
it is forwarded to the upper layer for processing. However, the
vehicles must ensure the execution of high-priority tasks over
low-priority tasks. A utility in terms of reward or penalty is
associated with both high-priority and low-priority tasks upon
meeting or missing deadlines. For the high-priority task, a log
function is used to define the utility of a subtask given as:

μHn =

{
log(1 + τn − tCn

), tCn
≤ τn

−ΓH , tCn
> τn

(1)

where tCn
denotes the completion time of a subtask T v

n,i ; and
−ΓH implies a penalty for not being able to meet the deadline.

For the low-priority task, if the completion time of the exe-
cuting subtask is less than the defined deadline, then the utility
is a reward. Otherwise, the utility is a penalty and expressed as:

μLn =

{
ΓL, tCn

≤ τn
Γl e−c(tCn

− τn ), tCn
> τn

(2)

where ΓL defines a positive reward (constant); and c is a
constant and greater than zero.

In order to offload a subtask to any other vehicle (call it
a service vehicle), the task vehicle has to pay a unit price
denoted as ρn . Hence, the computation size of the subtask
(Cn ) can be estimated as Cn = fn t

′
n , where fn is the

frequency assigned to the service vehicle, and t ′n denotes the
computing time of the subtask. Finally, the utility of the task
vehicle can be expressed as:

Utiln = 1(Tn = TH )μHn + 1(Tn = TL)μ
L
n − ρnCn (3)

where 1(.) is an indicator function [28]. and TH and
TL denote the high-priority and low-priority subtasks,
respectively.
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TABLE I
TARGET OFFLOADING LAYERS AS INFERENCES USING FUZZY LOGIC

C. Classification of Offloading Layers Using Fuzzy Logic

Fuzzy logic is used to determine the target offloading lay-
ers for the tasks generated by vehicles. It is implemented to
minimize the latency incurred while executing high-end and
low-end tasks at one layer. Specifically, Fuzzy logic offloads
different groups of tasks requiring disparate computational
capabilities of resources to different target layers. It pre-
vents starvation and aging. By this method, if the execution
of a task is taking longer than usual, the respective task is
forwarded to the next adjacent layer for execution. It is man-
ifested through three modules: Fuzzy inputs, Fuzzification,
and Defuzzification. Fuzzy inputs are the essential param-
eters of the Fuzzy logic model that draw the inferences,
which include Tasks size (MI), Network Bandwidth (Mbps),
Latency-sensitivity, and Deadline-constrained. These inputs
are characterized by High (h), Medium (m), and Low (l) lexi-
cal parameters representing the heterogeneity and dynamicity
of tasks. Fuzzification is the process of drawing inferences
based on Fuzzy inputs with the aid of an inference engine.
Fuzzy Knowledge Base is a repository consisting of infer-
ences in terms of Fuzzy rules. Fuzzy inputs are processed
based on the defined membership functions. Defuzzification
is a process of transforming the Fuzzy inferences to some
consolidated values based on membership functions. Table I

delineates the required output (target offloading layers) based
on Fuzzy inputs.

D. Vehicular Communication Model

This section describes the communications and interactions
among different entities for smooth offloading. The inter-
actions refer to the communication model of vehicles to
RSUs, from RSUs to the Cloud server, and from vehicles
to the Cloud. The communications among these entities are
illustrated as follows.

Vehicles to RSUs: The Internet-enabled vehicles (IoV) com-
municate with RSUs through wireless communication based
on Frequency-Division Multiple Access (FDMA). To transmit
a byte of request, a vehicle v requires Trrv amount of data
transmission rate to an RSU r, expressed in Eq. (4) [27]:

Trrv = hrv × bw ×
(
1 + Tpv × βv × ρ−2

)
(4)

where hrv is the allocated sub-channels to the vehicle v; bw is
the allocated network bandwidth for each sub-channel; Tpv is
the power to transmit each byte from the v th vehicle; βv is the
gain of the channel; and ρ−2 is the noise in the surrounding
environment.

RSUs to Cloud Server: An optical fibre-based wired connec-
tion is used to transmit tasks from RSUs to the Cloud server.
If the MFC server fails, tasks or subtasks are migrated to
the Cloud server for computation. Some transmission latency
occurs while offloading to the Cloud. The transmission latency
and acknowledgement latency are equivalent between the MFC
server and Cloud. While the transmission latency is inde-
pendent of the lengths of the tasks, it results due to the
presence of the physical gap between the MFC and Cloud.
Nonetheless, the incurred latency, in this case, is lesser than
the direct offloading of tasks from vehicles to the Cloud server.
Therefore, we denote the round-trip time (τCloud

r ) for trans-
mitting data from the RSU to the Cloud and get the ack in
Eq. (5):

τCloud
r = 2×DCloud

off (r)

[
∴ DCloud

off (r) +Dr
ack(Cloud)

]
(5)

where DCloud
off (r) denotes the transmission latency incurred while

offloading a request from RSU r to the Cloud, and Dr
ack(Cloud)

is the latency incurred for sending an ack from the Cloud to
the RSU r.

