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Abstract—The service function (SF) area has gained increas-
ing attention in the last years due its ability to combine the
advantages of cloud computing with network softwarization. By
decoupling SFs from the physical equipment where they are exe-
cuted, it is possible to make network services scalable and flexible.
These advantages become even more evident in the forthcom-
ing 6G networks, where the overall environment is expected to
become more dynamic and cloud-based, with SFs deployed as
cloud-native functions. However, in order to efficiently manage
and compose services using these SFs, it is necessary to monitor
the available resources of the nodes where they can be deployed,
in addition to exchange information relevant to the operational
status of active SFs. To this aim, we propose a lightweight mon-
itoring architecture by using agents in charge of monitoring the
status of SFs running in co-located clusters. These monitoring
agents exchange their information by means of a gossip protocol,
which allows increasing the reliability of the process. In this way,
it is possible to keep service decisions as local as possible, limit-
ing the interactions with centralized decision and orchestration
platforms, and thus increasing network scalability and respon-
siveness. Performance evaluation shows the effectiveness of the
proposed solution, and demonstrates that the network overhead
of the distributed monitoring process is definitely affordable.

Index Terms—6G, network signaling, network discovery,
network monitoring, gossip protocol.

I. INTRODUCTION AND BACKGROUND

THE DEVELOPMENT of the 6G systems requires facing
significant technological challenges in different direc-

tions [1]. For example, wireless link throughput needs to be
scaled up to realize breakthrough applications such as holo-
graphic communication based on interactions with so-called
digital twins [2]. A distributed computing system is necessary
to manage and process a growing volume of data exchanged
through massive connectivity that characterizes the so-called
Internet of Everything (IoE). For this reason, not only an
intense and ubiquitous use of the edge computing model [3]
is envisioned for the deployment of a myriad of new appli-
cations, but the overall 6G architecture is expected to evolve
towards a wide-area cloud, encompassing the wireless, edge,
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and core segment, as well as data centers [4]. However, this
complexity requires that the network management and control
planes have to be specifically designed to address a massively
distributed architecture, thus requiring to:

• Make heavy use of artificial intelligence (AI) and
machine learning (ML) computational models to learn
how to configure, optimize and heal themselves, instead
of relying on pre-planning procedures only [5];

• Be intrinsically secure, and implement advanced embed-
ded trust models such as the Blockchain [6];

• Intensively leverage cloud computing services in order to
make the whole 6G system cloud-native and optimized
for ubiquitous computing [4].

Therefore, control and management planes face scalability
problems with a complexity that scales up by orders of magni-
tude compared to 5G. This complexity can hardly be managed
by approaches that concentrate the vision of the network and
the management of information in a centralized way. Instead,
the control and decision layer are expected to be distributed all
over the 6G wide-area cloud [4]. The three technological pil-
lars identified above (distributed intelligence, distributed trust
model, and cloud-native system infrastructure) share the need
for a data distribution protocol [7] able to convey data in a
timely and resource efficient way in highly distributed systems.
In this paper, we propose and analyze a solution addressing
this requirement based on one of the main models of dis-
tributed information sharing, namely gossiping [8], which is
known for its intrinsic scalability and robustness. A solution
based on gossip protocols can be used:

• To transport information to enable decentralized learning
in highly distributed AI-based environments [9], [10];

• As consensus protocol for Blockchain applications [11];
• To share information related to the service functions

(SFs), which run in the 6G network to compose advanced
services. This monitoring function allows building a fully
decentralized orchestration of network services.

In this paper, we focus on a gossip-based solution to imple-
ment information sharing of monitoring information related to
the SFs. Nevertheless, it can be adapted without major mod-
ifications also to provide the other two functions. In more
detail, we refer to a system adopting network softwarization
technologies, providing on-demand networking and comput-
ing resources by decoupling SFs from physical nodes where
they run. In 6G, these technologies are pushed forward with
respect to 5G, thanks to its highly distributed and cloud-
native architecture [4], moving from network softwarization
(SDN and NFV [12]) towards intelligence softwarization [13].
The introduction of serverless technologies, especially in edge
nodes [14], has increased the dynamic nature of the instanti-
ated SFs. In fact, the continuous instantiation and removal of
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microservices though serverless deployment, orchestrated by
increasingly sophisticated AI-based tools, makes it challenging
to bring knowledge of the local state of service deployment
to a higher level. This problem, mitigated in 5G systems
with hierarchical orchestration systems [15], is exacerbated
in 6G [16]. It is due to the increasing number of nodes where
these (micro)SFs can be deployed [17], [18] and their het-
erogeneity, being computing resources available not only in
data center clusters, but also in edge and even user equipment
nodes, creating the so-called edge-to-cloud continuum [19],
[20], [21]. Therefore, a continuous communication exchange
with a central orchestrator (CO) would limit responsiveness
to variations of service load, determining the generation of
significant volumes of management traffic and the consequent
increase in network overhead.

Addressed problem: According to the distributed approach
to resource management expected in 6G [4], [5], computing
resources of the wide-area 6G cloud are organized in clusters,
each with its own local orchestrator (LO). An LO is in charge
to take informed resource management decisions, keeping the
decision process as local as possible. A CO is deployed to
have a centralized point of interaction with LOs and a more
abstracted view of underlying resources, as well as a collector
for specific information, such as models’ parameters in dis-
tributed AI approaches. A fundamental component for such a
distributed architecture is the monitoring and data distribution
function, which provides an up-to-date view of the status of
resources in the network. Classic approaches based on pub-
lish/subscribe platforms with a central broker, such as Kafka,
do not work well, as communication has to go back and forth
from the CO [22], [23].

Contributions: The contribution of this paper is twofold.
First, we introduce an architectural solution supporting a dis-
tributed monitoring process between computing clusters. It is
based on the use of a local monitoring agent (MA), co-located
with each orchestrator. The MA is charge to retrieve the sta-
tus and service capability of SFs and to exchange these data
with other peer MAs. In this way, each LO can see an updated
picture of the whole network or slice [3]. Second, we propose
a gossip protocol to implement the distribution system among
MAs to provide a distributed and robust solution, which can
easily address the dynamic nature of 6G networks. To setup
the gossip overlay between the MAs, they make use of a dis-
covery function embedded in the monitoring protocol itself,
without requiring a further mechanism to accomplish this task.
The proposed gossip protocol leverages packet interception
capabilities, enabled by network softwarization technologies,
to improve operations efficiency.

This paper significantly extends our preliminary conference
paper [24], presenting a more complete architectural view as
well as a thorough performance evaluation. This includes a
performance model for the proposed solution and the compar-
ison with other up to date proposals, including a centralized
pub/sub one taken from the recent literature [22], [23], [25],
not present at all in the preliminary version.

The paper is organized as follows. In Section II, we analyze
the related work in the field. In Section III, we present our gos-
sip protocol for distributing monitoring data. The performance

analysis is illustrated in Section IV. Finally, in Section V we
draw our conclusions.

