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Abstract—In the current 5th Generation (5G) networking
paradigm, the enforcement of Service Level Agreements (SLAs)
is a non-trivial measure to ensure the scope and the qual-
ity of services and standards between tenants and service
providers (SPs). On top of this, Secure Service Level Agreements
(SSLA) are introduced to ensure that SPs deliver the most
critical and required security-related standards defined in the
contract, such as integrity, confidentiality, availability, non-
repudiation, and privacy assurance. However, with the tendency
for more distributed and multi-stakeholder networking archi-
tectures in next-generation networks, the management process
of such SSLAs will be challenging due to the diversified secu-
rity vulnerabilities and complexity of underlying technologies.
Although blockchain is emerging as a platform to facilitate such
distributed SSLA/SLA management frameworks, its currently
available consensus mechanisms are more generic. Still, they need
to improve in terms of applying in multi-stakeholder networks.
Therefore, this paper presents a novel consensus mechanism
called Proof-of-Monitoring (PoM) for a blockchain-based novel
SSLA management framework. Moreover, we provide details
about the prototype implementation of our proposed consen-
sus algorithm and SSLA management framework. It is proven
by comparing our proposal with the other existing solutions
that our solution outperforms in many aspects, such as energy
consumption, computation cost, and security features.

Index Terms—Blockchain, secure service level agreements,
consensus algorithm, network monitoring, smart contracts.

Manuscript received 4 May 2022; revised 23 October 2022; accepted 23
December 2022. Date of publication 9 January 2023; date of current version
9 October 2023. This research has been supported by the Academy of Finland,
6G Flagship program under Grant 346208 and the Science Foundation Ireland
under Connect Center (13 RC/2077_P2). The research leading to these results
partly received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement no 871808 (5G PPP project
INSPIRE-5Gplus). The associate editor coordinating the review of this article
and approving it for publication was S. S. Kanhere. (Corresponding author:
Nisita Weerasinghe.)

Nisita Weerasinghe and Mika Ylianttila are with the Centre for
Wireless Communications, University of Oulu, 90014 Oulu, Finland (e-mail:
nisita.weerasinghe@oulu.fi; mika.ylianttila@oulu.fi).

Raaj Mishra is with the Digital Licensing and Fulfillment, Dell
Technologies, Bengaluru 751010, India (e-mail: raaj2045@gmail.com).

Pawani Porambage is with the 5G and Beyond Networks, VTT
Technical Research Centre, 90571 Oulu, Finland, and also with the Centre
for Wireless Communications, Faculty of Information Technology and
Electrical Engineering, University of Oulu, 90014 Oulu, Finland (e-mail:
pawani.porambage@oulu.fi).

Madhusanka Liyanage is with the School of Computer Science, University
College Dublin, Dublin 4, D04 V1W8 Ireland, and also with the Centre for
Wireless Communications, University of Oulu, 90014 Oulu, Finland (e-mail:
madhusanka@ucd.ie).

Digital Object Identifier 10.1109/TNSM.2023.3234862

I. INTRODUCTION

ASERVICE Level Agreement (SLA) is a contractual finan-
cial agreement between a service provider and a cus-

tomer. In the telecommunication context, it defines as a form
of assurance that the Communication Service Providers (CSPs)
deliver the diversified communication service requirements
of Communication Service Customer (CSC), aligning with
service compliance standards (3GPP TS 28.530). Hence, it
is of utmost importance to any CSC. SLA violations may
degrade the expected service quality, where the user has to
encounter unexpected experiences and consequences for the
paid services, which eventually negatively impact the user
experience. Traditionally, end customers must follow man-
ual and time-consuming procedures to prove the evidence of
these SLA violations. Hence, a fully automated SLA system
is required to support continuous monitoring and boost the
user satisfaction level. Additionally, a trustworthy guaranteeing
platform must monitor service deliveries and maintain fair-
ness between the customer and SP. Furthermore, SLA includes
measurable metrics to ensure Quality of Service (QoS) [1],
while there is an urge for security assurance of the service
delivery. Hence, researchers are working on the upcoming
Secure Service Level Agreements (SSLAs) concept. SSLA
specifies the security-oriented requirements required to assure
the expected level of security. Essentially, the security features
such as confidentiality in different dimensions, the integrity of
transaction records, and the availability of persistent services
are a few of the critical security requirements anticipated in
the SSLAs [2].

The limitations encountered in most state-of-art solu-
tions [3], [4] are SSLA monitoring party functions as a
centralized entity, which inherits default challenges such as
a single point of failure and is prone to network attacks
(e.g., Distributed Denial of Service (DDoS)). Still, not much
research has been carried out in the area of SSLA. However,
more research has been done in the area of SLA. Therefore,
we examined SLA-based state-of-art solutions.

To address the limitations encountered in conventional SLA
systems, one of the vital approaches commonly researched is
the adaptation of blockchain technology. It can be incorpo-
rated to automate monitoring and improve trust across every
5G service delivery. Blockchain can convert the architecture
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from a centralized to a decentralized one and execute manual
agreements via smart contracts. Every transaction is recorded
in the distributed ledger to ensure non-repudiation [5].
Furthermore, miners process transaction validation to guar-
antee immutability within blockchain records and restrict
non-authorized parties from tampering with the data within
the blockchain [6]. Therefore, we propose to incorporate
blockchain technology into our research.

However, state-of-the-art blockchain-based solutions [7], [8]
still have challenges, such as high blockchain operational costs
and energy data silos. For the deployment of blockchain, the
tenant nodes should have the capability to perform exten-
sive computations to reach a consensus result. However, many
resource-constrained devices will struggle to achieve that,
making it impossible to adopt blockchain technology by such
devices. Massive amounts of energy and time will be wasted
where comparable results can be obtained with simpler con-
sensus algorithms. In addition to that, the existing consensus
algorithms focus on achieving consensus as an independent
task, which is entirely irrelevant to the services obtained from
the blockchain. Therefore, a customized consensus protocol is
advantageous for efficient blockchain integration. Therefore,
the room is still available to leverage the concept and develop
a blockchain-based system. In our proposal, both the limita-
tions of non-blockchain and blockchain-based SLAs/SSLAs
are expected to be rectified.

In particular, the key contributions of our work are as
follows:

• Propose blockchain-based SSLA management framework
• Propose novel cost and energy efficient consensus mech-

anism, called Proof-of-Monitoring (PoM), which is cus-
tomized for SSLA management applications

• Evaluate the performance of the proposed system in a
simulated environment and confirm the viability through
a prototype implementation

• Evaluate the correctness of the proposed consensus pro-
tocol by performing formal modeling and formal verifi-
cation

The rest of the paper is outlined as follows: Section II
provides background knowledge on SLA/SSLA and differ-
ent technologies used. Section III examines existing works
while Section IV introduces novel blockchain-based SSLA
architecture. Section V proposes a novel consensus algo-
rithm. Section VI carries out numerical simulations to evaluate
the performance of the proposed consensus protocol and to
compare it with existing systems. Section VII presents the
prototypical implementation of the proposed consensus algo-
rithm and SSLA management system. Section VIII discusses
the experimental results. Section X compares the proposed
model with existing systems and discusses the limitations of
the proposed approach. Section IX defines the formal model
of the proposed consensus protocol, verifies its properties, and
analyzes its results. Finally, Section XI concludes the paper.

II. BACKGROUND

This section discusses the core concepts of SLA/SSLA,
the challenges of both blockchain and non-blockchain-based

SSLAs, and the related technologies used throughout our
study.

A. Fundamentals of SLA/SSLA

SLA is a legal agreement containing negotiated services
between consumers and service providers. Services define
based on multiple Service Level Objectives (SLOs). SLOs
represent quantifiable metrics with values. The primary expec-
tation of establishing a SLA is to ensure the defined SLOs are
met. Furthermore, SLA focuses more on leveraging the QoS,
while SSLA concentrates on improving the expected level of
security.

The life cycle of the SLA [1] is generally divided into five
phases as follows: (1) Identification of capacities of SP and
definition of requirements of customer (2) SLA negotiation
between customers and SP (3) Resource provision and service
activation (4) SLA monitoring, validating, reporting and vio-
lation detecting (5) SLA assessment with SP(service quality,
key issues) and customer (service experience and management
of requirements). Our target is to advance the fourth phase of
the SLA’s lifecycle.

An example of a security SLO is the Packet Loss Ratio
(PLR), defined as the ratio of the number of data packets
lost to the total number of packets a network node should
have forwarded. Packet losses usually occur due to channel
errors or network congestion. This metric is typically asso-
ciated with QoS considerations, and the amount of tolerable
packet losses (e.g., 1% or 5%-10%) depends on the type of
data being sent. In the context of network security, packet-
dropping or blackhole is a type of denial-of-service (DoS)
attack where a network node drops packets that it should not
have. A DoS attack can happen at different layers, e.g., the
application layer or network layer. If a node repeatedly drops
packets, that indicates potential malicious behavior, leading to
communication unavailabilities for benign users. Furthermore,
the lower the PLR, the higher the reliability and availability
of the service against security threats.

B. Potential Challenges of SLA/SSLA Management Systems

The most significant probable challenges related to
SLA/SSLA management are described below.