Vehicles to Cloud server: The high-end tasks are directly
offloaded to the Cloud servers for computation, thus requir-
ing high-end specifications. Therefore, the communication
involves the transmission latency of sending a request from
a vehicle v to the Cloud server and is expressed in Eq. (6):

TrCloud
v = hCloud

v × bw × log2

×
(
1 + Tpv × βv × ρ−2

)
× Li + ack (6)

where Li denotes the length of the i th request; and hCloud
v is

the allocated sub-channels to the vehicle v.

E. Computation Model

This section explains the different computation models in
this vehicular Fog computing architecture, which includes the
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energy consumption model, latency-aware computation model,
and pricing model. Each model is elucidated below.

1) Energy Consumption Model: The total energy consumed
at time t when a vehicle transmits a request either to the Fog
layer or the Cloud layer via RSU is expressed in Eq. (7):

Eci (t) = Ecri (t) + Ec
Fog/Cloud
i (t) (7)

The energy consumed at time t at the RSU r (Ecri (t))
while propagating the request from the vehicles is estimated
in Eq. (8):

Ecri (t) = Li × Ecrnw (i , t)

+ Li × hi ×
(

Pr
idle

Capridle
+

Pr
max

CaprmaxUtil
r

)
(8)

where Li is the length of the i th request; Ecrnw (i , t) denotes
the energy consumed to transmit each byte of request from a
vehicle v to the RSU r via the network; hi is the transmission
gain of the channel; Pr

idle and Pr
max are the energy consumed

during the idle and active states of the RSU r, respectively;
Capridle and Caprmax are the capacity of the RSU r during the
idle and active states, respectively; and Utilr is the utilization
of the RSU r.

Next, the task is either offloaded to the Fog or Cloud for
computation. Here, the energy is consumed while processing
and storing the requests as well as sending the respec-
tive acknowledgement. Hence, the energy is mathematically
expressed as follows:

Ec
Fog/Cloud
i (t) = EcP&S

i + β × EcCloud
i + Ecack (9)

The energy consumed while processing and storing the
request either at Fog node or Cloud VM, EcP&S

i , is expressed
in Eq. (10):

EcP&S
i = Li × EcPi + Li × EcSi (10)

EcPi =
[
δ × Pactive

j + (1− δ)× P idle
j

]
× St(j , t)

nT (j , t)
(11)

where δ is the ratio (Tactive
Ttotal

) of the active time to total time

of the j th Fog node or Cloud VM; (1−δ) denotes the elapsed
time for the j th Fog node or Cloud VM; Pactive

j and P idle
j

denote the power consumption of the j th Fog node or Cloud
VM during the idle and active states, respectively; St(j, t) is
the service time of the j th Fog node or Cloud VM; nT(j, t) is
the number of tasks associated with the j th Fog node or Cloud

VM; and β(=
T sent

req

Treq
) is the ratio of the total request sent to

the total request offloaded to the Cloud from Fog nodes upon
failure.
EcCloud

i is the energy consumed by the j th Cloud VM when
any Fog node fails to execute, as computed in Eq. (12):

EcCloud
i = EcP&S

i + Ecack (12)

Ecack is the energy consumed while sending the acknowl-
edgement back to RSU or the corresponding Fog node and is
expressed in Eq. (13):

Ecack = Li × Ec
r/Fog
nw (i , t) (13)

2) Latency-aware Model: A task’s subtasks can be carried
out locally (on the vehicle itself) or offloaded to a Cloud server
or an MFC server at the Fog layer for processing. At various
phases of processing and offloading, variable rates of latency
might occur. In this instance, the processing times of the sub-
tasks at the vehicles, MFC server, and Cloud server can be
used to determine the latency.

