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Abstract—With the growing demand for openness, scalabil-
ity, and granularity, mobile network function virtualization
(NFV) has emerged as a key enabler for the most of mobile
network operators. NFV decouples network functions from hard-
ware devices. This decoupling allows network services, called
Virtualized Network Functions (VNFs), to be hosted on commod-
ity hardware which simplifies and enhances service deployment
and management for providers, improves flexibility, and leads
to efficient and scalable resource usage, and lower costs. The
proper placement of VNFs in the hosting infrastructures is one
of the main technical challenges. This placement significantly
influences the network’s performance, reliability, and operating
costs. The VNF placement is NP-Hard. Therefore, there is a need
for placement methods that can cope with the complexity of the
problem and find appropriate solutions in a reasonable duration.
The primary purpose of this study is to provide a taxonomy
of optimization techniques used to tackle the VNF placement
problems. We classify the studied papers based on performance
metrics, methods, algorithms, and environment. Virtualization is
not limited to simply replacing physical machines with virtual
machines or VNFs, but may also include micro-services, contain-
ers, and cloud-native systems. In this context, the second part
of our article focuses on the placement of Containers Network
Functions (CNFs) in edge/fog computing. Many issues have been
considered as traffic congestion, resource utilization, energy con-
sumption, performance degradation, etc. For each matter, various
solutions are proposed through different surveys and research
papers in which each one addresses the placement problem in a
specific manner by suggesting single objective or multi-objective
methods based on different types of algorithms such as heuristic,
meta-heuristic, and machine learning algorithms.

Index Terms—Virtual network function, container, placement,
5G network slicing, cloud native.

I. INTRODUCTION

A. Motivation and New Trends

NOWADAYS, with the tremendous growth of mobile ser-
vice demands, operators have to provide low latencies
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and high throughput, hence the need to rethink traditional
physical architectures. Therefore, 5G tends to be virtualized,
eventually, the 5G core network, i.e., the set of transmission
and switching media in which the most crucial part of the
traffic is processed, will no longer be carried by physical
equipment as in 4G architectures, but it will be supported
by the software. This virtualization is based on software-
defined networking (SDN) and network function virtualization
(NFV) technologies [1]. It offers many advantages and helps
to provide personalized connectivity services through network
slicing technology. Thus, the mobile operators will be able
to agilely activate the functions required for each service,
adapting the network sizing and topology according to cus-
tomer needs and cloud properties: low or high throughput,
low latency, high reliability, more or less distributed architec-
ture, etc.

Mobile operators are currently experiencing a surge in
5G adoption, prompting service providers to implement the
most recent Stand Alone (SA) 5G Core (5GC) [2]. Like any
invention, many years of design and redesign were involved
in making the 5G vision a reality, and the development
process is still ongoing today. Consumers may now have
access to 5G technology, but the backroom work and rework
continue.

One of the issues that 5G has to deal with is figuring out
how to effectively use infrastructure as a service to furnish
flexibility, security, dependability, and, eventually, profitabil-
ity. What began as an experiment in leveraging NFV to run
VMs on hardware has swiftly evolved into VMs on shared
computing and storage farms (Cloud). An orchestration layer
was crucial to reduce operational overheads, but resource uti-
lization with VMs remains a sticking point, and switching
to a Container architecture (CNFs) became necessary. The
architecture of the 5G mobile network control plane can
be a hybrid architecture between cloud-native applications
and virtualization [3]. As shown in Figure 1, the network
virtualization approach transforms traditional network appli-
ances with non-standard hardware into software-based virtual
machines installed in standard equipment. Network function-
alities that were previously developed as monolithic programs
are now split down into smaller micro-services and deliv-
ered as containers in both public and private clouds using
the cloud-native method [4]. These micro-services containers
are orchestrated and supplied automatically using Continuous
Integration and Deployment (CI/CD). Smaller micro-services
are currently being provided by independent software suppliers
who used to provide full-fledged network operations.
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Fig. 1. Monolithic architecture, VNF virtualization architecture and CNF Cloud architecture.

The 5G deployment will be gradual (i.e., initially, 4G and
5G will coexist seamlessly, as was the case for 3G and 4G).
In addition, pooling physical infrastructure through virtual-
ization techniques opens the way to create a universal 5G
network core that is agnostic to the type of access (i.e.,
wireless, wireline, etc.). Therefore, this will ensure homoge-
neous management of the operator’s network. In this context,
network slicing will enable mobile network operators to man-
age different virtual networks on the same physical network
infrastructure [5]. The “slices” have features adapted in real-
time to the users’ needs (i.e., capacity, latency, reliability, etc.),
whereby three new slicing services will be supported by 5G:

• Massive Machine Type Communications (mMTC):
present the communications between many objects with
varying quality of service (QoS) requirements to match
the exponential increase of connected object’s density;

• Enhanced Mobile Broadband (eMBB): is related to ultra-
high-speed outdoor and indoor connection with uniform
quality of service, even at the edge of the cell;

• Ultra-reliable and Low Latency Communications
(uRLLC): ultra-reliable communications are used for
critical needs with very low latency and increased
responsiveness.

5G communication, with its enhanced characteristics such
as high bandwidth and low latency, is ideally positioned to
meet the expectations of smart cities. According to predictions,
cities will house half of the world’s population by 2050 [6],
resulting in billions of Internet of Things (IoT) devices.
There will be two issues in this situation. On the one hand,
smart IoT services’ real-time nature is seriously compro-
mised. Massive numbers of smart IoT devices receiving data
packets cause congestion in the central cloud which may
degrade the QoS. On the other hand, inflexibility in computing
resource allocation is highlighted. It is challenging to allocate

computing resources to smart IoT devices as they have various
characteristics.

Including virtualization in 5G will help to reduce latency,
provide high speed, increase scalability and improve energy
efficiency. However, the real problem relies on how to place
a VM or Virtual Network Function (VNF) in a cloud infras-
tructure optimally.

Virtualization provides the flexibility to quickly move a
VM from a specific host to another without turning it off.
Therefore, it can provide dynamism on VM placement with
a marginal performance impact [7]. A virtual instance can be
added or deleted at any time. Despite its considerable advan-
tages, this dynamic can lead to sub-optimal or volatile configu-
rations of virtual networks. In previous research (before 2010),
the cloud controllers manage the VM placement. However,
current studies are increasingly focusing on the native dynam-
ics of VM placement as each VM has its lifetime and can
experience load changes during its life cycle. Therefore, it is
necessary to define the VM placement requirements, know the
status of each instance and correctly determine the essential
constraints required to guarantee high performance. Operating
system-level virtualization based on containers is a relatively
modern technique of virtualization. Containers use the host
operating system and do not require a separate one for each
container resulting in lower hardware requirements than VMs.
Orchestrators are required for managing and defining rules and
constraints of container placement and performance [8].

B. On-Demand Computing in 5G

During the last decade, the cloud has evolved into a
successful computing paradigm for delivering on-demand
services over the Internet. The cloud data centers adopted
virtualization technology to manage resources and services
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Fig. 2. 5G Network Slicing enablers.

efficiently. Advances in server virtualization contribute to the
cost-efficient management of computing resources in cloud
data centers. Cloud computing allows consumers to use on-
demand computing resources in the form of instances (VMs or
containers) rather than building physical infrastructure. These
resources can be quickly delivered and handled effortlessly by
cloud computing providers. It offers many interesting benefits
for manufacturers and end-users, such as on-demand virtual
resource provisioning, self-service capability, resource pool-
ing, high elasticity, flexibility, and scalability. In addition, edge
and fog computing are coined to complement the remote cloud
to meet the service demands of a geographically distributed
large number of IoT devices.

5G requires a complete makeover compared to previous
generations due to exigent requirements and fast-changing
new use-cases. The slicing-based one-network-fits-all strategy
must meet these complex and ambitious goals. Network slicing
(NS) enables service providers to construct and configure their
networking infrastructure to meet their own needs and tailor it
for various complex scenarios. Cloud computing is likely an
inextricable aspect of 5G services, serving as a superior back-
end for apps running on accessing devices. In this way, VMs
and containers may execute VNFs in a chained configuration
to offer a flexible 5G network service or application, laying
the foundation for 5G network slicing. Figure 2 shows the 5G
network slicing enablers, including SDN, NFV, Mobile Edge
Computing (MEC), cloud/Fog computing, network hypervi-
sors, VMs, and containers. Despite the numerous advantages
and dynamic nature of VNF placement to create 5G network
slices, if the placement is not chosen carefully, this may lead
to sub-optimal or unreliable results.

Therefore, many issues should be considered in VNF, and
CNF placement (e.g., power consumption, traffic, resource
wastage, security, QoS, cost, etc.). For each matter, various
solutions are proposed through different surveys and research

papers in which each one addresses the placement problem
in a specific manner by suggesting various methods based on
different types of algorithms such as heuristic, meta-heuristic,
deterministic, and machine learning algorithms.

C. Methodology

In this paper, we aim to find the optimal and most effective
virtual resource (i.e., VNF, CNF) placement approach among
all existing solutions by: i) determining the different prob-
lems that may arise in placement; ii) classifying the proposed
solutions according to their adopted approach and objective
functions; and iii) providing relevant insights that can help
researchers to choose the most suitable solution regarding their
game constraints.

This section provides an exhaustive description of our
methodology, which is outlined in Figure 3. We provide a
selection process of current research work to study a large
part of the most relevant literature on virtual resource place-
ment. We select the papers based on keywords, publisher, and
abstract reading.

1) Keywords Search: The selection process of relevant arti-
cles started with a search of research articles from Google
Scholar database [scholar.google.com] with at least one of the
following selected keywords in the article title: VNF place-
ment, CNF placement, Container placement, VM placement,
resource allocation, VNF/Container migration, network slic-
ing, placement in 5G cloud-native, network function splitting
and placement, placement in fog computing, edge computing.
These keywords search step results in 294 research articles.

2) Publisher: Considering the high number of results from
the previous keyword search step, the literature selection pro-
cess focused on research articles published in the following
relevant publishers: ACM, IEEE, Elsevier, MDPI, Springer;
Wiley and Taylor & Francis. The percentage of articles per
publisher in the studied universe is summarized in Figure 4.
This publisher filtering step results in a reduction from 294 to
217 research articles in the literature.

3) Abstract Reading: Considering the 217 resulting articles
from the publisher filtering step, an abstract reading was per-
formed in order to identify only the most relevant articles
that specifically study the VMP problem. After the abstract
reading, 176 research articles were selected from the liter-
ature. Finally, short papers (i.e., research articles with less
than six pages) were removed from the selected literature,
resulting in 162 selected articles of the virtual resource place-
ment literature for the detailed the study presented in this
survey.

4) Criteria for Inclusion/Exclusion: In order to limit our
scope, we considered only works published in journals and
conferences in the last 8 years (between 2016 and 2022). A
selected paper must focus on VNF/CNF placement in different
scenarios related to 5G network. It is important to highlight
that we have removed works that consider basic VM placement
in cloud computing as it was already treated in our previous
papers [9], [10]. The inclusion criterion includes studies that
comprise the methods, algorithms, frameworks and models for
VNF/CNF placement issues.
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Fig. 3. Literature review process.

Fig. 4. Percentage of articles per publisher.

5) Research Questions: In this paper, the selected literature
will answer the following questions:

• What is the specific issues related to VNF and Container
placement in 5G Edge computing?

• What are the methods, algorithms and solutions proposed
to solve these placement problems?

• What is the purpose of deploying containers instead of
VMs or VNFs in 5G?

• From the studied papers, what are the best algorithms for
VNF or Container placement?

D. Our Contribution

The scope of this study includes research results on efficient
placement of computing resources (i.e., VNFs, CNFs) on var-
ious scenarios at different environment, providing constraints
and metrics needed to improve the performance and QoS of
hosted applications. This paper presents a detailed overview

of VNF/CNF placement in evolving cloud infrastructures man-
aged by mobile/fixed network operators and cloud providers.
This article reviews the related literature over the period
2016-2021. The contributions of this survey are summarized
as follows:

• We present an overview of 5G network slicing and VNF
placement challenges raised in the literature, and we
provide a summary of proposed solutions.

• We classify the proposed solutions according to the
objective functions and the adopted techniques.

• We discuss the recent advances for 5G and the conver-
gence toward containerized 5G architecture, where we
highlight the CNF placement problems and solutions.

E. Related Work

For academic purposes, we summarize in Table I, some
previous surveys that have already explored the field of
VM, VNF and Container placement in cloud computing.
Schardong et al. [11] present a literature review of VNF for-
warding graph embedding (VNF-FGE) where the classification
of VNF placement solutions is based on whether adopting
online or offline approaches and the algorithms are categorized
into exact, heuristic, and meta-heuristic. Alashaikh et al. [12]
provide a detailed review of VM placement approaches by
classifying the solutions based on adopted algorithms or
models (i.e., heuristics, meta-heuristics, matching, and Multi-
Criteria Decision Making (MCDM)). Li and Qian [13] discuss
the network function placement and orchestration frame-
works. Demirci and Sagiroglu [14] propose a taxonomy of
VNF placement solutions where optimization methods are
divided into four types: linear programming, non-linear pro-
gramming, heuristic algorithms, and Machine Learning (ML)
algorithms. However, they focus only on cost, energy, and
latency minimization. Oleghe [15] highlights the concept of
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TABLE I
A COMPARISON OF OUR WORK WITH EXISTING SURVEYS BASED ON KEY PARAMETERS

container placement and migration in edge computing. He
studied the scheduling problem from the provider perspective
by listing the frameworks and algorithms used to model and
solve the container placement issues. Buyya and Srirama [16]
explore research proposals for network slice orchestration in
various platforms, including VM/VNF placement in the cloud,
fog, and edge computing. Sonkoly et al. [17] introduce a
comprehensive survey of computational unit placement strate-
gies in edge infrastructures; the studied papers were classified
based on mathematical models, objective functions, and appli-
cation structure. This survey has the same scope as ours, but
the authors do not address the placement of CNFs in the frame-
work of 5G. To the best of our knowledge, our paper is the
first one handling the network function placement problems
and highlighting the importance of containers; we also empha-
size the importance of machine learning algorithms to solve
the complex problems of virtual resource orchestration, such
as multi-dimensional and dynamic workload characterization
and auto-scaling.