1) Single Point of Failure: The current systems are primar-
ily aligned with centralized deployment architecture, which
causes several limitations. For instance, being vulnerable
to DDoS attacks, which makes the service unavailable by
attacking the centralized services [9]. In addition, centralized
storage, such as classical database systems, can expose data
to malicious parties.

2) Transparency: There is a potential for resource
providers to violate pre-established SSLAs and raise dis-
crepancies [10]. Hence, the lack of transparency in the
current system makes traceability harder. These problems
make the service delivery unsatisfactory to the customer,
resulting in losses to the service providers. Furthermore, the
dispute resolution process becomes exhaustive and will incur
overheads for all parties.
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3) Scalability: The number of tenants and operators con-
nected to the industrial ecosystems will expand with the com-
plexity of future telecommunication applications. Especially
the future industrial integration of IoT generates massive
demand for 5G service delivery with diversification [11].
Hence, handling exponential load is challenging with state-
of-the-art centralized architectures in future scenarios.

4) Lack of Reliable Monitoring Data: Due to obvious rea-
sons, we cannot always be certain that a third-party monitoring
solution always provides reliable data. Some reasons are
their tendency to suffer from a single point of failure and
the possibility to be compromised easily because of being
centralized.

5) No Automated Violation Detection: Traditional meth-
ods do not support automated SSLA violation detection and
compensation methods. Customers must follow a manual and
time-consuming verification and resolution process to claim
for a violation (e.g., via e-mails).

C. Potential Challenges of Blockchain-Based SLA/SSLA
Management Systems

Existing blockchain-based SLA/SSLA suffers from high
latency, high cost, high computational overhead, and resource
wastage. Extra delays are caused by the time-consuming
execution of the mining process (e.g., Proof of Work
(PoW)). Unnecessarily expensive for some because of favor-
ing the wealthier participants (e.g., Proof of Stake(POS)).
Excessive computational overhead, high energy consumption,
and resource wastage because miners have to perform a com-
putationally intensive mining task (e.g., PoW). Miners must
put much effort into non-value-added tasks such as hash cal-
culation (e.g., PoW) or stake management (e.g., PoS). Hence,
it is evident that these consensus protocols suffer from differ-
ent challenges. Furthermore, although the adaptation of private
blockchain networks might favor addressing these issues, it is
more centralized than public networks.

In a nutshell, the main task of the SLA/SSLA management
application is to ensure that the SP meets obliged service stan-
dards. A fair, trustworthy, and automated platform is required
to monitor whether the expected standards are met. For this,
numerous blockchain solutions have been introduced already.
However, energy-efficient and fully decentralized blockchain
solutions are still yet to be introduced.

Hence, it is optimal to design a consensus protocol with a
mining task that complements its application’s primary func-
tion to avoid the aforementioned issues. As a result, the
energy and resources are not wasted on non-value-adding
tasks. Instead, they are utilized for the core service of the
application.

D. Pervasive Authentication Protocol and Key Establishment
(PAuthKey) Scheme

PAuthkey protocol is a lightweight authentication and key
Establishment mechanism proposed for resource-constrained
WSNs in IoT applications [12]. It mainly comprises two
phases: registration and authentication phase. In the registra-
tion phase, the sensor node must acquire a certificate from its

cluster head which they assume to be the Certificate Authority
(CA). Initially, the sensor node generates a random number
ruε[1, . . . ,n − 1] to compute Elliptic Curve (EC) point Ru as
given in equation (1) and send the value to CA along with
certificate request.

Ru = ruG (1)

Note that the EC domain parameters defined in this paper
follow the standard elliptic curve equation over the finite field
Fq is y2 = x3 + ax + b, where 4a3 + 27b2 �= 0, variables a
and b are coefficients, G is the generator point, and integer n
is the order of the curve.

Upon receiving the certificate request. CA generate random
number rCAε[1, . . . ,n − 1] and calculates implicit certificate
Certu, e, s respectively as follows, Let dCA be the private key
of CA.

Certu = Ru + rCAG (2)

e = H (Certu) (3)

s = erCA + dCA(modn) (4)

CA responds to the node by sending a message including
Certu and s. Then, the node can generate e using the equation
and the same hashing function that CA has used. Thereafter,
the node can calculate its private key du and public key Qu

as follows.

du = eru + s(modn) (5)

Qu = duG (6)

Further, [12] proves that Qu can also be calculated using
the below equation.

Qu = eCertu +QCA (7)

E. Shamir’s Secret Sharing (SSS) Scheme

To develop a novel consensus algorithm, we intend to use
the key-sharing scheme proposed by Shamir [13]. It is a pro-
cess in which a secret key (S) is split into n parts, known as
shares. The combination of these shares re-creates the original
key. The minimum number of shares required to restore the
key is known as threshold k. Therefore, SSS is defined as a
(k, n) threshold scheme. This technique is ideal in a trustless
environment such as a blockchain where the key can be dis-
tributed over many nodes. SSS is built based on polynomial
interpolation. Note that, Size of finite field pεP : p > S , such
that ai < p, a0 = S where we select k − 1 random elements,
a1, . . . , ak−1 from a finite field of size p. The polynomial is
constructed as follows,

f (x ) = a0 + a1x + a2x
2 + · · ·+ ak−1x

k−1 (8)

Generate n points (i , f (i)) where i = 1, . . . ,n , from f (x)
and distribute these points among nodes. A node who has
captured k of these points are able to rebuild the f (x). In our
scenario, we are focused only in finding the S which can be
identified as a0 in the f (x). Hence, reconstruction of entire
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polynomial is unnecessary to calculate a0. It can be generated
using following formula.

f (0) =
k−1∑

j=0

y j

k−1∏

m=0,m �=j

xm
xm − xj

(9)

III. RELATED WORKS

Up to date, various approaches are evolving to investigate
across different avenues to cater to the diversified require-
ments of the SLA context at present. Out of the phases of
the SLA lifecycle, researchers have been most focused on
the monitoring phase, then the negotiation phase and least
concentrated on violation management and reporting [14].
Grubitzsch et al. [15] proposes a SLA model to support the
negotiation phase by permitting dynamic changes to multiple
service levels during the deployment phase of an SLA. Hm
and Prakash [16] propose a trust model for SLA monitoring
to support the assessment phase. Viegas et al. [4] intro-
duce an architecture comprising multiple software agents to
identify SLA breaches and a third-party auditor to avoid
conflict of interest between SP, contractor, and client. The
proposed approach permits gathering SLA metrics from each
stakeholder and analyzing the deviations and demand for solu-
tions. However, this proposal lacks transparency by relying on
external services from third parties.

Nakashima and Aoyama [7] proposes a blockchain-based
platform to automate SLA contract enforcement. However, the
proposal does not consist of a system to analyze the credibility
of SLA breaches. Xiao et al. [17] proposes a blockchain-based
auditing scheme to preserve the privacy of SLA of network
slicing and execution of punishments based on auditing results.
Ranchal and Choudhury [18] introduces a blockchain-based
approach to detect SLA breaches and analyze their root causes
in a multi-cloud ecosystem. Another interesting piece of work
has been done by Zhou et al. [8] with the introduction
of a decentralized witness model to detect SLA violations.
Nevertheless, all these proposed solutions expend high costs
and computational overheads for mining tasks which need to
be minimized. This is due to the fact that most of these state-
of-art SLA blockchain-based solutions suffer from a lack of
an application-specific consensus.

Alemany et al. [3] presents a security SLA manager to
guarantee the security of end-to-end network slices. Its core
component is the SSLA Manager, which functions as a cen-
tralized entity. It tends to be compromised easily, leading to
the single point of failure, service unavailability. In addition,
it cannot guarantee the transparency of the service delivery.
However, this is the only state-of-art that has significantly
contributed to developing a security-based SLA framework.
Nevertheless, there are significant modifications required to
improve the entire system.

Only a few works have been carried out to ensure
the correctness of novel consensus protocols. For instance,
Afzaal et al. [19], Thin et al. [20] present formal models
built using CSP# and verified using PAT model checker. While
they have inspired our formal model, the proposed consensus
protocol fundamentally differs from theirs.

Therefore, there is a demand for a proper blockchain-based
SSLA management system and, to complement that, a custom-
built application-specific consensus algorithm.

IV. PROPOSED BLOCKCHAIN-BASED SSLA
MANAGEMENT FRAMEWORK

The main objective of our proposal is to invent and execute
a zero-touch security-oriented SLA framework that guaran-
tees trustworthiness, accountability, and security in delivering
communication services at low cost and low energy. Hence,
we will require real-time network data from trustworthy and
authentic sources to devise a sustainable security approach.
Our system uses a decentralized blockchain network architec-
ture where nodes can voluntarily deploy their network sensors
in the wireless channel that the client and SP communicate.
Then blockchain nodes can capture the data and feed it to the
blockchain service layer. Our system introduces a mechanism
for blockchain nodes to earn revenue for their resource invest-
ment and network monitoring. Further, our approach proposes
a method to maximize the profits of nodes that provide correct
data continuously and, at the same time, reduce the depen-
dency on nodes who report false information. Moreover, the
occurrence of a violation is considered based on the majority
vote of the monitoring nodes. Accordingly, the trustworthiness
and reliability of the monitoring data are guaranteed. However,
to empower an economic model with less computational over-
head, our framework proposes a use case-oriented consensus
algorithm where the blockchain nodes do not have to per-
form extra work to participate in the consensus. The high-level
architecture of the proposed blockchain-based SSLA manage-
ment framework integrated with a novel consensus algorithm
is in the Fig. 1.