II. RELATED WORKS

A formalization of the gossip problem is proposed in [8]. As
most of gossip solutions, our proposal is round-based. Gossip
rounds can be synchronous or asynchronous. Synchronous
ones need a synchronization system that increases overhead.
For this reason we propose an asynchronous approach. Gossip
protocols generally select peers involved in a gossip session
randomly, although also gossip protocols using determinis-
tic strategies exist [26]. Gossip protocols can either involve
a single pair of peers, or multiple separated pairs, or multiple
overlapping pairs. In this regard, an important feature of our
proposal is the capability to establish gossip sessions with
multiple peers in a single round, which allows saving band-
width and provides multiple system updates within a single
gossip round, thus lowering the time between information
updates. To a certain extent, this approach can be compared
with the gossip algorithms used in wireless multi-hop/ad-
hoc networks. In fact, the gossip protocol in [27] leverages
the broadcast nature of the wireless medium to send mes-
sages to all neighbors in a single round, whilst our solution
exploits the packet interception capabilities of SDN devices
for delivering gossip messages to multiple peers in a single
round.

Gossip-based solutions can be used to solve the discovery
problem [28], [29]. Some analogies between our proposal and
the one shown in [28] exist, although the problem formal-
ization is different. Both algorithms aim to create a network
spanning tree, used for distributing messages. Nevertheless,
the proposal in [28] needs of a prior knowledge of all node
interfaces in the network for creating a spanning tree. Even if
the tree generation is started by an arbitrary node, this tree is
used for distributing messages over the entire network. On the
contrary, our proposal is fully distributed, and each peer runs
the same algorithm and creates its own distribution tree. As for
network discovery, the the two-hop walk in [29] is quite sim-
ilar to the D-mode discovery process proposed in paper [30],
using randomized gossip as well. However, it assumes prior
knowledge of the set of neighbors. A solution for collecting
this information is proposed in [31].

It is worth to mention also the off-path signaling proto-
col (OSP) [32], specifically designed for providing a signaling
framework for NFV. However, the OSP proposal still retains
the two-layer organization of NSIS protocol suite [33], adding
gossip-based peer discovery and peer-to-peer flooding mes-
sage distribution. We show that this organization is not strictly
necessary, and that it is possible to embed the monitoring func-
tion in an enhanced gossip function, with significant saving of
bandwidth, as well as protocol simplification.

There has been a renewed interest in gossip protocols in
recent years, driven by the distributed nature of 6G architec-
tures and involved technologies. Most of proposals regarding
gossip protocols are in the areas of blockchain and federated
learning [5]. In the first case, the gossip protocol is typically
used to update neighbors in the blockchain. The randomized
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Fig. 1. Considered 6G network scenario.

selection on which gossip is based makes the overall pro-
cess sustainable, and avoids sending data to all neighbors.
Thus, gossip protocols are mainly used as consensus protocols
between neighbors [11], [34], [35]. In addition to blockchain-
specific proposals, the distributed nature of modern computing
paradigms, such as in 6G, has stimulated a revival of gossip
as (i) randomized consensus protocol in more general con-
texts promoting fundamental research [36], [37], [38], and (ii)
technology to efficiently monitor systems on a large scale [39].

Finally, gossip is emerging as candidate messaging tech-
nology for enabling the convergence of training process in
distributed AI applications. For example, gossip is used to
efficiently exchange model information between computing
clusters [10], [40], [41]. In fact, centralized ML algorithms,
adopting stochastic gradient descent, may suffer from variable
latency. The decentralized and asynchronous nature of gossip
can successfully address this issue [10], [41].

III. GOSSIP-BASED MONITORING FUNCTION

We consider the 6G system architecture sketched in Fig. 1,
where the wide-area cloud spans from the radio segment to
the core [4]. Each computing cluster includes an LO, with its
own monitoring agent, the MA, as depicted in Fig. 2. The MA
is responsible to query the SF instances running in the local
cluster to retrieve their service status (e.g., SF type, maximum
capacity, current load, relevant slice), as well as information
about compute cluster status. In addition, each MA exchanges
its information with other peer MAs to distribute the service
status of the controlled cluster all over the overlay manage-
ment network so as to provide a global monitoring service,
eventually differentiated per slice [3]. A specific feature of
the proposed architecture is that each MA has a tree-like view
of the network.

In this view, each cluster is represented by the relevant MA
(see Fig. 1), and each link in this tree is labeled with the IP
distance between the MAs and their estimated communication
latency. Gossip packets exchanged between peer MAs are

Fig. 2. Packet interception of a gossip session at a RAN node between MA
k and MA j.

intercepted by other MAs that lay on the path between them
by means of packet interception, realized by network soft-
warization techniques available in the cluster, as shown in
Fig. 2. The proposed solution is based on a gossip-based
discovery protocol that carries in the message payload also
the monitoring data. Thus, by executing the mutual discov-
ery, MA entities also update the status information of their
peers.

The approach used to discover MA nodes consists of a gos-
sip protocol [42], leveraging SDN packet interception. Gossip
sessions are round-based and asynchronous. The period of
each round is set equal to Tgossip , which is a design parameter.
These sessions are established between two nodes, an initiator
and a responder, through a three-way handshake, consisting
of three messages: Registration, Response, and Ack. At the
beginning of each round, the initiator sends a Registration
message to the responder. When the responder receives this
message, it replies with a Response. The handshake is closed
by a final Ack message sent by the initiator. The final Ack
is needed to acknowledge the data carried in the Response
message, which in turn acknowledges those included in the
Registration. As in other gossip protocols (e.g., see [29]), both
the Registration and the Response messages include a list of
(MA) peers that the initiator and the responder may want to
share with each other, referred to as peers to share (PTS). The
set of PTS included in a message is called ListPTS . Therefore,
each node can establish gossip sessions with other (possibly
unknown) nodes on subsequent rounds.

Differently from other gossip protocols, the SDN packet
interception capabilities allows the Registration message to be
received and processed not only by the responder, but also
by the MA nodes on (or close to) the path from the initia-
tor to the responder (see Fig. 2). We call these intermediate,
intercepting MA nodes forwarders. The whole procedure is
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Fig. 3. Gossip discovery of MA entities enhanced with SDN-based packet interception: gossip session and path discovery from MAp to the MAz ; MAn
and MAm act as forwarders.

illustrated in Fig. 3. Thus, these nodes actively participate to
the discovery process by sending Response messages towards
the initiator, sharing their own ListPTS . In addition to send
a Response message, an intercepting MA forwards the mes-
sage towards the original destination (responder). In this way,
with a single Registration message, the initiator provides an
update of the status of its monitored resources not only to the
responder, but also to all intermediate MA nodes. We assume
that the system is configured to intercept just the Registration
messages, and not Responses and Acks (default configuration).
However, this assumption can be relaxed and it could be pos-
sible to passively intercept also Responses, without triggering
any other action than acquiring additional information. In fact,
by using this second option, referred to as option 2, it is possi-
ble to report status information in the Response messages from
both responder and forwarders, so they can timely dissemi-
nate their status information not only to the initiator, but also
on the intermediate nodes on the reverse path from respon-
der/forwarders to it. With reference to Fig. 3, this means that
the information sent by MAm (both ListPTS and monitor-
ing data) would be read also by MAn , whereas that sent by
MAz would be shared also with MAn and MAm . The full
implication of this option with respect to the default configu-
ration will be discussed in Section IV. Anyway, it is clear that
this second option would facilitate the distribution of a larger
number of MA identities in each gossip round.