Computing on vehicles: When the tasks are classified and
offloaded to the target layers for computation, tasks with their
subtasks arrive at the queue of the vehicle for computation. We
assume that all the tasks in the queue are in FIFO order and the
vehicle processes one subtask at a time. That means, while a
subtask is in execution, other subtasks must wait in the queue.
This processing involves both processing time and waiting time
in the queue. Hence, the total latency incurred while computing
on vehicles for a subtask T v

n,i is given by Eq. (14):

Dv
local(n,i) =

C v
n,i

cv
+Dv

wait(n,i)

=
C v
n,i

cv
+ T

local(v)
start(n,i)

− T
local(v)
request(n,i)

(14)

where
C v

n,i

cv denotes the local processing latency; Dv
wait(n,i)

is the waiting time of a subtask T v
n,i ; C

v
n,i is the number of

computing resources needed to execute the subtask T v
n,i ; c

v is

the computation capability for the vehicle v; and T
local(v)
start(n,i)

and T
local(v)
request(n,i)

are the starting and requested times of a
subtask T v

n,i , respectively.
Computing on MFC server: The latency rate at the MFC

server is the sum of the transmission delay from the vehicle
to the MFC server via RSU, processing delay, waiting delay
of the subtasks on the MFC server to be scheduled, acknowl-
edgement delay back to the vehicle, and the offloading latency
to the Cloud upon failure. These factors are formulated as
follows:

First, the transmission delay in propagating a request i to
the respective Fog node is estimated as:

D fog
(n,i)

= Li × Tnw
L (15)

where Tnw
L denotes the transmission delay caused by propa-

gating each byte of request i from the vehicle v to an MFC
server fnj ; j = 1, 2, . . . ,m .

Second, the latency caused by processing the request i on
an MFC server is denoted as:

D fog
P = Li × St(j , t)

nT (j , t)
(16)

Third, transmitting an acknowledgement to the respective
vehicle v causes some latency and is denoted as:

Dv
ack(n,i) = Li × Tnw

L (17)

Next, the waiting latency at the queue of the MFC server is
similar to the local waiting delay and is expressed as follows:

D fog
wait(n,i)

= T fog
start(n,i)

− T fog
request(n,i)

(18)

Finally, the transmission delay caused to offload of a request
i to one of the Cloud servers upon failure is expressed as
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follows:

DCloud
(n,i) = 2(Li × Tnw

L ) + Li × St(j , t)

nT (j , t)
(19)

Here, the transmission delay states that when a request is
sent from an IoT device to a Cloud server, the time it takes for
the request to reach the server (transmission delay) is equiva-
lent to the time it takes for the acknowledgement (response) to
travel back to the IoT device. Therefore, the transmission delay
is doubled because it includes both the time for the request to
reach the server and the time for the response to reach the IoT
device. So, the total transmission delay is the original delay
multiplied by two.

By combining Eqs. (15)-(19), we get the total latency caused
at the MFC server in Eq. (20):

D fog = D
fog
(n,i)

+D
fog
P

+Dv
ack(n,i) +D

fog
wait(n,i)

+ βDCloud
(n,i) (20)

Computing on Cloud Server: The subtask T v
n,i is migrated

to the Cloud server after being offloaded from the vehicle v to
the RSU r for processing. The transmission latency includes
transmission delay, processing delay at the Cloud server, and
acknowledgement delay, which are analogous to the MFC
server. Hence, the total latency caused by the Cloud server
is defined as follows:

DCloud = DCloud
(n,i) +DCloud

P +Dv
ack(n,i) (21)

3) Pricing Model: In VFC, the low-end tasks are computed
on the vehicle itself, and the high-end and medium-end tasks
get scheduled on the Cloud server and Fog server due to the
lack of computational capabilities of the vehicles. Hence, a
fair allocation of resources should adhere to the computation
of high-end tasks to meet their deadline on a priority basis.
Let’s consider Tn number of high-end tasks that are gener-
ated from the vehicles Vv . The deadline and computation size
of a task/subtask are referred to as di and Li , respectively.
The minimum frequency required for the local subtasks is
denoted as f min

v =
∑T

i=1
Li
di

. Upon the availability of com-
puting resources, a vehicle might deny offloading the requests.
Then, the frequency is computed as fv =

∑T
i=1

Li
ϑvd i

, where

ϑv = f min
v /fv and the reserved frequency is [f min

v , fv ]. Here,
ϑ is used to denote the ratio of minimum and maximum
frequencies to compute the subtasks locally, and the range
of ϑ is [ϑv , 1]. Therefore, we denote the total utilization of
local subtasks as [22]:

Utilvlocal (ϑv ) =

Tn∑
i=1

log(1 + di − ϑdi ), ϑ ∈ [ϑv , 1] (22)

In one scenario, a vehicle migrates its subtasks to a pass-
ing vehicle for computation due to the lack of computational
capabilities and allocates frequency fn for the migrated subtask
T v
n, i . Therefore, the utilization of the migrated local subtasks

on a new vehicle is denoted as Utilvlocal (ϑ
′
v ), and the cost

(ρn ) paid for the subtask T v
n, i should meet the requirement

as ρn = Utilvlocal (ϑv ) − Utilvlocal (ϑ
′
v ). This is compensa-

tion for the loss of the utilization of the local subtask. The

frequency devoted to the offloaded subtask is estimated as
fn = fv − f min

v /ϑ′v , where ϑ′v can be estimated from the above
requirement condition [22]. Consequently, if there is a need for
computing resources in order to compute the offloaded subtasks,
then the cost will be higher for the respective vehicle v.