From industry perspective, vendors can provide platform
virtualization software and network functions (RAN/Core
software, MEC platform) based on standardization (e.g., ITU-
R/3GPP/ETSI/O-RAN). As far as open-source projects are
concerned, there is a strong alignment with NFV architec-
ture and RAN disaggregation. The Open Network Automation
Platform (ONAP) [18], Open Source MANO (OSM) [19],
Mosaic 5G [20] and Open5GCore [21] projects stand out
in this scenario, led by the Linux Foundation, the ETSI
and EURECOM. For example, the project under development
by ONAP is natively oriented by the O-RAN initiative that
supports dynamic network function placement. Nevertheless,
the other open source projects still lack conscious concepts
of network function placement either in RAN or 5G Core
Network.

F. Article Structure

This paper is organized as follows. Section II presents
the basic concepts related to cloud computing and virtu-
alization. This paper is divided into two main parts. The
first one, presented in Section III, addresses the problems of
VNFs placement and presents a classification of the proposed
solutions based on their objective functions and algorithms.
Similarly, Section IV presents a new perspective towards
cloud-native by handling the placement of containers in the

Fig. 5. Pictorial view of this paper.

cloud, edge, and fog computing. Section V delivers some con-
cluding remarks and future directions. The organization of the
paper is illustrated in Figure 5.

II. RELATED CONCEPTS OF CLOUD,
VIRTUALIZATION AND 5G

The main idea of IoT is that everything can be connected
to the Internet at any time where a glut of objects (e.g.,
smart cameras, wearable devices, environmental sensors, home
appliances, and vehicles) are connected and produce massive
volumes of data. These data may be collected, integrated,
processed, and analyzed to create smart cities, infrastruc-
tures, and services that improve people’s quality of life.
Existing IoT designs are highly centralized, relying primar-
ily on moving data analytics, processing, and decision-making
to cloud solutions. However, latency, network traffic manage-
ment, computational processing, and power consumption can
all be affected by data management and processing in the
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Fig. 6. Cloud computing service models and their mapping to part of the NFV reference architecture.

cloud. Moreover, in many applications that need low latency,
such as health monitoring and emergency response services,
the delay created by transmitting data to the cloud and sub-
sequently back to the application can significantly influence
the system’s performance. Data fusion, data trends, and vari-
ous decision-making approaches allow data processing closer
to where data is generated and help to minimize the quan-
tity of data transferred to the cloud, reducing network traffic,
bandwidth, and energy consumption. In addition, smart city
applications such as smart health, security, and traffic control
will benefit from a more agile response that is closer to real-
time. Therefore, this section contrasts the cloud computing
paradigm with the more sophisticated paradigms used to bring
compute, storage, and control capabilities closer to where data
is generated in the IoT (i.e., fog and edge computing). Also,
it provides a summary of crucial virtualization concepts (i.e.,
VM, Container, VNF, CNF).

A. Cloud, Edge and Fog Computing

1) Cloud Computing: Nowadays, the term cloud comput-
ing is already widespread. With the pandemic of covid-19 and
the growth of remote working, companies have been forced to
look for this type of solution to stay competitive.

IT industries have defined cloud computing from different
business perspectives but the most commonly accepted def-
inition among experts is the one provided by the National
Institute for Standards and Technology (NIST), which con-
siders cloud computing as “a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or
service provider interaction” [22]. According to IBM, “Cloud
computing is on-demand access, via the Internet, to computing
resources, applications, servers (physical servers and virtual
servers), data storage, development tools, networking capa-
bilities, and more hosted at a remote data center managed
by a cloud services provider” [23], cloud computing converts
the IT infrastructure into a utility that provides a dynamic

and scalable service-oriented IT architecture. Put simply, cloud
computing includes both applications provided as services over
the Internet and the data center hardware and software that
deliver those services. Cloud computing is a global concept
of anything that requires the provision of hosted services over
the Internet. Infrastructure as a service (IaaS), platform as a
service (PaaS), and software as a service (SaaS) are the three
primary types of these services [24] as shown in Figure 6.
According to NIST [25], there are five enabling character-
istics of cloud computing: on-demand self-service, elasticity,
resource pooling, measured service, and broad network access.

Today, cloud computing is encountering increasing chal-
lenges in satisfying the stringent requirements of new IoT
applications. Latency and network bandwidth are two major
issues. Future IoT solutions based on AI and emerging tech-
nologies rely significantly on the cloud as it provides nearly
infinite storage and computing capacity [26]. These talents are
required to turn the massive volumes of data created by the
IoT into intelligent knowledge and directives. However, tradi-
tional cloud computing models are reaching their limits and
are unable to handle this massive amount of data. Two new
paradigms have been proposed to address these weaknesses,
namely fog computing and edge computing, allowing addi-
tional computational resources (such as storage, networking,
and processing) to be brought closer to the network’s edge.

2) Fog Computing: CISCO introduced the concept of fog
computing in 2012 to expand cloud capabilities closer to the
network’s edge “Fog computing is a highly virtualized plat-
form that provides compute, storage and networking services
between end devices and traditional cloud computing data
centers, typically, but not exclusively located at the edge of
the network” [27]. Since then, other definitions have emerged
under various circumstances and setting. The fog is a layer
that stands between the edge and the cloud, bringing the cloud
closer to the IoT data processing nodes resulting in a cloud-to-
things continuum that reduces latency and network bottlenecks
while maintaining data privacy.

In [28], fog computing is considered as “a paradigm to
complement the cloud for decentralizing the concentration of
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Fig. 7. Cloud, Fog and Edge computing.

computing resources (for example, servers, storage, applica-
tions, and services) in data centers toward consumers in order
to improve service quality and user experience.”

According to NIST, “Fog computing is a layered model for
enabling ubiquitous access to a shared continuum of scalable
computing resources. The model facilitates the deployment of
distributed, latency-aware applications and services, and con-
sists of fog nodes (physical or virtual), residing between smart
end-devices and centralized (cloud) services.” [29].

Fog computing differs from the conventional computing
models by the following features: (1) geographical dispersal,
(2) contextual location awareness and low latency, (3) het-
erogeneity, (4) interoperability and federation, (5) real-time
interactions, and (6) federated fog cluster scalability and
agility [30]. In addition to these six fundamental qualities,
fog computing is frequently related to (7) Wireless access
predominance and (8) mobility support.

3) Edge Computing: Some literature considers edge com-
puting as a synonym of fog computing [31], [32], but there are
some substantial differences. In [33], edge computing refers
to “enabling technologies allowing computation to be per-
formed at the edge of the network, on downstream data on
behalf of cloud services and upstream data on behalf of IoT
services”. Edge computing concentrates on the things aspect,
while fog computing concentrates more on the infrastructure
aspect. The objective of edge computing is to move specific
computing resources from the cloud to heterogeneous devices
at the network’s edge [34]. According to CISCO [35], edge
computing refers to bringing computational resources closer to

data-generating devices, whereas fog computing refers to the
physical implementation and management of this architecture
at the cloud’s edge.

Fog computing uses a multi-layered architecture to sup-
ply hardware and software operations, allowing dynamic
re-configurations for diverse applications while performing
intelligent activities. Edge computing provides a direct deliv-
ery service by running specific applications at a fixed logical
location [36]. Edge computing tends to be restricted to a small
number of peripheral devices (e.g., BS, home gateways, edge
routers), whereas fog computing is hierarchical.

The fog and edge computing architectures enable the com-
puting and storage capabilities of the network infrastructure
to be leveraged for the deployment of IoT services, thereby
making these services closer to the end-users. However, the
network devices are heterogeneous with low computational
capacity, covering a wide geographical area, and have to
address the mobility of IoT users. In this way, the problem of
virtual resource placement becomes more complex in terms of
optimizing various parameters such as minimizing energy con-
sumption, enhancing IoT QoS, reducing traffic congestion, and
decreasing cost. MEC provides cloud computing capabilities
to content providers.

B. Virtualization Concepts: VM, VNF, Container,
CNF and SFC

The way network services are delivered to end-users has
been transformed by NFV. Individual network services are
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Fig. 8. VM and Container deployment.

now provided as software-based virtualized entities known
as VNFs, which are dissociated from costly and specialized
middle-boxes [37]. It is a piece of software that handles
network tasks, including routing, switching, firewalling, and
load balancing. It also eliminates the need for separate pro-
prietary and specialized hardware from vendors, allowing
network services to be executed on generic or Commercial-
Off-The-Shelf (COTS) hardware with varying degrees of
computing, storage, memory, and network interfaces. VNFs
can be hosted using two virtualization technologies, VMs, and
containers.

Although VNFs are part of a conventional network design,
they still have constraints as digital telecom providers progress
toward offering more flexible services. When switching from
physical components to VNFs, providers merely uninstalled
the embedded software systems from the devices and estab-
lished a large virtual machine. However, without efficiently
optimizing and placing these virtual resources, this can create
inefficient single-use appliances and even impact the quality
of service [38].

Furthermore, the weight of VMs may restrict VNF effi-
ciency for large-scale 5G or edge deployments that require
agility, scalability, and minimal overhead. Therefore, tele-
com operators tend towards adopting a cloud-native approach
using distributed and centralized locations that help to ensure
efficiency, scalability, and reliability.

The key component of the cloud-native approach is the
usage of containers rather than VMs. Containers enable
users to bundle software (for example, apps, functions, or
micro-services) with all the files required to operate it

while sharing access to the operating system and other
server resources. This method allows the enclosed compo-
nent to be moved across environments (development, test,
production, etc.) and even between clouds while maintaining
performance. Table II shows a comparison between VMs and
containers.

As summarized in Table II, containers are lightweight alter-
natives to VM-based hypervisors [39] and are characterized by
OS-level virtualization. In containers, a physical server is vir-
tualized to enable autonomous applications and services to be
deployed on a remote server. Unlike their VM-based counter-
parts, containers do not require hardware indirection and run
more efficiently on the host operating system, allowing for
greater application density.

In recent years, hyper-scale clouds have evolved customer
expectations around infrastructure consumption. The mar-
ket has shifted to containers, micro-services and on-demand
infrastructure powered by APIs and automation.

• Containers: From a basic perspective, system-level vir-
tualization permits multiple virtual instances of an oper-
ating system to run simultaneously on a single server
on top of the hypervisor. On the other hand, con-
tainers are isolated and share OS kernels among all
containers (see Figure 8). Containers are widely used
to optimize hardware resources, run multiple applica-
tions, and improve flexibility and productivity. Thus, a
container is considered as an operating system-level vir-
tualization technology that can be deployed on VMs or
PMs and primarily used to provide a secure and isolated
environment.
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TABLE II
COMPARISON BETWEEN VM AND CONTAINER

• Micro-services: A micro-service is an architectural and
organizational pattern where every application function
has its own service. These services are deployed in
containers, and these containers speak with each other
via APIs. The use of micro-services allows IT systems
to be organized in the form of instances that can be
added/removed on-demand in order to increase/decrease
the scalability of their functions. However, companies
that run thousands of micro-services in containers on
the cloud didn’t have a simple way of managing them,
whereby the need for orchestration and management.

• Orchestration and automation: A few popular orchestra-
tion solutions are built to monitor the system, trigger
the container’s status, and balance the load between the
active application instances, etc. The orchestrator used
for CaaS has a direct influence on the available functions
to cloud service users. Nowadays, the container virtual-
ization market is dominated by three orchestration tools:
(i) Docker Swarm multi-source cluster management and
orchestration tool marketed by Docker as a native tool
for managing docker clusters and container operations;
(ii) Kubernetes [40], an open-source project from Google
that provides a centralized system for scaling, manag-
ing containers, and automating deployment; (iii) DC/OS
(the Distributed Cloud Operating System) [41], an open-
source distributed operating system that enables the
management of several machines in the cloud from
a single interface; It allows the deployment of con-
tainers, distributed services and legacy applications in
these machines and also ensures networking, service dis-
covery, and resource management to help running and
communicating services with each other.

Cloud-native networking functions (CNFs) are an exten-
sion of VNFs that are intended and constructed to run in

Fig. 9. Legacy Core architecture.

containers [42]. This containerization of network architectural
components enables a range of services to run on the same
cluster and provides easier integration of already deconstructed
applications while dynamically routing network traffic to the
appropriate pods. CNFs can address some primary constraints
of VNFs by shifting many of these functions into containers.
Containerizing network components allows administrators to
control how and where functions are executed across clusters.

Another trending paradigm in telecom networks that
deserves to be highlighted is Service function chaining (SFC).
SFC is a mechanism that permits different service functions to
be connected to each to construct a service allowing carriers
to benefit from the virtualized software-defined infrastructure.
SFC is used to configure VNFs/CNFs into one logic chain with
specific requirements (i.e., throughput, latency, and error rate)
to deliver good QoS/QoE in a 5G network. The SFC concept
composes and imposes the order in which service functions are
invoked for a particular service. SFC is crucial for the granu-
lar management of virtual networks and will involve the use
of VNF forwarding graphs (VNF-FGs). This will be highly
required due to the growing number of deployed VNFs and
QoS-sensitive services, as well as the maintenance needed for
the inter-VNF point-to-point connection.