By handshaking with each node, the initiator can evaluate
its downstream distance from all MA nodes along the path,
in terms of both MA hops and, roughly, latency for reaching
each of them. Thus, this procedure aims at discovering overlay

TABLE I
NOTATION AND ABBREVIATIONS

paths and evaluate the associated metrics, so as to allow each
initiator building a tree-like view of the MA network.

When a MA node is turned on, its list of reachable MA
nodes is empty. Thus, it is necessary to statically configure
the address of an always-on node, called tracker, so as to
have at least a MA to gossip with. In other words, the tracker
acts as the first MA responder (node on the right-hand side of
Fig. 3). A reasonable choice is to use the MA co-located with
the CO, or another node in a central position in the operator
network, as tracker.

After this initial procedure, a MA node knows (at least)
one additional MA node (i.e., the one communicated in
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the Response message from the tracker), and can periodi-
cally establish a gossip session with it, in order to update
its ListPTS and exchange monitoring information. Clearly,
each MA cannot know when it has discovered all the other
MA nodes in the network (end of discovery phase), since it
would require the a priori knowledge of the whole network,
which we want to avoid. In fact, network topology can be
dynamic. Thus, the distinction between discovery and steady
state phase is artificial, and useful for only for performance
evaluation. However, from the protocol viewpoint this not a
critical issue. In fact, the discovery protocols has also the
function of exchanging monitoring data, thus, when discovery
completes, the second function will continue running anyway.

A. Mathematical Model

Before entering the full protocol details, we present a math-
ematical model of the proposed gossip protocol, to better
understanding our design choices. The network is modeled as
a graph of MA nodes, referred to as MA overlay, denoted as
G = (V,E). V is the set of nodes with cardinality K = |V|,
and E is the set of the undirected edges. The routing of gos-
sip packets, which determines the elements in E connecting
MA peers, uses the underlying IP routing, adopting the short-
est path policy. As already mentioned above, MAs intercept
Registration packets. We define a path πij = {i , k , . . . , j} as
the ordered sequence of MA nodes on the network path from
i to j, and we denote by sij = πij − {i} the path without
the source node, that is the sequence of MA nodes visited
by a packet sent by the peer i towards the peer j. We define
S = {sij |i , j ∈ V}.

We now focus on the discovery phase. It allows all MA
nodes in V to receive the identities of the other MA nodes
and to evaluate the relevant metrics, which requires exchang-
ing messages with all the other MAs. Since the protocol is
round-based, the minimization of the discovery time trans-
lates in minimizing the number of gossip sessions. We model
this problem as a set covering problem (which is a class
of problems known to be NP-hard, see [43]): given a node
i ∈ V and the associated universe Ui = V − {i}, the set
Si = {sik , k ∈ Di ⊆ Ui}, Si ⊆ S, is a cover for Ui if the
union of its elements contains all elements in Ui . Thus, it is
possible to formulate the following problem C1:

min
K∑

i=1

|Di |, (1)

subject to

Ui =
⋃

sik∈Si
sik =

⋃

k∈Di

sik , ∀i ∈ V. (2)

The solution of this problem, that is the identification of the
minimum sets Di , ∀i ∈ V, provides a solution of the discov-
ery problem for all MA peers. In fact, Di is the minimum set
of peer MAs to gossip from node i to contact all the other
MA nodes in V by leveraging packet interception capabili-
ties of the system. This means also that |Di | is the minimum
number of gossip rounds necessary to the node i to complete
network discovery. For each MA node i ∈ V, we define the

Fig. 4. Example of a possible subset of the universe and solution for the
discovery problem for node 1. The tree T1 is drawn in bold.

single-source shortest-path tree Ti rooted at i, [43]. Ti iden-
tifies the MA nodes on the (shortest) path from i towards any
other node k ∈ V. An example of Ti for a very simple graph
G is drawn in bold in Fig. 4, where i = 1. We say that a node
h ∈ V is a leaf for i if it is a leaf for the tree Ti . We denote
as Li the set of leaf nodes for i, and Mi = |Li |, thus from the
leaf definition it results that if h ∈ Li , then h ∈ sij ⇔ h = j .
Paths associated to leaves for node 1 are shown by red dashed
arrows in Fig. 4.

Our proposed solution of the problem C1 is based on the
following consideration. If a node i executes a gossip session
with all the leaves of its Ti tree, it certainly discovers all the
(MA) nodes in G, together with the relevant metrics, thanks
to interception of Registration messages. Thus, our solution
is aimed to quickly discover all Leaf Peers (LPs) of the tree
associated with each node in V.

Theorem 1: The optimal solution D∗
i to the set cover

problem C1 is given by the sets of leaves for each node in
the overlay, that is D∗

i = Li , i ∈ V.
Proof: By definition of leaf, each node h ∈ Li , i ∈ V,

belongs to the optimal set of solution D∗
i , that is Li ⊆ D∗

i ,
otherwiseUi is not covered. We show thatD∗

i = Li . Assume,
by contradiction, that ∃z ∈ D∗

i − Li . Then, since z is not a
leaf, ∃y ∈ Li | z ∈ siy . Thus, from the shortest path routing
assumption, it follows that siz ⊂ siy . Since y ∈ Li ⊆ D∗

i ,
thus D∗

i − {z} is still a solution of C1 (see (2)) but with a
lower cost than D∗

i (see (1)). Consequently D∗
i cannot be an

optimal solution for i.
Similarly, it is easy to show that Li is the solution also

for the following optimization problem C2 modeling network
overhead:

min
K∑

i=1

∑

j∈Bi

⎡

⎣pij q +
∑

z∈sij
(pzi r + piza)

⎤

⎦, (3)

subject to

Ui =
⋃

k∈Bi

sik , ∀i ∈ V, (4)

that is C2 ≡ C1, since they have the same solution Bi =
Di = Li , where

• pij is the distance from the node i to the node j on the
tree Ti , i.e., pij = |sij |.
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• q, r, and a are the size of the Registration, Response, and
Ack messages, respectively (Fig. 3).

