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Abstract—Coverage and Capacity Optimization (CCO) and
Inter-Cell Interference Coordination (ICIC) are two tightly cou-
pled and conflicting Self-Organizing Network (SON) functions
that are responsible for ensuring optimal coverage and capac-
ity in any cellular network. While executing currently, these
functions may modify the same RF and antenna parameters,
resulting in severe performance deteriorations. In this context,
a centralized optimization and coordination approach may be
impractical considering the large sizes of network clusters and
the dynamics involved between the several other defined SON
use cases. In this work, an implicitly coordinated and scal-
able self-organizing architecture is followed such that when a
carefully defined multi-objective utility function for CCO-ICIC
joint optimization is optimized locally by each RAN node, a
desired balance between the two conflicting network targets
of coverage and capacity is ensured globally. Pareto analysis
of three variants of the proposed Local Multi-Objective KPI
(LMO KPI) has been conducted to implicitly coordinate the two
SON functions in a distributed self-organized manner. In order
to recommend appropriate network configurations dynamically
to quickly adapt to altering network environments, two col-
laborative filtering-based Recommender Systems (RecSys), one
using a Deep Autoencoder and another based on Singular Value
Decomposition, have been employed along with a neural network
regressor to improve recommendations for cold-start scenarios.
The two proposed hybrid-RecSys-based SON coordination solu-
tions, while adopting an appropriate Local Multi-Objective KPI
(LMO KPI), outperform previous work in coverage by 36% and
in capacity by around 2% while reducing power consumption
by more than 50%. The study demonstrates that the definition
of the LMO KPI is crucial to the performance of this approach.
Altogether, the work shows that the adopted self-organization
and implicit SON-coordination approach is not only feasible and
performant but also scales well if implemented meticulously.

Index Terms—Autoencoder, capacity, CCO, collaborative fil-
tering, coverage, ICIC, recommender systems, regression, self-
coordination, self-organizing networks.
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I. INTRODUCTION

THERE is an evident paradigm shift towards smart and
cognitive networks that utilize vast amounts of network

telemetry data for automating and optimizing several com-
plex issues in the domain of wireless communications. The
involvement of advanced Machine Learning (ML) algorithms
for addressing the challenging problems of communication
systems and making them adaptive and self-aware, has been
very well realized by the telecom industry [1], [2], [3]. One
crucial area of application for Artificial Intelligence (AI) based
network data analytics is for cognitive network management of
cellular mobile networks. 3GPP introduced the notion of Self-
Organizing Networks (SON) first in Release 8 and then has
been elaborating on the idea with several subsequent releases.
In recent releases, dedicated network functions like Network
Data Analytics Function (NWDAF) and Management Data
Analytics Service (MDAS) have been introduced to actively
promote the integration of AI-powered solutions in the field
of telecommunication [4], [5], [6], [7].

In the context of Cognitive Network Management (CNM),
employing zero-touch automated configuration of radio-access
networks increases their efficiency and minimizes the need
for expensive human engineering expertise. There are sev-
eral SON functions introduced by the Standards Developing
Organizations (SDOs) to individually address specific network
goals like load balancing, handover optimization, interference
management, coverage and capacity optimization, energy sav-
ing, outage compensation and some others. The SON func-
tions, or CNM functions, are autonomously operating closed
control loops that cognitively monitor different network con-
texts and strive to achieve their respective performance targets
or technical objectives by regulating the required network
configurable parameters. Generally, there are multiple concur-
rently executing SON functions with distinct operator-defined
objectives. If the behaviour or targets of some SON func-
tions are complementing, their gains can be further increased.
However, on numerous occasions, the updates by one SON
function could also negatively impact the performance of one
or more SON functions. In order to manage these positive
and negative couplings between the simultaneously operat-
ing SON functions, the concept of Self-Coordination has been
introduced [8].