C. 5G Cloudification

In the traditional architecture of mobile networks (i.e., 2G,
3G, 4G), some physical functions are used to provide voice
and data services to customers. The network is composed
of a radio access network, which connects the customer to
the antennas, a backhaul part, and an IP backbone (IPBB)
which consists of high speed switches and routers for con-
necting the user to the core network. The customer data
processing feature is provided by a chain of several Physical
Network Functions (PNFs) as seen in Figure 9, such as
Home Subscriber Server (HSS), Mobility Management Entity
(MME), Policy Charging Rule Functions (PCRF), Packet Data
Network Gateway (PGW), Serving Gateway (SGW), etc.

With the high demand for data traffic in very dense areas
where customers require low End-to-End delay, small latency,
and high reliability, the physically oriented architecture of
the legacy network is unable to meet all these ambitious
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Fig. 10. End-to-End 5G mobile network Architecture.

targets. Therefore, the future generations of mobile wireless
communication systems (i.e., 5G, 6G) is expected to meet
these goals. 5G will provide more reliability and flexibility
through 5G core network (5GC) and New Radio (NR) [43].
A cornerstone of 5G is network function virtualization and
containerization, which is the basis for telecom operator data
centers and network orchestration.

Communication service providers struggle to cope with the
inherent growth in traffic, improve their customers’ experience,
and develop solutions to offset significant CAPEX and OPEX
challenges. They adopt NFV technologies and migrate from
physical hardware platforms to virtualized ones based on soft-
warization and cloudification. With NFV, network functions
are virtualized and are named VNFs. They are deployed as
VMs (virtual machines) with hypervisors such as Linux KVM
or VMware vSphere on Commercially Off-The-Shelf hardware
(COTS), allowing operators to avoid vendor dependency.

For a lightweight implementation of functions, regard-
ing cloud-native architecture, mobile operators prefer to use
Containerized Network Functions (CNFs) instead of VNFs
as CNFs are more lightweight and elastic than VNFs. CNFs
can operate in a micro-services architecture that provides a
dynamic, flexible, and scalable architecture for 5G. A Cloud-
based architecture should be employed in a manner to handles
VNF/CNF functions efficiently while considering placement
issues.

Each service includes a chain of services formed by sev-
eral VNFs/CNFs connected to each other. VNFs/CNFs can
be placed in different core data centers. The most promising
movement is driven by the industry’s Open RAN (ORAN)
initiative, which focuses on open and interactive solutions.
It implements an open interface between three network ele-
ments Central Unit (CU), Distributed Unit (DU), and Radio
Unit (RU), using hardware and software defined functions. The
ORAN brings cloud agility to the radio access part, which
increases scalability, reliability, and availability.

To cope with the traffic increase, mobile phone opera-
tors have to include diverse small cells by adding eNodeBs
composed of indoor and outdoor types of equipment (i.e.,
remote radio heads (RRH) and baseband units (BBUs))
and linked via mobile Fronthaul/Backhaul to provide a 5G

infrastructure called 5G crosshaul (see Figure 10). This new
design [44] enables placing VNFs/CNFs, provisioning the
required network and computing resources in a flexible,
cost-effective, and abstract manner.

ORAN provides the ability to place network functions at
different locations along the signal flow. This option is called
“functional split”. Because of the different throughput and
latency requirements, radio access function splitting policies
will affect the sizing of the backhauling network, and thus
the placement of core network functions and the configuration
of edge computing application servers. In the following, we
will handle the VNF/CNF placement in radio access and core
networks.

VNFs/CNFs, in 5G network architecture (see Figure 11),
provide complete core network functions as Home Subscriber
Server (HSS), Mobility Management Entity (MME), Access
and Mobility Management Function (AMF), Session
Management Function (SMF), and Policy Control Function
(PCF), etc. The 5G SMF is an immediate component of the
5G service-based architecture (SBA). The SMF is mainly
responsible for interacting with the decoupled data plane,
creating, updating, and deleting Protocol Data Unit (PDU)
sessions, and handling the session context with the User
Plane Function (UPF). Both the UE and the gNB use the
Next Generation Application Protocol (NGAP) to carry
Non Access Stratum (NAS) messages on the N1 or N2
interfaces to initiate a new session request. The 5G SMF is
an immediate component of the 5G service-based architecture
(SBA). The SMF is mainly responsible for interacting with
the decoupled data plane, creating, updating, and deleting
Protocol Data Unit (PDU) sessions, and handling the session
context with the User Plane Function (UPF) through the N4
interface by using the Packet Forwarding Control Protocol
(PFCP). The AMF gets these requests and processes any-
thing related to connection or mobility management, while
sending the session management requests to SMF on the
Nsmf interface. It determines which SMF is most suitable
to manage the connection request by polling the Network
Repository Function (NRF).

During session initiation or update, the SMF send con-
trol requests to PCF through Npcf interface, along with the
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Fig. 11. 5G Core Architecture.

subscriber profile informations stored in the Unified Data
Management (UDM) (Nudm). All service base application
elements are connected to the Service Based Interface (SBI)
message bus, for example the PCF provides the policy charg-
ing rules.

III. VNF PLACEMENT

Nowadays, the telecom world is evolving exponentially to
become purely virtualized. Therefore, virtualization is con-
sidered as the key element of 5G using SDN, NFV, and
MEC technologies to build virtual partitioning of mobile radio
access, virtual core network, and network slicing.

A VNF is an implementation of a network function that
can be a firewall, a router, a load balancer, or even a mobile
core network component. Regarding VM placement problems
already discussed in previous papers [9], [10], [45], the open
question is how telecom providers will work around the issues
of placing VNFs in the 5G network, and the challenging task
relies on where, when, and how to place the VNFs.

In this context, network slicing offers several significant
advantages, which are valuable for the design of next-
generation networks [46]. Slicing provides an agile VNF
placement, improving network performance and decreas-
ing operating costs. It involves deploying multiple logical
networks as separate business transactions on a shared physi-
cal infrastructure [47]. Various architectures have already been
proposed to provide evolved 5G infrastructures, [47], [48], [49]
which offer the capabilities to support the required diversity
of services, scalable deployments and network partitioning.

In [48], a 5G-ready architecture model and an NFV-based
network slicing are presented to provide scalable VNFs and
deliver 5G slices that meet customer requirements. In the same
way, authors in [49] offer a new architecture for open cloud-
based 5G Communication that treats the network slicing as a
brain wave in the cloud-based Radio Access Network (RAN),
aiming to increase the scalability of current RAN systems.

In network slicing, each slice has its own envelope that is a
compromise related to the target usage, and its characteristics

should be tailored to the chosen environment. For example, in
a single 5G system, the network slicing technology can pro-
vide connectivity for smart counters using a network slice that
connects IoT devices to a data service with high availability
and reliability, with a given latency, throughput, and security
level. At the same time, it can provide another network slice
with very high throughput and low latency for an augmented
reality service.

Therefore, 5G has a flexible structure where network slices
assign capacity, velocity, and coverage resources separately. In
this way, network slicing allows the coexistence of multiple
vertical services over the same physical infrastructure. Based
on [48], and [49], the network slices architecture is divided
into three layers as illustrated in Figure 12:

The business layer is a market of applications and network
functions used to provide various scenarios with different fea-
tures (e.g., high mobility, speed, IoT). It creates a slice that
encrypts all information required from the service layer to
provide the requested function.

The service layer manages, configures, and scales the oper-
ational set of services according to their particular use case
qualifications defined in the “slice manifest”.

The infrastructure layer manages the re-configurable
green cloud system in real-time and applies virtualization for
high-speed services. The slicing in 5G typically drives two
new insights, i.e., the service layer and the network slice
orchestration, to supervise the life cycle of slices.

The slice orchestration is a complicated matter that can
be divided into intra-slice and inter-slice problems. One of
the intra-slice orchestration’s crucial characteristics is the effi-
cient placement of VNFs, including initial placement (static)
and online placement (dynamic) throughout slice run-time. An
intelligent placement may reduce latency and operating costs
and increase resource utilization and network performance.

Network slicing is a collection of interconnected VNFs and
physical functions over a common multi-domain infrastructure
to support a specific service. Its performance depends directly
on the efficient placement of VNFs. For example, slices lacking
low latency have to be placed close to end-users. Therefore,
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Fig. 12. 5G Network Slicing Architecture ([48], [49]).

Fig. 13. VNF Placement process.

considering the end-to-end performance of a specific network
service, VNFs must be placed in the best locations. We present
in Figure 13, a scenario of VNF placement in a 5G distributed
edge cloud where NS is defined as a collection of VNFs required
to deploy a complete 5G mobile service.

Network slices can cross various network domains, including
access, core, and transport. In this context, extensive efforts
have been performed to address the problems of functional
placement. This section describes the VNF placement issues
and challenges in terms of energy, power consumption, capacity,

latency, and security. Considering the advantage of the NFV’s
ability to place VNFs anywhere and anytime easily, several VNF
placement strategies are proposed for different NFV orchestra-
tion settings. We also present a classification of VNF placement
solutions in 5G based on their objective functions.

A. VNF Placement Challenges

The VNF placement requires multi-objective functions such
as reducing cost, minimizing the end-to-end latency, reducing
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energy consumption, ensuring reliability, etc. However, the
trade-offs between these objectives can lead to several con-
flicting issues, as placing several VNFs in the same device
can cause scalability problems. For example, reducing the
number of active hosts can increase network link aggrega-
tion, which affects network latency. In addition, minimizing
the network latency can be impacted by VNF redundancy
deployment where a cost-efficient solution is required [50].
Besides, the network power consumption must be minimized
while meeting latency requirements [51]. Moreover, combin-
ing resource allocation and traffic routing raises a significant
issue for VNF placement [52], where the decision to place
VNFs has a critical influence on the efficient use of resources
and the energy consumption in DCs. Two questions need
to be addressed: how each host’s computing capacity should
be shared between the VNFs? and which physical machines
should run the required VNFs?

VMs or containers can allow VNFs to be placed on low-
cost devices to perform services at the network edge. When
VNFs are placed near to end-users, this can minimize End-
to-End (E2E) latency, response time, and even unneeded core
network usage. The VNFs must be placed appropriately to
handle end-user movements and address the traffic dynam-
ics resulting in highly variable latency on network links. In
addition, VNF placement in 5G networks faces substantial
reliability and latency difficulties, resulting in customer dis-
satisfaction and revenue loss. The VNF deployed as a VM
co-located with many other VMs on the same server might
impact network performance when dealing large traffic loads.
Inequitable network resource sharing and VM traffic load
might therefore cause increased latency.

The security risk in VNF placement is another issue that
must be considered, as malware attacks can lead to substantial
financial damage and loss of customers [53].

According to the literature, the different issues related to
the VNF placement are energy consumption, cost, resource
use, traffic, and security in order to solve the overall problem
of end-to-end performance and latency (see Figure 14). VNF
placement includes network functions placement, VNF for-
warding graph, and VNFchains placement.

B. VNF Placement Solutions

Mobile operators can provide specific services (e.g., social
networking, video streaming, augmented reality, etc.) by chain-
ing VNFs and routing traffic among them. This section
introduces an overall classification of the different VNF place-
ment approaches proposed in the literature. The majority of
related works handled the VNF placement problem as a multi-
objective trade-off with latency. VNF placement can be carried
out on different network domains: access, core, and trans-
port. Extensive efforts have been made to solve the functional
placement problem.

An optimization objective is used to measure specific
aspects of the solution generated by an algorithm. In some
papers, the optimization objective may consist of a single
objective, while others may be multi-objective depending on
the optimization needed for the problem at hand. Generally,

Fig. 14. VNF Placement issues.

the more objectives used in the cost function for the considered
optimization problem, the more complex the decision-making
process becomes. Therefore, different trade-offs are normally
set in place to balance the performance of the proposed algo-
rithm and the quality of the generated solution. The following
are considered the most common objectives utilized in the cost
function definition of container placement problems.

1) Energy Consumption: Energy consumption is a signif-
icant concern for data centers. With the growth of network
traffic, the power consumption of the infrastructure also
induces a high cost for NFV providers. Therefore, from cost
control and environmental protection point of view, reducing
power consumption is very crucial.

In [54], the authors attempt to find the optimal place-
ment of service function chains, considering the optimization
objectives for different network slices and the functional split
between the central cloud and the distributed radio access
point. They propose an optimization framework for placing
RAN services based on an Integer Quadratically Constrained
Programming (MIQCP) model and Maximum Satisfiability
(MaxSAT). The problem is considered as a multi-objective
approach to reduce the network latency, minimize the num-
ber of utilized nodes, reduce the power links capacities, and
maximize the data throughput on the network links by keep-
ing the bandwidth for future demands exclusively to support
eMBB services. The authors analyze some scenarios using
uRLLC and eMBB slices with various resource specifications.
Experimental results prove that the MIQCP model is faster
than MaxSAT in finding optimal solutions; however, this latter
is more suitable for highly constrained problems.

Reference [55] addresses the joint problem of VNF place-
ment and CPU allocation decisions in the 5G network.
Decisions are taken sequentially; first, the authors propose
a heuristic algorithm called MaxZ that provides the deploy-
ment decisions. Then, they make CPU allocation decisions by
solving the convex optimization problem of minimizing the
maximum ratio latency based on the fixed results of the MaxZ
heuristic. Regarding performance evaluation results, MaxZ
outperforms greedy and affinity-based algorithms.



