
3984 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 4, DECEMBER 2023

Multi-Provider IMS Infrastructure With Controlled
Redundancy: A Performability Evaluation

Luigi De Simone , Member, IEEE, Mario Di Mauro , Senior Member, IEEE,
Maurizio Longo , Member, IEEE, Roberto Natella , Senior Member, IEEE, and Fabio Postiglione

Abstract—In modern telecommunication networks, services
are provided through Service Function Chains (SFC), where
network resources are implemented by leveraging virtualization
and containerization technologies. In particular, the possibility of
easily adding or removing network resources has prompted ser-
vice providers to redefine some concepts including performance
and availability. In line with this new trend, we propose
a performability study of a multi-provider containerized IP
Multimedia Subsystem (cIMS), an SFC-like infrastructure used
in the core part of 4G/5G networks to handle multimedia ses-
sions. On the one hand, performance issues are tackled by
modeling each cIMS node in terms of a G/G/m queueing system
to derive the Call Setup Delay (CSD), a performance metric
related to the user-end experience in multimedia communica-
tions. On the other hand, availability issues are addressed through
the Multi-State System (MSS) formalism, to take into account
different performance rates of the system. Then, we devise an
algorithm called PE-MUGF (Performability Evaluation through
Multidimensional Universal Generating Function) to identify the
minimum-redundancy cIMS configuration which meets given
performance and availability targets at the same time. Finally,
an extensive experimental analysis based on Clearwater, a con-
tainerized IMS testbed, allows us to estimate most of system
parameters whose robustness is evaluated through a sensitivity
analysis.

Index Terms—SFC performance, availability, performability
analysis, controlled redundancy.

I. INTRODUCTION AND CONTRIBUTION

SERVICE function chains (SFCs) have revolutionized
the way to provide telecommunication services thanks

to the flexibility to reconfigure on-demand hardware and
software resources needed to provide specific functional-
ities [1], [2]. Since SFCs are arranged as a series of
software-based nodes to be traversed in a predefined order,
a network operator can decide to insert or remove one or

Manuscript received 9 March 2023; revised 29 May 2023; accepted
1 June 2023. Date of publication 5 June 2023; date of current version
12 December 2023. The work of Luigi De Simone was supported by the
European Union FSE-REACT-EU, PON Research and Innovation 201–2020
DM1062/2021 under Contract 18-I-15350-6. The associate editor coordinat-
ing the review of this article and approving it for publication was S. Kanhere.
(Corresponding author: Mario Di Mauro.)

Luigi De Simone and Roberto Natella are with the Department
of Electrical Engineering and Information Technologies, University of
Napoli Federico II, 80125 Naples, Italy (e-mail: luigi.desimone@unina.it;
roberto.natella@unina.it).

Mario Di Mauro, Maurizio Longo, and Fabio Postiglione are with
the Department of Information and Electrical Engineering and Applied
Mathematics, University of Salerno, 84084 Fisciano, Italy (e-mail:
mdimauro@unisa.it; longo@unisa.it; fpostiglione@unisa.it).

Digital Object Identifier 10.1109/TNSM.2023.3282745

more nodes from the chain aimed at modifying the service
provisioning. Likewise, it is possible to add or remove redun-
dant nodes to strengthen or relax performance and avail-
ability (or, simply, performability) requirements. Obviously,
an increased redundancy implies higher costs, thus, an
accurate modeling and planning of additional resources is
desirable.

Accordingly, we propose a performability evaluation of a
container-based version of IP Multimedia Subsystem (cIMS),
a popular framework typically deployed as an SFC-like archi-
tecture, which is broadly exploited in the core part of 4G/5G
networks to support multimedia communications [3], [4], [5].
Due to its generality, our assessment can be easily employed
to characterize performability of different chained struc-
tures which today are often implemented via softwarization
paradigm. Examples includes: i) WAN softwarized chains,
where the data flow may traverse in sequence softwarized
elements such as an intrusion detection system, a load bal-
ancer, and a router, before arriving into the Internet core;
ii) Radio softwarized chains, where the software defined
radio paradigm allows to realize, completely in software,
also radio access elements resulting in chains made of:
base stations, radio network controllers, signalling/packet
gateways, data network; iii) WLAN softwarized chains,
where the wireless local data traffic can sequentially tra-
verse (for example) an access point, a firewall and a Web
server.

In line with modern cloud concepts, the considered
IMS infrastructure is assumed to be shared among dif-
ferent providers, thus, we refer to a multi-provider cIMS.
Remarkably, the multi-provider qualification is an opportu-
nity offered by softwarized network systems where, aimed
at a cost reduction, part of the infrastructure is in common.
Today, multi-provider solutions include: [6], where a config-
uration known as Gateway Core Network (GWCN) allows
different network operators to connect to a shared radio access
network; [7], where operators can deploy access or core nodes
in an independent way, but sharing with other providers a com-
mon infrastructure; [8], where an exemplary multi-operator
IMS framework is deployed into a virtual data center, with
different services offered by (different) operators having the
same common physical infrastructure.

It is useful to decompose our analysis into two parts: the
first one concerns the performance aspects that we take into
account through the Call Setup Delay (CSD), a performance
indicator [9], [10], [11] defined as the time difference between

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6008-2656
https://orcid.org/0000-0001-6574-2601
https://orcid.org/0000-0001-8325-4003
https://orcid.org/0000-0003-1084-4824
https://orcid.org/0000-0003-0628-3796

DE SIMONE et al.: MULTI-PROVIDER IMS INFRASTRUCTURE WITH CONTROLLED REDUNDANCY 3985

the first message sent from a caller (Invite message) and
the first message received from a callee (Ringing message).
Obviously, the CSD is influenced by the number of nodes that
the messages have to traverse, and by the time spent at each
node for the message processing. According to ETSI [9] and
ITU-T [12], CSD value should not exceed 400-500 ms.

The second part of the problem concerns the availability
aspects, namely, the ability of a system to provide a service
despite the occurrence of failures. Precisely, the availability
requirement of a technological system (the cIMS in our case)
can be measured in terms of number of “nines” that can
be translated into a maximum annual downtime (MAD): for
instance, a four nines availability (namely, a probability of
0.9999 that the system is working) corresponds to a MAD of
52 minutes and 36 seconds, whereas a five nines availability
(namely, a probability of 0.99999 that the system is working)
corresponds to a MAD of 5 minutes and 15 seconds. This
latter requirement, often known as high availability, is usu-
ally included into the Service Level Agreement offered by all
modern telecom infrastructures [13].

A joint performance and availability assessment allows to
pinpoint the optimal-redundancy cIMS setting that: i) exhibits
the best performance (with CSD below a critical threshold),
ii) is able to satisfy a given availability requirement (e.g., the
five nines); iii) has the minimum cost, namely, the minimum
number of redundant elements.

The present paper represents a substantial extension over our
previous conference paper [14], both from a methodological
and an experimental perspective as detailed in the final part
of Section II, with key contributions summarized as follows:

• To characterize performance, we propose a G/G/m
queueing model of a cIMS node by exploiting the
Krämer/Lagenbach-Belz approximation.

• To characterize availability, we: i) exploit the Multi-State
System (MSS) formalism to model a cIMS node; and
ii) devise an ad hoc algorithm to find the minimum-
redundancy cIMS setting which fulfills the performance
and availability requirements.

• We put in place an extensive experiment through which
we are able: to i) estimate some system parameters (e.g.,
service times, repair rates); and to ii) perform a dedicated
sensitivity analysis.

The remainder of the paper is organized as follows.
Section II proposes an overview of related work both con-
cerning performance and availability aspects, including our
previous conference work [14], where we highlight the differ-
ences with respect to the work presented here. In Section III
we provide an architectural perspective of cIMS and of the
Clearwater testbed, and we introduce the concept of container-
ized function (CF), the basic modeling element of a cIMS
node. Section IV analyzes in depth the state-space model of
a CF through the MSS formalism. In Section V we provide
analytical details about the adopted G/G/m queueing model
and the pertinent approximations. Section VI introduces the
PE-MUGF algorithm to evaluate the optimal cIMS settings.
Section VII presents the experimental part along with original
results, and Section VIII concludes the paper along with some
future research hints.

II. RELATED WORK

Recently, there have been many efforts and attempts to
model both performance and availability aspects concerning
the service function chains in the realm of network manage-
ment [15], [16], [17], [18]. Thus, we find it more convenient to
keep separated the two aspects, so as to highlight differences
and improvements of our proposal with respect to the existing
technical literature.

A. Performance Issues

As regards the performance issues, a large part of litera-
ture is aimed at characterizing the effect of delays introduced
by single nodes belonging to a chain, impacting unavoid-
ably the overall SFC delay. Relevant studies include: a
performance evaluation of chained services through a solu-
tion strategy named MaxZ [19]; a mathematical formulation
of an optimization problem which takes into account the
delay guarantees provided by SFCs [20]; an SFC orchestra-
tion solution with the objective of minimizing the cost of the
composing virtual network functions (VNFs) [21]; service rate
control problems in SFC requests scheduling [22]; a technique
(named Network Queueing Assessment) to detect bottlenecks
in SFCs based on the network queue occupation [23]; a solu-
tion (called eRESERV) to evaluate performance of SFCs [24];
a delay-based performance of SFC along with the problem
of CPU allocation [25]; a reliable SFC placement problem in
softwarized 5G networks [26].