The performance features of the SP are monitored and eval-
uated precisely with feedback from the deployed nodes in
the 5G core networks. Furthermore, the consumer end has
been enabled to report performance feedback and service level
compliance through the blockchain network. The alignment of
performance with the SSLA has been logged in the blockchain
to ensure non-repudiation. Then no party could upload false
data or alter data within the blockchain network.

Blockchain integration ideally facilitates the dynamic and
adaptable enforcement of service agreements through smart
contracts. Smart contracts’ decentralized and dynamic nature
enforces the dynamic deployment of contractual agreements
across the ecosystem. Essentially, blockchain is decentralized
and ensures the decentralized service operation by distributing
the load between multiple collaborative nodes. Therefore, it
caters to the diverse service requirements of stakeholders with
less delay.

Transparency of agreements is enabled by encoding SSLAs
in smart contracts. The transparency of smart contracts ensures
the terms and conditions of the contract are clear and under-
standable, as well as not deviate from the pre-agreed terms
and conditions. Therefore, non-repudiation is guaranteed.

The decentralized ledger of blockchain incorporated with
interlinked cryptographic verification, avoids the possibility
for a data in the database to be tampered. Furthermore, it
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Fig. 1. High-level architecture of the proposed blockchain-based SSLA management framework.

Fig. 2. Fundamental services of the proposed blockchain-based SSLA
management framework.

ensures that the execution of sequential events in the SSLA is
compliant and in order. Moreover, blockchain’s decentralized
operational capability eliminates the single point of failure and
tolerates the scaled-up transaction volumes.

A. Key Components of the Proposed Framework

We determined the main functional modules of the SSLA
framework and their primary services. Fig. 2 represents
key service modules of the proposed SSLA management

framework and its interaction with the stakeholders. The stake-
holders (client, SP) and monitoring nodes invoke back-end
(blockchain) services through an API. The primary services
of each functional module are discussed below.

User Authentication: This service is responsible for man-
aging accounts and keeping records of SPs, customers, and
monitoring nodes. Stakeholders register to the proposed plat-
form to become accountable for receiving services. Likewise,
the monitoring nodes must register with the system before
initiating the network monitoring. Initially, participants enter
their credentials through the Web application. The API passes
the data to the blockchain and invokes the User Authentication
service. It stores the credentials in the distributed ledger and
links the wallets of each user to their accounts. Furthermore,
this service module invokes whenever a registered stakeholder
requires to log into the system, and it will grant access per-
mission by retrieving the user information from the distributed
ledger.

Policy Manager: The client can select a SP from our Web
application and send its desired security requirements to the
selected SP. Then, the SP generates a SSLA draft and sends
it to the client. The client can moderate selected require-
ments and request reviews from the SP during the negotiation
period. SP can review and revise the SSLA. This process
will run recursively until the client is satisfied. The client can
approve the agreement by sending the service charge to the
blockchain. Then, the blockchain generates an event to notify
SP and invokes the Policy Manager service module. The Policy
Manager translates high-level metrics into measurable metrics.
For example, if the high-level metric is PLR, then translated
measurable metrics are the number of packets transmitted and
dropped over a period. It stores measurable metrics along with
other SSLA parameters in the blockchain and sends a SSLA
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deployed notification to the Lifecycle Manager. Moreover, it
transfers the service charge to the Compensation Calculator,
where the fee will be held until the SSLA termination stage.

SSLA agreement includes the following negotiated parame-
ters such as the address of SP, address of the customer, service
fee, validity period, monitoring period (= Period at which the
monitoring node reports monitored data to the blockchain),
SLO metrics, SLO values, allowable violation count per SLOs,
priority weightage of SLOs, blockchain fee weightage. Note
that the priority weightage is a percentage that can be set to
adjust the priority levels among SLOs of SSLA, and it depends
on the criticality level of the security metric in question. The
blockchain fee weightage is a percentage fee that is distributed
among blockchain nodes who correctly monitor the network
(e.g., 0.1%).

Lifecycle Manager: This functional module handles both
SSLA initiation and termination processes. It always refers
to the contract period of the stored SSLAs. The Lifecycle
Manager invokes Violation Monitoring Engine whenever the
starting period of any SSLA reaches and terminates the con-
tract when the contract period expires or discovers a SSLA
policy infringement. In addition, it is responsible for notify-
ing the SSLA termination to Compensation Calculator and
Reputation Management modules.

Violation Monitoring Engine: The main task is to manage
network monitoring activities. Peer nodes in the blockchain
network monitor the packets transferring between each client
and service provider pair via the wireless communication
channel. Each node has the freedom to install a preferred
network sensor and monitor the measurable metrics of each
security metric in SSLAs, during the specified monitoring
period in SSLA. Next, they feed the monitored data to the
blockchain at the end of the monitoring period. Then, the
Violation Monitoring engine calculates the values for each
security metric of SSLAs and checks whether the SP meets
the SLOs. In our system, we declare a violation if more
than 50% of the active monitoring nodes input data, con-
firming a violation. Subsequently, the Violation Monitoring
engine invokes Compensation Calculator and Reputation
Management modules. Additionally, It notifies the Lifecycle
Manager to terminate the SSLA when the number of viola-
tions conducted by a specific SP exceeds a certain pre-defined
threshold.

Compensation Calculator: This entity mainly performs
billing activities at the end of the monitoring period. It divides
the service fee among SP and blockchain nodes based on their
service delivery. Blockchain nodes refer to the winning miners
and violation reports (=blockchain nodes who have correctly
reported violations). A blockchain fee is a reward offered to
blockchain nodes for allocating their resources throughout the
monitoring period. Further, it calculates the losses incurred by
the user for service failures.

The client is liable to deposit the service fee at the estab-
lishment of SSLA. In the SSLA termination stage, our system
distributes service fee percentages among SP, winner miner,
and violation reports. Also, the customer will receive a por-
tion of it as compensation if the violation count exceeds the
allowable number of violations.

Initially, the system allocates a portion of the service fee to
the blockchain nodes at every Tmonitoring period, and it cal-
culates the blockchain fee Fblockchain as follows. Let service
fee be Fservice and blockchain fee weightage be p.

Fblockchain = Fservice × p × Tmonitoring

A certain amount of the blockchain fee collects as an incen-
tive for winning miners. The rest divides among the violation
reporters based on their reputation score. The one which
has the highest reputation score receives the highest revenue.
Therefore, it is evident that providing accurate data all the
time will maximize their profit.

The system calculates the customer compensation relating
to i th SLO, F (i)compensation as follows, Let violation period
relating to i th SLO be Tviolation(i), priority weightage of
SLO be qi, the total number of SLOs per SSLA be n.

Fcompensation(i) = (Fservice − Fblockchain)

×Tviolation(i)

Tmonitoring
× q(i)

Note that Tviolation(i) is the total time within the monitoring
period during which a violation occurred corresponding to the
i th SLO.

Our system computes the total compensation fee per mon-
itoring period as below,

Fcompensation =
n∑

i=1

Fcompensation(i)

Subsequently, Fcompensation amount is transferred to the
customer’s wallet at the SSLA termination stage. The rest of
the funds are credited to SP, FSP

FSP = (Fservice − Fblockchain)− Fcompensation

Reputation Management: The primary function is to com-
pute rating scores for the blockchain nodes and SPs at every
monitoring period and agreement termination session, respec-
tively. The reputation score of each violation reporter incre-
ments while the reputation scores of non-violation reporters
decrements if the system confirms a violation. The blockchain
node is discarded from the network if its reputation score
exceeds a certain threshold. Furthermore, the updated rating
scores of every SP displays on the Web application at the
stage where a customer is selecting a SP. Hence, it eases the
customer to choose an optimal SP.

B. Workflow of the Proposed SSLA Management Process

The workflow presents a sequence of steps from the gener-
ation of a SSLA to the termination of a SSLA. Fig. 3, Fig. 4,
and Fig. 5 illustrate the flow of the initiation phase, monitor-
ing phase, and termination phase of the SSLA management
framework, respectively. The vital steps of the three phases
are explained below.

1) Initiation Phase: Initially, a client selects a SP based
on his/her needs and sends the security requirements to the
SP. SP is accountable for generating a SSLA draft consider-
ing the user input. Then SP will send the created SSLA to
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Fig. 3. SSLA initiation phase.

Fig. 4. SSLA monitoring phase.

the customer for his/her approval. The customer has the privi-
lege to request modifications, and SP is obliged to review and
revise the defined terms in SSLA until he/she is fully satis-
fied. Hence, the SSLA negotiation process follows a recursive
process. Once the client is pleased with the received SSLA
version, he/she can provide his/her consent by depositing the
agreed service charge defined in SSLA.