F. Problem Formulation

The objective functions can be formulated as:

min
Tv

n,i r
v
n,i

∑∑
β × TL

v
n, i (t)

+ α × Ec(t), r ∈ R, v ∈ V , n ∈ N ; (23)

max
1

N

N∑

n=1

V∑

v=1

C
v
n

(
1(Tn = TH )U

H
n + 1(Tn = TL)U

L
n − ρnCn

)

(24)

subject to the following constraints:

C1 : β + α = 1; (25a)

C2 : TL
v
n, i = Dv

local(n, i) +D fog +DCloud ; (25b)

C3 : Xi ,j (t) ∈ {0, 1}, ∀i ∈ R, ∀j ∈ V ; (25c)

C4 :
∑
i∈R

∑
j∈V

0 ≤ Xi ,j (t) ≤ 1; (25d)

C5 :
∑
v∈V

Compv , m ≤ comp
max
cap

, Compv ,m ∈ rvn,i ; (25e)

C6 :
∑
v∈V

Commv , m ≤ comm
max
cap

, Commv ,m ∈ rvn,i ; (25f)

C7 : 0 ≤ ρvn ≤
Utilvlocal

(
ϑ̃v

)
Cn

, ∀n ∈ N , ∀v ∈ V ; (26a)

C8 : 1(C v
n = 1) > 0, ∀n ∈ N , ∀v ∈ V ; (26b)

Eq. (23) indicates two key objectives: (1) reducing the
overall computational latency ratio across the computing lay-
ers, and (2) minimizing the average energy consumption
across RSUs. Eq. (24) implies that the average utilization of
offloading subtasks should be maximized.

The constraint C1 in Eq. (25a) is the addition of weights
(β and α) of two sub-objectives (TL

v
n, i (t) and Ec(t))

stated in Eq. (23). Eq. (25b) represents the total computational
latency incurred while transmitting requests from the RSU to
Fog, RSU to Cloud, and then Fog to Cloud. In Eq. (25c),
Xi , j (t) is a binary variable that states the assignment of
the subtasks to the desired MFC servers for computation.
Eq. (25d) states that the RSU j can be linked with at least
one Fog server m, but a Fog server m can be linked with more
than zero RSUs at a given instant. In Eq. (25e), Compv , m and
Commv , m are the allocated computation and communication
resources, respectively, and should not exceed the maximum
computation and communication capabilities of MFC servers.
The constraint C7 guarantees a positive cost value within the
range of the maximum value, and ϑ̃v denotes the current
value of ϑ in Vv while offloading a task. The constraint C8
denotes the availability of the selected vehicle for the subtask
offloading.

This section formalized the task offloading problem in
VFC. This optimization problem aims to reduce the total
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computational latency and mean energy consumption while
maximizing the total utilization of offloading subtasks in terms
of cost subject to the constraints of communication and com-
puting resources, the nature of the association between the
RSUs and Fog servers, the binary mapping of subtasks to the
compatible Fog servers or Cloud servers, and the availability
of the selected vehicle to offload the subtask when a vehicle
fails to compute. In a dynamic context (unpredictable requests
with disparate requirements) where the level of collaboration
between RSUs and Fog servers/Cloud servers fluctuates, it is
challenging to optimize the objective functions in Equations
23 and 24 using conventional optimization approaches like
heuristics or metaheuristics. In other words, it is not easy
to find the best solutions for the objectives given the con-
stantly changing level of collaboration between the servers and
RSUs due to the unpredictable demands. Hence, the next sec-
tion proposes a Federated learning-supported Deep Q-learning
offloading (FedDQL) strategy to optimize the aforementioned
objective functions.