All the aforementioned works adopt M/M/1 queueing mod-
els to characterize the elements belonging to a service chain.
On the one hand, such models offer the comfort of a math-
ematical closed form amenable to be managed. On the other
hand, they could fail to represent some real-world situations
since they assume predefined (exponential) distributions both
for inter-arrivals and service times, and assume single-server
nodes, where in many cases each node could be able to manage
more than one service request at a time.

Other studies [27], [28], [29], [30] admit the presence of
multi-server nodes to model VNFs, but they adopt M/M/m
queueing systems that restrict the generality of the model.
Similarly, previous studies [14], [31] characterized each SFC
node in terms of an M/G/m queueing model.

Differently from all the mentioned works, we propose a
G/G/m queueing model to characterize each node of the
SFC. It represents the most general case, which can deal
with realistic use-cases where classic assumption of exponen-
tial distributions (both for inter-arrival and service times) is
inaccurate.

B. Availability Issues

As regards the availability aspects of SFCs, the technical
literature proposes a number of useful techniques to optimize
the redundancy. For example, Petri-based formalisms provide
a compact way to model the availability of chained struc-
tures through the analysis of the state changes. Among the
works which exploit such a formalism we find: [32], includ-
ing a VNF migration strategy where the underlying SFC has
been modeled according to the Petri formalism; stochastic

3986 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 4, DECEMBER 2023

Fig. 1. Architecture overview: the testbed based on the Clearwater platform (left panel); the 3-layer Containerized Function (CF) constituting a cIMS node
(middle panel); the G/G/m queueing model for each provider p (right panel).

Petri networks (SPNs) have been exploited in [33] to set
an automatic method useful to evaluate the availability of
SFCs; authors in [34] propose a comparative analysis of dif-
ferent SFC configurations exploiting the stochastic reward
networks (SRNs) formalism, a variant of classic stochas-
tic Petri networks with a reward function; SRN have been
used also in [35] to characterize from an availability view
point homogeneous and heterogeneous deployments of SFCs;
stochastic activity networks (SANs) have been adopted in [36]
and [37] to assess the availability of an end-to-end NFV-
aware network service; generalized stochastic Petri networks
(GSPNs) have been employed in [38] to model availability
problems in data centers in charge of managing SFCs.

The compactness of the described methods represents both
an advantage and a disadvantage at the same time: they are
benefiting since provide high-level expressiveness during the
modeling stage, but, make it difficult to access analytical
details that we exploit in our MUGF-based approach. Another
limitation is that Petri-based techniques typically require spe-
cific software tools such as SHARPE [39], SPNP [40],
TimeNET [41], WebSPN [42]. The Universal Generating
Function (UGF) technique (the non-multidimensional version)
has also been exploited to deal with availability aspects of
virtualized environments [43], [44]. A limitation is that such
a method is not suitable for the application to a multi-
provider environment, which we are able to address through
the proposed multidimensional UGF technique.

We conclude this section by pinpointing the main method-
ological and experimental advances over [14]. As to the
former: i) we adopt a more general queueing model for a
cIMS node, namely G/G/m, where: the inter-arrivals of cIMS
sessions (the first G) are assumed to be Gamma-distributed
with different shape parameters accounting for a broader set
of possibilities; the generic service times (the second G) are
estimated through experiments; and m containerized instances
are managed by P providers which share a cIMS node; ii) we
introduce a formalization of series and parallel structures use-
ful to mathematically justify the Multidimensional Universal
Generating Function (MUGF) method; iii) we devise an
effective ad hoc algorithm named PE-MUGF (Performability
Evaluation through MUGF) to search for the minimum-
redundancy cIMS setting which meets given performance and

availability requirements. On the experimental side, we con-
duct an extensive campaign based on Clearwater, a container-
based IMS deployment, through which we are able to: i)
obtain on-field estimates of relevant model parameters (e.g.,
service times, repair rates); ii) elaborate on possible variations
of redundant cIMS configurations; iii) conduct a dedicated
sensitivity analysis focused on some critical parameters.

III. MOTIVATING EXAMPLE: MULTI-PROVIDER CIMS

As an exemplary SFC infrastructure we consider a
container-based version of IP Multimedia Subsystem (cIMS)
realized through the open-source project Clearwater release
130 [45]. The leftmost panel in Fig. 1 shows the nodes that
we have implemented in our testbed:

• Proxy-CSCF (P-CSCF)1: the ingress point of the cIMS
architecture which exposes its SIP2-based interface to the
external world. The corresponding Clearwater name is
Bono.

• Serving-CSCF (S-CSCF): is responsible for the
multimedia sessions control, including authentication
and routing procedures. The corresponding Clearwater
name is Sprout/S.

• Interrogating-CSCF (I-CSCF): it enables IMS requests to
be routed towards the correct S-CSCF. The correspond-
ing Clearwater name is Sprout/I and is co-located with
Sprout/S.

• Home Subscriber Server (HSS): it stores information
about IMS subscribers (including authentication keys).
The corresponding Clearwater name is Homestead.

In line with the decoupling logic of softwarized infrastruc-
tures, each cIMS node is realized through a 3-layer structure
that we call Containerized Function (CF) shown in the middle
panel of Fig. 1. The CF upper layer (application layer) hosts
the specific cIMS logic (e.g., Proxy, Serving, etc.) embodied
into containers; the middle layer (docker layer) provides sup-
port for containers and is realized through the popular docker
daemon engine; the lower layer (infrastructure layer) models

1Call Session Control Function: a control functionality useful to manage
the multimedia sessions, and distributed across different IMS nodes.

2Session Initiation Protocol: the signaling protocol used within IMS-based
architectures.

DE SIMONE et al.: MULTI-PROVIDER IMS INFRASTRUCTURE WITH CONTROLLED REDUNDANCY 3987

all the physical parts including CPU, power supplies, etc. It
is useful to disclose that a cIMS node can be made of one or
more redundant CFs connected in parallel to improve the avail-
ability, as will be detailed in Section VI. Finally, the rightmost
panel of Fig. 1 shows that each CF can be shared by P dif-
ferent providers. Each provider p (p = 1, . . . ,P), modeled as
a G/G/mp queue, represents a set of containerized instances
(briefly, instances) each of which able to manage the cIMS
requests in queue.

IV. A MULTI-STATE SYSTEM APPROACH

FOR THE AVAILABILITY MODELING OF

A CONTAINERIZED FUNCTION

The Multi-State System (MSS) formalism was introduced
to overcome the limitation arising from the binary models [46]
where, from an availability perspective, a system can be char-
acterized according to two extreme cases: perfect functioning
or complete failure. Conversely, in many real-life situations,
the systems and their components can assume a certain range
of performance rates between the two aforementioned extreme
cases [47]. By applying the MSS modeling to service function
chains, it is possible to: i) evaluate the performance rates of the
single components (e.g., the nodes) ruled by failures and repair
operations, and ii) employ the MUGF to recombine, through
simple algebraic operations, the performance rates of single
components and derive a macroscopic performance model of
the whole chain.

Figure 2 represents the MSS model of a single CF, where
each performance rate can be mapped into a given state,
providing information about the operating (working or failed)
condition of a specific component. A failed component is
indicated by 0 and a working (or repaired) component is
indicated by 1.

In Fig 2, each state is identified by a P-dimensional vec-
tor σ = (σ1, . . . , σP) ∈

∏P
p=1{0, . . . , sp} being σp ∈

{0, 1, . . . , sp} the number of working containerized instances
belonging to provider p whose maximum value is sp . For
example, the top-most state in Fig. 2, namely (s1, s2, . . . , sP),
is the most favourable state (all providers with all instances
working). In contrast, state (s1 − 1, s2, . . . , sP) indicates that
provider 1 works with one instance less. We also have 3 spe-
cial states: (0, 0, . . . , 0)C indicating that all providers have no
working containerized instances; (0, 0, . . . , 0)D indicating that
docker layer is no longer working (e.g., due to a bug into
docker manager), thus, causing the immediate faults of all
containerized instances on top; (0, 0, . . . , 0)I indicating that
infrastructure layer is no longer working (e.g., due to a power
interruption), thus, causing the faults of both instances and
docker layers.

The inter-arrival failures are treated as independent and
identically distributed (iid) random variables, and, more
precisely, as exponentially distributed random variables with
parameter λ, whereas the times taken for repair are treated
as exponentially distributed random variables with parame-
ter μ [48], [49]. For example, by starting from a completely
working system with state (s1, s2, . . . , sP), the failure action
observed when one instance of provider 1 fails is ruled by

Fig. 2. Multi-State System (MSS) model of a Containerized Function.

failure rate λC1 and brings the system towards the state
(s1 − 1, s2, . . . , sP). In contrast, the system comes back into
the completely working state when the failed instance of
provider 1 gets repaired with parameter μC1. Remarkably,
when the docker layer fails, each state of the system (except-
ing for state (0, 0, . . . , 0)I) is forced to reach the state
(0, 0, . . . , 0)D with failure rate λD . Likewise, when the infras-
tructure layer fails, each state of the system is forced to
reach the state (0, 0, . . . , 0)I with failure rate λI . Please
also note that, as usual in real-world systems, both repairs
of docker and infrastructure layers conclude with a recover
of the whole system with repair rates μD and μI , respec-
tively.

The overall state space of the MSS can be defined as ω =
ωC × ωD × ωI , where:

• ωC =
∏P

i=1{0, 1, . . . , sp} represents the state space of
the application layer (with containerized instances) of all
providers;

• ωD = {0, 1}D represents the state space of the docker
layer, where 0 indicates the docker failure condition and
1 indicates the docker working condition;

• ωI = {0, 1}I represents the state space of the infras-
tructure layer, where 0 indicates the infrastructure failure
condition and 1 indicates the infrastructure working
condition.