2) Monitoring Phase: The Policy Manager converts the
SLOs into measurable metrics and stores them along with
other SSLA parameters in the blockchain. Then it sends
the SSLA deployment notification to the Lifecycle Manager.
When the starting period of the contract reaches, the Lifecycle
Manager triggers the SSLA initiation process by sending
a SSLA initiation notification to the Violation Monitoring
Engine. Then, Violation Monitoring Engine commences mon-
itoring the wireless channel, which the client and SP con-
nected, with respect to the measurable metrics. Subsequently,
it reports any infringements found to Compensation Calculator

Fig. 5. SSLA termination phase.

and Reputation management in every monitoring cycle. The
Compensation Calculator module computes the compensation
for the customer, penalty for SP, and service fee blockchain
nodes. The Reputation Management calculates reputation
scores for blockchain nodes. If the reputation score of a
blockchain node reaches a certain threshold, it will be elimi-
nated from the system.

3) Termination Phase: The termination phase mainly
includes the termination of SSLA monitoring and settlement
of final payments.

SSLA termination happens if any of the following actions
are triggered, (1) the Lifecycle Manager receives the SSLA
termination request from the Violation Monitoring engine that
it has encountered that the SP has exceeded the maximum
allowable number of violations (2) the SSLA met the contract
expiration date. Subsequently, the Lifecycle Manager sends
the SSLA termination notification to Compensation Calculator
and Reputation Management modules. The Compensation
Calculator transfers the service charges for SP and blockchain
nodes if no violation is detected. If not, it compensates the
client by transferring the compensation fee (a portion of the
service charge). Finally, the Reputation Management calcu-
lates and updates the reputation score of the SP based on their
violation status.

V. PROPOSED PROOF-OF-MONITORING

CONSENSUS ALGORITHM

This section proposes a novel consensus algorithm named
Proof-of-Monitoring, customized to the SSLA management
application. Its principal concept and the key phases are
explained explicitly in this section.

A. Principal Concept

The consensus protocols of state-of-art blockchain solutions
pose intensive computational demands which require a large
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Fig. 6. The workflow of the proposed PoM consensus protocol.

amount of energy for each miner to maximize their chances
of becoming a winning miner. Hence, our system proposes
an innovative approach to remove this unnecessary overhead
from the system by designing a novel consensus specific to the
SSLA management system. The idea is to make the mining
task the same as the main work of the SSLA management
application, network monitoring.

The novel consensus algorithm utilizes both PAuthkey pro-
tocol [12] and Shamir’s Secret Sharing scheme [13] technolo-
gies. The main phases of the proposed approach are depicted
in Fig. 6 and explained explicitly with their corresponding
pseudo-codes.

B. Key Phases of the PoM Mechanism

1) Key Generation: To develop the consensus algorithm,
we incorporate the basic operations introduced for the authen-
tication and key establishment phases of the Wireless Sensor
Networks (WSNs) in the PAuthKey protocol [12]. We pro-
gram its computations in a black box of the miner software
without exposing them to any blockchain nodes. The internal
calculations include the generation of Elliptic Curve (EC) Ru

point, implicit certificate Certu and the private key du. The
algorithm 1 shows the mathematical operations performed to
generate them. Note that EC domain parameters such as gen-
erator point G, Private and Public key of certificate authority
dCA, QCA, Curve order n are predefined.

Algorithm 1 Key and Certificate Generation

Input: Generator point (G), Private and Public key of
certificate authority (dCA,QCA), Curve order (n)

Output: Private key (du), Implicit certificate (Certu)

1: ru:= a random number between 1 and n − 1
2: Compute EC point Ru = ruG
3: rCA:= a random number between 1 and n − 1
4: Generate Certu = Ru + rCAG
5: Integer e ← Hash of Certu
6: Integer s = erCA + dCA(modn)
7: Generate du = eru + s(modn)

2) Key Distribution: The proposed consensus protocol con-
catenates the previously computed du and Certu using the
PAuthKey protocol. Let’s called the combination of du and
Certu as Secret (S). S is divided into n shares using the Shamir
Secret Sharing approach. Next, the mining application reveals
random key shares to each node, and nodes can broadcast the
received share to the wireless channel where SP and client are
connected via a known port which they have already declared
when joining the network. Note that the system shares the
public key QCA with all the blockchain nodes, which will
be necessary for the later calculations in the block generation
phase. Algorithm 2 illustrates the pseudo-code related to the
key distribution phase.
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Algorithm 2 Key Distribution

Input: Private key (du), Implicit certificate (Certu),
Number of active nodes (m), Number of shares (n), Threshold
(k)

Output: n pieces of (du), n pieces of (Certu)

1: S = {du,Certu }
Require: Size of finite field pεP : p > S , such that ai < p,

a0 = S where
2: Sample k −1 random numbers {a1, a2 . . . , a(k−1) } from

a finite field of size p
Require: n ≥ 3
Ensure: n = 2k − 1

3: for i = 1 to k − 1 do
4: ai
5: end for
6: Generate the polynomial f (x ) = a0+ a1x + a2x

2 + · · ·+
a(k−1)x

(k−1)

7: Generate n points from f (x ) and store in an array
{D0,D1 . . . ,D(n−1)}

8: for j = 1 to n do
9: Dj-1 ← ((j , f (j ))modp)

10: Array Y [j ]← Dj-1

11: end for
12: Generate a portion of S in each active node
13: for q = 1 to m do
14: rq ← a random number between 1 and n
15: Reveal n point Y [rq]
16: end for
17: Each active node broadcasts the received portion of S to

all other active nodes
18: Reveal G, QCA � Required for later computations

3) Network Monitoring and Key Recovery: The designated
task for the miners is to calculate public key Qu by recovering
du and Certu. Hence, nodes must attentively listen to the ser-
vice ports, capture each key share, and reconstruct the desired
parameters. The system rewards the one who completes the
task with incentives, encouraging the blockchain nodes to find
the solution by investing their resources to the maximum.
Miners can recover the key by capturing its shares while mon-
itoring the network for SSLA violations. Algorithm 3 shows
the pseudo-code related to the key recovery stage.

Blockchain nodes can store the network monitoring data
locally in off-chain storage (InterPlanetary File System (IPFS)
and sends the pointer (the hash of the monitored data) to
the blockchain. When necessary, these data can be accessed
later at the blockchain by retrieving the data from the off-
chain database. This approach prevents unnecessary ledger
growth [21].

4) Block Generation: The proposed consensus protocol
declares the node which discovers Qu, Certu and du first as
the winner miner. The winning miner gets the chance to cre-
ate the next block of the blockchain. Fig. 7 depicts the block
structure that the winner miner has to create. The Block header
includes the version, timestamp, hash of the previous block,
hash of the Merkle root, and RESULT (which is the solution

Algorithm 3 Key Recovery

Input: k pieces of S{(x0, y0), (x1, y1) . . . , (xk, yk)}
Output: Recovered du, Certu, Computed Qu

Require: l = 1, f (0)
1: for j = 0 to k − 1 do
2: for m = 0 to k − 1 do
3: if m �= j then
4: l ← l ∗ (xm)/(xm − xj)
5: end if
6: end for
7: f (0)← f (0) + (l ∗ yk)
8: p = 1
9: end for

10: f (0)← S = {du,Certu}
11: Compute public key using du,Certu
12: Qu = duG
13: or Qu = e ∗ Certu +QCA

Fig. 7. Block structure of the proposed PoM.

discovered from the mining process). RESULT = ( Qu dig-
itally signed by du) + signature + Certu. The body of the
block header contains the data pointer to the network mon-
itoring data, blockchain service invocations, and service fee
payments. Later, the winning miner broadcasts the generated
block to the peer nodes for verification.

5) Block Verification: When the rest of the miners receive
the new block, they can find the RESULT solution containing
a digitally signed Qu, the signature, and Certu in it. Next,
they can calculate the public key Qu using Certu to verify
the signature sent by the winner miner. If the verification is
successful, the rest of the peer nodes add the verified block to
the blockchain, and the winning miner receives incentives. The
proposed system allocates a portion of the service charge as
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Algorithm 4 Block Verification
Input: Digitally signed Qu, signature, Certu
Output: successful or unsuccessful

1: Calculate Qu using Certu
2: Qu = e ∗ Certu +QCA
3: ECDSA signature verification
4: Q ′

u ← decoded message using Qu

5: if Q ′
u == Qu then

6: Verification is successful
7: else
8: Verification is unsuccessful
9: end if

TABLE I
ANALYSIS OF MINING DIFFICULTY OF THE PROPOSED POM

incentives (refer Section IV-A). Algorithm 4 shows the pseudo-
code of the key verification approach.

In conclusion, our consensus protocol is a cost-effective
and energy-efficient approach since it does not includes a
computationally intensive task to solve to achieve consensus.

C. Mining Difficulty of the PoM Mechanism

Every work-based consensus algorithm consists of a mech-
anism to adjust the difficulty levels of its defined mining task,
allowing control of block creation time, transaction through-
put, and competition between miners. In our case, the difficult
aspect is mainly regulated based on cryptography, blockchain,
and network parameters. Table I lists an estimation of how
different factors affect the difficulty of the mining task.