B. The Peer Selection Algorithms

The main outcome of Section III-A is that the optimal set
of peer MAs to be gossiped, in order to minimize the com-
pletion time and the overhead of the discovery of all MAs
in the network, is represented by the set of LPs. However,
as already explained, for robustness and simplicity, we pro-
vide neither the topology nor the set of MAs participating
in the monitoring process. Thus, although the optimal solu-
tion of the network discovery problem is known, it is difficult
to implement it in practice, since the system works in a dis-
tributed fashion with an incomplete knowledge of the overlay,
which increases step by step. In addition, it is a circu-
lar problem: the identities of MA nodes are not known at
bootstrap, since they are discovered during the execution of
the network discovery, which we want to optimize by con-
tacting only specific nodes (often still unknown), i.e., the
LPs, to limit the number of necessary gossip rounds, as
in Fig. 3.

Thus, we need to design an heuristic procedure to quickly
discover the LPs of each MA node, since all the other
MA nodes will be discovered by intercepting Registration
messages. For this reason, we call this solution Leaf-based.

A tricky point is that each MA, in order to let other MAs
quickly discover their LPs, should exchange only the identities
of potential leaves in the ListPTS field of Registration and
Response messages (Fig. 3). To this aim, we have defined a
couple of simple, lightweight, and soft-state structures storing
peer information at each MA node.

• The former, called peer table (PeT), stores the identi-
ties of the other MA peers together with their associated
metrics (peer element, PE).

• The latter, called path table (PaT), stores in MAi the set
of overlay paths, pathLists, with i as first node, i.e., the
ordered sequence of PEs in the set containing sij , as new
MA nodes are discovered and contacted.

The PeT is computed by each node receiving a message, both
Registrations or Responses, carrying a previously unknown PE
as initiator or in the ListPTS . Instead, the PaT is computed by
each initiator i by inspecting the Response messages sent by
any intermediate node k that has intercepted the Registration
message destined to a responder j, as shown in Fig. 3. In this
regard, we point out that a node z, which is a leaf for i, is not
necessarily a leaf also for j, which receives z in the ListPTS
sent by i. In addition, it may happen, especially in the initial
rounds, that a newly activated MA node knows just a limited
number of peers, thus the identities it shares could not be true
leaves.

Two algorithms are executed in MA nodes, since the
initiator has to select two types of peers stored in the PeT:

• the so-called peer to gossip (PTG), which is the intended
recipient of the message, i.e., the responder,

• the ListPTS to insert in the Registration message; this
list includes the PE identities to share with the PTG and
any intercepting MA node.

Before delving into the detail of these two algorithms, it is nec-
essary to explain the operations carried out when the initiator
receives the Response sent by a remote peer:

• The initiator adds each element of the received ListPTS
not already present in the PeT as new PE, with flags
<isGossiped, isContacted> set to <true, false>. This is
important for subsequent selection of PTG and PTS. In
fact, since each node tries to share just LPs, an iden-
tity received in a ListPTS is a good candidate for being
selected as future PTG, if all participating peers adopt
the same strategy.

• If not already present, the initiator adds each intercepting
MA to the PeT together with its metrics, and the relevant
flag isContacted is set to “true”. This peer is not a good
candidate for future selection of the PTG or to share as a
PTS element, since it is not an LP for the initiator, being
intercepted during a gossip round.

In addition to any other ancillary fields, needed for correct
protocol operation, such as header size, version, and so on,
the header of a gossip message has to include necessarily the
following fields:

• Type of message: Registration, Response, Ack.
• Initiator identity: routable IP address.
• Responder identity (i.e., the PTG): routable IP address.
• Distance: expressed in term of MA hops. In Registration,

this field is initialized to 1 and then has to be increased
by each MA intercepting the message before forwarding
it downstream, whereas in Response messages this field
has to be reported as received.

• The ListPTS : list of PTS identities, whose size is H,
which is another field of the protocol header.

• Session Id: it is used to identify univocally a gossip ses-
sion, including all messages exchanged with responder
and forwarders.

PE identities can be complemented also with unique PE
identifiers (PE_Ids), if deemed useful for indexing purposes
in internal data structures. In addition, Registration messages
have also a payload, consisting of monitoring data. Since we
target UDP as transport protocol for its lightweight, connec-
tionless operation, we recommend the usage of (compressed)
JSON to encode these data and fit them into a single mes-
sage.1 We can also consider a variant of this approach, in
which also Response messages may optionally carry a pay-
load containing updated monitoring data from responder and
forwarders. In this case, it could be convenient to allow inter-
ception of Responses as well, so that also intermediate MA in
the reverse path from forwarders to initiator can benefit from
updated information. We analyze the performance impact of
this option (option 2) in Section IV.

The initiator updates a temporary path list (peerList) as it
receives Responses from intermediate forwarders. The posi-
tion in the peerList of a peer is exactly its distance in MA
hops. The procedure is completed when the MA hop distance
of the PTG is equal to the number of received responses (size

1It is also possible to establish of long-lived TCP sessions between peers
over which carry out monitoring data exchange, but this option does not
change significantly the overall protocol and its performance.
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TABLE II
EVOLUTION OF DATA STRUCTURES IN MAp AS FUNCTION OF EVENTS DURING THE GOSSIP SESSION IN FIG. 3.

NEW ENTRIES OR CHANGES AT EACH EVENT ARE HIGHLIGHTED WITH BLUE COLOUR

of the peerList), and the last element of that list is exactly the
PTG. If this condition is not met, at Tgossip expiration, the
path is truncated at the last peer having a position equal to its
distance. In any case, the new path is added to the pathList
stored in the PaT. Finally, the initiator sends an Ack message
back, which does not include any PTS. This allows any for-
warder or the responder to be sure that the initiator has been
reached by its Response, and thus duly updates the relevant
flag in the local data structure. In addition, through this pro-
cedure, the initiator can also roughly estimate the round trip
latency of any responding peer.

Having explained how new PE identities are managed in
data structures handled by MAs, we now focus on the selec-
tion of PTS elements. The selection of PTS elements is a
common process to initiator, forwarders, and responder. Since
the Leaf-based gossip protocol aims at gossiping LPs, and
shared identities are good candidates to be gossiped, if the PaT
includes at least H paths, H randomly selected LPs of these
paths are used. Otherwise, the node tries to fill the ListPTS
by using peers already discovered but still not contacted, that
are identifiable by the flag isContacted = false in their PEs.
Such peers are those that have already gossiped the selecting
node, which has acted as responder, or those whose identities
have been shared by other nodes (i.e., they have also the flag
isGossiped = true). Since uncontacted peers might also be
LPs, this approach is preferable with respect to use of peers
already contacted, which are not LPs, given that all nodes
should preferably share LPs. After a peer has been contacted
(as either a responder or forwarder), its isContacted flag is
updated to true. Thus, it would be a candidate for being shared
as PTS only if it is a LP for a path.