IV. TASK OFFLOADING ALGORITHM: A FEDERATED

LEARNING (FL)-SUPPORTED DEEP Q-LEARNING

(FEDDQL) APPROACH

This section first discusses the conventional Deep Q-
learning neural networks for identifying a dynamic vehicular
offloading in the Fog paradigm. Afterwards, a Federated
Learning (FL)-supported Deep Q-learning strategy for global
offloading is presented. In the proposed offloading strategy,
the conventional Q-learning is amalgamated with deep neu-
ral networks as the proposed DQN strategy. In this network,
an agent acts by learning from the environment and opti-
mizes the sum of rewards. This environment, in terms of the
VFC environment, can be formulated as a Markov Decision
Process expressed as env : {S(t), Ac(t), Re(t), P(t)}, where
S(t) denotes the state space of the environment at time t, Ac(t)
implies the action at time t performed by the DQN agent,
Re(t) expresses the reward space an agent gets, and P(t) is the
probability of transition. Here, an agent indicates the vehicle
associated with the number of RSUs and Fog/Cloud servers
in the Vehicle-Fog-Cloud environment. Each terminology used
in the environment is illustrated as follows.

State: A state space of an environment is comprised of
computational models in terms of mean energy consump-
tion of RSUs and the computational latency incurred while
transmitting request i from a vehicle v and is defined as [11]:

S (t) = {Ec(1, t), Ec(2, t), . . . , Ec(|Z |, t),

D(1, t), D(2, t), . . . ,D(|H |, t)}, i ∈ Z , j ∈ H (27)

where Ec(i, t) is the energy consumption by the i th RSU at
time t; and D(j, t) is the computational latency incurred by the
j th Fog server at time t.

Action: An action space comprises an action in terms of
offloading the requests by an agent. Hence, the action Ac(t)
of a subtask i of the task T v

n, i at time t is given by [11]:

Ac(t) =
{
Xi , j (t), i ∈ Z , j ∈ H ;

Alloccomp(t), Alloccomm (t)
}

(28)

where Xi , j (t) is the mapping of subtask i to a compatible the
j th Fog/Cloud server; and Alloccomp(t) and Alloccomm (t)
are the allocated computation and communication resources
for the subtask i of the task T v

n, i , respectively.
Reward: Based on the execution of the action on the state

defined in the formulated environment, a reward is facilitated.
The reward Re(t) is the negation of the weighted total of both
average energy consumption and computational latency at time
t given as [11]:

Re(t) =
{
−
(
β × TL

v
n, i (t) + α× EC (t)

)}
(29)

An agent must select the action Ac(t) as an offloading of
the subtask i at state S(t) to get the optimal reward while
minimizing the total energy consumption across RSUs and
the computational latency. In the next sections, the conven-
tional Q-learning approach is demonstrated, followed by the
proposed FedDQL offloading strategy.

A. Standard Q-Learning Approach

The Q-learning approach is used to identify the optimal
decision-making policy through a function Q{S (t) → Ac(t)}.
It is a guiding force for the agent in the environment to
maximize the reward and is defined through a deterministic
Bellman equation [29] as follows [13]:

Q(S (t), Ac(t)) =
{
(1− n)Q(S (t), Ac(t))

+ η(Re(t + 1)) + Υmax
Ac(t+1)Q(S (t + 1), Ac(t + 1))

}
(30)

where η is the learning rate; and Υ denotes the discount rate.
The Q-learning approach first initializes the Q-value to

zero for all periods. The agent gains the state space S(t)
information from the environment (RSUs) at time t. According
to the state, the agent selects an action Ac(t) from the
Q(S (t−1), Ac(t−1) ) using an ε− greedy policy. Using this
policy, the agent identifies the best action with (1− ε) proba-
bility rate and random action with ε probability rate. Further,
a Q-value is updated in each iteration, and the mean reward
is calculated afterwards.

B. Deep Q-Learning-Based Neural Network (DQNN)
Approach

The Q-learning method is primarily used for a small set of
state and action spaces. Since the Vehicular Fog Computing
environment is dynamic in nature, the Q-learning approach is
not suitable for finding the optimal reward function. Therefore,
a Deep Neural Network is incorporated into the Q-learning
approach with a parameter set θ to deal with the dynamic
nature of tasks for optimal results. In DNN, θ is used to map
the input state to action. In order to reduce the loss, a target
layer is added to the primary neural network for network stabi-
lization. The loss function of this neural network is expressed
in Eq. (31) [31]:

l(θ) =
(
ODQNN−Q(S (t), Ac(t))

)2 (31)
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where ODQNN denotes the output of the DQNN and is
expressed in Eq. (32):

ODQNN = Re(t + 1) + max
Ac(t+1)

Q(S (t + 1), Ac(t + 1))

(32)

For network stabilization, the transition table is updated
with tuples, such as {S(t ), Ac(t), Re(t + 1), S(t + 1)}. The
DQNN works as follows: the parameters of the primary and
target layers are initialized. The DQNN agent gains the state
space information from all the RSUs, then identifies an action
space using an ε-greedy policy. Next, the transition table is
updated with the reward and state space data. Furthermore,
the weights are updated, and the loss function specified in
Eq. (31) is diminished using a gradient descent approach. The
DQNN duplicates the parameters (θ) of a target layer from
the primary network at the end of a specific phase.