The difficulty of recovering the key depends mainly on the
key size, number of shares, threshold, key sharing frequency,
and number of nodes. Obviously, with the increase in key size,
the number of key shares to be captured increases. Similarly,
setting the threshold to a higher value still increases the num-
ber of key shares a miner node has to capture to reconstruct
the key. However, more key shares will be available in the

network to recover by increasing the number of shares (which
determines the number that the key is divided into) while
keeping the key size and threshold fixed. Therefore, the avail-
ability of many shares in the network lowers the recovery
difficulty, while key size and threshold increase the difficulty.
In addition, with a lower key sharing frequency (the duration a
blockchain node must wait to send its next key share), the com-
pletion of the mining task will be delayed. Hence, the difficulty
increases with the key-sharing frequency. Nevertheless, having
a more significant number of miner nodes (=key distributors)
grows the number of key shares in the network, increasing the
key recovery probability. Similarly, the difficulty lowers by
increasing the key revealing probability (willingness to broad-
cast its key share to other peer nodes). This fact is elaborated
quantitatively in a later Section VI-C. Furthermore, the time
taken to solve the mining task will be minimal when the
computational power of a miner node increases. However,
the effect of computational power is negligible on the diffi-
culty since the mining task is not computationally intensive.
Moreover, the increase in network latency and decrease in
network bandwidth interrupt and delay the process of miners
distributing their keys and capturing keys to become winner
miners. As a result, the entire mining task operation will get
delayed. Therefore, high latency and low bandwidth affect the
difficulty aspect negatively.

VI. NUMERICAL ANALYSIS

We carried out multiple numerical simulations to evaluate
the performance of the proposed consensus PoM. This sec-
tion discusses the simulation models developed to assess the
internal performance factors of PoM and compare PoM with
other traditional consensus protocols. The simulation tool used
for all the tests discussed in this section is MATLAB [22].

Simulation model 1 represents a wireless blockchain
network with N number of nodes. We evaluated the blockchain
performance metrics by varying N from 1 to 1000. Simulation
model 2 illustrates an estimation of energy consumption for
different blockchain architectures. Simulation model 3 exem-
plifies a blockchain network connected with m number of
miner nodes at the key distribution phase of the PoM, where
miner nodes broadcast and capture key shares. We instanti-
ated different instances of this model when m = 4, 10, 20,
and 50. It analyzes key recovering probability by varying key
revealing probability from 0 to 1.

A. Simulation Model 1: Inter-Parameter Comparison
Between PoM and Other Conventional Consensus
Mechanisms [23]

This subsection presents a quantitative analysis of the com-
munication impacts on blockchain performance metrics in a
wireless blockchain ecosystem. We compared our proposed
PoM consensus protocol with widely used consensus algo-
rithms in a SLA/SSLA ecosystem. Namely, PoW [8], [24],
[25], Raft [26], [27] and PBFT [28]. The comparison is made
with respect to several significant performance metrics such as
communication complexity [23], spectrum requirement [23],
security bound [23], and transaction throughput [23].
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Fig. 8. Comparison of the communication complexity of different consensus
mechanisms [23].

1) Communication Complexity: Communication complex-
ity defines the number of communications between transmitter
and receiver [23]. Fig. 8 exemplifies the communication com-
plexity of commonly used consensus protocols in a wireless
network. It is clearly visible that PBFT requires the highest
degree of communication 2N + N 2. It is because all con-
nected nodes must communicate among others at their primary
stages of prepare, prepare and commit. On the other hand,
Raft and PoW depict the same pattern of requiring up to
2N communications. In Raft, the communication complex-
ity is the summation of communications happening between
followers to the leader (uplink) and leader to followers (down-
link), which adds up to 2N. However, in PoW and PoM,
2N number of communications are required to broadcast the
client-transaction request and winner miner’s solution to all
other connected nodes. In addition, PoM requires communi-
cations at the stage where each node (i.e., N) broadcasts its
key shares among peer nodes. Hence, at that point, N 2 num-
ber of communications are required. However, PoM triggers
key re-transmission if it finds no winner miners at a defined
interval. Therefore, the communication complexity of PoM
is rN 2 + 2N , where r is the number of re-transmissions.
However, at the ideal stage, r = 1 makes the communication
complexity of PoM equal to N 2 + 2N . Note that we consid-
ered the ideal stages of each consensus protocol throughout
this comparison [23].

2) Spectrum Requirement: The required number of com-
munication spectrum resources or the number of transmitter
processes in a wireless blockchain network refers to the
spectrum requirement [23]. A comparison is made among con-
sensus algorithms with respect to this regard and demonstrated
its results in Fig. 9. The PoW model requires two broadcast
communications to transmit the transaction request and the
winner miner’s result. Hence, the overall spectrum require-
ment of PoW is only 2, which is a constant value and does
not depend on the number of nodes. Similarly, PoM proto-
col includes the transaction broadcasting and broadcasting the
winner node’s result to all peer nodes at the verification stage

Fig. 9. Comparison of the spectrum requirement of different consensus
mechanisms [23].

(i.e., 2). In addition, each node transmits its key shares among
other nodes (i.e., N). Hence, the spectrum requirement of PoM
is N + 2. The Raft model requires broadcasting transmission in
downlink (i.e., 1), and each follower node conducts a one-way
communication to the leader (i.e., N). Therefore, the spectrum
requirement of Raft is equal to N + 1. In PBFT, spectrum
resources are allocated for broadcasting transactions at the pre-
prepare stage (i.e., 1) and the communication between nodes
at prepare and commit stages (i.e., 2N). Hence, the spectrum
requirement of PBFT sums up to 2N + 1, which is the highest
of all.

3) Security Bound: It determines the maximum number
of faulty nodes (f ) a consensus protocol can withstand [23].
For PoW, the security bound is 2f + 1 due to the possibil-
ity that more than 50% of the computing power within the
blockchain network can be acquired by a user, then the whole
blockchain jeopardizes. In PoM, more than 50% nodes should
verify the winner miner’s solution to generate a valid block.
Hence, the security bound of PoM becomes 2f + 1. In contrast,
the voting-biased consensus protocols consider faulty nodes as
“inactive” or “malicious” nodes transmitting false data within
the blockchain network. PBFT permits 1/3 of nodes to be
faulty, making security bound 3f + 1. While, Raft can tol-
erate 50% faulty nodes, which results in security bound to be
2f + 1.

4) Transaction Throughput: The transactions per second
metric measures the transaction throughput. Typically, proof-
based consensus algorithms such as PoW suffers a great deal
of low throughput compared to other typical consensus proto-
cols. Due to the time taken to conduct intensive computations
to achieve consensus is high. Although the mining task of
PoM instructs to carry out computations, it does not require
plenty of computational power to solve the puzzle. However,
in PoM, keys are transmitted at a given frequency, which
delays the mining process a bit. Therefore, we can consider
the security bound of PoM as “medium”. In contrast, the
transaction throughput of voting-based consensus algorithms
is excessively high [23].
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Fig. 10. Comparison of the energy consumption per transaction for different
architectures [29].

B. Simulation Model 2: Comparison of Per Transaction
Energy Utilization [29]

Energy consumption per transaction of typical blockchain
architectures is roughly estimated in the paper [29]. To bring
PoM into this comparison, we estimated the value by measur-
ing the energy consumption for 100 transactions per block
and setting the difficulty level to 4 in our developed sim-
ple blockchain network (refer Section VIII-B). Based on the
experimental results, we arrived at a magnitude of 18J per
transaction. Fig. 10 illustrates a comparison between differ-
ent architectures with regard to energy consumption. It is
apparent that the PoM can operate transactions at a low
energy consumption compared to Public Blockchain systems.
Furthermore, in PoM, a portion of the total consumption of
Energy (18J) spends on monitoring the network, which is
the main functionality of our SSLA management framework.
To elaborate more on that, PoM consensus can be achieved
only by monitoring the network, which is the primary func-
tion of the proposed application. Therefore, it is clear that
18J of Energy (total energy consumption of PoM per transac-
tion) is insignificant compared to other blockchain networks,
which consume Energy solely on the consensus. In our case,
achieving consensus is a byproduct of network monitoring.

C. Simulation 3: Intra-Parameter Comparison of PoM

We analyzed the impact on key recovery by varying one
of the difficulty factors listed in Table I, which is the key
revealing probability. It is the probability that the miner
nodes willingly reveal their key shares with other peer nodes
by broadcasting the received key shares to the network. In
Fig. 11, we plot the key recovering probability against the key
revealing probability, varying the number of miner nodes m in
the blockchain network while keeping the threshold k constant.
We can formulate the probability of successfully recovering
the key [30] as follows. Note that P is the probability of reveal-
ing a key share, and 1 − P is the probability of not revealing

Fig. 11. The impact of key share revealing probability on key recovery
probability.

a key share to others.

PKeyRecovery =
m−1∑

i=k

p(i+1)(1− p)(m−(i+1)) (10)

Based on Fig. 11, it is visible that with the increment of the
number of nodes, the potential to recover a key dramatically
increases. Due to the presence of many cooperative nodes who
share their received key shares. Another primary observation is
that when the key revealing probability rises with the number
of miner nodes, the key recovery rate escalates. That is because
of the existence of many nodes that are extremely willing to
distribute their key share among others. Hence, every node
gets the privilege of receiving a large number of key shares,
which ultimately helps with the key reconstruction. As a result,
it lowers the difficulty of the mining task.

VII. PROTOTYPICAL IMPLEMENTATION

We developed prototypes separately for the two primary
modules proposed in this paper. Namely, (1) consensus proto-
col and (2) SSLA management framework. We have built our
own fully functional blockchain prototype from scratch and
integrated the proposed consensus protocol. Further, we have
executed the proposed SSLA management services on top of
the Ethereum test network. These two main implementations
are discussed explicitly in this section.