The other selection algorithm is the one used to determine
the PTG, randomly picked up from three priority lists. The first
list, referred to as high priority, includes uncontacted PEs with
the flag isGossiped = true, since they are most likely LPs. The
second list, referred to as low priority, includes uncontacted
PEs with the flag isGossiped = false, that are not likely to be
LP. Those peers have gossiped the current MA, but not vice
versa. Finally, the third list, referred to as no priority, includes
all LPs of the PaT. Thus, uncontacted peers are preferably
selected, in order to quickly accomplish network discovery.
When all peers have been contacted (priority lists are empty),
peers enter the steady phase, during which just LPs are gos-
siped, in order to update the status of the highest possible
number of peers with a single Registration message.

The PaT consistency is guaranteed by updates done when
a new path is collected during a gossip session. The result of
a gossip session can imply merging, updating, or truncating
paths already present in the pathList, especially during the
initial building of the PaT. These procedures are cumbersome
to describe but straightforward in their operation, thus they are
not detailed here.

In order to better understand how the proposed procedures
work together, we resort to an operational example. Table II
shows the evolution of information stored in initiator at the
reception of different messages from forwarders and respon-
der during the exchange depicted in Fig. 3. The configuration
at the beginning of the gossip round is that reported at t0.
At this time, MAp , which is the initiator, selects MAz as
responder from the high_priority list and sends a Registration
to it. Since MAn intercepts that message, it replies with a
Response, including in the header the identities of peers MAc
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and MAd as PTS. At t1, three MAs are added to the PeT:
MAc and MAd are gossiped by MAn , thus they are inserted
in the high_priority list, whereas MAn is added to the tran-
sient peerList. Note that the flags associated to these nodes are
different, as per the described algorithms: for MAi and MAj ,
the flags are set to isGossiped=true and isContacted=false,
whereas for MAn , which is a forwarder, they are opposite,
since it is contacted (by interception) by the initiator and it was
not previously gossiped by another MA. The process repeats
for MAm (another forwarder) and MAh and MAk (shared
peers by MAm ) at t2. Finally, when the Response of the PTG
(MAz ) arrives, the peerList is completed and uploaded to the
PaT, whereas MAz is moved from the high_priority list to the
no_priority one, with its flag isContacted updated to true.

An interesting by-product feature of the proposed approach
is the following. The steady state is reached when each MA
has all its LPs listed under the no_priority list, with the
high_priority and low_priority lists empty. However, upon a
new MA enters the system and gossips the tracker, its identity
will start being shared. This favours its dissemination in one
of the two transient list, thus accelerating the mutual discovery
with all the other peers and thus the reaching of a new steady
state condition.

Finally, it is worth highlighting that, since PE states are soft,
they are removed if not refreshed. The lifetime value is local
and depends on the number of paths in the PaT (pathList)
of each node i, which is equal to the number of leaves Mi .
Let us define Mleaf = max

i∈V
{Mi}. Thus this lifetime is set

equal to Tgossip × Mleaf × (1 + Δ), where Δ is a margin
used to avoid accidental PE cancellations. A safe measure is
to gossip a leaf before cancellation at the expiration of its
lifetime. Cancellation can happen in case of lack of answer.

C. Implementation Issues

The implementation of the proposed system is very well
suited to cloud-native technologies. In particular, by using a
cluster orchestrated by Kubernetes (K8s),2 the MA can be
implemented as a function running in a pod of the cluster.
This way it can retrieve the cluster status by querying the
Kubernetes API, and leverage network softwarization capabil-
ities of K8s. Hence, it is possible to implement a multi-cluster,
distributed monitoring. Indeed, it would also be possible
to integrate this proposal with solutions already offering a
multi-cluster K8s environment, such as Kubernetes Armada
(Karmada).3 In this case, the proposed MA should be designed
to transparently interact with the function offering the Global
Uniform Resource View. This includes the interaction with
the server, which offers a REST API endpoint, and the data
distribution function by using gossiping.

In addition, it is also interesting to consider possible imple-
mentation in a multi-cloud environment based on OpenStack.4

In this case it results even more suited, as shown by a
previous research related to deploying a set of OpenStack
tenants, running a genomic processing service, and using the

2https://kubernetes.io/
3https://karmada.io/
4https://www.openstack.org/

OSP protocol [32] for data distribution. Also in this case, an
agent was used to query OpenStack APIs to obtain the sta-
tus of resources per tenant. OSP was used to distribute this
information between agents. The results of this experimental
campaign are illustrated in [44].

IV. PERFORMANCE EVALUATION

The performance of our proposal has been evaluated by
means of both simulations and theoretical models. The sim-
ulation setup, shown in Fig. 5, consists of 60 nodes, which
form the underlay network over which the gossip overlay
is built. Both stub and core nodes are included. In partic-
ular, 36 network stubs model MAs running in RAN nodes.
An additional MA stub node acts as Tracker. Each stub is
connected to one of the 23 core nodes, which represent the
edge/core MA nodes of the 6G wide-area cloud. The simula-
tion was implemented in MATLAB.5 In the simulation scripts,
each node indicates a cluster with its own MA, whereas the
network graphs are represented through sparse matrices. The
duration of each simulation run, when executed on a notebook
equipped with an Intel i7-1255U processor (10 CPU cores and
12 threads) and with 16 GB of RAM, is about 2 minutes.

We evaluated the performance of our solution versus liter-
ature counterparts with two different overlay topologies:

• Full topology: All 60 nodes include co-located comput-
ing clusters and run MA instances. In this configuration,
the gossip overlay network corresponds to the physical
underlay network.

• Partial topology: 48 nodes out of 60 - 80% - have
computing clusters associated with the relevant MAs.
They are 36 stubs, 11 core, and the tracker. This means
that only these nodes constitutes the gossip overlay,
whereas 12 core nodes act as standard IP routers (namely
C11-C22), with only transport functions in the underlay
network. These nodes and relevant links are consequently
transparent for the overlay, which becomes more meshed.

Clearly, the partial topology is the most realistic one for
two reasons. The first is that likely not all nodes in a future
mobile network need to have a co-located computing cluster
(edge cloud), and can be simply IP transport nodes. The second
is that the partial topology models an incremental scenario, in
which computing clusters are gradually added to some nodes
in key positions on the overall underlay topology.

As for the performance evaluation, we compared the results
of our proposed, fully distributed approach (labeled as “Leaf”
in what follows) with alternatives taken from the literature:

• The OSP protocol [32], which was specifically designed
to distribute signaling traffic (monitoring information in
this scenario) in virtualized architectures.

• A gossip solution with a pure random peer sampling,
labeled Random, used since it is a typical choice in the
gossip literature (e.g., see [45]).

• A centralized publish-subscribe monitoring architecture
taken from the recent literature, such as the one based
on Kafka and described in [22], [23]. This pub/sub solu-
tion allows distributing the information to all interested

5https://it.mathworks.com/products/matlab.html
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Fig. 5. Network topology (undelay): S1-S36 indicate stub MAs, C1-C22 core MAs.

entities of the 6G system (so it supports distributed con-
trol and decision layers), but such a distribution makes
use of a central broker. Without any loss of generality,
we used the realistic assumption that the central broker
is co-located with the Tracker in the topology of Fig. 5.