ATTAOUI et al.: VNF AND CNF PLACEMENT IN 5G: RECENT ADVANCES AND FUTURE TRENDS 4711

MEC in the NFV environment is considered as the 5G
uRLLC enabler regarding its capacity to minimize energy
consumption and end-to-end latency. The uRLLC service com-
prises several VNFs, where VNF placement is similar to VMP
since VNFs are virtual instances performing network func-
tions. In [56], the VNF placement accommodated for uRLLC
services is formulated as an optimization approach aiming
to minimize latency and maximize service availability. This
model is solved using a genetic meta-heuristic algorithm.
Experiment results show that this heuristic algorithm gives
solutions near-optimal in less time than an exact algorithm
provided by CPLEX.

In the same way, authors in [51] propose an energy-aware
placement solution based on a Robust Optimization (RO)
approach to minimize energy consumption while satisfying
latency constraints. They use constraint modeling with Soyster
heuristic model [57] to solve the problem. Their purpose con-
sists of placing each VNF in the available network slice to the
convenient VM of the service chain in a joint cloud radio archi-
tecture. The overall energy consumption is defined as the sum
of energy in all assigned VNFs, and the end-to-end latency is
defined as the total delay of NS, VNF, the processing delay,
the path delay of NS between VNFs, and the link delay.

In [58], authors introduce a new concept of “accessible
scope,” defined as the group of servers used to serve a request.
Instead of searching the whole servers to find the optimal
placement, all servers can be divided into groups where each
group can serve one specific request. The primary purpose
of [58] is to minimize the server energy consumption induced
in VNF placement while improving time efficiency taking
into account resource constraints. Authors use the accessi-
ble scope to narrow the searching space of VNF placement
and therefore reducing the searching time. They execute the
Multi-Stage Graph method with the accessible scope con-
straint (MSGAS) to see how the size of the accessible scope
affects the acceptance ratio, energy consumption, and band-
width usage. Furthermore, the results of the algorithms with
and without the accessible scope requirement demonstrate
that the ones with the accessible scope constraint reduce the
runtime significantly, especially for large-scale networks.

NFV can offer flexible placement of VNFs in the under-
lying data centers. However, the VNFs placed on the same
server may experience performance interference due to shared
memory and computing resources. In [59], authors propose an
approach that considers energy consumption and performance
interference in VNF placement. The problem is formulated
as a bin-packing problem that is NP-complete. For a homo-
geneous environment, a First-Fit (FF) heuristic algorithm is
proposed to solve the complex problem with a lower bound.
For heterogeneous cases, an efficient solution named Deep
Deterministic Automatic Placement (DDAP) based on Deep
Reinforcement Learning (DRL) is proposed to achieve better
placement. Simulation results prove that DDAP outperforms
existing approaches such as FF and Ant Colony System (ACS)
in terms of reducing energy consumption and running time.

In the same way, for dynamic SFC placement, two policy-
based Reinforcement Learning (RL) algorithms, Proximal
Policy Optimisation (PPO2) and Advantage Actor-Critic

(A2C), are proposed to minimize the energy consumption
while considering the availability levels required by the cus-
tomer and SLA [60]. The model is formulated as a Markov
decision process where SFC requests are processed sequen-
tially. The RL algorithms yield better results than the greedy
algorithm in terms of energy consumption and acceptance rate.

For the same purpose, an RL technique is used to design
a VNF placement policy in an NFV architecture aiming to
handle the VNF forward graph embedding problem (i.e., the
resource placement in the underlying network) [61] while
reducing the overall power consumption. This paper is con-
sidered an extension of Neural Combinatorial Optimization
(NCO) by including constraints (e.g., SLA, latency, band-
width, and resource utilization) in the problem definition.
Simulation results prove that combining AI models with
heuristic algorithms can improve the heuristic itself without
requiring expertise and knowledge.

2) Cost: Authors in [62] handle the VNF placement
problem in service chains to ensure a reduction in operation
and traffic costs. They propose an algorithm called SAMA that
merges a “sample-based Markov approximation” with match-
ing theory seeking an effective way to reduce operational and
network traffic costs. This strategy first selects the nodes where
VNFs can be deployed then places the VNFs in a way to min-
imize the total cost. Results prove the performance of SAMA
in terms of reducing the cost by up to 19% compared to
non-coordinated solutions.

The high cost of network power is also a significant chal-
lenge for VNF placement. In this context, authors in [63]
propose a new joint placement approach for VNFs and their
associated chains over the cloud computing environment.
Their system performs joint node and link mapping using the
extended eigen-decomposition of the request and infrastruc-
ture graphs. The main objective relies on maximum matching
with minimum bipartite graph (BG) cost. This suggested algo-
rithm achieves better performance than the greedy algorithm
because it is fast stable, and its execution time depends only
on NFV infrastructure size.

According to the literature, several works have addressed
cost reduction by properly utilizing computing resources in
cloud-based mobile core networks, seeking the optimal place-
ment of VNFs in the same data center. For initial VNF
placement, FZ. Yousaf et al. [64] propose two algorithms
called Vertical Serial Deployment (VSD) and Horizontal Serial
Deployment (HSD), aiming to minimize the overall cost.
For highly overload profiles, the HSD can efficiently reduce
the average throughput per active server since the load is
shared equally across all racks with the increasing number of
active servers. However, VSD leads to unbalanced distribution;
servers in specific racks can be 100% utilized while other racks
are underutilized or not used. To address this problem, a new
automated NFV orchestrator based on machine learning [65]
named zero-touch orchestration (z-TORCH) is proposed to
improve the quality of management and orchestration systems
by providing an optimal placement of VNFs with minimal
monitoring cost.

Authors in [66] propose a dynamic placement of VNFs
based on an online efficient scaling algorithm to minimize the
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network cost. They consider a network composed of multiple
time slots with prediction stages. In each prediction stage,
they apply a forecasting approach based on Fourier-Series to
decide whether new demands exist in the new time slot. This
online learning mechanism, based on Upper Bound Confidence
(UCB), aims to reduce costs by withdrawing frequent changes
in the network topology.

In [67], authors propose a heuristic approach based on
bin-packing for minimizing cost in VNF placement while
considering coverage, mobility, battery consumption, reliabil-
ity, and low latency constraints for deploying services over
a volatile 5G network. The proposed heuristic outperforms a
state-of-art mobility-aware algorithm, achieving near-optimal
deployments in terms of cost while enhancing convergence
speed to the solution (thus increasing the number of time-
feasible solutions) and reducing the number of requested
handovers.

Authors in [68] handle the problem of joint traffic routing
and VNF placement for a multi-cast service request to reduce
both the VNF and link provisioning costs. The optimization
model is formulated as a Mixed Integer Linear Programming
(MILP) problem. Therefore, heuristic solutions are proposed
for single path and multiple-path routing scenarios to min-
imize the embedding cost and provide a flexible placement
and routing while ensuring low latency.

Telecom providers should handle real-time requests in the
small end-to-end latency to satisfy user demands with good
QoS in the 5G network; Therefore, MEC has been deployed
to minimize the customer experienced delays. In [69], an
SDN/NFV-enabled MEC architecture is proposed to reduce the
deployment cost. However, the incurred cost for VNF place-
ment and resource allocation (VNFPRA) in MEC nodes must
be considered. The VNFPRA is formulated as a MILP problem
and solved using a genetic-based heuristic algorithm to mini-
mize the global resource cost, including the allocation cost, the
computation cost, and the link usage cost. Simulation results
confirm the efficiency of the suggested Genetic Algorithm
(GA) based VNFPRA compared to FF and RF placement
algorithms.

Similarly, in [70], authors propose a new approach for VNF
placement issue for SFC using replica in the software-defined
cloud, named VNF and Replica Placement (VNFRP). This
approach reduces the overall SFC placement cost, service
response time, energy consumption, and link bandwidth uti-
lization. First, the problem is formulated as an ILP. Then the
VNFRP heuristic algorithm is used to find the optimal place-
ment by dynamically placing the VNFs of the SFC in the same
or different nodes based on the SFC placement cost and the
minimum link bandwidth.

Several approaches have been proposed to address the com-
plexity of adjusting and placing VNFs in physical networks
regarding the high number of nodes and links in DCs. The
most of existing solutions focus on static placement that
it initiated only if a change happened. For example, when
an event occurs or some areas are busy at a certain time,
it will create an overload on some servers, and therefore
a VNF placement/readjustment procedure is implemented,
which may cause latencies and affect the QoS. Consequently,

the dynamic placement of VNFs should be deeply investi-
gated due to the ever-changing resource availability in cloud
DCs and the continuous mobility of users. The majority of
VNF placement/readjustment solutions focus on optimizing
objectives such as power consumption resource utilization,
but they ignore important features as latency and service
level objective (SLO) penalty violation cost. In this context,
authors in [71] propose a Machine learning approach named
MAPLE that divides the substrate network into a set of sepa-
rate clusters, to reduce the complexity of VNF placement and
adjustment. For the network partitioning problem, they apply
the k-medoids clustering technique and a statistical technique
to optimize the selection of the initial group of medoids. This
helps to enhance the quality of the clusters while reducing
clustering time. The VNF placement/readjustment problem is
formulated as an ILP that aims to simultaneously reduce the
latency, the SLO violation cost, the resource utilization, and
the cost of VNF readjustment. This dynamic model helps to
provide administrators with real-time placement and readjust-
ment decisions. For large-scale DCs, they design data-driven
cluster-based placement and readjustment algorithms based on
machine learning that intelligently remove some cost func-
tions from the ILP optimization problem. Simulation results
prove the performance of the proposed approach in terms of
reducing latency and SLO violation cost compared to exist-
ing approaches as k-means, migration without clustering, and
original k-medoids.

For stateful VNFs, it is challenging to find the optimal DC
for placing active and standby VNFs while reducing their over-
all cost, including the cost of continuous state transfer from
active to standby instances, as this may result in high band-
width consumption or even network congestion. In this respect,
a RL approach is proposed for placing stateful VNFs based on
a joint reservation of active and standby resources while reduc-
ing the total placement cost [72]. Simulation results prove the
performance of RL based VNF placement approach in terms
of improving the acceptance ratio and reducing the overall
cost compared to benchmark solutions (e.g., Node-Rank [73])
in online and offline scenarios.

3) Resource Utilization: The 5G network functions are
placed on VMs that can be switched between different PMs.
Power consumption can be reduced by stopping unused
resources. However, it is not clear what are the required
resources for the network function and whether placing
more VNFs in a smaller number of physical resources can
degrade the service user experience and violate service level
agreements.

The fast and reliable resource allocation for network slices
remains challenging since each slice requires specific func-
tionalities such as bandwidth and processing power. VNF
placement and CPU allocation decisions are influenced by
routing decisions from one network node to another [55]. From
this point of view, remarkable effort has been dedicated for
combining VNF placement, resource allocation and routing
problems [68], [74], [75], [76].

The implementation of an effective framework for resource
allocation to network slices remains a very relevant issue.
Hence, instead of worrying about how to place VNFs
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individually and interconnect them, the cloud-native architec-
ture efficiently allocates resources for network slices in terms
of network bandwidth and cloud processing power [77].

In [78], the VNF placement is considered as a multi-
objective optimization problem aiming to minimize the
bandwidth dissipation and reduce the maximum link applica-
tion simultaneously. Therefore, four genetic algorithms have
been proposed using the frameworks of two existing algo-
rithms, multiple objective genetic algorithms (MOGA) and
non-dominated sorting genetic algorithm (NSGA-II): Greedy
MOGA, Greedy NSGA-II, Random MOGA, and Random
NSGA-II. Simulation results prove that Greedy-NSGA-II out-
performs other algorithms.

In [79], the problem of VNF placement and chain-
ing (VNF-PC) is handled by a flexible resource allocation
approach aiming to minimize resource consumption in a
small end-to-end delay. Authors propose a Mixed Integer
Quadratically Constrained Program (MIQCP) named Flexible
Resources Allocation Model (FRAM), which considers the
tradeoff between resource allocation and latency, answer-
ing the question of how many resources should be allo-
cated within the VNFs to meet the required latency. Results
prove that FRAM outperforms the Strict Resource Allocation
Model (SRAM) that does not consider the resource delay
dependency.

In [80], a new VNF placement strategy is proposed for
assigning adequate VNFs to hosts based on the total num-
ber of resources. First, before VNF placement, a periodic
updating search method is applied to find the convenient host.
Next, an on-demand fast VNF assignment upon request is
used for placement instead of computing each time resource
information.

In [81], authors propose a MILP approach to handle the
joint VNF placement, resource allocation, and user associa-
tion. Their optimization problem aims to reduce the service
provisioning cost, minimize the effect of migration on cus-
tomer’s QoE, balance the resource allocation and optimize
the transport network usage while guaranteeing data ser-
vice requirements (e.g., latency, speed, etc.) in mobile edge
computing.

The VNF Placement and Chaining Problem (VNF-PC) is
one of the most challenging problems in NFV. It focuses
on network resource allocation to provide end-user services
such as massive IoT (mIoT). Nevertheless, these services
must be supplied by an infrastructure that becomes progres-
sively complex and heterogeneous with the growing number
of network components and the exponential increase of the
computational processing and runtime [82]. Therefore, as
the VNF-PC is NP-hard to solve, authors in [83] first pro-
pose an ILP algorithm; however, this latter still suffers from
high runtime. Second, they develop a hybrid optimization
approach combining ILP with ML to minimize the num-
ber of network components and reduce the runtime in the
Substrate Network (SN) through clustering strategies. The
ML identifies first the patterns between requests and then
decides which SN component will be used in processing.
Two distinct clustering approaches are proposed: (i) based
on the SN components’ spatial location; and (ii) based on

the SN components’ historical resource usage. As a result,
this hybrid strategy helps to minimize the runtime by up
to 75% compared to exact methods and reduces the E2E
latency without degrading the acceptance rate and provider’s
profit.