At this point, to completely characterize the MSS, we
need to formally define two descriptors. The first one is the
performance rate rp,σ = γσp being γ the so-called serving
capacity, namely, the number of cIMS requests that container-
ized instances of provider P can concurrently manage when σp
instances are currently available. Thus, rσ = (r1,σ , . . . , rP ,σ)
represents the stochastic vector containing all performance
rates included in the set

R =

⎧
⎨

⎩
rσ

∣
∣
∣
∣
∣
σ ∈

P∏

p=1

{0, . . . , sp}
⎫
⎬

⎭
∪ {(0, . . . , 0)D , (0, . . . , 0)I }. (1)

The second descriptor is the structure function ψ which pro-
vides a mapping between all possible combinations of states of

3988 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 4, DECEMBER 2023

the system components ω = (σ, zD , zI) and the whole system
state. Thus, we have:

ψ : ω →
⎧
⎨

⎩
σ

∣
∣
∣
∣
∣
σ ∈

P∏

p=1

{0, . . . , sp}
⎫
⎬

⎭
∪ {(0, . . . , 0)D , (0, . . . , 0)I }, (2)

where: ψ(σ , zD , zI) = σ for zD = 1 and zI = 1
(namely, docker and infrastructure layers are both working),
ψ(σ , zD , zI) = (0, . . . , 0)D for zD = 0 and zI = 1 (namely,
the docker layer is failed), and ψ(σ , zD , zI) = (0, . . . , 0)I for
zD = 0 and zI = 0 (namely, docker and infrastructure layers
are failed).

We can conclude that the MSS performance rate can
be expressed as the vector stochastic process R(t) =
(R1(t), . . . ,RP (t)) = γ · ψ(Z (t),ZD (t),ZI (t)), where:
Z (t) = (Z1(t), . . . ,ZP (t)) is a ωC -valued process represent-
ing the failure/repair condition of the application layer, and
ZD (t) [ZI (t)] is a ωD -valued [ωI -valued] process represent-
ing the failure/repair condition of the docker [infrastructure]
layer.

Being built on the MSS of Fig. 2, R(t) is a process having
a finite number of states amounting to

S =
P∏

p=1

(
sp + 1

)
+ 2, (3)

and is irreducible, meaning that each state can be reached
by each other state. Moreover, since all the λ and μ param-
eters do not change with time, the process R(t) is an ergodic
Continuous-Time Markov Chain (CTMC) whose probability
vector π(t) can be obtained by solving:

dπ(t)

dt
= π(t)Q, (4)

being Q the infinitesimal generator matrix [50]. We have also
to consider the normalization condition

∑
σ πσ (t) = 1, where

πσ = limt→∞ πσ (t) = limt→∞ Pr{R(t) = rσ}. Since we
are interested in the steady-state behavior of the MSS, we can
safely conclude that the set {πσ , rσ} uniquely describes the
steady-state behavior of the containerized function.

V. PERFORMANCE OF A CONTAINERIZED FUNCTION

THROUGH A G/G/mp QUEUE-BASED MODEL

As shown in the rightmost panel of Fig. 1, each provider
P at the application layer is represented through a queueing
system made of a set of software instances able to manage
the cIMS sessions. In order to treat the problem in the most
general way possible, we propose a G/G/mp (p = 1, . . . ,P)
queue modeling of a CF. For this model we have: generic inter-
arrival times (the first G), generic service times (the second
G), and a number of finite mp containerized instances per
provider p. Before delving into details of such a queueing
model we want to highlight an important fact. In principle, the
number of mp instances in charge of managing multimedia
sessions can vary across the time since, as specified in the
previous section, some of them may fail, thus we would have
a G/G/mp(t) queueing model. Having also defined R(t) as
the performance rate of the MSS, the queueing model can be

TABLE I
MODEL PARAMETERS

denoted by G/G/Rp(t) so as to stress the dependency from
a particular state.

Interestingly, we note that failure time scale completely
dominates queueing time scale since failure times are in the
order of thousand of hours, whereas service times are in the
order of few milliseconds (see Table I further ahead). This
condition leads to a decoupling of the two time scales that, as
well explained in [51], allows to neglect the transient effects
of the dominated times scale (the queueing times scale in our
case). In other words, the steady-state condition of queues are
achieved much faster than the steady-state condition of faults.
Thus, we can safely assume a G/G/Rp model, where the
time dependency is “absorbed”. This notwithstanding, when
we need to stress the time dependency from a particular state,
we will occasionally use the G/G/Rp(t) notation.

At this point, it is useful to recall that the CSD performance
indicator is directly related to the amount of time that a cIMS
request spends at each CF waiting to be processed. For exam-
ple, in our IMS case study, the CSD is given by the total
latency across the four stages (i.e., the CFs) in the service
chain (P-CSCF, S-CSCF, I-CSCF, HSS). Intuitively, higher
sojourn times at each CF imply higher CSD that, in turn,
implies worse performance.

In line with these considerations, we characterize the
average sojourn times of cIMS requests which depend on
the provider p and on the particular state σ. Remarkably,
G/G/mp queueing systems do not admit analytical closed
forms, thus, some approximating formulas are required. To
address this issue, we introduce an equivalent M /M /mp

model with Poisson inter-arrivals with rate α, and exponential
service rates with mean β. According to the classic queueing
theory [52], we can express the mean sojourn time at a single
CF as:

δp,σ = qp,σ +
1

β
, (5)

where: qp,σ represents the mean waiting time spent by a cIMS
request in the queue of provider p in state σ, and 1/β is
the mean service time spent by the cIMS request to be pro-
cessed. This latter quantity can be experimentally estimated
(see numeric values in Table I further ahead) for each node.

DE SIMONE et al.: MULTI-PROVIDER IMS INFRASTRUCTURE WITH CONTROLLED REDUNDANCY 3989

In contrast, qp,σ is a random quantity which can be obtained
by approximating the corresponding mean waiting time of the
equivalent M /M /mp queueing system with:

qp,σ ≈ πm
β(1− ρ)

V 2
A + V 2

S

2m
F , (6)

where: πm is the steady-state probability of the equiva-
lent M /M /mp queueing system [52], ρ = α/(β · m)
is the utilization factor, VA and VS are the coefficients
of variation (σ(·)/E (·)) for inter-arrival and service times,
respectively, and F is a correction factor which implements
the Krämer/Lagenbach-Belz approximation formula [53], [54],
[55] for a G/G/mp queueing model obeying to the following
relation:

F =

⎧
⎪⎪⎨

⎪⎪⎩

exp

[
2(ρ−1)(1−V 2

A)
2

3πm(V 2
A+V 2

S)

]

,≤ VA ≤ 1,

exp

[
(ρ−1)(V 2

A−1)
V 2

A+4V 2
S

]

, VA > 1.

(7)

Thus, by substituting (6) in (5), we obtain the mean
sojourn time per CF modeled as a G/G/mp queueing system.
Moreover, since the time spent by a cIMS request also
depends on the particular state reached by the MSS in Fig. 2,
we can easily define the structure function ψΔ : ω →
{R+ ∪ {+∞}}P specialized to the mean sojourn times.
Similarly to the definition introduced in (2), we have that
ψΔ(σ , zD , zI) = (δ1,σ, . . . , δP ,σ) for zD = 1 and zI = 1,
ψΔ(σ , zD , zI) = (∞, . . . ,∞)D for zD = 0 and zI = 1
(when docker layer is not working, we have infinite delay),
and ψΔ(σ , zD , zI) = (∞, . . . ,∞)I for zD = 0 and zI = 0
(when infrastructure and docker layers are not working, we
have infinite delay).

Remarkably, the structure function ψΔ is useful to charac-
terize the mean sojourn time in each possible state through
the vector stochastic process Δ(t) = (Δ1(t), . . . ,ΔP (t)) =
ψΔ(σ ,ZD (t),ZI (t)). Moreover, similarly to the R(t) pro-
cess, also Δ(t) is an ergodic CTMC process, where the set
of pairs {πσ , δσ} determines the steady-state performance
behavior of a CF in terms of mean sojourn times.

VI. PERFORMABILITY OF A SERVICE CHAIN:
THE MUGF APPROACH

Since we are dealing with a chain of nodes where each
node is made of replicated CFs for availability purposes, we
want to stress that: i) a series connection implies that the
whole chain is functioning when each node n ∈ N is func-
tioning, where N = {P-CSCF, S-CSCF, I-CSCF, HSS} is the
set of cIMS nodes; ii) a parallel connection implies that each
node n is made of redundant CFs. Specifically, CF(n,�) rep-
resents the parallel CF � (� = 1, . . . ,Ln) associated to node
n. Since we assume that all CFs composing a node have to
share the load among them, the redundancy is supposed to
be “hot standby” (this working hypothesis is also known as
flow dispersion hypothesis [47]). The resulting series/parallel
structure is shown in Fig. 3. Such a model is meant to cap-
ture a high-level architectural perspective, by not considering
synchronization problems nor links availability (links are sup-
posed to be always-on). At this point, we evaluate the mean

CSD introduced by a chain, denoted by Δc(t), through the
definition of two operators: the series structure function and
the parallel structure function. We find it more convenient to
start by defining the latter operator.