For these solutions, we evaluated two key performance
indicators (KPIs):

• The discovery/convergence time for distributed solutions
(Leaf, OSP, Random), reported in Section IV-A. In fact,
in the centralized pub/sub solution, each MA publishes
its data directly to the central broker, and each new MA
can immediately receive the monitoring data published by
all the other MAs by subscribing to the relevant topics
managed by the broker. Thus, no transient is present.

• The overhead of the protocols used to distribute the mon-
itoring data in the steady state (Leaf, OSP, centralized
pub/sub), reported in Section IV-C. For this KPI, we
have not included the Random approach, given its very
low performance exhibited in terms of convergence time.
In Section IV-B, we present a theoretical model for the
overhead of the Leaf approach, validated in Section IV-C.

A. Network Discovery of Monitoring Agents

For distributed solutions, we define the convergence time
tconv ,i of the node MAi as the time taken for completing
the discovery of all other involved MA peers (MA discov-
ery). In our Leaf solution, as well as in the Random one, we
define tconv ,i as the time necessary for each node to have at
least one complete gossip session with all MA nodes, being
them contacted as either forwarders or responders. Hence,

the network convergence time is Tconv = maxi∈V{tconv ,i}.
Instead, in the OSP protocol [32], we define Tconv as the
time needed for each MA to contact all its neighboring MAs,
i.e., the peers at distance 1 hop on the overlay topology. In
both cases, Tconv represents the time needed to complete the
transient phase, in which the overlay topology (or the set of
adjacent neighbours for OSP) is discovered.

Fig. 6 shows the discovery time Tconv as a function of H,
the number of shared PEs identities in a gossip message,
reported on the abscissa axis, for both the full topology
Fig. 6(a) and the partial one Fig. 6(b). In these experiments,
we normalized the discovery time to the duration of the gos-
sip period Tgossip , thus it is expressed as number of gossip
rounds and not in seconds, so as to make results more general
and not tied to the specific scenario. For all curves, we plot
95% confidence intervals.

In the full topology case, both Leaf and OSP solutions
provide satisfactory convergence time, whereas the one of
Random is about one order of magnitude larger. To take
into account this difference, we used the logarithmic scale on
the ordinate axis. It emerges that, when the Leaf solution is
used, the convergence time is mostly stable, as witnessed by
the very small confidence intervals, and nearly constant for
H ≥ 2. This result is valid in general, since sharing 2 identi-
ties is enough to provide each peer with a sufficient number of
“uncontacted” peers, which could fill the high_priority list in
its PeT, as shown in Section III-B and Table II therein. In this
way, uncontacted peers can be selected as a PTG in subsequent
gossip rounds. By using the OSP solution, the convergence
time increases by the number of shared identities H. In fact,
sharing many peer identities makes the set of PEs, selectable
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Fig. 6. Convergence time vs. H, the size of the ListPTS : a) full topology, and b) partial topology; figure reports also 95% confidence intervals.

as the next PTG, large. Since in this way the number of pos-
sible PTGs is much larger than the number of MA neighbors
(i.e., those adjacent on the overlay, which are the target of
OSP gossiping), for the OSP protocol it is disadvantageous to
test a large set of PEs, most of which are unreachable at MA
level (see also [32] and relevant supporting document).

For the full overlay topology, we observe that when the
number of shared peer identities is 1 or 2, this phenomenon
does not emerge and the OSP is preferable to Leaf, being lower
the number of MAs to discover and having to pick them from
a limited set.

Instead, in a sparse, partial topology, the Leaf solution is
preferable for all values of H. In fact, in a sparse topology,
the discovery time of the OSP solution tends to increase, due
to the fact that the average number of “neighbors” on the over-
lay increase. In addition, its variability results incredibly high,
which is not a desired feature. Instead, the discovery time of
the Leaf solution slightly decreases for the partial topology,
since less MA peers imply less gossip rounds and thus lower
discovery time, as expected. This is true also for the Random
solution, which however is always 10 times slower in con-
verging. Thus, in the end, the Leaf solution has a much more
stable and predictable behavior, and is preferable. Again, the
value of H = 2 seems to be large enough to speed up the
convergence time, without increasing so much the signalling
overhead, which will be evaluated in the next section.

Since the Leaf solution is designed to discover leaves, a
significant decrease of the convergence time is expected only
when the number of leaves decreases, whereas a less important
decrease is expected if we remove from the overlay some core
nodes. Thus, given the topology overlay depicted in Fig. 5,
removing nodes in the range C11-C22 (core nodes) from the
overlay should not significantly decrease the number of leaves,
most of which are stub nodes of the overlay (i.e., S1-S36).

Nevertheless, the net effect is a slight decrease in Tconv , as
expected, since our heuristic requires less round to converge,
having less nodes to test with gossip attempts.

Finally, from the analysis of the two sub-figures Fig. 6a and
Fig. 6b together, it emerges that the value of the maximum
number of leaves Mleaf for the Leaf protocol, in this specific
case, is the same for the partial and full topology. It is indicated
by the dashed blue in both sub-figures. Since by definition
Mleaf ≤ Tconv/Tgossip , it represents a lower bound for the
normalized convergence time of the Leaf solution. We can
appreciate that the Leaf solution approaches quite well this
lower bound.

B. Monitoring Data Delivery Overhead: Theoretical Models

When all MA nodes are discovered, the goal consists of
exchanging the information about the status of computing
clusters in the most efficient and quick way. In the steady
state, each MA i has the list of its own leaves to gossip,
equal to Li with size Mi . Consequently, the minimum time
needed to complete the distribution of information towards
all leaves, and thus to all MAs in the overlay, is equal to
Tcycle = Mleaf Tgossip ≤ Tconv . In order to correctly evalu-
ate the network overhead of this process, which is computed at
IP layer,6 it is necessary to include in the graph modeling our
topology not only MA nodes, but also IP routers. This means
that we have to consider a new extended graph G′ = (V′,E′),
which models the underlay and clearly includes the nodes of
the overlay topology (MAs), that is V ⊆ V′ with K = |V|,
and E′ being the set of undirected edges connecting the
elements of V′ (IP nodes, including MAs). Let us define

6Even if here we specifically consider the IP layer for evaluating the trans-
port overhead, in a more general view we could evaluate it on an underlay
topology supporting the overlay one.
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K ′ = |V′| and the ratio between the number of overlay and
underlay nodes equal to ρ = K

K ′ .
We denote by δ the IP network diameter. In addition, we

denote by ξij the probability that a peer i selects an LP
j ∈ Li as a PTG. Clearly, in steady state conditions, it results
ξij = 1/Mi . We define the network length (measured at the
IP network layer) of a path from MA i to MA j as nij ,
whereas the path length in the MAs overlay is pij ≤ nij ,
with the equality holding for the full topology. Thus, the
average IP length of paths in the PaT of MAi is given by
μi =

∑
j∈Li

ξijnij = 1/Mi
∑

j∈Li
nij , where the last equal-

ity holds in the regime condition only. Furthermore, if an MA
node k ∈ V has ordered position z in the overlay path sij , we
define the positioning function gij (·) returning the identity of
the MA node having the zth position on that overlay path, i.e.,
k = gij (z ), with j = gij (pij ) and i = gij (0).