The task of modelling the dynamics between the co-
executing SON functions, operating in the complex networking
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environments of present and future cellular networks, purely
based on human expert knowledge can be cumbersome and
still inaccurate. The advancements in the domain of AI have
already attracted researchers of various spheres to employ
advanced ML algorithms for modelling such complex rela-
tionships. The telco industry and academia have also very well
recognized the potential of ML-based intelligent solutions that
can be utilized for CNM [9], [10]. The availability of vast
amounts of network telemetry data, the advances in the fields
of storage and computation and the introduction of cloudi-
fication and softwarization in networking can act as major
enablers for the adoption of ML for exhaustive network ana-
lytics and zero-touch operation and control in next-generation
CNM solutions.

In this work, the emphasis is on the simultaneous
optimization of coverage and capacity which are crucial
as well as challenging CNM targets for wireless cellular
networks. A dedicated SON function called Coverage and
Capacity Optimization (CCO) has been defined by 3GPP
that aims to take care of coverage holes and achieve a
good trade-off with capacity. Another tightly coupled SON
function, Inter-Cell Interference Coordination (ICIC), tries to
mitigate ICI situations by reducing overlapping coverage. It
is known that interference coordination, coverage and capac-
ity optimization are contrasting network goals that cannot be
individually realized without affecting the others [11]. These
functions can thus conflict with the operation of each other
when they operate concurrently in any network as they might
alter the same network configurations with conflicting targets.
Thus, the attempt in this work is to capture the dynamics
between these two SON functions by deriving an implicit
SON-coordination model that can establish good coverage
without creating significant interference to neighbour cell sites,
thereby ensuring optimal capacity.

Recommender Systems (RecSys), a sub-class of ML algo-
rithms focused in this work, are unsupervised information
retrieval systems that are capable of analyzing huge volumes
of data related to the knowledge of the users, items and the
user-item interactions in order to predict the preference of a
user among a set of items [12], [13]. The proposed SON-
coordination solution is designed using hybrid collaborative
filtering RecSys with an intent to exploit the similarities in the
observed network environments by the cell sites to collabora-
tively and cooperatively determine suitable sets of parameter
configurations for dynamically changing traffic scenarios, from
a large space of possible combinations.

The functional architecture of the proposed hybrid SON
solution comprises self-organized intelligent agents executing
at each RAN Node (RN) that collect the relevant observa-
tion from their respective cell sites and enforce configuration
updates in a distributed manner based on the recommenda-
tions from trained ML models. The targeted ML models can
be trained centrally at an edge cloud or a public cloud in a
cooperative manner based on the observations shared by the
participating RNs. The idea is to achieve the targeted network
goals in a decentralized manner such that instead of deter-
mining the near-optimal configurations for a large network
cluster, the problem is broken down to each RN following a

divide-and-conquer strategy. The absence of a central entity
for determining suitable configurations for all the involved
network entities lets the solution scale to any network size and
also ensures that there is no single point of failure. Although
this work focuses on two specific SON functions, the design
of the SON-coordination solution is proposed keeping in mind
that the general requirements of any other conflicting and
complementing SON functions are also catered. This way
the motivation is to propose a distributed, practical, scalable,
resilient, self-organized, and self-coordinated solution that can
be deployed for any network size and easily extended to any
number of inter-dependent SON functions.

The organizational structure of the rest of the paper is
as follows. In Section II, a literature review is presented
for the relevant works in this domain along with the key
contributions of this work. The reasons for considering the
application of Recommender Systems over the other existing
ML-based solutions have been deliberated towards the end
of this section. Section III briefly covers an overview of the
principles and design paradigms that have been taken into
consideration for the solution architecture to effectuate self-
organization and implicit self-coordination of SON functions.
This section provides a high-level idea about how the proposed
SON-coordination solution could be deployed in practical
networks. Next, the conceptual design of formulating the SON-
coordination problem in terms of conventional Recommender
System models has been discussed in Section IV. In Section V,
the implementation details of two proposed hybrid collabora-
tive filtering RecSys-based SON-coordination solutions have
been elaborated. The simulation setup, results and observations
have been presented in Sections VI and VII, followed by some
concluding remarks in Section VIII. For ease of reading, a list
of the critical acronyms is included in Table IV.