A. PoM

The prototype of the proposed system consists of a newly
developed blockchain program using NodeJS, which simulates
the behavior of the participating nodes. Fig. 12 shows the
experimental setup of the blockchain system. The program
has RESTful APIs, which interact with various blockchain
operations by the node, i.e., joining the blockchain network,
submitting transactions, fetching block information, mining
transactions, and submitting random key and certificate shares
in the network. The blockchain program is run on different
ports in the same system to simulate multiple nodes. The
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Fig. 12. Prototype setup for the PoM-based blockchain system.

nodes can join the common blockchain network by sending
an API request, which synchronizes the blockchain among the
participating nodes by broadcasting the chain.

A background job is scheduled when a new node is added
to the network, which gets triggered every 20 ms. The job
ensures that the private key du and the certificate Certu are
generated using the previous block timestamp and are divided
into parts using the @zippie/secrets.js package, which uses
Shamir’s threshold secret sharing scheme in JavaScript. During
the job, a random part of both generated du and Certu is
broadcasted by each node across the network using the broad-
cast API. The remaining nodes receive the broadcasted shares
in a frequency of 10 seconds and store them locally. The dif-
ficulty of the system is set by increasing the number of shares
to be generated and the minimum number of shares needed to
combine them to successfully recover the du and Certu. The
system’s difficulty can increase by increasing the threshold of
shares required by the miner to retrieve the random key and
certificate successfully.

During the mining process, a mining job has been cre-
ated that checks if the threshold is reached to combine the
shares every 200 milliseconds. The nodes keep listening for
more shares if the threshold has not been reached yet to com-
bine the shares. If the threshold is reached, then Certu and
du are calculated using the shares. The mining node then
calculates the Public Key Qu and signs it using the private
key du using the Elliptic Curve Digital Signature Algorithm
(ECDSA). The miner then creates a new block that contains
the timestamp, transactions, the signature, Qu and Certu and
broadcasts information to all the other nodes for verification
using the receive-block API, and deletes the mining job. The
nodes receiving the block verify the signature using the public
key Qu and add the block to the existing blockchain. If the
signature has a mismatch, the block gets rejected.

B. SSLA Management System

1) Prototype: We developed SSLA architecture on top of a
blockchain using Distributed Ledger Technology (DLT), and
we selected one of such open-source platforms like Ethereum.
We used the Rinkeby test network, an alternative to the main
blockchain, as the blockchain service in our implementation.
The functionalities of each module in the blockchain layer
of the proposed architecture (as shown in Fig. 2) are pro-
grammed and executed via smart contracts. Fig. 13 depicts
the implemented proposed system model. Each customer

Fig. 13. Prototype setup for the smart contract based SSLA management
framework.

and SP is connected to a crypto wallet application (In our
implementation, we used Metamask) to perform cryptocur-
rency transactions and interact with the Ethereum blockchain
network. The foundation for the client application is an HTTP
server deployed in the local host using Node.js. Decentralized
Applications (DApps) run on a Web browser configured with
the MetaMask plugin, which uses Injected web3. It essentially
connects the client application, and the Ethereum blockchain
ecosystem [31]. The proposed system performs DApp and
blockchain communications over a Remote Procedure Call
(RPC) protocol. RPC transactions are made possible by the
Web3.js library, which translates smart contract scripts to RPC
protocol. The client application has access to all the smart
contracts deployed on the blockchain, allowing it to perform
function calls to manage SSLA management functionalities.

2) Deployment of Smart Contracts: We executed the
developed prototype using Ethereum-based smart contracts
and coded the smart contracts using solidity language. We built
and deployed Ethereum contracts through a browser-based
compiler known as Remix IDE.

The key functions of each smart contract are summarized
as follows:

• User Authentication Contract: Registers stakeholders and
monitoring nodes. Further, it validates the access permis-
sion requests sent by stakeholders.

• Policy Manager Contract: Deploys and stores SSLAs in
blockchain

• Violation Monitoring Engine Contract: Stores network
monitored data and decides whether a violation happened

• Compensation Calculator Contract: Calculates the com-
pensation fee and the amount to be transferred for
the service provider and blockchain for their service
deliveries

• Reputation Management Contract: Calculates the reputa-
tion scores for service providers and blockchain nodes

VIII. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed PoM and
SSLA framework by conducting tests on the custom-built
blockchain and the Ethereum-based prototype, respectively. In
the custom-built blockchain, we ran tests to compare PoM with
PoW with respect to average block creation time and the total
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Fig. 14. Average block time against number of transactions per block.

energy consumption per block by varying the number of trans-
actions per block and the difficulty levels of the consensus. In
the Ethereum-based prototype, we carried out a cost analysis
and measured the end-to-end latency of the system. To obtain
results for proof of work, we replace the PoM consensus with
a locally developed proof of work algorithm, which calculates
the correct nonce to get the valid block hash based on dif-
ferent difficulties. For the tests, the nodes in the network are
set to 5, broadcasting the shares randomly among each other.
The maximum number of shares that can generate is the diffi-
culty factor × number of nodes, and the threshold to combine
the shares is maximum shares − (number of nodes/2). One
of the nodes sends different sets of transactions ranging from
100 up to 10000, and one of them mines the transactions using
RESTful API calls and records the block creation time.

A. Block Time Evaluation

Fig. 14 depicts the comparison of PoW with PoM in terms
of the block creation time for various transactions ranging
from 100 to 10000, keeping the difficulty constant for both
systems. In the case of PoM, the block creation time is high
initially, but as the number of transactions increases, the time
decreases and stays almost the same. This behavior is because
fewer transactions get processed faster, and the miner still does
not have the minimum shares to mine the block. Therefore
the miner waits for more shares. As the number of trans-
actions increases, the miner has the required shares by the
time all the transactions reach the transaction pool to get
mined. Hence the block creation time is less, and it increases
slowly with the increment of transactions, which then extends
the processing time. For PoW, as the number of transac-
tions increases, we see an increase in the block creation time
because generating the valid hash becomes more difficult.

We made a further comparison of both algorithms by cal-
culating the block creation time of 10000 transactions by
increasing the difficulty from 1 to 6, as shown in Fig. 15.
The block creation time increases gradually, with the thresh-
old shares required by the miner increasing with difficulty.

Fig. 15. Average block time versus different difficulty levels.

Fig. 16. Total energy consumption per block versus number of transactions
per block.

The waiting period for the miner to get the threshold amount
of shares contributes to the rise in time. As the broadcast
frequency is pretty low, the block creation time increases at a
plodding pace.

B. Energy Consumption Evaluation

We carried out tests to compare the energy consumption
between PoM and PoW consensus algorithms. We referred to
the equation (11) for calculating the energy consumption. Let
Psystem be the power usage of the system, which is 0.55 kW
for all the tests, and Tblock be the block time derived from
previous tests.

Energy = Psystem × Tblock

1000
(11)

We plotted the energy consumption with respect to the num-
ber of transactions per block in Fig. 16. It is clearly evident
that the energy consumption of PoW dramatically increases
with the increase in the number of transactions. In contrast,
PoM shows less energy consumption even with the variation
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Fig. 17. Total energy consumption per block against different difficulty
levels.

in the number of transactions per block. Fig. 17 depicts the
energy consumption for 1000 transactions for different dif-
ficulty levels. The energy consumption of both consensuses
remains almost similar. It increases slowly till difficulty 4,
after which the energy increases exponentially in the case of
PoW, whereas it increases linearly for PoM. The reason is
that until a difficulty of 4, the system calculates the valid hash
relatively quickly. However, when it increases further, the cal-
culation of the valid hash takes a high amount of time, thus
increasing energy consumption. In the case of the PoM, dif-
ficulty increase leads to an increase in the threshold shares,
which keep getting broadcasted by nodes in fixed intervals.
Hence the waiting time for the miner to achieve the thresh-
old increases linearly, resulting in a linear increase in energy
consumption.

C. End-to-End Latency

We carried out a test to measure the time taken to exe-
cute the main functionality of the proposed system. That is,
the combination of three main functionalities of the proposed
approach: (1) blockchain nodes monitor the network and sub-
mit sensed data to the proposed framework (2) Following
that, the system decides whether a violation occurred or not
(3) finally, imposing penalty (if any violations) on SP, compen-
sating the customer and transferring fee to violation reporters.
We coded each of these functionalities in Ethereum-based
smart contracts and deployed them in the Rinkeby network
(refer Section VII-B). We invoked each smart contract from
the client application (DApp) 100 times, measured the end-to-
end latency to run each of the three processes, and summed
them together. Each measured end-to-end delay consists of the
average block creation time of 15s [32], which is the block
creation time of the Rinkeby Testnet. We substituted it with the
estimated block verification time of PoM, which we derived by
testing. Thereafter, we plotted the previously calculated total
end-to-end delay with a 95% confidence interval and demon-
strated in Fig. 18. Based on the plotted results, we measured
the average end-to-end time taken for the entire process, from

Fig. 18. End-to-end latency from violation reporting to compensating a
customer.

data reporting to violation detection and payment settlements,
as approximately 4 minutes (238s).