In the general case of a partial topology, in which not all
considered nodes are MAs, the traffic generated by the Leaf
solution during a gossip session between MA nodes i and j is
equal to (see also Fig. 3 and (3)):

φij = nij q + (r + a)

pij∑

z=1

ni gij (z ), (5)

where z is the ordered position of a given intermediate MA
node k in the path sij . Thus, for each MA in the path, in (5)
we account for the amount of IP hops that the Responses and
Acks of responder and forwarders have to cross. By looking
to Fig. 3, it is easy to see that (5) can be rewritten as

φij = nij q + (r + a)
[
pijni gij (1) +

(
pij − 1

)
ngij (1) gij (2)

+ · · ·+ 1 · ngij (pij−1) gij (pij )

]

= nij q + (r + a)

pij∑

z=1

[
pij − (z − 1)

] · ngij (z−1) gij (z ),

(6)

The last version of (6) uses distances between adjacent MAs
k − 1 and k on the overlay path i → j equal to ngij (k−1) gij (k).
These distances in the summation can be approximated by
their average value, which on the path from i to j is equal
to nij /pij . This approximation works well especially if their
variability is not so large. This means that we can write (6) as

φij ≈ nij q + (r + a)

pij∑

z=1

[
pij − (z − 1)

]nij
pij

= nij q + (r + a)
nij

(
pij + 1

)

2
. (7)

Thus, the average traffic generated by the ith node in a gossip
round is φi =

∑
j∈Li

ξijφij . Consequently, the total network
signaling generated in a gossip round can be computed as

ΦLeaf =

K∑

i=1

φi = K

(
μq + (r + a)

Rnp + μ

2

)
, (8)

where μ = E [nij ] is the average path length towards leaves
in IP hops, whereas Rnp = E [nij pij ] is the cross-correlation
between IP path length and overlay path length. Since they

are clearly strongly correlated, thus Rnp cannot be expressed
in a simpler form. From (8), it is immediate to estimate the
total volume of traffic exchanged between MA nodes to update
each other with the information about the status of computing
clusters. In fact, disseminating the status of each cluster to all
the network requires a number of gossip rounds equal to the
maximum number of leafs seen by an MA, that is

ΓLeaf = ΦLeafMLeaf . (9)

Note that (9) holds for both default configuration, in which
the Response message carries just the PTS list, and for
option 2 (see Section III), in which the Response carries
also information about the status of monitored cluster. The
only difference is in the size of r, since in option 2 it has
also a payload and not just the header. However, from a
closer look to the features of option 2, it is immediate to
deduce that it is possible to reduce the total traffic by half
to ΓLeaf ,opt2 = ΦLeaf MLeaf /2�. For this purpose, it is nec-
essary that each node, when selecting the PTG, makes a choice
among those that have not been contacted (either directly as
initiator or indirectly as responder or forwarder) recently.

Finally, it is interesting to see that from (8) it is possi-
ble also to easily calculate an upper bound to the network
overhead, which provides a coarse estimation to maximum
network traffic without knowing in details parameters such as
η or μ or their correlation, and making use of just the network
diameter δ. In fact, since μ ≤ δ and n ≤ δ, it results that

ΦLeaf ≤ K δ
(
q + (r + a)

δ + 1

2

)
= ΦUB

Leaf (10)

The signaling rate is found by dividing ΦLeaf or ΦUB
Leaf by the

gossip period Tgossip .
If we consider the full topology, it is easy to see that it is

possible to simplify some expressions. In fact, since nij = pij ,
the traffic generated on the path i → j becomes

φ
full
ij = pij q + (r + a)

pij∑

i=1

i = pij q + (r + a)
pij

(
pij + 1

)

2
,

(11)

thus the average traffic generated by all nodes becomes:

Φfull
Leaf =

K∑

i=1

∑

j∈Li

ξijφij

= K

(
qμ+

(r + a)

2

(
μ+ μ2 + σ2

))
, (12)

where σ is the standard deviation of the random variable
modeling the path length nij = pij .

In order to proceed, it is necessary to know the distribution
of path lengths to evaluate σ, assuming that it may be easy to
estimate the average value μ. Although its distribution could
likely have a bell shape, commonly approximated with a nor-
mal distribution, it is also true that in the full topology there
are some MAs that have some of their LPs at distance 1 MA,
whereas the others are on the opposite part of the network.
Thus, we use the working assumption that the mass proba-
bility function of pij , j ∈ Li , can be considered uniformly
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Fig. 7. Overhead per gossip cycle vs. H, the size of the ListPTS : upper bound, theoretical models, and experimental results for a) full and b) partial
topology.

distributed between pmin
i = 1 and pmax

i ≤ δ. It is clear that,
with such an assumption of flat mass probability, the standard
deviation of the approximating uniform distribution σ̂ = μ2−μ

3
dominates σ, so producing an overestimation of the amount
of exchanged traffic (see (12)). Nevertheless, the approach can
be still appealing, since it allows expressing σ̂ as a function
of μ, especially in comparison with the upper bound ΦUB

Leaf
in (10). In fact, from (12) it is simple to show that the total
network signaling results:

Φ̂
full
Leaf = Kμ

(
q +

(r + a)

3
(1 + 2μ)

)
. (13)

Finally, if we push this approximation further and consider
the path length uniformly distributed between 1 and δ at the
domain level, we can approximate μ ≈ δ+1

2 , so obtaining

Φ̂full ,δ
Leaf = K

(δ + 1)

2

(
q +

(r + a)

3
(δ + 2)

)
. (14)

We do not expect that this last approximation would produce
an upper bound. In fact, not necessarily μ ≤ δ+1

2 , especially
in networks that are not so meshed, thus with an average value
μ potentially shifted towards the maximum δ.

C. Monitoring Data Delivery Overhead: Numerical Results

In order to proceed with numerical result, we have to set
the values of some parameters. The length of Registration (q)
and Response (r) messages is set to 16 bytes, plus 4 bytes
for each PEs identity in the ListPTS of size H, whereas the
length of Acknowledgment (a) is set to 16 bytes. The selected
transport protocol is UDP, since protocol reliability and robust-
ness is ensured by gossip. First, we evaluate the amount of the
protocol overhead. Thus, we set the payload length L = 0 in
both q and r. Fig. 7 shows the number of Mbytes exchanged
on the network by the Leaf protocol for each gossip cycle
(ΦLeaf ) as a function of H. We found that the mathematical

models closely match the experimental performance, for both
full and partial topology. As for the simplified model that uses
a uniform distribution for the path length (Φ̂full

Leaf ), it slightly
overestimates the amount of signaling traffic (about 13%), but
still provides a very good estimate in the full topology case.
As for the upper bounds, in the full topology case it is about 2
times larger than the real values, whereas it increases to about
3 times for the partial topology. This is an expected result. In
fact, for the full topology, we approximate nij = pij ≤ δ with
δ, whereas for the partial topology we approximate not only
nij ≤ δ with δ but also pij ≤ nij ≤ δ with it, thus with a larger
overestimation. Thus, in both cases the upper bound can used
just to estimate the order of magnitude of the signaling traffic.
Finally, let us comment about the results provided by Φ̂full ,δ

Leaf .