Proposition 1 (Parallel Structure Function): Let Δ(n)(t)
be the vector stochastic process containing the mean sojourn
time introduced by node n. Once defined the parallel struc-
ture function ψpar : ωLn → R

P ∪ (+∞, . . . ,+∞), the mean
sojourn time introduced by node n is:

Δ(n)(t) = ψpar

(
Z (n,1)(t),Z

(n,1)
D (t),Z

(n,1)
I (t), . . . ,

Z (n,Ln)(t),Z
(n,Ln)
D (t),Z

(n,Ln)
I (t)

)
=

(
Δ

(n)
1 (t), . . . ,Δ

(n)
P (t)

)
, (8)

where Δ
(n)
p (t) is the stochastic process describing the

G/G/R
(n)
p (t) queue, being R

(n)
p (t) =

∑Ln
�=1R

(n,�)
p (t), and

Z (n,Ln)(t), Z (n,Ln)
D (t), Z (n,Ln)

I (t) denoting, respectively, the
ωC -valued, ωD -valued, ωI -valued failure/repair processes of
the application layer, docker layer, infrastructure layer of the
CF(n,�), � = 1, . . . ,Ln .

Since the call flow traverses the chain in series, the over-
all mean CSD Δc(t) can be obtained as the sum of mean
CSDs introduced by each single node. Such a quantity can be
evaluated by introducing the following:

Proposition 2 (Series Structure Function): We
define a series structure function ψser : ωΣnLn →
R
P ∪ (+∞, . . . ,+∞). The overall mean CSD

Δc(t) = (Δc
1(t), . . . ,Δ

c
P (t)) introduced by the chain

is given by:

Δc(t) =
∑
n

Δ(n)(t) = ψser

(
Z (P,1)(t),Z

(P,1)
D (t),Z

(P,1)
I (t), . . . ,

Z (P,LP)(t),Z
(P,LP)
D (t),Z

(P,LP)
I (t), . . . ,

Z (H ,1)(t),Z
(H ,1)
D (t),Z

(H ,1)
I (t), . . . ,

Z (H ,LH)(t),Z
(H ,LH)
D (t),Z

(H ,LH)
I (t)

) (8)
=

∑
n

ψpar

(
Z (n,1)(t),Z

(n,1)
D (t),Z

(n,1)
I (t), . . . ,

Z (n,Ln)(t),Z
(n,Ln)
D (t),Z

(n,Ln)
I (t)

)
. (9)

From (8) we can derive the steady-state mean distribution
of sojourn times for node n, viz.,

{
π
(n)
σ , δ

(n)
σ

}
, (10)

where: δ
(n)
σ = (δ

(n)
1,σ , . . . , δ

(n)
P ,σ) is the mean sojourn times vec-

tor of node n in state σ , and π(n)σ = limt→∞ Pr{Δ(n)(t) =

δ
(n)
σ } the corresponding limiting probability. Likewise,

from (9) we can derive the steady-state mean CSD distribution
of the whole chain, viz.,

{πcσ , δcσ}, (11)

where: δcσ = (δc1,σ , . . . , δ
c
P ,σ) is the mean sojourn times vector

of system in state σ , and πcσ = limt→∞ Pr{Δc(t) = δcσ} the
corresponding limiting probability.

In order to solve the proposed model in a computationally-
efficient way, we use an approach based on the Universal
Generating Function (UGF), also known as u-function [56].
The UGF is a hierarchical technique to compute steady-state

3990 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 4, DECEMBER 2023

Fig. 3. Series/Parallel cIMS architecture: each node is connected in series and is made of a number redundant CFs connected in parallel.

performance distributions of complex MSSs characterized
by series/parallel interconnections among the components.
The UGF of the steady-state performance metric Y, whose
distribution is given by the set of pairs {πj , yj }, is the
polynomial-shape function

u(z) =
∑

j

πj z
yj , (12)

being yj the j-th performance rate, and πj the correspond-
ing steady-state probability. The UGF of the whole system
(i.e., the combination of multiple CFs in series/parallel) can
be obtained by combining the UGFs of individual CFs through
simple sums and products. Thus, the steady-state probabilities
for the entire system can be obtained from the combined UGF.

Since we deal with multiple service providers in the
system, we adopt a multidimensional extension of (12) dubbed
MUGF [31] along with (8) and (9). Thus, we are able to obtain
the MUGF of the whole cIMS chain where: i) 4 nodes are con-
nected in series, ii) each node is made of � replicated CFs to
guarantee redundancy, iii) each CF is shared among different
P providers and can be in a particular state σ . In summary, we
can write the MUGF uc(z) of the whole chain as the product
of MUGFs of single nodes, viz.

uc(z) =
∏

n

⎡

⎣
∑

σ∈ωLn

π
(n)
σ

P∏

p=1

z
δ
(n)
p,σ

p

⎤

⎦

︸ ︷︷ ︸
MUGF of noden(u(n)(z))

=
∑

σ∈ωtot

πcσ

P∏

p=1

z
δcp,σ
p , (13)

with ωtot =
∏

n ω
Ln . In practice, uc(z) represents

a polynomial-shape function in z1, . . . , zP indeterminates,
where each term corresponds to the mean CSD vector δcσ
(exponents of z), whereas its steady-state probability πcσ is
the pertinent coefficient. Such quantities can be used to cal-
culate the steady-state availability of the whole service chain
as explained below.

First, we denote by S a particular cIMS setting where each
node n is made of a number of redundant CFs � (�=1, . . . , Ln).
Yet, we denote by δ∗ = (δ∗1 , . . . , δ∗P) a P-dimensional vector
which contains the maximum steady-state tolerated values of
mean CSD. Thus, we define the steady-state availability of a
particular cIMS setting S as

Ac(δ∗,S) =
∑

σ∈ωtot

πcσ · 1
(
δcp,σ ≤ δ∗p , ∀p = 1, . . . ,P

)
, (14)

where 1(·) is a function which amounts to 1 if condition holds
true and 0 otherwise. We note that πcσ and δcp,σ in (14) are
directly derived from the MUGF expression (13).

We also stress the fact that (14) provides the steady-state
availability of a generic cIMS setting S, but we are interested
to find the steady-state availability of the setting with the min-
imum cost, namely, with the minimum number of redundant
CFs.

Accordingly, denoting by E (n,�) the cost (or expenditure)
of the �−th CF belonging to node n, we can define the cost
of a cIMS setting S as E c(S) =

∑
n

∑Ln
�=1 E

(n,�). In sum-
mary, we search for the solution of the following optimization
problem:

⎧
⎨

⎩

minimize E c(S)
S∈Lc

subject to Ac(δ∗,S) ≥ A0,
(15)

DE SIMONE et al.: MULTI-PROVIDER IMS INFRASTRUCTURE WITH CONTROLLED REDUNDANCY 3991

Algorithm 1: PE-MUGF

Input: α, β, VA,VS , Q , δ∗, Ln , N, P, A0, E (n,�)

1 Function BuildSetting (Ln ,N):
2 if N = 0 then
3 return {}
4 else
5 SN−1 ← BuildSetting (Ln , N − 1)
6 SN ← ∅
7 for s ∈ SN−1 do
8 for i = 1, 2, . . . ,Ln do
9 S temp ← prepose i to s

10 SN ← SN
⋃

{S temp}
11 end
12 end
13 end
14 Calculate π from (4) for t →∞, and δ from (5)

15 uc(z) =
∏N

n=1 u
(n) =

∑Ln
�=1 π

c
σ
∏P

p=1 z
δcp,σ
p

16 Evaluate Ac(δ∗,SN) through (14)
17 Compute cost per setting E c(SN)
18 return
19 Output: Optimal setting S∗

N through (15)

where A0 is a given availability constraint. Often, A0 =
0.99999 namely, the well-known “five nines” steady-state
availability constraint.

A. PE-MUGF Algorithm

Algorithm 1 describes PE-MUGF, an algorithm devised to
evaluate all the possible cIMS settings in terms of steady-state
availability and cost. Such a choice is due to two reasons:
first, it is impossible to pinpoint beforehand the optimal cIMS
setting with no knowledge of its composition (in terms of
redundant CFs); then, with more cIMS settings, a network
provider can make different choices or compare several set-
tings according to customized criteria. Thanks to the MUGF
approach, the steady-state availabilities can be computed effi-
ciently even for a large number of combinations. PE-MUGF
has been realized with Wolfram MathematicaTM and is avail-
able upon request.

The initial line of the algorithm specifies the input parame-
ters. In Section VII, we show how these values can be defined
in the context of an experimental use case. Lines 1 − 13
report a function called BuildSetting useful to build, in a
combinatorial way, all the possible cIMS settings made of N
nodes, where each node is made of a maximum number of
CFs amounting to Ln . We note in passing that, to highlight
the recursion into BuildSetting function, we adopt the nota-
tion SN in place of S to indicate that a given setting is made
of N nodes. In such a way, except for the case N = 0 (line 2),
each N-node setting can be obtained by preposing a number
i (i = 1, . . . ,Ln) to a (N − 1)-node setting.

Line 15 is the MUGF per cIMS setting derived as a com-
bination of the MUGF applied per single node. Such an
expression allows to evaluate the steady-state availability per
setting (line 16). Then, a cost assignment per setting obtained

as the sum of costs per CF is performed at line 17, and the
optimal cIMS setting is provided as the output (line 19).

As mentioned before, to evaluate the optimal setting S∗,
the PE-MUGF algorithm must evaluate all the built settings
which are a byproduct of the procedure.

From a time complexity perspective, it is useful to notice
that the MUGF construction is very fast since it relies on
simple algebraic operations such as sums and products. In con-
trast, the BuildSetting function requires more time since it
has to build all the possible settings, thus leading the com-
plexity of PE-MUGF to O(LN

n). This notwithstanding, for
typical values of N and Ln in real-world applications (see
Section VII for numerical values), PE-MUGF is reasonably
affordable.