II. LITERATURE REVIEW AND KEY CONTRIBUTIONS

The two SON functions – ICIC and CCO have been individ-
ually studied in several works. The standalone designs mostly
focus on the intrinsics involved in each of these individual
closed-loop automation functions. When they are executed
concurrently in the network, they tend to impact each other’s
performance and these interactions further increase the degree
of optimization complexity. Nevertheless, it is still important
to understand the central ideas of both these SON functions
to model them jointly such that the operation of both can be
optimized without compromising the performance of the other.

Most of the recent works on CCO are targeted at col-
lectively optimizing the antenna and RF parameters of a
group of RNs over a central controller. The authors in [14]
have proposed a CCO approach in which cells with cov-
erage issues are first heuristically recognized and clustered
along with the impacted cells. Then the antenna azimuth
and downtilt are jointly optimized for the complete cluster
using Sequentially Unconstrained Maximization Technique.
The heuristic approach for clustering cells with coverage issues
requires human supervision and may still be sub-optimal and
less practical for large network clusters. Another CCO work on
similar lines is [15], where the proposed solution first attempts
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to determine the problem cells and group a set of neighbour-
ing cells to centrally determine appropriate antenna azimuth
and downtilts for all the cells in the group using a Differential
Evolution approach. This evolutionary algorithm-based meta-
heuristic approach may not be able to figure out the optimal
solution and the centralized search for suitable antenna con-
figurations for all cells may not scale well for large clusters.
Also, these works focus on under-coverage and over-coverage
issues but the gains in terms of capacity are not evaluated.

In [16], a preliminary work on CCO has been evaluated
where a patch of a network with multiple RNs is optimized
in terms of coverage and capacity using a single controller.
The transmission powers and antenna downtilts of all the RNs
in the area of interest are collectively optimized using meth-
ods like Deep Deterministic Policy Gradient and Bayesian
Optimization. The authors of this work acknowledge that such
a centralized optimization approach may be infeasible for
larger networks as the optimization space would explode, but
it provides a good insight to understand the trade-off between
coverage and capacity. Another work using Reinforcement
Learning (RL) has been proposed in [17] where antenna down-
tilt is dynamically adjusted for handling CCO issues. Apart
from these, there are several works [18], [19] in the litera-
ture where the attempt is to explore the impact of transmit
power, antenna azimuth and downtilt. The authors in these
works highlight that among the three configurable parameters,
the effect of downtilt on coverage and capacity is the most
significant and along with power control, the CCO gains can
be further amplified.

The problem of ICIC has also been extensively studied
in several works. The authors in [20] have investigated dif-
ferent frequency reuse schemes with various uniform and
non-uniform user distributions and varying network loads.
They have demonstrated the advantages of Soft Frequency
Reuse (SFR) in terms of spectral efficiency, mean through-
put and the availability of the complete spectrum for all cells
(Reuse-1). Practical network scenarios are considered where
it is not the case that all the UEs experience good radio con-
ditions and network loads are relatively low. In [21], [22]
and [23], the authors have explored genetic algorithms and
RL-based methods to determine and adjust the most suitable
sub-band power factor for centre UEs. In [22], even the con-
figuration for the edge-to-centre boundary is considered for
optimization to dynamically update the categorization of the
users as cell-centre and cell-edge UEs.

An Inverse Reinforcement Learning based ICIC strategy is
investigated in [24], where Wasserstein Generative Adversarial
Networks and Double Deep Q Network have been used in
combination for performing behaviour imitation with limited
real training samples. This approach could be interesting in
certain scenarios but would require the involvement of good
human expertise or otherwise would lead to suboptimal solu-
tions. Also, curation of a rich dataset may be required in this
case as a noisy and limited training set may result in poor
quality of generated synthetic data, and that in turn would
impact the decision-making of the model.