The challenges of network slicing and VNF placement are
well debated in the literature but without considering the close
relationship between the two concepts. In this context, the
VNF placement over network slicing has gained attention by
researchers addressing different objectives and constraints. As
network slices may be implemented as a chain of VNFs, the
two concepts are inextricably linked and must be explored
together. The subject of resource allocation (capacity, compute,
and storage) across slices has attracted much interest [84],
[85], [86]. Some papers consider only spectrum resources
(e.g., [85]), while others take into account also the computing
resources required for VNF placement [84], [86].

In [87], the authors analyze the best VNF deployment
and computational resource allocation in a hybrid two-clouds
C-RAN architecture, taking into account various 5G service
demands and distinctive 5G RAN functionalities. By setting
limits on VNFs, the objective is to reduce the overall amount
of computing resources. The problem is formulated as an ILP
and solved using a standard solver. To cope with the compu-
tational cost of optimizing a large number of clouds and VNF
chains, they present a simple low-complexity heuristic named
Best Fit with IteRative Split Trial (B-FIRST) that tries to dis-
cover a suitable VNF placement solution with a small number
of functional slices.

The NFV challenge in a C-RAN architecture is also
addressed in [88], which examines six distinct criteria while
formulating a C-RAN system that delivers VNFs on an edge
data center. VNFs are put in the edge data center, and
diverse network slices with varied requirements/constraints are
considered (i.e., E2E service latency, E2E service reliabil-
ity, E2E power consumption, computation capacity constraint,
throughput constraint, and service admission probability). For
multi-service 5G networks, authors in [89] present a new
network function allocation approach that allows network
functions to be deployed in a distributed computing envi-
ronment based on service demands. The suggested technique
includes both RAN and Core Network (CN) functions. Unlike
existing systems, it provides an option capable of skewing
the VNF placement based on service requirements, allowing
for quick and straightforward operator-side network function
deployment.

Despite the advantages of 5G networking technologies,
there is a need for an automated and self-scaling orches-
tration system that is capable of placing VNFs dynamically
to fully use MEC DCs for uRLLC services. In [90], a
Deep Deterministic Policy Gradient (DDPG) RL algorithm is
proposed to solve the dynamic placement of VNFs between
edge and cloud network DCs. The proposed algorithm can pro-
vide the best VNF placement with respect to SLA requirement,
E2E latency, and network resources compared to alterna-
tive solutions. They have proved the sustainability of DDPG
for automated spatial resource allocation by migrating VNFs
between cloud DCs and MEC DCs.
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For large-scale networks, even the most advanced learning
algorithms are unable to satisfy the complexity of VNF-FG
placement. For example, the DDPG [91] is unsuitable for solv-
ing the high dimensional action space as a VNF-FG scheduling
problem due to the restrictions of substrate network resources.
In this regard, authors in [92] propose new approaches to
find feasible solutions for the VNF-FG embedding problem
by adopting the DRL technique to minimize the resource
allocation while ensuring the QoS requirements. First, they
propose a lightweight algorithm named Heuristic Fitting
Algorithm (HFA) to deal with the efficiency of DDPG in
large-scale space. The HFA determines an appropriate allo-
cation policy of VNFs based on the proto action value
received from the output of the DRL agent. Next, they pro-
pose an enhanced exploration DDPG named E2D2PG that
provides new modules in addition to HFA, i.e., evaluator and
enhanced exploration, for assessing the quality of the solu-
tion and enhancing the exploration of DRL agent. Simulation
results prove the performance of E2D2PG compared to
conventional DDPG and ILP. Similarly, in [93], authors
suggest a DRL approach for multi-domain VNF-FG embed-
ding. However, the results are only realized on tiny network
architecture.

In [94], authors address the SFC allocation problem and
provide a reinforcement learning approach for placing VNFs
on an appropriate node that enhances VNF performance based
on the physical network’s load status. This algorithm provides
good results compared to OpenDayLight (ODL) scheduler.
However, this approach takes a long time to converge in a
large exploration space.

In [95], an enhanced RL-based approach merged with an
expert knowledge mechanism is proposed to circumvent a
lengthy training procedure for VNF-FG embedding. This RL
technique is based on Enhanced Q-Learning (EQL), aiming
to accelerate the learning time, achieve load balancing, and
improve long-term reward and performance. The EQL con-
trols and learns the network based on the usage patterns
of PMs. Simulation results, handled in large-scale networks,
prove the effectiveness of EQL in terms of scalability, accep-
tance ratio, QoS, and acceptance gain, compared to ILP
algorithms.

4) Network Traffic: Reference [74] targets the importance
of combining VNF placement and path selection to maximize
the served traffic demands and minimize network utilization.
This problem is formulated with a mathematical program that
systematically estimates a proper path length and reuses fac-
tors for each request. A usage-guided chain deployment algo-
rithm is proposed to find a solution for optimal VNF placement
in terms of reuse factor and proper path length. Simulation
results prove that the proposed algorithm yields good results
overcoming greedy-based and shortest-path-based heuristics.
Therefore, the link capacity and resource availability should
be jointly allocated in VNF placement.

In [75], the VNF placement is formulated as a mixed-integer
linear programming problem. The main objective is to find an
efficient placement of network functions with traffic routing
among them while minimizing the CPU resource usage and
the flows delay.

Reference [76] tackles VNF placement and chaining by
proposing a new analytical approach based on the Eigen-
decomposition method. This approach jointly manages VNF
placement and traffic distribution where VNFs are placed, and
traffic is spread over them all at once as tenant requests are
processed collectively in the form of VNF forwarding graphs
(VNF-FG). Simulation results prove that eigen-decomposition
based heuristic is fast, stable, and serves more requests than
the greedy heuristic algorithm.

Reference [96] also considers the VNF placement in 5G
network slicing as an optimization problem aiming to achieve
maximum throughput of accepted requests. A new heuris-
tic algorithm named Adaptive Interference-Aware (AIA) is
proposed to place VNFs automatically. The experimental
results demonstrate the effectiveness of the proposed scheme
in terms of enhancing the total throughput of slicing services
such as video streaming and autonomous driving in compar-
ison to other heuristic approaches. The AIA can also handle
the traffic variations induced by VNF interference.

In [97], the authors propose a dynamic solution for joint
VNF placement, traffic routing, CPU assignment, and VM
activation to provide different vertical services in 5G network,
considering the end-to-end delay as the primary KPI. To
make this joint decision, the problem is formulated as MILP
based on requests’ arrival and departure times over the
system’s lifetime. Authors propose MaxSR, an efficient meta-
heuristic method for solving the aforementioned problem
for large-scale network situations based on near-future
knowledge.

SDN and NFV technologies have been introduced as cru-
cial paradigms for reaching the tactile Internet’s low latency
requirements in multi-access edge computing (MEC) cloud
systems. In [98], the authors proposed a new approach
for handling distributed SFCs toward low-latency tactile
Internet applications, called Chain-based low Latency VNF
ImplemeNtation (CALVIN). CALVIN aims to place VNFs in
a distributed way with one VNF per VM. It applies fast packet
input/output (IO) to prevent the metadata and batch processing
of the classic Linux network stack.

Authors in [99] propose a solution for optimal VNF place-
ment to provide eMBB services in NS by using spatial metrics
of network topology. They suggest an architecture for 5G
multi-tenancy networks with different software components
to achieve smart decisions for VNF placement. Results prove
the proposed prototype’s performance in terms of computing
the spatial measurements for a 5G multi-tenant network with
65538 mobile users in a small delay.

NS placement is known as an NP-hard optimization
problem [100] that involves deciding which servers can host
the VNFs forming the network slice and which pathways
can be followed to direct traffic between these VNFs. Deep
Reinforcement Learning (DRL) was recently employed in
some network slice placement publications to solve this
problem in a scalable fashion [101]. However, the majority of
DRL research assumes a stationary environment, i.e., a static
network demand. Traffic conditions in real networks are gener-
ally non-stationary and are vulnerable to large variations, such
as traffic peaks, caused by unexpected events. This makes it
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harder for the DRL algorithm to learn the context in which
slices should be placed properly. In fact, the ever-changing
network environment and policies may not be in harmony
with the algorithms that require previous knowledge to develop
the best solutions. In [102], a new solution adapted for
non-stationary traffic conditions is proposed based on hybrid
DRL-heuristic algorithms to deal with the traffic change. This
framework combines Advantage Actor Critic and a Graph
Convolutional Network (GCN). Four algorithms have been
considered pure DRL, enhanced DRL (eDRL), Heuristically
Assisted DRL (HA-DRL), and HA-eDRL. Results prove
that in a real non-stationary network scenario, the sug-
gested hybrid DRL heuristic technique is more reliable than
pure-DRL.

5) QoS and Throughput: MEC and NFV have emerged as
potential technologies for delivering low-latency IoT services
in smart cities. IoT devices require computing services to
meet the needs of everyday applications in smart cities. Each
IoT service may be implemented as a service chain made up
of several interconnected VNFs running on virtual machines.
When considering VNF placement, QoS is a big deal since
the MEC needs to deliver high-quality IoT services. Various
IoT services require different levels of QoS. For example,
monitoring-related services desire a cloudlet attaining better
availability as the high-availability cloudlet provides steady
computing help, while game-related IoT services would like
a low-latency cloudlet. As a result, an exact QoS method is
required to pick appropriate cloudlets for various IoT applica-
tions. However, QoS is impacted by multiple attributes such
as availability, E2E latency, resource utilization, traffic conges-
tion, the bandwidth of communication links, etc. Thus, it is
challenging to assess QoS by multiple attributes. Furthermore,
the network dynamically adapts to the state of cloudlets and
switches in real-time.

Determining the QoS of each cloudlet in a dynamic network
becomes even more difficult. While MEC and NFV can solve
the problems of resource utilization and network congestion,
they also bring new challenges. To address these difficulties,
authors in [103] propose a multi-attribute-based QoS approach
for VNF placement and service chaining in smart cities.
The optimization problem aims to maximize the throughput
subject to multiple constraints such as computing resource
capacity, the bandwidth of communication links, and the QoS
requirement of each demand. The multi-attribute problem is
formulated as an ILP, and a heuristic algorithm based on the
randomized rounding technique (RRH) is proposed to solve
this problem. The authors also propose an algorithm named
UFPH based on an unsplittable flow approach to handle VNF
placement and service chaining challenges while meeting the
extra QoS requirement of each type of IoT service. Simulations
results prove that the two proposed algorithms (i.e., RRH and
UFPH) outperform Greedy and Random algorithms in terms
of high throughput and average QoS.

6) Security: Most previous works address different VNF
placement problems without considering the resiliency of ser-
vice chain embedding with the slicing concept. However, few
works deal with it (e.g., [104], [105]). In [104], Xu et al.
handle the cross-domain security problem in service function

chain placement to reduce the end-to-end latency while satisfy-
ing resource constraints. This optimization problem is formu-
lated using two ILP models for the inter and intra domains.
Therefore, a heuristic algorithm is proposed to provide sat-
isfactory solutions. In the same context, authors in [105]
formulate the resiliency problem as an optimization problem
aiming to reduce the maximum number of impacted service
chains during a PM failure while meeting the slice-specific
requirements and respecting the VNF placement constraints in
the co-located network slices. Similarly, in [106], the authors
provide three ILP algorithms to tackle the VNF placement
issue while ensuring resiliency against single link, single node,
and single-node/link failures.

C. Classification of VNF Placement Approaches

In the majority of real-world scenarios, VNF placement
must be treated as an online problem. On the other hand,
offline methods are very important to address issues that may
not be obvious in online cases, where many requests are
processed in sequential order. The orchestration and place-
ment algorithms fully understand the requirements that will
be executed simultaneously in an offline manner. VNF place-
ment algorithms are categorized into online (dynamic) and
offline (static) approaches. The VNF placement problems have
inspired many researchers to develop several optimization
methods. These problems have been identified as NP-hard.
Based on the set of papers studied in this survey, we classify
the search algorithms adopted to cope with the different VNF
placement problems into three types: Heuristic, Meta-heuristic
(random-based) search techniques, and Machine learning algo-
rithms, which can be described as:

• Heuristic: Heuristics are problem-dependent models that
are designed to solve a problem according to its specifica-
tion. Despite the fact that these algorithms do not always
ensure convergence to an optimum solution, they are
capable of obtaining competitive solutions very quickly.
Table III shows a classification of heuristic algorithms
based on their key parameters and objective functions.

• Meta-heuristic: Meta-heuristics, considered as an exten-
sion to heuristic techniques, are a high-level problem-
independent algorithmic framework that can identify
near-optimal solutions by iteratively optimizing solutions
based on a particular performance metric. Table IV pro-
vides the meta-heuristic algorithms adopted for VNF
placement issues. Meta-heuristics allow to efficiently
solve the VNF placement problem. They can incorporate
new objectives or constraints very easily without chang-
ing the solution, unlike heuristics. It is also important to
notice that some research works demonstrate the conver-
gence of these heuristic algorithms towards the optimum
under certain conditions.