Even if not explicitly stated, our evaluation can be easily
applied to a single-provider architecture being a special case
obtained by posing P = 1 in (13), and providing a drastic sim-
plification of the MSS in Fig 2. Indeed, in the single-provider
case, we have to take into account only the containerized
instances (that can be in working or failed conditions) of the
provider under analysis, and the performance rates vectors
in (1) reduce to scalars.

VII. EXPERIMENTAL RESULTS

We present results from a complex experiment that incor-
porates real-world hardware and software technologies. Our
testbed is based on the Clearwater IMS that was previously
introduced. We deployed the three main Clearwater nodes
(Bono, Homestead, Sprout/S-I represented in the leftmost
panel of Fig. 1) on three dedicated server machines, each
of which equipped with: Intel XeonTM (16-Core, 1.80 GHz),
64 GB of RAM, 2 SATA HDD each of 500 GB, 1 NetApp
Network Storage Array (32 TB of storage and 4GB of SSD
cache). The operating system on top of each node is based on
Linux kernel 4.4.0 with Docker engine version 19.03.5. All
the nodes are connected through an Ethernet network switch
supporting a maximum throughput of 1 Gbps. Moreover, an
additional node hosts SIPp, a SIP stress tool that we use as
workload generator.

Now, we find it convenient to split the remainder of this
section into three parts: in the first one, we deal with the esti-
mation of parameters to insert into MSS and queueing models
(in particular, repair times and service times); in the second
one, we describe how to use PE-MUGF to find the best cIMS
settings; in the last part we evaluate, through a sensitivity anal-
ysis, the robustness of the obtained settings when some critical
parameters deviate from their nominal value.

A. Parameters Estimation

Through our testbed we are able to estimate two classes of
parameters. The first class pertains to the service times distri-
butions obtained by analyzing the logs of all cIMS nodes. In
particular, we have stressed the cIMS architecture with 10000
SIP requests from 10000 subscribers automatically generated
via SIPp, and we have built the empirical mean service time
distributions per node and derived the corresponding mean
values. The results are reported into the first part of Table I

3992 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 4, DECEMBER 2023

expressed as the inverse of service rate (1/β). We note that all
the mean service times are in the order of 10−3 seconds except
for the mean service time of the I-CSCF which is in the order
of 10−2 seconds. We will see experimentally that, in view
of (5), such a higher value will adversely affect the availability
of the whole cIMS if not adequately contrasted through spe-
cific redundancy strategies. From the empirical distributions of
service times we are also able to derive the coefficient of vari-
ation VS for each node, being expressed as the ratio between
the standard deviation and the mean value calculated from
such distributions, whose values are also reported in Table I.

The second class of parameters pertains to the repair (or
reboot) times for each layer of a CF. To perform such esti-
mation we have implemented a fault injection routine [57],
[58] which automatically injects into a CF three types of
faults including: container faults (simulated by I/O exceptions
and resource exhaustion to force containers to crash and to
reboot), docker faults (simulated by forcing an abrupt termi-
nation of the dockerd process), infrastructure faults (simulated
by a physical machine crash). In total, we have performed 360
fault injection experiments (30 fault injections for 3 layers and
for 4 types of CFs). Once a layer restores after a fault, we
experimentally measure the pertinent repair time. Specifically,
as regards repair times differentiated per layer and per CF type,
our experiments reveal how slight differences in repair times
for each single layer might arise, as shown in Fig. 4. Such
a behavior is obviously due to the technological differences
among CFs. For instance, container and docker layers of the
HSS-type CF exhibit a slightly longer reboot time (w.r.t. reboot
times of container and docker layers of remaining CFs), due
to the internal database structure that requires more time to be
restored. For the sake of simplicity, in Table I we report only
the average values of repair times per layer without specifying
the CF type they refer to.

Moreover, through dedicated scalability tests, we have also
investigated the behavior of application layer reboot times
when multiple containers are deployed on top of a CF. In
particular, we have deployed onto a I-CSCF-type CF a num-
ber of 16 containers3 in line with the number of cores in
our server machines. Then, we configured the containers to
optimize the performance and recovery of the system (fol-
lowing the best practice from real-world systems [59], [60]),
by configuring CPU affinity policies to avoid CPU contention
between containers, and common-mode failures due to a CPU
failure. This configuration makes the recovery time insensi-
tive to the number of containers. As shown in Fig. 5, despite
some variability due to shared resources between the contain-
ers (e.g., communication with the container manager process),
the average recovery time does not significantly vary even if
we increase the number of containers. Thus, the estimated con-
tainer repair time can be reasonably considered constant and
scarcely dependable on the number of containers deployed in
parallel. The remaining parameters, namely, the mean time to
failures per layer (1/λC , 1/λD , 1/λI) have been derived by
scientific literature [48], [61], [62], [63].

3Similar results were observed on CFs for P-CSCF, S-CSCF, HSS.

Fig. 4. Mean times to repair per layer and per CF type.

Fig. 5. Stress tests on containers repair times (boxplot representation). The
number of concurrent running containers does not dramatically affect 1/μC .

B. Optimal cIMS Settings

The second part of the experiment aims to demonstrate how
to determine the optimal cIMS setting in accordance with (15).
We have implemented an exemplary cIMS model where each
CF can support P = 2 providers and whose corresponding
MSS is shown in Fig. 6. We assume that provider 1 is able
to support 2 instances, and provider 2 is able to support 3
instances. It is easy to note that, in accordance with (3),
the total number of states amounts to 14. Precisely, we have
12 states (S1, . . . ,S12) embodying the failure/working sta-
tus of each instance and 2 states (SD and SI) embodying
the failure/working status of docker and infrastructure layers,
respectively. Analyzing the MSS in Fig. 6 we can see that,
starting from the initial state that is the completely working
state S12, we can reach S11 with 2λC1 failure rate, since one
of the two working instances of provider 1 may fail. In con-
trast, when returning into S12 from S11, we have a repair rate
of μC1 since only one failed instance needs to be repaired. All
the pairs {πσ , δσ} associated to the considered MSS can be
found by solving the differential equation (4), along with the

DE SIMONE et al.: MULTI-PROVIDER IMS INFRASTRUCTURE WITH CONTROLLED REDUNDANCY 3993

Fig. 6. MSS model of the exemplary CF with 2 providers and 14 states.

normalization condition
∑12

i=1 πi (t)+pD (t)+pI (t), and con-
sidering the limit t →∞. The infinitesimal generator matrix Q

derived by the MSS in Fig. 6 can be expressed into the com-
pact form (16), shown at the bottom of the page where the

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 μI
λI 0 0 0 0 0 0 0 0 0 0 0 0 μD
λI λD 0 2μC1

3μC2
0 0 0 0 0 0 0 0 0

λI λD λC1
0 0 μC1

3μC2
0 0 0 0 0 0 0

λI λD λC2
0 0 0 2μC1

2μC2
0 0 0 0 0 0

λI λD 0 2λC1
0 0 0 0 3μC2

0 0 0 0 0
λI λD 0 λC2

λC1
0 0 0 μC1

2μC2
0 0 0 0

λI λD 0 0 2λC2
0 0 0 0 2μC1

μC2
0 0 0

λI λD 0 0 0 λC2
2λC1

0 0 0 0 2μC2
0 0

λI λD 0 0 0 0 2λC2
λC1

0 0 0 μC1
μC2

0
λI λD 0 0 0 0 0 3λC2

0 0 0 0 2μC1
0

λI λD 0 0 0 0 0 0 2λC2
2λC1

0 0 0 μC2

λI λD 0 0 0 0 0 0 0 3λC2
λC1

0 0 μC1

λI λD 0 0 0 0 0 0 0 0 0 3λC2
2λC1

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+diag(d) (16)

where:

d =
[−μI ,−(λI + μD),−(2μC1

+ 3μC2
+ λD + λI),

− (λC1
+ μC1

+ 3μC2
+ λD + λI),−(λC2

+ 2μC1
+ 2μC2

+ λD + λI),

− (2λC1
+ 3μC2

+ λD + λI),−(λC1
+ λC2

+ μC1
+ 2μC2

+ λD + λI),

− (2λC2
+ 2μC1

+ μC2
+ λD + λI),

− (2λC1
+ λC2

+ 2μC2
+ λD + λI),−(λC1

+ 2λC2
+ μC1

+ μC2
+ λD + λI),

− (3λC2
+ 2μC1

+ λD + λI),−(2λC1
+ 2λC2

+ μC2
+ λD + λI),

− (λC1
+ 3λC2

+ μC1
+ λD + λI),−(2λC1

+ 3λC2
+ λD + λI)

]
. (17)

3994 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 4, DECEMBER 2023

diagonal of the Q has been separately reported in (17), shown
at the bottom of the previous page and where all numerical
values of parameters are drawn from Table I.

At this point, we need to set the remaining input param-
eters for the PE-MUGF algorithm. As arrival rates for the
two providers we set somehow arbitrarily α1 = 100 s−1 and
α2 = 200 s−1. Furthermore, we choose one and the same
value for the maximum steady-state tolerated mean CSD, i.e.,
δ∗1 = δ∗2 = · · · = δ∗P = δ∗ = 50 m s . Such a choice (one
order of magnitude less than ETSI values) is justified since, in
a local testbed, we neglect all the propagation delay contribu-
tions arising in wide geographical networks. As the maximum
number of CF redundant replicas Ln , we set 3 for all nodes in
the cIMS, and as the availability target A0, we set the classic
five nines 0.99999. Yet, N = 4 (we have 4 cIMS nodes).