These two SON functions are very critical for mobile
networks and their network goals are tightly intertwined as

it is quite inevitable to enhance the coverage of a cell without
impacting the nearby ICI situation and thereby the network
capacity. For instance, increasing the transmission power or
reducing the antenna downtilt may improve the coverage sit-
uation but if the operation is not done carefully it would
deteriorate the ICI situation and the overall network capacity
could be compromised. In the literature, there are not many
works that have attempted to resolve the conflicts between
these two SON functions for achieving their overall network
objectives. However, it is worth discussing the ideas and solu-
tions that have been proposed to achieve self-coordination
between other SON functions.

There are broadly two kinds of strategies used for coordi-
nating the operation of conflicting SON functions. One of the
approaches involves engaging an explicit coordinator function
that operates on top of the SON functions in conflict [25],
[26], [27]. The roles of the external coordinator are to limit
or completely switch off the functions of one or several SON
functions that are lower in priority. Another popular approach
is to jointly implement and optimize the correlated SON func-
tions such that the allowed range of configurable parameters
is not restricted due to any kind of prioritization of SON func-
tions [28], [29], [30], [31], [32]. In [33] also, the authors
have promoted the approach of joint-optimization over external
coordinator-based approaches as the chances of selecting sub-
optimal configuration parameters significantly reduce when
there is no restriction in the space of candidate solutions.
Additionally, the advancements in the fields of AI, comput-
ing capabilities and storage have made it absolutely viable
to handle a huge space of possible configurations for jointly
modelling several SON functions with varied and coupled
objectives.

In [34], the application of Recommender Systems has been
proposed for joint modelling of conflicting and complement-
ing SON functions. The idea to apply RecSys in this context
is that it can recommend the most appropriate set of con-
figuration parameters for any specific observed network envi-
ronment such that the network goals of all the implemented
SON functions are achieved with the best possible trade-off.
Unlike most of the prior works that are based on variants
of Reinforcement Learning approaches, RecSys are capa-
ble of handling high-dimensional state-action-space that may
exist in joint-optimization-based SON-coordination problems.
Therefore, the ingenious RecSys-based proposed framework
can be easily scaled up for any number of related SON func-
tions. Apart from that, the benefits that RecSys-based solutions
can bring in the domain of network optimization is that they
can be made efficient with minimal human supervision and
can be trained over sparse real network data with few param-
eter configurations actually tried over the network [34]. This
way the combinatorial explosion issue of RL-based approaches
can be avoided. The specific contributions of this work are as
follows:

• A hybrid Recommender System based decentralized
self-organizing and self-coordinating SON solution is
proposed and evaluated for two intertwined SON func-
tions, CCO and ICIC. Two variants of hybrid col-
laborative filtering based recommender systems, one
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based on matrix factorization and another using neural
network have been explored. The recommendations for
the cold-start scenarios have also been improved for both
the employed RecSys using an additional deep neural
network-based regression model.

• Local Multi-Objective KPIs (LMO KPIs) have been
designed as a rating system for the employed RecSys that
can ensure implicit coordination between the addressed
SON functions while facilitating self-organization in the
network in a distributed fashion. These LMO KPIs, if
maximized, should be able to achieve joint optimization
of the targets of the given SON functions and also meet
overall network goals by accomplishing the local objec-
tives of the target nodes without compromising that of
their neighbours.

• The selection of a suitable central tendency measure for
the network KPIs involved in the LMO KPI is also
important to aptly learn the performance of the differ-
ent network configurable parameters over the given state
of the environments. In this context, a Pareto analysis of
three variants of the proposed LMO KPI is conducted for
the joint implementation of CCO and ICIC. This evalua-
tion shows the effect of the varying coverage-interference
trade-off parameter on the selection of the radio param-
eters and finally on the overall network targets. This
study is important for determining an operating range
for Mobile Network Operators (MNOs) for achieving the
best coverage-capacity trade-off.

• The shortcomings and strengths of the three adopted
measures are compared in terms of control for estab-
lishing the desired trade-off between the network targets
of coverage and capacity; and the most suitable among
them is selected after exhaustive analysis. The closed-
loop performance of the proposed hybrid RecSyss are
assessed while employing the selected LMO KPI variant
and have been finally compared with the baseline solution
proposed in the previous work [34] in terms of relevant
network KPIs.