• Machine learning algorithms make intelligent decisions
based on the data they have learned. Deep learning is
a sub-field of ML that employs a layered ANN struc-
ture to learn and make smart decisions autonomously.
Reinforcement learning (RL) is a field of learning in
which an agent learns to make decisions through the



4716 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 4, DECEMBER 2023

TABLE III
SUMMARY OF PAPERS PRESENTING HEURISTIC APPROACHES FOR VNF PLACEMENT

rewards or penalties received as a result of performing
one or more actions. In RL, an agent collects information
about the environment, called state. Then it performs
an action that moves the current setting to the next
state and sends a reward to the agent. This reward
reflects the measure of how the agent’s action optimizes

the objective function. Learning from previous experi-
ences is a valuable capability to cope with environmental
changes (e.g., change in traffic type, network configura-
tion, etc.). Table V presents a classification of learning
approaches adopted for solving complex problems in
VNF placement.
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TABLE IV
SUMMARY OF PAPERS PRESENTING META-HEURISTIC APPROACHES FOR VNF PLACEMENT

IV. CNF PLACEMENT

In the next few years, network operators will tend towards
cloud architectures [107] in both edge and core network [108],
to increase efficiency, reliability, and scalability. Cloud-native
is the process of transitioning software deployments from
traditional infrastructure to software and API-enabled infras-
tructure to leverage automation and DevOps techniques. This
transition enhances the ability to deliver services quickly and
allows providers to own their customers’ experience effec-
tively. A cloud-native strategy allows providers to deploy new
services rapidly with greater flexibility. Several cloud-native
principles are used to deploy 5G infrastructures, includ-
ing agnosticism, application resiliency, software decompo-
sition, orchestration, and automation. Software is divided
into small components using micro-services. Each compo-
nent can be individually packaged using a container as a
service.

However, regarding the benefits of orchestration in 5G
cloud-native, finding the feasible placement of containers
under CaaS architectures is still challenging. The container
placement (CP) is similar to classical VM placement, where
the main goal is to assign containers to suitable nodes to
accomplish certain objective functions under specific resource
constraints.

A. Container Placement Challenges

Containers are a sort of virtualization that works by separat-
ing system instances from user space inside a single (shared)
OS kernel rather than virtualizing an entire machine as VMs
do. Although this provides many benefits in communication
performance between containers, it also means that all con-
tainers fight for the same resources in the system, leading to
undesirable situations. A container is a unique process in the
OS that does not have access to all of its resources. For exam-
ple, it can only see a limited file system tree and cannot use
all network interfaces; or it has limited memory allocation and
disk I/O throughput. Current container service frameworks do
not provide any kind of intelligent resource scheduling. Instead
of taking a holistic view of all registered apps and available
resources in the cloud, applications are often scheduled sep-
arately. This can lead to longer application execution times,
resource wastage due to underutilized container instances, and
a reduction in the number of apps that can be implemented
considering the available resources, whereby the necessity of an
optimal container placement approach that provides resource
efficiency in a cloud environment [109]. In addition to resource
utilization, the network traffic of containers should also be
addressed to ensure the QoS and reduce the total energy con-
sumption in a cloud environment [110]. As a result, virtual
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TABLE V
SUMMARY OF PAPERS PRESENTING LEARNING APPROACHES FOR VNF PLACEMENT

machines should be able to meet both the aggregated resource
consumption and the bandwidth requirements of co-located con-
tainers. This is a challenging issue to solve due to its quadratic
nature since communication between each pair of contain-
ers must be considered. Furthermore, applications should be

deployed in a manner that allows them to communicate with
each other with the minimum possible amount of network
overhead. In this context, containers with a greater commu-
nication rate should be placed on virtual machines hosted
on a single server or on servers with the shortest average
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network link. Network-based placement can be efficient in
terms of data center power consumption and earned revenue
for cloud providers.

Poor container placement may generate a bottleneck in the
cloud if VMs are substantially loaded, which impacts the
response time of a particular set of tasks. For example, when
certain VMs are chosen to handle container loads, some of
them may already be overburdened [111]. As a result, an
overhead problem arises, and the response time increases.
Therefore, the VMs with greater load balancing values are
more convenient for placing containers. Edge computing has
the potential to expand clouds by placing virtual resources
(e.g., containers) closer to data sources, allowing for faster,
lower-latency applications and services. Ensuring an efficient
and predictable service provisioning time presents a signif-
icant and emerging difficulty as the number of Edge-servers
increases and the heterogeneity of networks linking them rises.
This may result in a long provisioning time depending on
the container images sizes, and the network bandwidth [112].
For instance, we frequently scale-out live video stream ana-
lytics to avoid data bursts; hence, because those application’s
response time are in milliseconds, waiting hundreds of seconds
to provision, a new container is unacceptable [113]. Therefore,
container placement models are continually being advanced
for edge computing to meet the KPI performance and small
latencies required by IoT services.

B. CNF Placement Proposals in Fog/Edge Computing

All previous works utilize some objectives to quantify the
performance of the realized solution and evaluate the effi-
ciency of the proposed approach to devise efficient container
scheduling. Some of the well-known optimization objectives
used include energy efficiency, availability, resource utiliza-
tion, load balancing, scalability, cost, and makespan/latency.
Other optimization objectives can be used in particular appli-
cation environments or with specific data center character-
istics. Readers are referred to the recent survey to examine
such domain-specific optimization objectives. An optimization
objective is used to measure special aspects of the solution
generated by an algorithm. In some papers, the optimization
objective may consist of a single objective, while others may
be multi-objective, relying on the optimization required for
the problem at hand. Generally, the more objectives used in
the cost function for the considered optimization problem,
the more complex the decision-making process becomes.
Therefore, different trade-offs are typically set in place to
balance the performance of the proposed algorithm and the
quality of the generated solution. The following are consid-
ered the most common objectives utilized in the cost function
definition of containers placement problem.

1) Resource Utilization: For resource management in the
containerized cloud, new deployment models, such as fog and
advanced mobile computing, have been established to make
the cloud closer to the end-user [114] and services closer to
the edge [115]. However, resource allocation in dynamic fog
computing systems is a challenge. Authors in [116] proposed
a joint optimization problem for container function placement

and task provisioning. Their main objective is to optimize the
number of served end-users while considering resource utiliza-
tion and mobility under delay/threshold constraints. The issue
is formulated as an ILP and was solved using low complex
Particle-Swarm-Optimization (PSO) based meta-heuristic and
Greedy heuristic algorithms. Simulation scenarios prove that
the PSO-based algorithm performs near-optimal results with
more sustained execution times than the Greedy Algorithm.
Besides, network slicing has been introduced by 3GPP to
improve the scalability of fog computing in 5G, where the
E2E network in a vertical slice connected the core network
to the edge devices throughout the fog nodes. Each fog node
can use the harvested energy to provide pervasive computing
resources anytime and anywhere. For scalable fog computing
with energy harvesting, a dynamic network slicing architec-
ture is proposed to manage the workload handled by several
fog nodes located close to each other [114] and maximize the
utilization of available resources.

Previous works have separately considered the place-
ment of VMs on PMs or the placement of containers on
VMs/PMs. However, this leads to over-utilized or underuti-
lized VMs/PMs [117]. For this reason, there is growing interest
in developing a container placement algorithm that consid-
ers the simultaneous use of instantiated VMs and used PMs.
Cloud-native principles and technology have proven to be an
effective acceleration technology in continuously building and
operating the largest clouds in the world. This new technol-
ogy has been selected to develop next-generation VNFs called
CNFs, where network function is deployed to operate inside
containers. Services are instantiated as a group of containers,
which frequently leads to a high communications workload
causing a degraded quality of service. Placing containers of
the same service within the same server can reduce com-
munication costs but may cause heavily imbalanced resource
utilization. In this context, two phases are handled, container
placement (CP) and container reassignment (CR) [118]. For
the CP problem, the Worst Fit Decreasing (WFD) algorithm
is proposed to provide efficient communications. For the CR
problem, a reassignment algorithm named Sweap&Search is
suggested to coordinate containers’ distribution by migrating
them among servers.

The Docker Swarm placement approach matches the con-
tainers to the available resources according to the round-robin
principle without considering resource utilization of VMs or
PMs. In this context, [119] proposes placing new containers on
VMs while simultaneously taking into account the VM place-
ment on PMs. The primary purpose is to reduce the number of
active PMs and VMs and optimize CPU and memory usage.
Therefore, the authors propose a meta-heuristic placement algo-
rithm based on Ant Colony Optimization Best Fit (ACO-BF),
which uses a fitness function that computes the percentage
of wasted remaining resources in PMs and VMs. Simulation
results prove the ACO-BF’s performance in terms of resource
usage in both PMs and VMs compared to FF and MF.

In the same way, authors in [120] have proposed a
new Docker container orchestrator named Carvela. Unlike
other container placement or orchestration approaches dedi-
cated for centralized architectures [121], Carvela uses a fully



4720 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 4, DECEMBER 2023

decentralized architecture and resource discovery to handle a
large number of volunteer resources and avoid bottlenecks;
it also employs workload placement heuristic algorithms to
take the appropriate placement decision with respect to the
resource (i.e., CPU, RAM) and satisfying low latency and
cheap bandwidth.

Arora and Ksentini [122] propose a dynamic resource allo-
cation and placement algorithm (DRAP) aiming to design and
place a simple cloud-native network service. Their approach
can help service providers to reduce their infrastructure costs.
The proposed DRAP heuristic algorithm aims to reduce
resource utilization while ensuring service availability. It
focuses on minimizing the number of nodes needed to place
CNF pods (i.e., Kubernetes pod) by adapting the vCPU allo-
cation to each pod. The scalable vCPU allocation permits the
algorithm to scale up or down the number of pods based on
service availability.

Authors in [15] present a comprehensive study of con-
tainer placement algorithms and scheduling models in Edge
Computing. The container placement is a decision-making
problem that can be formulated by graph models or multi-
objective optimization models to be solved by heuristic or
meta-heuristic algorithms. In [123], the container placement
problem in cyber-physical systems is formulated as an ILP
optimization model aiming to maximize resource utilization
while ensuring high QoS. A heuristic algorithm based on
Deep Learning Artificial Neural Network (ANN) is proposed
to solve the ILP optimization model.

Some scheduling methods can place containers on the
infrastructure with manual resource allocation that may
affect the application’s performance. Therefore, an automatic
approach for allocating optimal CPU resources can help to
improve the efficiency of containers placement. In [124],
authors propose a new deep learning-based algorithm for
dynamic CPU resource allocation while reducing the job com-
pletion time. This approach employs the law of diminishing
marginal returns to estimate the ideal number of CPU pins
for containers in order to maximize the number of concur-
rent jobs while maximizing performance. Experiment results,
tested on a Docker-based containerized infrastructure with real
workloads, prove the performance of the proposed DL algo-
rithm in terms of decreasing the job completion time by 23%
to 74% compared to static scheduling methods as First come
First Serve (FCFS), Shortest Job First (SJF), Longest Job First
(LJF), and Simulated Annealing (SA).

Similarly, the Docker Swarm’s scheduler overlooks the
resource utilization when placing containers in the cluster.
In [125], authors first examine the performance interference in
container placement where results show that the performance
of distributed applications can be degraded when co-located
containers highly consume resources. Then, they propose a
new scheduler based on machine learning clustering algo-
rithms, K-means++ placement policy and doubling placement
policy, that help to enhance performance while maintaining
high resource consumption. Simulation results prove that the
proposed placement strategies can improve the distributed
application’s performance by up to 14,5% compared to
Random and Bin-packing algorithms.

2) Energy Consumption: In [126], the authors study the
CP problem in terms of energy consumption; they develop
a target chromosome model for optimizing energy efficiency
and propose an Improved Genetic Algorithm (IGA) to find
the efficient CP solution. Experiments prove that the proposed
strategy is better than existing Docker Swarm strategies.
Simulation results show the effectiveness and performance of
IGA in terms of energy saving compared to basic GA, First-fit,
and PSO algorithms.

In [127], authors propose GenPack, a new generational
scheduler, for placing containers in a cloud DC to maximize
energy efficiency. It learned the attributes and requirements
from the system containers’ runtime monitoring. Their adopted
method, tested in a Docker Swarm environment, can increase
energy efficiency by up to 23% compared to the built-in
schedulers (i.e., Spread, binpack and random).

Container orchestration tools have emerged as an alternative
to avoid the challenging problems of highly volatile workload
applications and the constraints of small energy consumption
and latency, though using heuristic and AI algorithms to fit
the dynamic environment. In [128], a new framework called
COSCO (Coupled Simulation and Container Orchestration)
is developed to achieve the efficient placement of contain-
ers in fog computing environments. Besides, the authors have
proposed a Gradient-based Optimization policy using back-
propagation with respect to Input called GOBI to provide fast
and scalable scheduling. They have also created an extended
version named GOBI* to achieve QoS by providing intelli-
gent predictions and scheduling decisions with low latency.
Simulation results prove the performance of the proposed
approaches (i.e., GOBI and GOBI*) in terms of reducing
energy consumption, scheduling time, response time, and ser-
vice level objective compared to heuristics (e.g., GA) and other
learning algorithms presented in the literature.

The container placement problem can be framed into two
phases (i.e., placing containers on VMs and placing VMs on
PMs) while minimizing energy consumption and maximizing
resource utilization. The complexity occurs when consider-
ing the heterogeneity of containers, VMs, and PMs. Instead
of handling each placement separately, authors in [129] have
proposed a Whale Optimization Algorithm (WOA) to solve
these two placement steps as one optimization problem. The
proposed algorithm efficiently minimized the overhead of cre-
ating VMs and the energy consumption compared to DGWO,
TMPSO, FFD, LF, and MF.

Similarly, in [130], the initial container placement is formu-
lated as a bi-objective optimization model aiming to minimize
the power consumption while maintaining the best service
performance by proposing a novel application isolation metric
to quantify the overall service performance. Zhang et al. [130]
propose an optimization approach called First Fit based on
improving the Genetic Algorithm (FF-based-IGA) to find
the efficient initial container placement solution. Simulation
results prove that the proposed algorithm yields better results
in terms of minimizing the energy consumption compared to
conventional algorithms such as BF and FF.