D. Cost Analysis

This subsection analyses the costs incurred in smart contract
deployment and execution. In the implementation of smart
contracts, a payment of a gas fee is required in the Ethereum
blockchain to conduct transactions. Table II lists the estima-
tion of the gas consumption for the deployment of contracts
and execution of defined functions in the contract. Using the
Remix IDE Web browser, we found these estimated gas values.
Based on the tabulated results, the total cost incurred to deploy
all the smart contracts is approximately 14 Euros, a one-time
payment. For the execution of all other blockchain service
functionalities, it costs around a total of 2 Euros. Based on the
results, we can conclude that the cost incurred to implement
the whole system is considerable when implemented on the
Ethereum blockchain. However, we can significantly reduce
these costs by implementing the proposed SSLA management
framework on top of our novel blockchain system. Most state-
of-art-approaches have implemented their SLA/SSLA services
over the Ethereum platform, meaning they have run their
services on a PoW-based blockchain platform. In our case, we
will be utilizing the proposed PoM-based blockchain, which
is custom-built for the management of SSLAs.

IX. SECURITY AND FORMAL ANALYSIS

This section defines and evaluates the general and secu-
rity properties of the PoM-based blockchain system. Further,
we present a threat model with potential attacks and defense
strategies. In the end, we present the formal model and for-
mal verification of the PoM consensus protocol analyzing its
results.

A. Definitions

Definition 1 (Chain Quality [33]): Let μ ∈ (0, 1] be the
chain quality coefficient. The chain quality QCQ expresses
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TABLE II
GAS CONSUMPTION ANALYSIS OF ETHEREUM-BASED CONTRACTS

UTILIZED IN SSLA MANAGEMENT SERVICES

that if l(l ∈ N) number of successive blocks of a chain C
acquired by an honest party, then a portion of μ blocks mined
by attackers. Then the expected lower bound on the proportion
of honest blocks of chain C can be stated as QCQ = 1− μ.

Definition 2 (Chain Growth [33]): Let τ ∈ (0, 1] be the
chain speed coefficient. The chain growth QCG expresses that
if the chains C1, C2 held by honest parties at rounds r1, r2
with chain lengths l1, l2 respectively. r2 is ahead of r1 by
s(s ∈ N) number of rounds. Then, it satisfies the r2−r1 ≥ τ.s

Definition 3 (Fork Probability): The fork probability QFP
expresses the potential for blockchain nodes to receive more
than one block simultaneously.

Definition 4 (Chain Consistency [34]): The chain consis-
tency QCC assures that all honest parties will produce the
same order of blocks in round r, allowing only the last T
number of blocks to be changed.

Definition 5 (Blockchain Fork): Blockchain fork may trigger
when many perspectives on the state of the blockchain exist.
That is when several nodes mine simultaneously and may find
conflicting blocks which split the main chain into multiple
chains.

B. Property Analysis of the PoM-Based Blockchain

This subsection presents the analysis of the primary
blockchain properties of the proposed consensus protocol.
Namely, fork probability, chain growth, chain consistency, and
chain quality. We developed different models to assess each
of the properties. We designed a probabilistic model to evalu-
ate fork probability and chain growth. Whilst a Markov model
to analyze chain consistency. In addition to that, we refer to
the simulation model discussed in Section VI-C to assess the
chain quality.

1) Fork Probability: We divide secret S into n number of
unique key shares. For a successful reconstruction of S (or
finding the mining solution), a node must recover at least
k (<n) number of unique key pieces. Let us assume, as an aver-
age, that a single node receives keys at a rate of γ key shares
per second. Therefore, the number of key pieces received by

the node after q seconds is γq. A node acquires keys from
itself and its neighboring nodes. Each key share received draws
from n total key shares. The same key share can be received
multiple times from other nodes even though unique key shares
contribute to achieving the consensus. Therefore, we assume
receiving keys as events of simple random sampling with
replacement. Let the probability of finding a mining solution
at q seconds is Yq, which is the same as the probability of hav-
ing minimum k unique key shares within γq(≥ k) key shares.
Let Uk be the probability of having at least k unique keys
after q seconds, and N be the number of unique key shares a
node captured after q seconds,

Uk = Pr(N ≥ k) (12)

It is obvious that U1 = 1. U2 is derived from U1 with
probability 1 − 1

γq , or from U2 itself with probability 2
γq .

That is because there are γq items in total. Hence, we can
deduce U2 as follows,

U2 =

(
1− 1

γq

)
∗U1 +

(
2

γq

)
∗U2 (13)

Therefore, we formulate the general equation as below,

Uk =

[
1− k−1

γq

]
∗Uk−1

[
1− k

γq

] (14)

By solving the system of equations, we obtain the proba-
bility of having at least k unique key shares after q seconds,
which we denoted as Yq(= Uk).

Blockchain fork occurs due to the propagation delay in the
network. Let α be the mean propagation delay. Then, the prob-
ability of finding a solution during α period can be defined as
the fork probability QFP, which can be given as follows,

QFP = Y(q+α) − Y(q) (15)

2) Chain Growth: Maintaining consistent chain growth is
always desirable throughout the evolution of the blockchain.
However, with the presence of adversary miners, the chain
growth can be negatively influenced to make the chain stag-
nant. In our case, an optimal adversary strategy would be to
reduce the chain growth by not sharing their key shares with
neighboring nodes. Therefore, the expected number of key
shares received by a node per second (γ) drops proportionally
to the fraction of adversary nodes. Then the key receiving rate
with the presence of adversaries (γZ) can be derived as shown
in the equation (16),

Let the fraction of adversary nodes in the network be β,
then the fraction of honest nodes will be 1− β.

γZ = (1− β)γ (16)

Therefore, the probability of finding a mining solution at any
given q second with the presence of adversaries (denoted by
Y ′
q) can be deduced by substituting γ with γZ in equation (14),

which gives the following equation (17).

Y ′
q =

[
1− k−1

(1−β)γq

]
∗Uk−1

[
1− k

(1−β)γq

] (17)
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3) Chain Consistency: We consider the Markov Chain
approach [34] in analyzing chain consistency. We rely on con-
vergence opportunities to construct the relationship between
when a new block is mined and all nodes synced with the
new block. It is a three-step event, (1) No honest player has
mined in α rounds. Hence, by the end of α rounds, all hon-
est players learned about all the existing blocks, and they all
agreed on the length of the longest chain. (2) an honest player
finds the mining solution and mines a block, which will be the
last block of the longest chain. (3) Following another α round
where no honest player mines. Hence, every honest player
learns about the new block and agrees on the longest chain.
Note that we define a round as an attempt made to mine a
block when a node receives a new key.

Based on [34], in order to prove that PoM achieves consis-
tency, we first need to demonstrate the possibilities of how an
adversary can break aforementioned convergence opportunities
at any given time. Otherwise, honest players have the oppor-
tunity of converging on the same chain. For the analysis, we
need to count the expected number of convergence opportuni-
ties at a given time and compare it with the expected number
of blocks that the adversary can mine, which is the minimum
amount of work that the adversary must commit to prevent
the convergence of honest players. An adversary can break
convergence opportunities by inserting one of their blocks in
the quiet period of steps (1) and (3). Hence, multiple blocks
will be at the same level, creating a fork for honest players
to disagree. The Markov model comes in handy in counting
events that occur at random intervals. In our situation, blocks
can be found close together and far apart during a given time.
Therefore we need to count precisely how long these quiet
periods are. The simple Markov chain of convergence oppor-
tunity [34] corresponding to our PoM protocol can be modeled
as follows,

We present two states in the Markov model, state A: honest
mined blocks are found close together, where there is no guar-
antee of convergence opportunity since the time between the
blocks is always less than α. With the existence of α rounds
where no player mines, the transition to state B occurs. At
state B, a convergence opportunity can occur if an honest block
is created and a α period of silence follows that. Otherwise,
the system state changes back to state A if two honest blocks
are found together at less than α time.

Let Pα be the probability of α rounds being unsuccess-
ful (silent), and then we can state Pα as shown in the
equation (18),

Pα =
(
1− Yq

)α (18)

Let eab be the edge from state A to state B. Hence, we can
compute the stationary distribution for states and edges of the

Markov model as follows,

P [e00] = P [e10] = 1− Pα

P [e01] = P [e11] = Pα

π0 = P [A] = (1− Pα)π0 + (1− Pα)π1

π1 = P [B ] = Pαπ1 + Pαπ0 (19)

Based on the research work presented in [34], we can derive
that our model satisfies consistency if the number of conver-
gence opportunities that can occur in T rounds is greater than
or equal to the maximum number of blocks mined by the
adversary during the same T rounds. Hence, we can state the
equation (20). Note that lij is the expected time spent on each
edge, and δ(> 0) is the tuning parameter.

T ∗ P2
α∑

i ,j P
[
eij

]
πijlij

≥ T ∗ (1 + δ)β (20)

4) Chain Quality: In our blockchain network, malicious
nodes may try to mine blocks selfishly without sharing or
revealing their portion of key shares to other nodes, which
reduces the chances of reconstructing the key during the
desired time interval. This type of scenario is simulated under
Section VI-C and based on its results (presented in Fig. 11),
we can conclude that key reconstruction probability is high
with the existence of a large number of nodes in the blockchain
network including both honest and malicious nodes. Hence,
such malicious behaviors hardly threaten the overall mining
activity.