III. SOLUTION OVERVIEW - PRINCIPLES

AND DESIGN PARADIGMS

The size, density and complexity of the network clusters are
increasing with every generation of mobile communication
networks along with their diversity in terms of access tech-
nologies and topologies. The need of the hour is to come up
with solutions that are easily scalable, adaptable and flexible
according to the various sizes and topologies of network
clusters. The first high-level idea of the proposed solution is
to achieve self-organization in the network in terms of the
different objectives addressed by several discrete network
functions in a decentralized manner. The second important
theme to be covered is the self-coordination between the
SON functions with diverse objectives that are concurrently
executed at the RNs.

A. Principles of Solution Design

In a nutshell, the design of the overall proposed solu-
tion is hybrid, where ML models are trained centrally using

Fig. 1. Solution Overview for Self-Organization and Self-Coordination.

cell-wise network data collected from all RNs and the model
predictions/inferences are used in a decentralized manner at
each RN for their respective cells (see Fig. 1). The idea is
that the partial knowledge of all cells can be used to coopera-
tively train a model that can be used finally by all the cells in
the network. This way the knowledge is consistent and com-
plete throughout. If an environment is observed by some cell
at an earlier point in time, then the knowledge of the most suit-
able parameter configuration for such an environment can be
used later for any cell that has observed the particular environ-
ment for the first time. Also, for any newly created cell, there
is a baseline knowledge from where it can start rather than
beginning from a clean slate. Furthermore, the employed ML
models are trained cyclically at regular intervals. This allows
the models to evolve according to the updates occurring in the
network scenarios like construction, weather, technology and
topology updates etc. The periodicity of model retraining is
not a constraint in such a system as it can be flexibly chosen
and dynamically adapted by the solution providers based on
the availability of computation resources, deployment scenar-
ios, e.g., urban/rural, geographical locations, or the demands
(reactive/proactive) of the network operators.

In the existing networks, the already available user-level and
cell-level telemetry data at the Operations, Administration and
Management (OAM) systems, hosted over single or multiple
datacentres, can be utilized to centrally train the employed
ML models. The trained ML models can be then executed at
the RNs (eNBs/gNBs) at near real-time loops for inferences
and appropriate configuration recommendations such that the
objectives of the targeted SON functions are addressed. The
proposed solution is also compatible with the O-RAN architec-
ture based next-generation mobile communication networks.
In such a flexible and distributed architecture, the ML model
training can be conducted at the Service Management and



GARG et al.: DATA-DRIVEN SELF-ORGANIZATION WITH IMPLICIT SELF-COORDINATION FOR CCO 1157

Orchestration (SMO) Framework hosted over the Non-Real-
Time (Non-RT) RAN Intelligent Controller (RIC) and the
trained models can be executed for inferences at the Near-RT
RIC [35], [36].

To ensure that the global network goals are met in a dis-
tributed, self-organized fashion, each participating RN should
try to optimize a utility function that maximizes its own
targets while keeping in check the impact on its neigh-
bours. In addition, this cell-level utility function should be
able to jointly optimize the targets of the implemented SON
functions. Therefore, to accomplish a truly self-organized
and implicitly self-coordinated SON solution, cell-level Local
Multi-Objective network KPIs (LMO KPIs) are defined and
explored in the proposed solution. This LMO KPI is carefully
designed to address the objectives of the targeted CCO and
ICIC SON functions. Finally, with the help of the trained ML
models, the values of LMO KPI are predicted. The expectation
is that the selection of the values of configurable parameters
that maximize the LMO KPI prediction shall be able to achieve
the global network performance goals set by the MNOs. In
this work, hybrid RecSys-based models have been explored for
predicting the LMO KPI values for recommending appropriate
network configurations according to the environments detected
at the respective cell-sites. The details of these algorithms are
discussed in Sections IV and V.