C. FedDQL Approach

Federated learning (FL) is a cutting-edge concept that con-
siders all the components to design a global model that does
not need to share the original data. Herein, the core features
of FL were incorporated with DQNN to develop the FedDQL
global model, which has two primary advantages: (a) privacy
preservation in terms of sharing confidential data, and (b) par-
tial participation of the Fog servers that are energy-deficient.
The Fog geographic region is scattered with clusters of Fog
zones consisting of one or more RSUs and homogeneous and
heterogeneous Fog servers. Each Fog zone has a DQNN agent
to determine the offloading scheme with the DQNN approach.

In FL architecture, which is a distributed machine learning
approach, there is a single model that is responsible for calcu-
lating and setting all the global metrics. This model is called
the “unified model,” and it acts as a central point of coordi-
nation for the distributed learning process. In the FedDQL
model, the DQNN agent of each Fog zone downloads the
global metrics from the unified model and trains their local
model accordingly. After training, the metrics are updated and
then forwarded to the unified model. Afterwards, the unified
model aggregates all the local metrics and forms the global
metrics. In this model, all the non-involving Fog zones merely
download the unified model to keep an update.

This work considers M set of involving Fog zones of size
K as K = P |Z (f )|, where P denotes the involvement factor,
and Z(f ) is the clusters of Fog zones. The involved Fog zones
are identified according to their uplink transmission cost [22],
which is calculated as follows:

TrUp
m = Tm

P × l

A
(33)

where Tm
P denotes the power to transmit the local metrics by

the mth Fog zone of size l; and A is the rate taken to transmit
by the mth Fog zone of size l and is estimated as:

A = Bw log2

⎛
⎝1 +

Tm
p × h

σ2 +
∑|Z (f )|

P=1, P �=m Tm
P × h

⎞
⎠ (34)

where Bw is the channel’s bandwidth; h is the channel gain;
and

∑|Z (f )|
P=1, P �=m Tm

P × h is the surrounding noise caused by

Algorithm 1 FedDQL-Based Offloading Strategy
Input: Cluster of Fog zones Z, Participation rate P; Set of vehicles V;
Set of requests T;
Output: Optimal mapping of subtasks into Fog servers to have
reduced energy consumption and computational latency

Start
1. Set M = ∅, K = p|Z (f )|;
2. For each Fog zone m ∈ z (f ) Estimate the transmission cost

(Tr
hp
m ) using Eq. (33);

3. Arrange the Fog zones in z(f) according to their transmission
cost in ascending order;

4. Discover the initial k number of Fog zones from z(f) and add
them into the set of M;

5. for f : 0 to F do
5.1 For each Fog zone m ∈ M , update its parameter set O f

m
using the DQN approach

5.2 Transfer the updated parameter cost to the centralized entity;
5.3 Aggregation of all the local parameters takes place by the

centralized entity as
θf+1 =

∑

m∈M
Dm
D ∗ θfm ;

End

other Fog zones. Algorithm 1 shows the pseudocode for the
FedDQL-based offloading strategy.

In step 1, the array of Fog zones M and the series of involv-
ing Fog zones are initialized. The cost of transmission by each
Fog zone is estimated using Eq. (33). Afterwards, each Fog
zone is sorted in ascending order based on their cost of trans-
mission m. Step 4 identifies the first k number of Fog zones
in FL, which involves a set of F rounds. In each epoch, each
Fog zone updates their local parameter lists and broadcasts
it to the unified model to form a global model in steps 5.1
and 5.2. In step 5.3, the unified model obtains a global model
(θf+1) by performing aggregation at each round f of the local
parameter (θfm), which is expressed as [15]:

θf+1 =
∑
m∈M

Dm

D
∗ θfm (35)

where Dm denotes the size of the local buffer of the mth

Fog zone; and D implies the total size of data estimated as
D =

∑
m∈M Dm .

V. EXPERIMENTAL ASSESSMENT AND DISCUSSIONS

This section describes the extensive simulations that were
performed on a real-world benchmark dataset for different con-
flicting scheduling parameters to assess the proposed strategy.
The simulation parameters were first delineated, then a con-
vergence analysis of the proposed technique was carried out.
Afterwards, a comparative performance analysis was achieved
for the considered scheduling parameters against some existing
works.