In this case, since the actual value of μ ≥ δ+1
2 , it provides a

small underestimation of the signaling traffic. However, it can-
not be considered a lower bound in general. In fact, it depends
on how close is the approximation on the average path length
provided through the diameter to the actual value. If it is close,
as in this case, it could provide a good approximation, which
is about 10% inferior than the actual traffic.

The overall comment is that the signaling traffic, consuming
a fraction of MB per gossip cycle over a quite large network,
where each link has a capacity by far larger than 1 Gb/s, has
an impact completely negligible. Thus, the overhead of this
background process is completely affordable by any modern
broadband network, even for small values of Tgossip .

Now, we analyze the volume of traffic it consumes when
the payload contains monitoring information with a size equal
to L = 1 KB. The comparison is carried out between the
OSP protocol (for the sizes of packets used by the protocol
see [32]), the two configurations of the Leaf protocol (default
and option 2) presented in Section III, with the same val-
ues of headers used before in this section, and a pub/sub
distribution solution using Kafka (with an overhead of about
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Fig. 8. Total amount of monitoring traffic produced during each monitor-
ing period Tcycle by the four compared approaches (publish/subscribe with
Kafka, Leaf, Leaf option 2, and OSP) as a function of the number of MAs
in the overlay.

1 KB including both headers and acknowledgements, evalu-
ated by means of live captures) [22], [23]. While Leaf uses a
single process to perform both network discovery via gossip
and information distribution, in OSP two separated processes
exists. One delivers information and the other is used for
gossiping in background. For both protocols, each gossip
exchange carries H = 2 PEs, since this value provides satis-
fying discovery times for all solutions with all configurations,
as shown in Section IV-A. We focus on the total volume of
traffic needed to distribute updates from all the MAs, which
for Leaf is given by ΓLeaf in (9), as a function of the number
of involved MAs, ranging between the configuration of the
partial topology (ρ = 0.8) up to the full one (ρ = 1).

Fig. 8 shows the number of Mbytes exchanged by MAs
during a monitoring period to update the entries relevant to
all others MAs, as a function of the fraction of MAs with
respect to the nodes of the underlay. We define the monitor-
ing period as the time needed to perform this process. For
the Leaf approach, it is equal to Tcycle , whereas for the Leaf,
option 2, it is equal to Tcycle/2�. As for the OSP, it uses
a different mechanism to distribute such an information, not
tied to a specific period, and the same for pub/sub approaches.
It is clear that the Leaf approach is the solution requiring the
lowest volume of traffic to update all the MAs in the network,
estimated by ΓLeaf in (9). It ranges between 50% and 60%
of the traffic required by the centralized pub/sub solution,
which can be considered the benchmark for the monitoring
approach. As expected, all approaches increase the amount of
traffic with the value of ρ but OSP. This is a specific feature
of that protocol, which works better for topologies that are
meshed as much as possible. In any case, the Leaf approach
always provides higher efficiency than OSP, which is instead
able to equate that of Leaf, option 2, only for ρ = 1. However,
for ρ = 0.8, the required traffic is more than double that
of the pub/sub solution. Thus, this approach is not suitable
for generic topologies. As for the second option of the Leaf

Fig. 9. Average number of updates received by each MA from other MAs
in the overlay during each monitoring period Tcycle by the four compared
approaches (publish/subscribe with Kafka, Leaf, Leaf option 2, and OSP) as
a function of the number of MAs in the overlay.

approach, it always requires a volume of traffic inferior than
80% of the pub/sub approach. In addition, it is able to complete
the process in about half the time required by Leaf, which is
valuable.

The reason of the lower efficiency of Leaf option 2 with
respect to the default version of Leaf can be explained by
looking at Fig. 9, which reports the average number of updates
received by a MA during Tcycle as a function of ρ. Clearly,
the information in the centralized pub/sub approach is updated
exactly once per monitoring period, since each MA publish
this information to the broker one time only, and all the other
MAs subscribing the topic will receive it. Instead, in the other
distributed approaches, this number is generally larger than 1.
In particular, when using the Leaf approach, option 2, with its
ability to intercept not only Registration messages, but also
Responses, each MA may receive multiples updates from the
same MA. This is true especially for core MAs, which may
receive multiple updates from the same initiator when the
responders are the relevant leaves. While this approach allows
halving the monitoring period with respect to the base version
of the Leaf, it implies larger overhead.

A possible solution, which we will explore as future work,
is the possibility, for a given MA, to stop sending updates
to the leaves from which it receives at least 2 updates dur-
ing a monitoring period Tcycle . In fact, one of these updates
are due to its gossiping to these leaves (acting as its respon-
ders), whereas the others will be triggered by intercepting
Registration or Response messages as forwarder. By eliminat-
ing the direct messages, the overhead should decrease, without
compromising the process of information distribution. The
presence of a lifetime timer larger than Tcycle allows avoiding
accidental cancellation of leaves. On the other hand, the pos-
sibility to receive more frequent updates enables a prompter
distribution of state changes of the computing cluster moni-
tored by MAs, and this holds for both versions of the Leaf
approach.
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V. CONCLUSION

In this paper we showed a proposal for providing a robust,
distributed monitoring service for a 6G network architecture.
The proposed solution, based on the concepts of gossip and
network softwarization, does not depend on the number of
cloud-native SF instances running in computing clusters, and
it can adapt to changes in the (virtualized) network topology.
Also, it fits the concept of service slice in modern network
architectures very well, since each slice can build its virtual
topology, including only a subset of monitoring agents. Thus,
it can be used as a building block to realize scalable monitor-
ing solutions in forthcoming 6G networks. Given the protocol
properties, our solution can be adopted also by using virtual
links interconnecting data center tenants offered by differed
cloud providers, extending the overall scope even beyond the
6G network, guaranteeing a significant implementation flexi-
bility. Finally, incremental deployment is possible, favoring its
adoption in real settings.

We showed that the proposed solution, named Leaf, can
nearly halve the volume of traffic exchanged to distribute state
information with respect to state of the art solutions, based on
centralized publish/subscribe solutions.

Future work will pursue the complete system implemen-
tation through open source software programs, as well as
additional optimization for the Leaf option 2 approach.
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