B. Design Paradigms for Self-Organization and
SON-Coordination

The design of the solution is coherent with the four
design paradigms for architecting self-organizing networks,
as proposed by the authors in [37]. Paradigm #1 suggests
that in a self-organized system, instead of a central entity
being responsible for the entire organization, the tasks and
behaviour of the local agents should be defined in a way that
the desired global properties can be established. In this case,
according to paradigm #1, the employed ML models are able
to learn only the local behaviour at cell-level and thus promote
a divide-and-conquer strategy (see Fig. 1).

According to paradigm #2, a self-organized system should
not aim for perfectly conflict-free resource coordination
between the participating entities as in the case of a cen-
trally organized system. This kind of centralized coordination
mechanism may require significant signalling overhead in a
highly dynamic network. The recommendation is that it is
better to tolerate some temporary localized conflicts if they
can be easily detected and contained. The design should
avoid applying any explicit coordination between the RNs
but rather let them observe and communicate only in their
neighbourhood to decipher the status of the network and
react accordingly. This is adhered to in the proposed design
as well.

Due to the locality in the design, there is no requirement for
the global states of the network and this way the paradigm #3
is fulfilled. It suggests that long-lived global state information
may have inconsistencies in a dynamic system and with short-
term local state information, the assumptions about the other
nodes and the dependencies between them could be drastically

minimized. This would make the networks more adaptive and
resilient against updates and failures in the system.

Paradigm #4 finally defines how the system should be adap-
tive at a local node level rather than involving any centralized
entity for helping in monitoring and reacting continuously.
There could be three levels of adaptation. Level 1 adaptation
is about a protocol that can modify the control settings accord-
ing to the short-term regular changes in the environment. In
the proposed solution, this is analogous to a trained hybrid
RecSys that can recommend suitable network configurations
based on the changing state of the local network environment.
In Level 2, the system should be able to adapt to long-
term behavioural changes to optimize system performance.
In the proposed design, model retraining can accommodate
such behavioural changes caused by the updates occurring
in the network scenarios. And finally, level 3 adaptation pro-
poses that it can conduct a major adaptation when it realizes
that the changes are so severe that the employed algorithm
no longer converges. In such cases, grid search for hyper-
parameter tuning can be performed in such ML-based SON
solutions.

Once a scalable design for self-organization is achieved,
another critical challenge is that there are several SON func-
tions with varied objectives that may be executed concurrently
at all RNs. The individual SON functions may organize and
coordinate well with their own instances executing all over the
network but the different SON functions hosted for each RN
may have several conflicting and complementing relationships
between them. This calls for solutions for self-coordination
that can make the SON functions converge to meet the overall
network targets in a stable and robust manner. In this context,
the approach followed in this work is to use an appropriate
LMO KPI for achieving implicit-coordination between the tar-
geted and tightly coupled SON functions. The defined LMO
KPI consist of an operator-tunable parameter that allows them
to configure the target with the kind of trade-off they desire
between the several network performance goals. In conclu-
sion, the distributed and localized design for self-organization
and the implicit self-coordination approach makes the solu-
tion scalable to any network size and any number of SON
functions.

IV. PROBLEM FORMULATION

The task of achieving self-organization and self-
coordination between SON functions is accomplished
by extending the RecSys-based formulation proposed in [34].
RecSys are a sub-class of ML algorithms that are used as
scalable information retrieval tools. They are capable of
processing huge amounts of sparse and high-dimensional
datasets and have been successfully employed for several real-
world use cases like generating friend suggestions; movies,
news and product recommendations and several others. The
conventional idea of RecSys is to recommend appropriate
items to users based on their history of interactions with
the set of items. The historical user interactions are used
to learn their preferences. Analogous to this idea, here the
given problem of self-organization and self-coordination is
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formulated in terms of RecSys, where recommendations of
the most appropriate combination of configuration parameters
are generated according to the LMO KPIs recorded for
different environments observed in the network. Beyond this
point, the Environments are abbreviated as ENV and the
Parameter Sets as PS.