C. Threat Model

A malicious miner can model different threats to interfere
with the functionality of the consensus process. Blockchain
fork triggers when many perspectives on the state of the
blockchain are present. That is when several nodes mine simul-
taneously and may find conflicting blocks, which splits the
main chain into multiple chains. In addition to that, there is
a potential to have multiple winner miners at the following
stages; Key revealing stage: at round r, if a majority of nodes
require only a few key shares to find the mining solution, then
at the next round r + 1 there is a high probability of finding the
mining solution by more than one node. Key distribution stage:
If nodes can find the desired key when they start distributing
their key shares. To overcome these situations, we have imple-
mented effective tie-breaking criteria such as longest chain and
heaviest chain.

Malicious miners may try to mine blocks secretly without
sharing their portion of key pieces with other nodes while
receiving key pieces from others. To avoid this behavior, nodes
continuously monitor the broadcasts of neighboring nodes to
identify nodes with poor sharing patterns. If an uncooperative
node is detected, using a tit-for-tat like method, honest parties
refrain from sharing key pieces with such nodes.

Furthermore, selfish mining is another potential malicious
behavior that can appear in the network, where selfish min-
ers disclose mined blocks to the public blockchain network
when they possess a longer chain. However, in our system,
the probability of introducing a new block to the network by
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doing selfish mining is extremely low. This is because selfish
miners do not receive keys from the majority of the network.
This results in extremely high block creation times. Therefore,
the length of the chain created by honest nodes will be very
long compared to that of selfish miners’ chain, making our
model tolerant of selfish mining.

D. Formal Analysis of PoM

We developed our proposed consensus protocol using
CSP# [35] in the Process Analysis Toolkit (PAT) [36] model
checker. CSP# is a sub-language of Communicating Sequential
Processes (CSP), and it also supports C# libraries to be
imported where we can define required custom data structures
and functions. Our model made use of this property substan-
tially to implement fundamental features and functions of our
blockchain system. We ran the verification via PAT to vali-
date the general and security properties of the designed formal
model by defining several assertion rules. The complete CSP
model and the C# library for the PoM consensus are available
in a GitHub repository.1

1) Formal Modeling: We modeled a blockchain network
with N number of nodes, where each node is connected with
a few other nodes. We allowed inter-node communication to
happen through channels we built between each connected
node. Each node runs a series of processes concurrently to
achieve consensus. These processes are defined as sequences
of events and represent basic functionalities of the proposed
consensus protocol, which is required to find a winning node
to create the block. According to CSP# [35] modeling lan-
guage, we can denote our blockchain system as a sequence
of fundamental processes that complement the main phases of
our PoM protocol as follows,
BlockChain() = Initialize();StartBroadcast();
StartBroadcast() = (||x : {1..N }@(Reveal(x );

(Send(x )||Receive(x )); IsMined()));StartBroadcast();
Note that P; Q denotes a process P followed by process Q

and P ||Q denotes when P and Q processes run in parallel.
The initialize() process generates a master key M, a random
sequence of n keys. It assigns each node a master key by
shuffling key shares of M.

The Reveal(x) process, when called, reveals node x a key at a
time and adds revealed keys to a list (called Captured Keys).
The Send(x) process distributes keys only to their neighbor
nodes through channels connecting neighbor nodes. Receive(x)
process captures keys distributed by their neighbor nodes and
adds to its Captured Keys list if and only if the received key
is not in its list of collected keys. IsMined(x) process inspects
whether any node has captured k number of unique keys,
where k is the threshold, the number of keys required to find
the winning solution. If a winning miner has been found, the
IsMined(x) process sets a flag to indicate it, and the verifi-
cation program can verify it. StartBroadcast() process allows
N number nodes to execute sequence of processes including
Reveal(x), Receive(x) and IsMined(x) in parallel, which is con-
sidered as one cycle. Inclusion of StartBroadcast() at the end
of StartBroadcast() permits the algorithm to run continuously.

1https://github.com/nisitaw94/PoM.git

TABLE III
VERIFICATION RESULTS AGAINST THE PROPERTIES

OF THE FORMAL MODEL

2) Formal Verification: We validated our formal model of
the proposed consensus protocol using the PAT model checker
by considering four aspects for verification. We simulated
these four aspects by varying the number of malicious nodes in
the system. Scenario 1 (S1): when none of the nodes are mali-
cious, Scenario 2 (S2): when one-third of total nodes are
malicious, Scenario 2 (S3): when half of the total nodes are
malicious and Scenario 3 (S4): when two-third of nodes
are malicious. We consider nodes malicious when they do
not cooperate in distributing their collected keys within the
network. We performed formal verification by setting the fol-
lowing model parameters in the designed formal model of the
PoM: N=6 number of nodes, (n, k) = (20, 18) number of
keys. We validated our system under the aforementioned sce-
narios against the following set of properties and tabulated its
results in the Table III,

• Deadlock-free (A1) assures that there does not exist any
interference continuing any process and does not halt any
activities of the nodes unexpectedly and indefinitely.

• Consensus (A2) examines whether any node in the
network is successful in acquiring k number of unique
keys to become the winning miner. If a node manages
to become the winner, we consider that our system has
reached a consensus.

• No Blockchain Fork (A3) guarantees a network with
no more than one winning node within the same cycle.
Here, a fork can be created during key revealing or key
receiving stages.

3) Results Analysis: Based on Table III, we can come to
the following conclusions corresponding to each assertion rule,

• A1: We can deduce that the system is deadlock-free
despite the model variations.

• A2: We can observe that regardless of malicious activities
present in the network, the system achieves consensus.
However, in order for the time to achieve consensus to
be in a reasonable range, the number of malicious nodes
should be as low as possible.

• A3: We can conclude that our model guarantees that no
blockchain fork occurs under all four scenarios from the
start until the winner of the first block is found.

One of the drawbacks of PAT we experienced during our
study is that the time it takes to run a verification grows expo-
nentially when the number of nodes increases. It is because of
the nature of the model-checking technique PAT uses, which



WEERASINGHE et al.: PoM: A NOVEL CONSENSUS MECHANISM 2801

TABLE IV
FEATURE COMPARISON WITH RELATED WORKS

allows for a state explosion to occur with the increasing com-
plexity of the model [37]. Hence, we restricted our model to
six nodes.

X. DISCUSSION

A. Comparison With Existing Systems

Table IV compares the proposed SSLA management system
with the existing state of the work. There is still no
novel blockchain-based SSLA management system introduced.
However, there is plenty of research work on SLAs now run
on the blockchain. Hence, we compared our work with both
SLA and SSLA research studies. Blockchain systems are way
better than non-blockchain system since it permits automat-
ing the whole system by running services via smart contracts.
Nevertheless, there are still bottlenecks in Blockchain-based
systems, such as high energy consumption, high computational
complexity, and high cost. Our solution rectifies these chal-
lenges by introducing a SSLA application-biased consensus
protocol.

B. Challenges

During the development of the prototype few design chal-
lenges were identified, i.e., to generate the elliptic curve for
key computation, a random number had to be used to get the
generator point on the curve. However, for each miner to gen-
erate the same master key, The generator point had to be the
same for all the miners. It is practically not achievable. Hence,
we used a combination of the last block’s timestamp and its
creator’s address in place of the random number. In addition,
during the block verification phase, the winner miner was sup-
posed to broadcast the message consisting of the public key
Qu by encrypting it with the private key du. Since the block
verification has to be done by every node in the network while
syncing their local blockchain, instead of using an asymmetric
cryptographic algorithm ECDSA, we decided to incorporate a
symmetric cryptographic algorithm. So that the broadcasting
miner can sign the winning message using the common key
Qu and the nodes can verify the signature using their version
of Qu and verify the message for a successfully mined block.

There are plenty of modular blockchains available that claim
to be fully customizable. However, it is inevitable that the cus-
tomized blockchain shares most of its fundamental character-
istics with its counterpart in most cases. As a result, they still
need to be more flexible to adapt to a custom blockchain with
a work-based consensus algorithm. For example, the Stratis
platform consists of PoW/PoS/ Proof-of-Authority (PoA) con-
sensus options, while Hyperledger supports KAFKA/SOLO.
Even though they are customizable, in order to be a feasible
model, it is expected from adapters that their new algorithms
inherit from the existing ones, which essentially limits the
customisation only up to a certain extent. In contrast, we
implemented our proposed consensus algorithm in a local
blockchain developed using NodeJS from scratch.

XI. CONCLUSION

In this research, we thoroughly evaluated the potential chal-
lenges of conventional SLA/SSLA management systems. We
introduced an automated SSLA management framework with
an accompanying custom blockchain to mitigate them. Based
on the experimental results of the implemented PoM consen-
sus, we concluded that the system consumes less time, energy,
and cost compared to PoW, the most commonly used consen-
sus algorithm in state-of-art blockchain-based SLA systems.
The calculations indicate satisfactory end-to-end latency levels
even though such SLA management systems are not time-
critical. More importantly, the overall performance of our
solution in terms of available security features proves to out-
perform most other platforms available. With the utilization
of off-chain databases to securely store monitoring data, we
prevented excessive growth of the ledger, thereby improving
scalability and adaptability. As the very first blockchain-based
SSLA management framework, we identified potential appli-
cation scenarios for the given system in current and future
networking paradigms. In the future, we plan to further expand
the implementation of SSLA management services and the
proposed blockchain system by leveraging AI-based solutions
to predict SSLA violations beforehand.
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