In [131], a new scheduling approach based on a multi-
criteria decision algorithm is proposed to place containers in
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the convenient node. This approach considers three criteria: the
amount of available memory, the number of containers in each
node, and the number of available CPUs. The scheduling strat-
egy aims to select the node that hosts a container by combining
the Spread and the Bin Packing models to form the Technique
for the Order of Prioritisation by Similarity to Ideal Solution
(TOPSIS) algorithm. Simulation results prove the performance
of TOPSIS in terms of reducing energy and computing time
compared to Random, Spread, and Bin-packing algorithms.

Likewise, to reduce the energy consumption of service
placement in cloud DC, a green container-based service
aggregation is presented [132], allowing a large number of
servers to be in the idle mode without impacting the qual-
ity of experience. The problem has been formulated as an
optimization approach to minimize the total energy consump-
tion with respect to service execution time. In this way, the
authors propose an online learning-based technique based on
Bayesian Optimization (BO) that can handle measurement
noises encountered during workload characterization for con-
tainerized services. This algorithm is named Energy-Aware
Service consolidation using Bayesian optimization (EASY).
The experiments executed in the docker swarm environment
prove the effectiveness of EASY in reducing the total energy
consumption and bandwidth overhead compared to FFD and
BF. However, as the reduction of active nodes makes them
heavy loaded, the average response time is greater than
baseline methods.

The goal of resource allocation in container-based clouds
is to reduce total energy consumption by properly assigning
resources (such as CPU and memory) to applications with-
out overloading the PMs. Hence, regarding the elastic nature
of containers, a cloud provider must distribute appropriate
resources as soon as a new request arises, and this is named
online Resource Allocation in Container-based clouds (RAC)
problem. It is challenging because of its two-phase strategy
(i.e., placing containers in VMs and placing VMs in PMs).
Previous studies learn a one-stage allocation policy for allocat-
ing containers to VMs. In contrast, the assignment of VMs to
PMs is manually performed. In [133], authors present a novel
Cooperative Coevolutionary Genetic Programming (CCGP)
hyper-heuristic algorithm to address the RAC problem by
learning the workload pattern and generating allocation rules
for the two levels. Simulation results prove the performance of
CCGP rules in terms of improving energy efficiency compared
to the sub&Just-Fit/FF rule.

3) Network Traffic: The containers implemented in an
application are located in several PMs to ensure high par-
allel performance. The CNF placement has a significant
impact on the network traffic and the containerized data
center performance. Unlike the existing CNF placement solu-
tions that do not consider the traffic pattern of containers,
authors in [112] propose a new placement approach based on
network traffic correlation named “Blender” considering the
traffic between containers as a Zipf distribution. The blender
approach offers two valuable benefits: (i) it reduces inter-block
traffic by placing containers that often communicate in the
same block. (ii) it performs efficient load balancing by group-
ing blocks depending on the types of required resources and

dispatching them over several PMs. Simulation results prove
the high performance of the Blender solution compared to SBP
and CA-WFD in terms of reducing communication traffic.

The critical challenge in container cluster (CC) provision-
ing is the efficient placement of containers while considering
inter-container traffic. This challenge is further complicated
when the clusters of containers are provisioned online. Hence,
authors in [134] propose an online placement algorithm to
dynamically assign the container to a zone with free capac-
ity while considering the inter-container traffic. This online
placement design involves a one-shot algorithm that identifies
the optimal placement for the current CC and an online algo-
rithm framework that makes on-spot decisions upon the arrival
of CC requests and based on resource prices. An exhaustive
sampling and ST rounding techniques were applied to reduce
the complexity degree of the one-shot CC placement problem
and find efficient solutions. In addition, compact-exponential
and primal-dual online methods are exploited to ensure a good
competitive ratio.

Monitoring inter-application traffic properly without instru-
menting the application, required to dynamically determine
the appropriate container placement, is difficult to achieve.
In [135], authors propose an effective black-box monitoring
strategy for identifying and constructing a weighted commu-
nication graph of cooperating processes in a distributed system
that can be accessed for a variety of reasons, including adaptive
placement.

In [136], authors propose an Availability-assured Buffered-
layer Prioritized scheduler (ABP) to minimize network traffic
and reduce the latency of scaling services in Docker Swarm.
They adopt a heuristic algorithm named Dominant Resource
Fairness to run this scheduler. Experiments show that the
ABP scheduler significantly improves service creation and
deployment in the Docker swarm environment.

Distributed cloud is a vital technology for 5G networks and
is emerging as an alternative for managing latency-sensitive
and traffic-intensive applications. Placing containers on the
edge cloud enables applications to be located closer to end-
users and traffic sources, which will result in reducing latency
and network traffic. In this context, authors in [137] propose a
two-level approach to tackle the traffic and latency-aware con-
tainer placement optimization problem in a distributed cloud.
They use an ILP model to solve the first step of placing
containers in DCs, considering the average cost, resource uti-
lization, and acceptance ratio as key performance metrics. For
the second step of placing containers in servers, a traffic-aware
heuristic algorithm is proposed. Results prove the performance
of the proposed heuristic approach in terms of reducing all traf-
fic metrics compared to conventional bin-packing heuristics
(i.e., FFD, BFD).

4) Response Time, Execution Time, Communication Cost:
Nowadays, telecom operators tend to deploy their 5G services
in the form of containers in their large-scale data centers.
Each service includes multiple modules that are instanti-
ated as a group of containers, where containers owned by
the same service commonly need to communicate with each
other to provide the required service [138] leading to cum-
bersome inter-server communication and service performance
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degradation. The communication cost can be significantly
decreased if these containers are placed on the same server.
Nevertheless, containers belonging to the same service are
typically exhaustive on the same resource. For example,
containers of data transfer applications are network I/O inten-
sive [139], thus resulting in unbalanced resource usage, but
this can have a positive impact on availability, response time,
and system throughput. However, reducing the communica-
tion cost while maintaining a balanced use of resources is
challenging. In this context, for this conflicted goal, authors
in [118] handle the problem in two phases: container place-
ment and container reassignment. The first one aims to place
a set of containers on DCs to minimize resource utilization
while reducing the communication cost by using a Worst Fit
Decreasing (WFD) algorithm. The second phase of container
reassignment attempts to optimize a given container place-
ment by migrating containers between servers. The authors
have proposed a two-stage approach, Sweep & Search, that
first tackles overloaded servers and then optimizes the tar-
gets using local search techniques. Simulation results prove the
performance of the proposed algorithms in terms of low cost,
high throughput, and balanced resource utilization compared
to the state-of-art algorithms.

The optimal container placement in volatile fog nodes
(i.e., CPU, communication fabric, memory, storage) can be
ensured by reducing costs and guaranteeing the customer’s
QoS (i.e., response time and isolation). In [140], a two-
phase partition-based optimization approach is proposed to
improve the service availability and QoS satisfaction through
initially matching applications to fog device communities and
then placing application services transitively on fog devices.
However, in this case, the inter-container communication was
neglected, and few are the papers [118], [141] that addressed
the impact of network communication on isolation and QoS
in fog computing. In [141], authors have proposed an optimal
genetic algorithm for container placement aiming to reduce
the response time while considering the heterogeneity of fog
nodes and inter-container network communication as well as
the isolation requirements for applications deployed on fog
computing networks. For inter-container communication, three
modes have been deployed (i.e., host mode, overlay mode, and
RDMA). Results prove the performance of the proposed GA
algorithm compared to greedy and ILP in terms of isolation
and significant response time reduction when using a greater
number of RDMA-enabled fog nodes.

The convenient placement of containers on VMs can help to
optimize resource utilization in cloud environments. However,
the bad placement may result in a bottleneck in the cloud if
VMs are highly congested, which can adversely impact the
response time of a given set of tasks. In [142], authors pro-
pose an Ant Colony Optimization (ACO) algorithm to reduce
the overall makespan of tasks, thus leading to reduce the
response time of applications. The typical ACO tends to sched-
ule tasks to the most used node, which can cause an overload
issue if the node is carrying a large load. The drawback of
ACO is its disregard of resource utilization and energy effi-
ciency. Considering these challenges, authors in [143] have
proposed a Modified ACO (MACO) for container placement

to optimize the response time and improve the scheduling deci-
sion while taking into account resource utilization, throughput,
and energy consumption. Simulation results show that MACO
outperforms the First Come First Serve algorithm (FCFS) in
response time and throughput.

Similarly, authors in [144] have proposed a container-based
task scheduling using a hybrid bacteria foraging optimization
(HBFA) algorithm to minimize the execution time and increase
the resource utilization in an edge computing environment.
The proposed HBFA yields better scheduling results than BF
and GA.

Current serverless platforms have multiple constraints in
terms of supporting data-centric distributed computing, which
are compounded by the operational features of underlying
edge systems, particularly when it comes to function place-
ment decisions. Among constraints, the high latencies incurred
by the distance between nodes in edge computing infrastruc-
tures. Therefore, the inter-node proximity and bandwidth must
be taken into account. In [145], a new container schedul-
ing system called Skippy is proposed to provide an efficient
placement of edge functions by considering the scheduling
limitations of the application’s data flow, network topology,
proximity, and available compute capabilities. Experiments
prove the performance of Skippy in terms of reducing exe-
cution time, cloud execution cost, and uplink usage.

5G networks, driven by NFV, promise to enable a wide
range of services from various market segments (e.g., Smart
Cities, smart homes, Automotive, etc.). Services must be con-
nected in a precise order to properly benefit from NFV, form-
ing a Service Function Chain (SFC). The majority of existing
works handle the placement of VNF-based service chains, with
the target to find the optimal placement while minimizing
the end-to-end latency and maximizing the resource utiliza-
tion [79]. Many optimization models based on ILP [146], [147]
have been proposed to facilitate the SFC orchestration through
deciding whether to migrate or replace VNFs while reduc-
ing the SFC latencies. Nonetheless, few papers considered the
latency-aware container-based SFC chain in fog computing.
In [148], authors propose an SFC controller, as an extension of
Kubernetes scheduling features, to optimize the placement of
container-based SFC while optimizing resource provisioning
and minimizing the E2E latency.

Similarly, assuming that the RAN and core functions are
deployed as CNFs in the data centers. Users of Service
Function Request (SFR) connect to remote radio heads (RRHs)
in order to receive service. In [149], the authors propose a
mathematical model for CNF placement and resource allo-
cation of an ORAN enabled 5G network with the objective
to minimize the End-to-End delay of the data plane. They
consider two cases, the first one where the traffic of an SFR
crosses a single path through CNFs of its chain. They for-
mulate this scenario as a non-linear mixed inter programming
approach and then its been converted to a liner problem after
some reformulations, but its non-trivial. The second one where
SFR traffic can traverse multiples paths of CNFs. In this sce-
nario, the authors propose a gradient based minimum delay
algorithm (GBMD). Simulation results prove that GMDB help
to reduce End-to-End delay by 90% compared to single path.
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Several placement techniques based on deep reinforce-
ment learning (DRL) have been proposed in cloud or edge
computing environments, but they are not suitable for dis-
tributed architectures. The task of forming efficient DRL
agents involves a lot of training data, and their procure-
ment is expensive. The centralized DRL-based strategies suffer
from poor scalability and are therefore unable to solve place-
ment issues. Many IoT applications are created using Directed
Acyclic Graphs (DAGs) with different topologies. Meeting
the requirements of DAG-based IoT applications leads to
further constraints and makes the placement problem more
complex. To address these issues, authors in [150] pro-
pose a distributed DRL approach named X-DDRL that aims
to solve the placement challenge of DAG-based IoT appli-
cations while minimizing the energy consumption and the
execution time. For training the distributed brokers, an actor-
critic-based distributed application placement technique named
IMPALA (IMPortance weighted Actor-Learner Architectures)
is proposed to achieve timely and efficient application place-
ment decisions. IMPALA framework can minimize the agent’s
exploration costs and provides rapid convergence to optimal
solutions.

In [151], to manage CNFs efficiently, authors propose a deep
Q-network-based CNF placement algorithm (DQN-CNFPA),
which jointly reduces the cost of launching and operating
CNFs on edge clouds and the back-haul control traffic over-
head, and maximize the number of served requests at each
time. Simulation results show that DQN-CNFPA can distribute
CNFs in a manner that takes into account fluctuations in ser-
vice demand. The proposed algorithm can minimize the cost
per hour by up to 11.2% compared to a scheme that does not
take into account fluctuations in service demand.

5) QoS: In smart applications (e.g., smart cities and smart
homes), the big data workflow is based on various sensors and
video streams where AI and feature extraction techniques are
performed. The captured information is stored in DB contain-
ers. These containers need to be placed on Edge, Fog, or Cloud
infrastructures while addressing the QoS requirements. Open
source solutions such as Docker or Kubernetes can orches-
trate containers in edge and fog computing, but the decision
on where to place a software instance considering major QoS
metrics (i.e., throughput, latency, power consumption, CPU
utilization, cost). In [152], a stochastic approach for DB con-
tainer placement based on Markov Decision Process (MDP) is
proposed to (i) dynamically enhance the automation based on
new QoS attributes, (ii) build utility functions that provide the
reward values and help to find the optimal solution of deci-
sion making, (iii) ranking deployment infrastructures based
on rewards to get the QoS success score. The authors also
propose a new architecture that automates the whole process.
The author’s experiments were based on 25 infrastructures and
8 QoS attributes. Simulations prove that MDB is better than
Analytic Hierarchy Process (AHP) method in terms of QoS
violations, where no violation is faced for MDB, in contrast
to AHF, where QoS violation is omnipresent in all workload
scenarios.