A. Observable Network Variables Set or Environment (ENV)

ENV refers to the state of the observable network variables
observed at the cell-level. For interference coordination, an
SFR scheme is implemented such that the users are segregated
as centre and edge UEs, served with orthogonal sub-bands.
The observable network variables considered in this work for
jointly reading the state of the environment for ICIC and CCO
SON functions are as follows:

1) RSRP of the Centre UEs (RSRPcentre)
2) RSRP of the Edge UEs (RSRPedge)
3) SINR of the Centre UEs (SINRcentre)
4) SINR of the Edge UEs (SINRedge)
5) Percentage of Centre UEs (PCU)
6) Degree of Interference Created (DIC)
RSRP is the Reference Signal Received Power (in dBm) and

SINR is the Signal to Interference plus Noise Ratio (in dB).
The RSRPcentre and RSRPedge provide an impression about
the current coverage situation of a cell and the SINR values
(SINRcentre and SINRedge) give an estimation of the capac-
ity. These are therefore suitable observable network variables
for CCO. DIC is a float value in which the decimal part repre-
sents the ratio of UEs interfered by a cell to the total number
of UEs in the network and the integer part refers to the high-
est level of interference created by that cell. This provides an
intuition about the degree of ICI created by a target cell that
the ICIC SON function aims to minimize. The following four
interference level ranges (L1/L2/L3/L4) are considered for this
work:

• Interference L1: > −71 dBm and < −60 dBm
• Interference L2: ≥ −60 dBm and < −50 dBm
• Interference L3: ≥ −50 dBm and < −40 dBm
• Interference L4: ≥ −40 dBm
The Percentage of Centre UEs (PCU) gives a rough esti-

mate of the distributions of users in a cell. This information
can be useful for both CCO and ICIC. All these variables
are monitored for each cell separately. This way the RNs can
detect the coverage and signal quality of their respective cells
and also the degree of interference it creates to its neighbours.
The DIC is communicated to them by their neighbouring RNs.
The readers can refer [34] to get further details about these
selected ENV variables and the rationale behind them.

B. Set of Configurable Network Variables or Parameter
Set (PS)

Similar to the work in [34], three configurable network vari-
ables namely Power Factor for the centre UEs (PFcentre),
Edge to Centre Boundary (ECB) and Antenna Downtilt
(DTant ) are considered in the Configurable PS. The first
two parameters are directly associated with the SFR scheme
employed for coordinating ICI. The value of PFcentre can

vary from 0.1 to 1.0 (maximum transmit power) with a res-
olution of 0.1. The ECB is used to control the proportion of
centre and edge UEs as per the applied SFR scheme. Its value
ranges between 0.7 to 1.4 and the adjustment resolution is 0.1.
Unlike in [34], the range of DTant can be varied from 5 to
18 degrees. This increased DTant values allow increasing the
focus of transmission further close to the cell centre. So, finally
the set of PSs comprises of 10x8x27 = 2160 combinations of
PFcentre , ECB and DTant .

C. Local Multi-Objective Utility Function for
Self-Organization and Self-Coordination

In a conventional RecSys framework, an explicit or implicit
rating system is required that can provide an indication of the
degree of suitability or desirability of a recommendable item
for a given user. In a system where a human is involved, direct
or indirect feedback about any item can be used as a rating
to learn the preferences of the users and generate meaningful
recommendations for them.

In this problem of network optimization, a measure is to be
defined that can be used as a rating about how suitable is a
PS configuration for a particular observed ENV in terms of
the involved SON functions. In other words, in this context,
a measure is to be chosen such that if its value is high for a
given PS, it should be one of the most appropriate network
configurations for achieving the desired trade-off between cov-
erage and capacity. For this reason, a Local Multi-Objective
Utility function or LMO KPI is defined that can be utilized to
achieve joint-optimization or implicit coordination between the
involved SON functions. In addition, this LMO KPI should be
such that if optimized locally would also aid in accomplishing
the global idea of decentralized self-organization.