The CF cost parameter is an arbitrary value that can be cus-
tomized with no loss of generality. For the sake of simplicity,
we assume that each CF has a unitary cost E (n,�) = 1.

The last parameter to be provided to PE-MUGF algorithm is
the coefficient of variation of inter-arrivals VA that, we recall,
in a G/G/m queueing system, depends on the particular shape
of the inter-arrivals distribution. Differently from the coeffi-
cient of variation of service times VS that we have estimated
from the empirical service time distributions, empirical inter-
arrivals cannot be simply emulated since they strongly depend
on the behavior of users. This notwithstanding, also in line
with some credited literature [64], [65], generic inter-arrivals
can be modeled by exploiting the versatility offered by the
Gamma distribution.

In particular, we employ the distribution Γ(θ, 1), namely
a Gamma distribution with a variable shape parameter θ and
the scale parameter set to 1 (as suggested in [64]). By varying
the shape parameter of the Gamma distribution, we observe
different distribution shapes of inter-arrivals, including the
exponential distribution obtained for θ = 1 (corresponding
to VA = 1) which represents the M/G/m queueing model.
Figure 7 shows a set of inter-arrival cIMS request distribu-
tions corresponding to 7 different values of θ as much as of
coefficient of variations. We choose the exponential case as
the benchmark (black dashed curve with θ = 1 and VA = 1)
and we spanned some values around such a benchmark value.
We note that, for θ < 1 the coefficient of variation decreases
and the corresponding inter-arrival distributions stretches out.
In contrast, for θ > 1 the coefficient of variation increases
and, as expected according to (6), this increase will adversely
affect the availability as we will numerically show in a while.

We run PE-MUGF as many times as VA values. For the sake
of simplicity, let us start with the reference value VA = 1. As
mentioned before, PE-MUGF returns the optimal cIMS setting
(namely, the one exhibiting the maximum availability at the
minimal cost) and a list of sub-optimal settings. Among the
listed settings, we choose 6 of them (S1, . . . ,S6), where S1
represents the optimal one since it has the highest availability
value at the minimum cost. Table II summarizes the compo-
sition of such 6 settings by specifying, in the second column,
the number of redundant CFs per node. For instance, with
respect to the optimal setting S1, the P-CSCF node is made of
2 redundant CFs (CF(P) = 2), the S-CSCF node is made
of 2 redundant CFs (CF(S) = 2), the I-CSCF node is made

Fig. 7. Gamma-distributed inter-arrival times and corresponding coefficients
of variation (VA).

TABLE II
REDUNDANCY DEGREES FOR THE SIX EXEMPLARY

SETTINGS (FOR VA = 1)

of 3 redundant CFs (CF(I) = 3), and the HSS is made of one
CF (CF(H) = 1). The third column reports the cost of each
setting simply obtained as the sum of unitary costs of each
CF per node. The fourth column reports the corresponding
steady-state availability value. Now, by re-running PE-MUGF
with a set of VA values chosen among the most significant
ones shown in Fig. 7, we re-evaluate the availability of the
same six settings to make useful comparisons.

Such results are shown in Fig. 8 where, for the sake of
comfort, y-axis reports (log scale) the unavailability values
(1 − Ac(δ∗,S), lower is better) of the six settings.4 We
also draw three availability thresholds as horizontal black
dashed bars at: 10−4 (four nines), 10−5 (five nines), and 10−6

(six nines). For example, when a bar lies above the 10−5

threshold, it means that the five nines steady-state availability
requirement is violated.

For each setting we report 4 cases corresponding to differ-
ent values of the coefficient of variation VA. The first case
includes a range of values obtained for VA ≤ 0.7 (blue bars).
Focusing on this case, we see that S1 (the optimal setting for
the exponential case VA = 1), S2, and S6 meet the five nines
requirement (S6 even satisfies the six nines requirement since
the blue bar lies below the 10−6 line). Among the remaining
settings, it is interesting to note that S4 does not meet the
five nines requirement even if its cost is higher than the S1

4By construction, all the settings satisfy the performance constraint, namely,
mean CSD < δ∗.

DE SIMONE et al.: MULTI-PROVIDER IMS INFRASTRUCTURE WITH CONTROLLED REDUNDANCY 3995

Fig. 8. Effect of the inter-arrival times variation on the steady-state
availability of S1, . . . , S6 settings.

cost (E c(S1) = 8, and E c(S4) = 9). As mentioned before,
such an apparently counterintuitive behavior is due to a bad
allocation strategy of redundant CFs for S4. In particular, few
redundant CFs have been assigned to the I-CSCF which, as can
be seen from values in Table I, is slower than the other nodes
to serve the IMS requests. This translates into higher values
of mean sojourn times due to (5), with consequent impact on
the overall availability according to (14).

By increasing VA up to 1 (representing the benchmark
case and whose availability values are reported numerically
in Table II), we can notice that the availability of S1 remains
stable (0.999992), whereas the availability of S2 trespasses
the five nines threshold achieving 0.999985. We observe an
availability decrease also for S3 (from 999984 to 999957), S4
(again from 999984 to 999957) and for S5 (from 999975 to
999949), whereas S6 continues to be stable. Similar consid-
erations hold true for a VA value of 1.2 (yellow bars) where
in some cases the steady-state availability remains stable (S1,
S4, S6), whereas in the remaining cases it undergoes a deteri-
oration. Finally, VA = 1.3 (violet bars) seems to be a critical
value since S1 violates the five nines condition and S5 even
violates the four nines condition (by achieving the three nines),
whereas, surprisingly, S6 continues to fulfill the six nines con-
dition. Thus, a network operator could decide to deploy S6
(even if it not optimal due to its cost) since it appears to
exhibit a great robustness to the variation of the inter-arrival
times. At this point we can summarize some useful facts. First,
we have seen how the availability is adversely affected when
the inter-arrival times distributions show a greater variance
(namely, VA increases). To contrast such an effect we have
two ways: the first one is to increment the redundancy pay-
ing the price of higher cost; the second one is to improve
the service times (so as to reduce the impact of VS in (6)
up to a certain extent) but, also in this case, this translates
into higher costs because more computation resources are
needed.

The second fact is that the allocation strategy of CFs is cru-
cial to obtain high availability values. In our case, in fact, S1
achieves five nines even if no redundancy at all is provided for

HSS. In contrast, S3 which is obtained from S1 by moving a
CF replica from I-CSCF to HSS violates the five nines condi-
tion for all values of VA. This is due to the fact that in S1 we
give more robustness to I-CSCF (with 3 CF replicas) which
suffers from the slow service time.

The last fact is that, by paying a little more cost, we can
obtain a very robust setting (S6 in our case) with two advan-
tages: first, it achieves the challenging six nines requirement
(MAD of 32 seconds), and, then, it appears to be particularly
insensitive to the variation of VA which, as seen before, is
detrimental for the steady-state availability.

C. Sensitivity Analysis

As the last analysis, we are interested in evaluating how
the availability values are impacted when failure and repair
parameters deviate from their nominal conditions (i.e., due
to estimation errors or to non steady behaviours). Namely,
we perform a sensitivity analysis wherein we fix the value
VA to 0.7 and compare the behavior of settings S1 and S2
since, for VA = 0.7, both guarantee the high availability
condition with the same value (Ac(δ∗,S1) = Ac(δ∗,S2) =
0.999992, for VA = 0.7).

The three uppermost [lowermost] panels of Fig. 9 show the
availability behavior in response to the variation of failure
[repair] times for container, docker, and infrastructure lay-
ers. Each panel reports the horizontal blue dashed line as
the five nines threshold. Moreover, the red circle includes the
nominal value of the parameter as drawn from Table I. At
first glance, we can notice that the different responses of the
availability for S1 and S2 can be appreciated at the appli-
cation layer, whereas the behaviors of the two considered
settings tend to be the same at the docker and infrastruc-
ture layers. The reason is that failure and repair values for
application layer span across a smaller range with respect to
the remaining layers. More in detail, we can see that S1 is
more robust than S2 to the variation of 1/λC (topmost-left
panel). Precisely, for S1 [S2], 1/λC can be reduced of about
80% [65%] of its nominal value without violating the high
availability condition. As concerns docker and infrastructure
layers (topmost-middle and topmost-right panels), we note that
parameters (both for S1 and S2) can be relaxed of about 16%
and 50% of their nominal values, respectively. Likewise, the
same robustness of S1 w.r.t. S2 is evident for 1/μC , whereas,
no practical differences emerge in relaxing docker and infras-
tructure repair parameters for S1 and S2. Once again, it is
useful to remark that, even if the number of CF replicas
employed for S1 and S2 is the same (implying the same
cost), the greater robustness of S1 is explained through a better
replicas allocation: the only node with no redundancy is the
HSS which, in terms of mean service times, exhibits the best
performance.

We finally note that such an analysis could be useful to
decide between S1 and S2 that, according to PE-MUGF eval-
uated with VA = 0.7, have the same availability and the
same cost (0.999992 and 8), respectively. In fact, S1 could
be preferred since it turns out more robust w.r.t. variations of
parameters λC and μC .

3996 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 4, DECEMBER 2023

Fig. 9. Sensitivity analysis to evaluate the steady-state availability variation for two settings S1 and S2, when failure parameters (topmost panels) and repair
parameters (lowermost panels) deviate from their normal behavior.