A. Setting of the Simulation Environment

iFogSim over CloudSim is used as a simulator to instantiate
a VFC simulation environment. This environment encom-
passes 10 Internet-enabled Vehicles, 3000 dynamic tasks, 296
Fog nodes/VMs, and 16 RSUs. There are multiple MFC
servers in this architecture, and each MFC server is connected
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TABLE II
SIMULATION PARAMETERS

TABLE III
TECHNICAL SPECIFICATIONS OF FOG NODES/VMS

to a single Road Side Unit (RSU), which is a device used
in vehicular communication systems. Additionally, each of
these servers has many cores, which are individual processing
units within the server that can execute tasks simultane-
ously. The lengths of a series of tasks range from 0-15000
MIs with the size of each task ranging from a set of
{30, 35, 40, 45, 50, 60} MB. Each task requires the com-
putation resource requirements, which are arbitrarily allocated
from a set of {0.6, 0.8, 1.0, 1.2, 1.4} Gigacycle/s. Each task
is arbitrarily subdivided into 6-10 subtasks. The transmission
power is dependent on the hardware used in the system [35]. In
the IoT-Edge-Fog-Cloud environment, the transmission power
of an IoT device can be dependent on various hardware com-
ponents, such as the transceiver, amplifier, power supply, and
processor. The efficiency of all these components impacts the
transmission power of IoT devices. Table II lists the other sim-
ulated parameters used in the experiment, and the technical
specifications of Fog nodes/VMs are presented in Table III.

A real-world dataset [34] was utilized to assess the
performance. The dataset has an ETC matrix containing a
number of tasks and machines with a corresponding compu-
tation ratio. This dataset has twelve instances in the form of
u_x_tm with respect to uniformity in data (u), consistency (X)
among data, and heterogeneity of tasks (t) and machines (m).
The consistency among data was further classified into three
groups: consistent (c), inconsistent (i), and semi-consistent (s).
Likewise, the tasks and machines heterogeneity is categorized
as high (h) or low (l). As a result, the twelve instances were
formed by considering the aforementioned criteria. In addi-
tion, a variable number of tasks and machines was considered
and formed into three groups: Group 1 (1000 × 96), Group
2 (2000 × 196) and Group 3 (3000 × 294) in the structure
(t × m).

To assess the performance of the devised FedDQL offload-
ing algorithm, five baselines [23], [30], [31], [32], [33] were
considered for analysis and comparison.

B. Convergence Analysis

To demonstrate the convergence analysis of FedDQL over
other baseline algorithms, a convergence of the proposed

Fig. 3. Convergence analysis for different learning rates.

Fig. 4. Convergence analysis for different baselines.

method was analyzed with different learning rates, and then
the convergence rate of other algorithms was analyzed.

The convergence of FedDQL was analyzed with disparate
learning rates ranging from 0.01 to 0.09, as depicted in
Figure 3. It is evident that the most suitable learning rate is
0.01 with a mean reward of 2025, while the worst learning
rate is 0.08 with a mean reward of 2003. Therefore, 0.01 was
considered in the simulation.

Figure 4 depicts the convergence rate of FedDQL and other
compared algorithms. It can be observed that FedDQL con-
verges faster due to the consideration of the dynamic behaviour
of tasks and interdependencies among them. The optimal
mapping of tasks into Fog servers or Cloud VMs results in
fine-grained offloading.

C. Performance Analysis of Scheduling Metrics

Here, the performance of the FedDQL is analyzed and
compared for different scheduling metrics, such as service
time (ms), average utilization rate (%), mean energy con-
sumption (KJ), and mean latency rate (ms). The proposed
FedDQL is compared with other offloading strategies
[23], [30], [31], [32], [33] to gauge its efficacy.

1) Performance Analysis of Service Rate: For latency-
sensitive applications, the user’s request must be serviced in
a deterministic time and, hence, plays an indispensable part
in this computing paradigm. Figure 5 shows a comparative
analysis of the obtained results for service rate in three dif-
ferent sets (tasks × machines). The dew-enabled architecture
and Deep Q-learning approach helped minimise the proposed
framework’s service time. Comparatively, the other approaches
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Fig. 5. QoS analysis of service rate (ms) for different sets: (a) 1000 × 96,
(b) 2000 × 196, and (c) 3000 × 294.

do not consider the decomposition of tasks and classification of
the target layers for offloading. Identifying different offloading
layers has expedited the execution process and, thus, resulted
in reduced service time for each user’s request. The FedDQL
outperforms the other models [23], [30], [31], [32], [33] with
an improvement of 49%, 23.2%, 22.6%, 14.7% and 3.23% on
average.