In a multi-level environment of cloud/fog/edge, the network
has a crucial role as it serves as a communication link between

all of the system’s participants; as a result, its performance has
an impact on the whole system. Therefore, the network should
be considered while making all placement decisions in order to
meet the QoS performance. In [153], the QoS assurance tech-
niques in fog computing are categorized into service/resource
management, communication management, and application
management. Accordingly, the container QoS can be satisfied
by managing network and storage workloads. In [154], authors
propose a container management strategy named CONtrol to
balance the bandwidth between storage traffic and applica-
tion traffic over a hyper-converged architecture. The primary
objective of CONtrol is to manage the storage traffic when
scheduling containers while sustaining the QoS of the con-
tainer network. CONtrol aims to make dynamic placement
decisions over bandwidth redistribution across diverse work-
loads using a proportional-integral-derivative controller. In the
same way, a new scheduler module (i.e., an extension of
Kubernetes scheduler) is proposed to make placement deci-
sions based on network status [155]. Here, the authors develop
a network-aware scheduling algorithm named IPerf aiming to
compute the estimation time for job completion where the
system rejects the applications that do not meet the deadline.

6) Security: The majority of container placement research
focuses on dealing with resource utilization, energy consump-
tion, cost, response time, etc. However, few works consider
the security problems. In this subsection, we cite some secu-
rity strategies treated in previous works, such as avoiding
co-location attacks, improving user isolation, and identifying
vulnerabilities. The various co-resident attacks present a sig-
nificant challenge to cloud providers and tenants. Each type
of co-resident attack needs significant changes in hardware,
host systems, container engines, and system configurations.
On the other hand, as the overall co-residence is unknown
(and increasing), it is difficult to fix the software and hardware
to address future attacks. The container deployment approach
offers a straightforward and effective way to influence the
likelihood of co-residency.

In [156], authors confirm that containers placed in VMs are
susceptible to co-residency attacks. The co-residency detec-
tion can tolerate background noise with a 70% success rate,
as long as it does not surpass the hardware capacity. Their
analyses show that any change in architecture and orchestrator
can reduce detection fidelity by up to 10%. Therefore, cloud
customers should not rely on orchestration platforms to satisfy
sufficient protection against co-residency attacks.

In [157], authors propose a Secure Container Deployment
Strategy named SecCDS based on Genetic Algorithm (GA)
to cope with co-resident attacks in container clouds. They
carefully orchestrate the placement and migration of contain-
ers to dissociate attackers and victims on various PMs. The
GA-based strategy aims to overcome the problem of select-
ing the target to which the containers migrate. Meanwhile, to
increase the convergence time of GA, a Simulated Annealing
(SA) algorithm is proposed by performing a strong neighbor-
hood search for each unit in GA. Simulations prove that the
proposed approach yields better results in terms of minimiz-
ing the co-residency attacks with negligible effect on system
performance and workload compared to classic strategies such



4724 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 4, DECEMBER 2023

Fig. 15. Queuing approach.

as Previous Selected Server First (PSSF), Random, Most and
Least strategies.

C. Classification of Container Placement Approaches

The container placement approaches can be categorized into
two types: queuing and concurrent placement. The queuing
approach can be defined as a FIFO or priority-based approach
where the CP decision is performed on a container by con-
tainer [158], [159], [160], [161]. The container-by-container
placement approach has the benefit of making parallel deci-
sions on a distributed architecture; however, it also has critical
restrictions for ensuring efficient placements of all concur-
rent tasks as it does not have a holistic view of pending
containers. In general, an optimal decision is difficult to
achieve since, in queuing models, the initial placement deci-
sion is taken by the first container in the queue regardless
of the other remaining containers in the queue. However,
if the specifications of all requests are known beforehand,
some scheduling rules for smart container placement can be
developed based on machine learning algorithms to predict all
incoming requests [162], [163].

The concurrent approach is defined as a batch processing
concept where computing requests are first gathered, and then
a placement decision is made [164], [165]. Here, the scheduler
has a complete view of all workloads, where all containers
can be placed in convenient VMs. However, the concurrent
scheduling strategy may be highly complex, as the problem
is often formulated as integer programming or mixed-integer
programming, which may impact the QoS. Also, the batching
time needed for intermittent requests can delay the placement
as the allocation task waits for a certain time to serve multiple
requests.

Figures 15 and 16 depict an example of the two approaches
(i.e., queuing and concurrent) for four concurrent requests. As
depicted in Figure 15, for queuing model, container four can
not be placed on any node due to the lack of resources after
placing the three other containers. On the other hand, as seen
in Figure 16, the container scheduling is optimized when using
the concurrent approach.

The strategies used for container placement are: Spread
(tries to place the containers evenly on available nodes),
Binpack (place containers on the most-loaded host that still
has enough resources to run the given containers), and custom.
Similar to VNF placement, the surveyed scheduling algorithms
adopted for container placement are classified into three
categories: Heuristics, meta-heuristics, and machine learning.

Fig. 16. Concurrent approach.

The majority of the reviewed techniques use some heuris-
tics to get approximate solutions to the problem, as shown in
Table VI. Heuristic algorithms are typically of low complexity
and generate a suitable program in a reasonable time.

Meta-heuristics are a flexible and popular class of
population-based optimization algorithms inspired by the intel-
ligent processes and behaviors of nature. Meta-heuristics
are widely used to solve optimization problems in several
disciplines. Two important features of these algorithms are
a selection of the fittest and adaptability to the environ-
ment. Table VII provides a classification of meta-heuristic
algorithms used for container placement.

Machine learning is an active field of research with a lot of
success in various applications, and it is very promising for
container placement. ML algorithms are successful because
of the availability of big data to train the model. Compared
with other heuristics, one can benefit from machine learn-
ing techniques to improve solution accuracy and effectiveness
by making intelligent scheduling decisions. We present in
Table VIII a classification based on performance metrics and
machine learning algorithms.

V. INSIGHTS & FUTURE DIRECTIONS

A. Synthesis

For a telecom operator, providers are converging towards
containerized architectures. Therefore, instead of focusing on
the placement of VNFs, the placement and orchestration of
containers in edge and fog computing must be taken into
account to provide services with good performance and high
QoS. For VNF/CNF placement, the optimization approaches
were classified into six objective functions, where the major
objective for telecom operators is reducing the latency while
considering energy consumption, cost, resource utilization,
security and QoS.

However, it is a bit difficult to optimize these several con-
flicting objectives simultaneously. The VNF/container place-
ment problem is defined under various parameters regarding
the type of objective functions, the constraints, and the envi-
ronment. These parameters differ from one scheme to another,
and choosing the problem setting depends heavily on the
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TABLE VI
SUMMARY OF PAPERS PRESENTING HEURISTIC APPROACHES FOR CONTAINER PLACEMENT

context and the scope of dealing with virtual resource place-
ment. For example, if high energy consumption is the most
critical issue in a DC, it would be a primary objective in

the problem formulation, and the other less critical issues
can be ignored or considered as constraints. Therefore, based
on the literature review, this mono-objective problem can be
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TABLE VII
SUMMARY OF PAPERS PRESENTING META-HEURISTIC APPROACHES FOR CONTAINER PLACEMENT

solved using heuristic or deterministic algorithms. However,
if there are more than two or three conflicting goals, the
problem is considered a multi-objective optimization approach.
Several approaches have been proposed to solve this type of
problem, based on heuristic and meta-heuristic algorithms.
Besides, machine learning algorithms are well recommended
for large data centers and distributed architectures to find
optimal solutions for complex problems.

This paper classifies placement techniques into three
categories based on the adopted optimization algorithms.
We explore the optimization objectives to evaluate the
performance of the generated scheduling. We have described
and evaluated existing strategies for each type based on their
key performance indicators to identify their advantages and

limitations. The future expansion of container technology will
create major changing standards, requiring the development
of new orchestration solutions, placement, scheduling, and
resource management. Emerging technologies like Edge/Fog
computing and micro-services provide new ways to provide
real-time schedulers that are sensitive to energy, communica-
tion, inter-container traffic, and security variations for these
environments.

From the studied papers and industry perspectives, we
answer the question of why using CNFs instead of VNFs.
CNFs are lighter and more flexible than VNFs. CNFs can oper-
ate in a microservices architecture that provides a dynamic,
flexible, and scalable architecture for 5G. VNFs in the tele-
com clouds and contemporary CNFs need to communicate
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TABLE VIII
SUMMARY OF PAPERS PRESENTING LEARNING APPROACHES FOR CONTAINER PLACEMENT

with very high data rates and low latencies. Virtualization
of network functions (VNFs) running on software-defined
networks has increased deployment agility while enabling
low-cost, standardized servers. However, the weight of VMs
limits the effectiveness of VNFs for large-scale 5G, mak-
ing it difficult for scalability. CNFs have further enhanced
the density of functions per host, leading to more stringent
performance requirements. Serverless CNFs are now driv-
ing the deployment of fault-tolerant Cloud-Native 5G. CNF
delivers higher resource efficiency by implementing more
services on the same server using the native microservices
structure and the containerization concept. It offers better
resiliency and availability as microservices are distributed
across multiple servers and machines with a shared process-
ing load. CNF helps to minimize network downtime by using
continuous upgrades of microservices. Cloud-native provides
greater development speed for scaling the network using the
Kubernetes orchestrator.

By analyzing Tables III, IV, V, VI, VII, and VIII,
some interesting trends appear. For example, regarding the
optimization metric for VNF placement, fewer papers use
Energy as a metric. The same holds when we analyze the
optimization metric for container placement. In this case, the

Traffic seems to be under-investigated. However, the Energy
and Traffic metrics are less treated in CNF placement com-
pared to VNF placement. The Resource utilization and Latency
are the most treated metrics, which makes sense as improving
resource utilization help to reduce latency. The QoS feature
is more handled in CNF placement regarding the require-
ments of high quality of service and high performance. In
terms of approaches, most papers use various algorithms to
solve complex problems, using heuristic/metaheuristic algo-
rithms to solve the multi-objective system. For better results,
Deep learning algorithms are employed as they are faster and
more efficient. It seems difficult to identify the best solution
for VNF or CNF placement as the initial conditions are dif-
ferent, but we can confirm that DL algorithms provide best
results than heuristic, meta-heuristic and greedy algorithms.
We present in Figure 17 a taxonomy of VNF/CNF placement
solutions.

B. Future Challenges

5G mobile broadband network operators must meet large-
scale, complex, dynamic, and highly distributed infrastructure
requirements. They must roll out and operate thousands of
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Fig. 17. Taxonomy of virtual resource placement techniques.

radio antennas and networks while simultaneously handling
software applications on the access layer, aggregation layer,
and central data centers. In addition, they have to satisfy strin-
gent latency and network performance specifications for their
applications and infrastructure. Furthermore, operators require
the flexibility to dynamically relocate services to enhance
network performance, reduce latency and minimize operating
costs.

As a result, 5G architectures must be service-based on
hundreds and thousands of network services in the form of
VNFs or CNFs that are spread across geographically dis-
tributed remote environments. Kubernetes overcomes a part
of this challenge through its ability to orchestrate and manage
CNFs. However, it suffers from several limitations in handling
5G services in distributed locations with stringent latency and
performance requirements.

By 2024, 5G is estimated to handle 25% of all mobile
traffic, leading to faster adoption and deployment of CNFs.
However, the overwhelming majority of current networks will
continue to be VNFs-based. The fact is that VNFs and CNFs
will have to coexist. Therefore, telecom operators must main-
tain two separate management stacks to run 5G and the legacy
networks, which generates additional operational burden and
cost. Considering the number of sites to be managed, they
are faced with a proliferation of the control plane and ineffi-
ciency of siloed management, hence the need to address the
coexistence of VNF and CNF in the same architecture.

Some research efforts have been dedicated to develop
scheduling models for container placement and migration
in fog-edge computing. Container migration is a spe-
cific type of container placement, that is rarely covered
by advanced scheduling models. Furthermore, designing
a security-conscious scheduler to prevent security threats
connected with containers when deployed across cloud
infrastructures might be an interesting subject of future

research. The sustained success and attraction of deep learn-
ing algorithms can help to build smart scheduling policies
by predicting future workloads and capacities for container
placement and consolidation, load balancing, and resource
provisioning. More fine-grained system counters are expected
to control and gather metadata for prediction and decision-
making in order to make the most significant use of deep
learning algorithms. Furthermore, to handle energy usage,
SLAs, and QoS, multi-objective holistic management con-
tainer scheduling strategies must be explored.

Currently, most of the scheduling models rely on a central-
ized decision-making system. These centralized servers will
become overloaded as edge computing continues in its growth
trajectory. This will necessitate more clusters, further increas-
ing the workload for the orchestrator in managing many master
nodes. This can lead to increased latency because in a cen-
tralized scheduling system, additional time is taken to upload
system states and wait for dispatch decisions. Decentralizing
the scheduling decisions to multiple edge servers is inevitable.
There are few efforts in this area. Therefore, in our future
work, we will compare a centralized scheduling system to
a decentralized one for service placement policies. We will
also propose a multi-objective decision making approach for
virtual resource placement in a 5G architecture based on
VNFs and CNFs that can be solved based on a reinforcement
optimization algorithm.

VI. CONCLUSION

MEC and NFV have emerged as promising technologies
to deliver low latency slicing services in the 5G communica-
tion network. However, because of the large number of nodes
and links in today’s Data Centers, NFV raises a number of
challenges where the most significant one is the difficulty of
placing VNFs in physical networks and the inter-dependency
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among VNFs composing a given network service. Several con-
tributions have been made to address these challenges in a
static or dynamic manner. This paper provides a classification
of the existing virtual resource (VNF or Container) place-
ment methods and algorithms. The optimization problem may
consist of a single-objective or a multi-objective depending
on the performance metrics. We categorize the schedul-
ing techniques into three folds: heuristics, meta-heuristics,
and machine learning algorithms. Besides, we identify the
performance metrics, advantages, and limitations for each cat-
egory. We also highlight the convergence towards cloud-native
infrastructures.
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