VIII. CONCLUSION

In this paper, we have examined in detail both performance
and availability aspects of a container-based IMS (cIMS)
infrastructure implementing the service function chain logic.
In the first part, we have formalized an MSS model of the
containerized function to cope with availability issues, and a
G/G/m queueing model to deal with performance aspects. In
the second part, supported by an ad hoc devised algorithm
named PE-MUGF, we were able to derive the optimal-
redundant cIMS setting where given performance (in terms
of mean call setup delay) and availability (in terms of num-
ber of “nines”) requirements are satisfied at the same time.
The results allow to highlight that the allocation strategy of
redundant cIMS elements is crucial to guarantee an availabil-
ity value that depends as little as possible on the variations
of the system parameters. Some hints for future developments
may include: the possibility of further decomposing the MSS
to take into account additional components (e.g., the hypervi-
sor in case of virtual machine deployment); the possibility
of embodying Quality-of-Service indicators to differentiate
the cIMS requests according to some service classes (e.g.,
gold, bronze, silver); the possibility of examining the avail-
ability variations when the system is under particular stressed
conditions (e.g., simulating busy hour requests).

REFERENCES

[1] M. Gharbaoui et al., “An experimental study on latency-aware and self-
adaptive service chaining orchestration in distributed NFV and SDN
infrastructures,” Comput. Netw., vol. 208, pp. 1–15, May 2022.

[2] D. Borsatti, G. Davoli, W. Cerroni, C. Contoli, and F. Callegati,
“Performance of service function chaining on the OpenStack cloud
platform,” in Proc. IEEE CNSM, 2018, pp. 432–437.

[3] Ericsson. “Cloud IMS.” Accessed: May 28, 2023. [Online].
https://www.ericsson.com/en/portfolio/cloud-software--services/cloud-
communication/consumer-communication/cloud-ims

[4] Nokia. “Voice over 5G core.” Accessed: May 28, 2023. [Online]. https://
www.nokia.com/networks/core-networks/voice-over-5g-vo5g-core/

[5] Huawei. “IMS.” Accessed: May 28, 2023. [Online]. Available: https://
carrier.huawei.com/en/products/core-network-v3/cs-ims/ims

[6] ETSI. “TS 123 251.” Accessed: May 28, 2023. [Online]. Available:
https://www.etsi.org/deliver/etsi_ts/123200_123299/123251/14.00.
00_60/ts_123251v140000p.pdf

[7] NEC. “Virtualized evolved packet core—vEPC.” Accessed:
May 28, 2023. [Online]. https://networkbuilders.intel.com/docs/
vEPC_white_paper_w.cover_final.pdf

[8] Ericsson. “Virtualizing network services—The telecom cloud.”
Accessed: May 28, 2023. [Online]. https://www.ericsson.com/4ac61e/
assets/local/reports-papers/ericsson-technology-review/docs/2014/er-tele
com-cloud.pdf

[9] ETSI. “TS 101-563.” Accessed: May 28, 2023. [Online]. https://
www.etsi.org/deliver/etsi_ts/101500_101599/101563/01.03.01_60/
ts_101563v010301p.pdf

[10] J. E. V. Bautista, S. Sawhney, M. Shukair, I. Singh, V. K. Govindaraju,
and S. Sarkar, “Performance of CS fallback from LTE to UMTS,” IEEE
Commun. Mag., vol. 51, no. 9, pp. 136–143, Sep. 2013.

[11] A. Elnashar, M. A. El-Saidny, and M. Mahmoud, “Practical performance
analyses of circuit-switched fallback and voice over LTE,” IEEE Trans.
Veh. Technol., vol. 66, no. 2, pp. 1748–1759, Feb. 2017.

[12] ITU-T. “G.1028: End-to-end quality of service for voice over 4G mobile
networks.” Accessed: May 28, 2023. [Online]. Available: https://www.
itu.int/rec/T-REC-G.1028/en

[13] Ericsson. “How can network operations make 5G systems resilient?”
Accessed: May 28, 2023. [Online]. Available: https://www.ericsson.com/
en/blog/2021/9/5g-resilient-system-network-operations

[14] L. De Simone, M. Di Mauro, M. Longo, R. Natella, and F. Postiglione,
“Performability assessment of containerized multi-tenant IMS through
multidimensional UGF,” in Proc. IEEE CNSM, 2022, pp. 145–153.

[15] M. Niu et al., “HARS: A high-available and resource-saving service
function chain placement approach in data center networks,” IEEE Trans.
Netw. Service Manag., vol. 19, no. 2, pp. 829–847, Jun. 2022.

[16] Y. Zhang, F. He, and E. Oki, “Service chain provisioning with sub-chain-
enabled coordinated protection to satisfy availability requirements,”
IEEE Trans. Netw. Service Manag., vol. 19, no. 2, pp. 1629–1649,
Jun. 2022.

DE SIMONE et al.: MULTI-PROVIDER IMS INFRASTRUCTURE WITH CONTROLLED REDUNDANCY 3997

[17] M. Wang, B. Cheng, S. Wang, and J. Chen, “Availability- and traffic-
aware placement of parallelized sfc in data center networks,” IEEE
Trans. Netw. Service Manag., vol. 18, no. 1, pp. 182–194, Mar. 2021.

[18] J. Fan et al., “A framework for provisioning availability of NFV in
data center networks,” IEEE J. Sel. Areas Commun., vol. 36, no. 10,
pp. 2246–2259, Oct. 2019.

[19] S. Agarwal, F. Malandrino, C. F. Chiasserini, and S. De, “VNF place-
ment and resource allocation for the support of vertical services in
5G networks,” IEEE/ACM Trans. Netw., vol. 27, no. 1, pp. 433–446,
Feb. 2019.

[20] Y. Yue, B. Cheng, M. Wang, B. Li, X. Liu, and J. Chen, “Throughput
optimization and delay guarantee VNF placement for mapping SFC
requests in NFV-enabled networks,” IEEE Trans. Netw. Service Manag.,
vol. 18, no. 4, pp. 4247–4262, Sep. 2021.

[21] M. Nguyen, M. Dolati, and M. Ghaderi, “Deadline-aware SFC
orchestration under demand uncertainty,” IEEE Trans. Netw. Service
Manag., vol. 17, no. 4, pp. 2275–2290, Dec. 2020.

[22] J. Zu, G. Hu, D. Peng, S. Xie, and W. Gao, “Fair scheduling and
rate control for service function chain in NFV enabled data center,”
IEEE Trans. Netw. Service Manag., vol. 18, no. 3, pp. 2975–2986,
May 2021.

[23] A. Heideker and C. Kamienski, “Network queuing assessment: A
method to detect bottlenecks in service function chaining,” IEEE Trans.
Netw. Service Manag., vol. 19, no. 4, pp. 4650–4661, Dec. 2022.

[24] P. K. Thiruvasagam, V. J. Kotagi, and C. S. R. Murthy, “The
more the merrier: Enhancing reliability of 5G communication services
with guaranteed delay,” IEEE Netw. Lett., vol. 1, no. 2, pp. 52–55,
Jun. 2019.

[25] S. Agarwal, F. Malandrino, C. F. Chiasserini, and S. De, “Joint VNF
placement and CPU allocation in 5G,” in Proc. IEEE INFOCOM, 2018,
pp. 1943–1951.

[26] P. K. Thiruvasagam, V. J. Kotagi, and C. S. R. Murthy, “A reliability-
aware, delay guaranteed, and resource efficient placement of service
function chains in softwarized 5G networks,” IEEE Trans. Cloud
Comput., vol. 10, no. 3, pp. 1515–1531, Jul./Sep. 2022.

[27] R. Gouareb, V. Friderikos, and A. H. Aghvami, “Virtual network func-
tions routing and placement for edge cloud latency minimization,”
IEEE J. Sel. Areas Commun., vol. 36, no. 10, pp. 2346–2357,
Oct. 2018.

[28] J. Bi, Z. Zhu, R. Tian, and Q. Wang, “Dynamic provisioning modeling
for virtualized multi-tier applications in cloud data center,” in Proc. IEEE
CLOUD, 2017, pp. 163–166.

[29] T. V. Phan, N. K. Bao, Y. Kim, H. J. Lee, and M. Park, “Optimizing
resource allocation for elastic security VNFs in the SDNFV-enabled
cloud computing,” in Proc. IEEE ICOIN, 2010, pp. 370–377.

[30] H. Feng, Z. Shu, T. Taleb, Y. Wang, and Z. Liu, “An aggressive
migration strategy for service function chaining in the core cloud,”
IEEE Trans. Netw. Service Manag., early access, Dec. 23, 2022,
doi: 10.1109/TNSM.2022.3231186.

[31] L. De Simone, M. Di Mauro, R. Natella, and F. Postiglione, “A latency-
driven availability assessment for multi-tenant service chains,” IEEE
Trans. Services Comput., vol. 16, no. 2, pp. 815–829, Mar./Apr. 2023,
doi: 10.1109/TSC.2022.3183938.

[32] L. Rui, X. Chen, Z. Gao, W. Li, X. Qiu, and L. Meng, “Petri net-
based reliability assessment and migration optimization strategy of
SFC,” IEEE Trans. Netw. Service Manag., vol. 18, no. 1, pp. 167–181,
Mar. 2021.

[33] G. L. Santos, P. T. Endo, T. Lynn, D. Sadok, and J. Kelner, “Automating
the service function chain availability assessment,” in Proc. IEEE ISCC,
2021, pp. 1–7.