2) Performance Analysis of Average Utilization: Resource
utilization is a significant part of offloading requests for
resources. This factor contributes an equal amount with load
balancing in meliorating the performance of any offloading
algorithm. The use of the Deep Q-learning network helps to
predict the load and assign the requests according to each Fog
server, improving the utilization of all the underlying resources
considerably.

Fig. 6. QoS analysis of average utilization (%) for different sets:
(a) 1000 × 96, (b) 2000 × 196, and (c) 3000 × 294.

Figure 6 depicts a comparative analysis of the obtained
results for the average degree of utilization for three different
sets. Nevertheless, all other approaches do not consider load
balancing. The FedDQL outperforms the other models [23],
[30], [31], [32], [33] with an improvement of 51%, 36.8%,
32.4%, 27.7% and 9.33% on average for three sets.

3) Performance Analysis of Latency Rate: Latency, which
is caused by the high computational time or delay in transmis-
sion and propagation, is a pivotal element for latency-sensitive
applications in computing paradigms. Due to the implemen-
tation of Fog servers between the Internet-enabled Vehicles
and Cloud layer, the latency rate has been notably reduced.
Moreover, classifying tasks and determining the offloading
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Fig. 7. QoS analysis of latency rate (ms) for different sets: (a) 1000 × 96,
(b) 2000 × 196, and (c) 3000 × 294.

layers also minimise the latency across computing layers. The
latency rate holds significance when there is an increasing
number of tasks in a dynamic environment. Figure 7 presents
a comparative analysis of the obtained results for latency rate.
It is obvious that the suggested method presents a remarkable
improvement over the other models for different specifications.
The FedDQL outperforms the other models [23], [30], [31],
[32], [33] with an improvement of 15%, 9.4%, 9.9%, 14.7%
and 2.33% on average for three sets. As the number of requests
increase, the proposed method shows notable results over [32].
For a smaller set of requests, both of these (proposed and [32])
perform approximately.

Fig. 8. QoS analysis of average energy consumption (KJ) for different sets:
(a) 1000 × 96, (b) 2000 × 196, and (c) 3000 × 294.

4) Performance Analysis of Average Energy Consumption:
The degree of energy consumption is a challenging factor for
any datacentre. The consumption of energy depends on various
factors, such as the specifications of the Fog servers/datacentre,
computational capabilities, resource-constrained, size of the
tasks, etc. In our approach, the energy consumption is eval-
uated for processing and storing each task on a resource,
transmitting and acknowledging the requests from/to the com-
puting layers. Efficient utilization of resources could minimize
the degree of utilization. Figure 8 presents the QoS analy-
sis of the degree of energy consumption for an increasing
number of tasks for the proposed method. It is apparent
that the suggested method reduces energy consumption more
efficiently than the other methods with different degrees of
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computational specifications. The FedDQL outperforms the
other models [23], [30], [32] with an improvement of 39.9%,
34.7% and 21.6% on average for three sets.

For service rate, average utilization, latency and energy con-
sumption, the effectiveness of the proposed FedDQL model
has been compared to [23], [30], [31], [32], [33] and the
improvement compared to [33] is 49%, 51% and 15%, the
improvement of FedDQL compared to [30] is 23.2%, 36.8%,
9.4% and 39.9%, the improvement of FedDQL compared
to [23] is 22.6%, 32.4%, 9.9% and 34.7%, the improvement
of FedDQL compared to [31] is 14.7%, 27.7% and 14.7%,
and the improvement of FedDQL compared to [32] is 3.23%,
9.33%, 2.33% and 21.6%, respectively.

VI. CONCLUSION AND FUTURE STUDY

This paper proposes a noble offloading method for
compute-intensive and latency-sensitive dependency-aware
tasks in the Dew-enabled collaborative computing framework.
The dependency-aware tasks are depicted through a DAG,
where the interdependencies among tasks are also modelled.
Moreover, a Federated learning-supported Deep Q-learning
(FedDQL)-based offloading strategy has been designed for
the optimal assignment of tasks to machines. Next, Fuzzy
logic is implemented to determine the target offloading lay-
ers to prevent starvation and aging. The simulation results
showcase the efficacy of FedDQL over alternative offloading
algorithms based on several performance metrics with different
specifications. Tasks and machine heterogeneity are taken into
account to appraise the effectiveness of the proposed method.
The proposed FedDQL method outperforms others [23], [30],
[31], [32], [33] with an average improvement of 49%, 34.3%,
29.2%, 16.2% and 8.21%, respectively.

A potential direction for future study are tasks offloading
and data sharing while a vehicle is in motion. Also, data migra-
tion between MFC servers, and migration across computing
layers in reverse could be a future scope.
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