[34] M. Di Mauro, G. Galatro, M. Longo, F. Postiglione, and M. Tambasco,
“Comparative performability assessment of SFCs: The case of container-
ized IP multimedia subsystem,” IEEE Trans. Netw. Service Manag.,
vol. 18, no. 1, pp. 258–272, Mar. 2021.

[35] M. Di Mauro, G. Galatro, F. Postiglione, and M. Tambasco,
“Performability of network service chains: Stochastic modeling
and assessment of softwarized IP multimedia subsystem,” IEEE
Trans. Depend. Secure Comput., vol. 19, no. 5, pp. 3071–3086,
Sep./Oct. 2022.

[36] B. Tola, G. Nencioni, and B. E. Helvik, “Network-aware availability
modeling of an end-to-end NFV-enabled service,” IEEE Trans. Netw.
Service Manag., vol. 16, no. 4, pp. 1389–1403, Dec. 2019.

[37] B. Tola, G. Nencioni, B. E. Helvik, and Y. Jiang, “Modeling and evalu-
ating NFV-enabled network services under different availability modes,”
in Proc. IEEE DRCN, 2019, pp. 1–5.

[38] J. Zhu, N. Huang, J. Wang, and X. Qin, “Availability model for
data center networks with dynamic migration and multiple traffic
flows,” IEEE Trans. Netw. Service Manag., early access, Feb. 6, 2023,
doi: 10.1109/TNSM.2023.3242321.

[39] K. Trivedi and R. Sahner, “Sharpe at the age of twenty two,”
SIGMETRICS Perform. Eval. Rev., vol. 36, pp. 52–57, May 2009.

[40] G. Ciardo, J. Muppala, and K. Trivedi, “SPNP: Stochastic Petri net
package,” in Proc. PNPM, 1989, pp. 142–151.

[41] R. German, C. Kelling, A. Zimmermann, and G. Hommel, “TimeNET:
A toolkit for evaluating non-Markovian stochastic Petri nets,” Perform.
Eval., vol. 24, no. 1, pp. 69–87, 1995.

[42] F. Longo, M. Scarpa, and A. Puliafito, “WebSPN: A flexible tool
for the analysis of non-Markovian stochastic Petri nets,” in Principles
of Performance and Reliability Modeling and Evaluation (Springer
Series in Reliability Engineering). Cham, Switzerland: Springer, 2016,
pp. 255–285.

[43] S. Yu, H. Chen, and Y. Xiang, Maximal Service Profit in MAS-
Based Cloud Computing Considering Service Security (Lecture Notes
in Electrical Engineering), vol. 355. Cham, Switzerland: Springer, 2015,
pp. 861–867.

[44] P. Sun, D. Wu, X. Qiu, L. Luo, and H. Li, “Performance analysis
of cloud service considering reliability,” in Proc. IEEE QRSC, 2016,
pp. 339–343.

[45] “Clearwater project.” 2018. Accessed: May 28, 2023. [Online].
Available: https://github.com/Metaswitch/clearwater-docker/tree/release-
130

[46] R. E. Barlow and A. Wu, “Coherent systems with multi-state compo-
nents,” Math. Oper. Res., vol. 3, no. 4, pp. 275–281, 2018.

[47] G. Levitin, The Universal Generating Function in Reliability Analysis
and Optimization. London, U.K.: Springer-Verlag, 2005.

[48] R. D. S. Matos, P. R. M. Maciel, F. Machida, D. S. Kim, and K. S.
Trivedi, “Sensitivity analysis of server virtualized system availability,”
IEEE Trans. Rel., vol. 61, no. 4, pp. 994–1006, Dec. 2012.

[49] D. Tang, D. Kumar, S. Duvur, and O. Torbjornsen, “Availability mea-
surement and modeling for an application server,” in Proc. IEEE DSN,
2004, pp. 669–678.

[50] K. S. Trivedi and A. Bobbio, Reliability and Availability Engineering.
Cambridge, U.K.: Cambridge Univ. Press, 2017.

[51] W. Whitt, Stochastic-Process Limits: An Introduction to Stochastic-
Process Limits and Their Application to Queues. New York, NY, USA:
Springer-Verlag, 2001.

[52] D. P. Bertsekas and R. G. Gallager, Data Networks. New York, NY,
USA: Prentice-Hall, 1992.

[53] W. Krämer and M. Lagenbach-Belz, “Approximate formulae for general
single systems with single and bulk arrivals,” in Proc. IEEE ITC, 1976,
pp. 235–243.

[54] T. Kimura, “A two-moment approximation for the mean waiting time in
the GI/G/s queue,” Manag. Sci., vol. 32, no. 6, pp. 751–763, 1986.

[55] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi, Queueing Networks
and Markov Chains, 2 ed. New York, NY, USA: Wiley, 2002.

[56] I. A. Ushakov, “A universal generating function,” Soviet J. Comput. Syst.
Sci., vol. 24, no. 5, pp. 37–49, 1986.

[57] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic con-
cepts and taxonomy of dependable and secure computing,” IEEE Trans.
Depend. Secure Comput.. vol. 1, no. 1, pp. 11–33, Jan.–Mar. 2004.

[58] D. Cotroneo, L. De Simone, and R. Natella, “NFV-bench: A depend-
ability benchmark for network function virtualization systems,” IEEE
Trans. Netw. Service Manag., vol. 14, no. 4, pp. 934–948, Dec. 2017.

[59] “Red hat OpenShift.” Accessed: May 28, 2923. [Online].
Available: http://docs.openshift.com/container-platform/4.10/scalability_
and_performance/recommended-host-practices.html

[60] “HashiCorp developer.” Accessed: May 28, 2023. [Online]. Available:
https://developer.hashicorp.com/hcp/docs/vault/high-avail-disaster-
recover

[61] S. Sebastio, R. Ghosh, and T. Mukherjee, “An availability analysis
approach for deployment configurations of containers,” IEEE Trans.
Services Comput., vol. 14, no. 1, pp. 16–29, Jan./Feb. 2021.

[62] D. A. Patterson and J. L. Hennessy, Computer Organization Design,
4th ed. London, U.K.: Morgan Kaufmann, 2011.

[63] D. Ford et al., “Availability in globally distributed storage systems,” in
Proc. USENIX, 2010, pp. 61–74.

[64] A. N. Avramidis, A. Deslauriers, and P. L’Ecuyer, “Modeling daily
arrivals to a telephone call center,” Manag. Sci., vol. 50, no. 7,
pp. 896–908, 2004.

[65] B. N. Oreshkin, N. Reegnard, and P. L’Ecuyer, “Rate-based daily arrival
process models with application to call centers,” Oper. Res., vol. 64,
no. 2, pp. 510–527, 2016.

http://dx.doi.org/10.1109/TNSM.2022.3231186
http://dx.doi.org/10.1109/TSC.2022.3183938
http://dx.doi.org/10.1109/TNSM.2023.3242321

3998 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 4, DECEMBER 2023

Luigi De Simone (Member, IEEE) is an Assistant
Professor with the University of Naples Federico II,
Italy. He contributed, as a author and a reviewer, to
several top journals and conferences on dependable
computing and software engineering. His research
interests include dependability benchmarking, fault
injection testing, virtualization reliability, and its
application on safety- and secure- critical systems.
He has been organizing multiple editions of the inter-
national workshop on software certification within
the IEEE ISSRE Conference.

Mario Di Mauro (Senior Member, IEEE) is an
Assistant Professor of Telecommunications with the
University of Salerno, Italy. Before joining the
academia, he was with Research Consortium on
Telecommunications (formerly Ericsson Lab Italy)
as a Team Leader in industrial research from 2007
to 2012. He authored more than 60 papers, mainly
in the fields of network availability and security. His
main fields of interest include network performance,
network security and availability characterization,
and data analysis for novel telecommunication
infrastructures.

Maurizio Longo (Member, IEEE) is a Professor of
Telecommunications, Emeritus, with the University
of Salerno, Italy, where he served as the Dean
of the Department of Information and Electrical
Engineering and Applied Mathematics and as the
Chairman of the Graduate School of Information
Engineering. He has authored over 200 papers,
mainly in the fields of statistical signal process-
ing and telecommunication networks. His profes-
sional awards include a General Electric-Fulbright
Fellowship in 1976, a Formez Fellowhip in 1986,

a Lord Brabazon Prize from IERE-IEE in 1987, and a NATO-CNR Senior
Fellowship in 1990.

Roberto Natella (Senior Member, IEEE) is an
Associate Professor with the University of Naples
Federico II, Italy. He authored more than 90 peer-
review papers on software engineering and depend-
able computing in IEEE and ACM venues. His
research interests include dependability benchmark-
ing, software fault injection, software aging and
rejuvenation, and their application in OS and virtu-
alization technologies. In 2022, he received the DSN
Rising Star in Dependability Award from the IEEE
Technical Committee on Dependable Computing and

Fault Tolerance and the IFIP Working Group 10.4 on Dependable Computing
and Fault Tolerance.

Fabio Postiglione is an Associate Professor of
Statistics with the University of Salerno, Italy.
In the past, he was a Research Fellow with the
University of Sannio and a Research Engineer with
the Research and Development Department, Tin.it
Company (Telecom Italia Group). He has coauthored
about 130 papers, published in peer-reviewed inter-
national journals and conference proceedings, and
one international patent. He is/has been involved
in many European (FP7, H2020, EDF, HORIZON)
and Italian research projects. His research interests

include statistical characterization of degradation processes, reliability and
availability modeling of complex systems, and Bayesian methods.

Open Access funding provided by ‘Università degli Studi di Salerno’ within the CRUI CARE Agreement

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