Assuming the cells in a network are denoted by i ∈
{1, . . . , I } and the UEs served by the i th cell are represented
by k (i) ∈ {1, . . . ,K (i)}, then the SIR observed by a UE k (i)

can be expressed as:

SIR
(i)

k(i) =
RSRP

(i)

k(i)

I∑

j=1,j �=i
RSRP

(j )

k(i)

(1)

where, RSRP (i)

k(i) and RSRP
(j )

k(i) represents the RSRP received

by UE k (i) from serving cell i and neighbour cell(s) j ∈
{1, . . . , I }, i.e., ICI respectively. Correspondingly, the mean
SIR of i th cell and that of the network can be measured using
Eq. (2) and Eq. (3) respectively.

SIR
(i)

=
1

K (i)

K (i)
∑

k(i)=1

SIR
(i)

k(i) (2)

SIR
NW

=
1

I∑

i=1
K (i)

I∑

i=1

K (i)
∑

k(i)=1

SIR
(i)

k(i)

=
1

I∑

i=1
K (i)

I∑

i=1

K (i)
∑

k(i)=1

RSRP
(i)

k(i)

I∑

j=1,j �=i
RSRP

(j )

k(i)

(3)
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The final network goal is to maximize the SIR while min-
imizing the coverage holes. According to Eq. (3), if for each
UE in the network, the RSRP detected from its serving cell is
maximized and the RSRP detected from its neighbour cells,
i.e., the ICI caused by the neighbouring cells, is minimized
then the overall network SIR should be optimized. In a dis-
tributed self-organized system, a cell individually cannot limit
the ICI detected by its UEs from its neighbours but rather it
can control the ICI it creates to its neighbouring cell UEs.
This should also ensure that the above-mentioned objective is
achieved globally.

In addition, the LMO KPI must be carefully designed as it
is extremely critical for self-organization between the partic-
ipating RNs and achieving implicit self-coordination between
the interrelated SON functions. It should ensure that the over-
all network goals are attained by maximizing the KPIs of
the target cell without compromising that of its neighbours.
Considering everything, the LMO KPI proposed for self-
organization and self-coordination of the two targeted SON
functions, ICIC and CCO is as follows:

LMO KPI = (α · RSRPcell )− [(1− α) · IFC cell ] (4)

where, RSRPcell of i th cell can be expressed as
∑K (i)

k(i)=1
RSRP

(i)

k(i) and IFC cell , i.e., the aggregated

Interference Created by the i th cell to the UEs
of the neighbouring cells [34] can be denoted by
∑I

j=1,j �=i

∑K (j)

k(j)=1
RSRP

(i)

k(j) . α is the coverage-interference
trade-off parameter that can be configured by the MNOs
to achieve the desired coverage-capacity targets. Intuitively,
an appropriate PS that maximizes the LMO KPI should
maximize the cell RSRP (or coverage) without creating
significant ICI to its neighbours. The values of RSRPcell
and IFC cell are individually normalized between 0 and 1 to
ensure that the effect of α is consistent.

In the utility function, it would not be a good idea to
consider the sum of RSRP and IFC values reported by all
UEs as the value of the function would be then dependent
on the number of UEs. So, choosing an appropriate cen-
tral tendency measure to read the aggregate RSRP and IFC
situation of a cell is critical. In [34], the mean values of
RSRPcell and IFC cell were considered as a central tendency
measure for optimization with α = 0.6. The observations
presented in Section VII-A show that based on the distribu-
tion of UEs in a cell, mean values can become an inefficient
target for optimization for several scenarios. Therefore, in
this work, median and quartiles are also evaluated as can-
didates for choosing an apposite central tendency measure for
optimization. In addition, the complete range of α is also ana-
lyzed to learn its impact on the overall interference, coverage
and capacity situation of the network. The three LMO KPIs
explored in this work are as follows:

1) Mean RSRPcell and IFC cell : Generally, the mean val-
ues of KPIs are considered a preliminary indicator of their
central tendency and many a time this impression could
be wrong. For instance, in this case, the RSRPcell can be
increased by improving the RSRP of all the UEs or increasing
it significantly for some of the UEs. In the latter case, it would

give a wrong impression of the coverage situation. Similarly,
IFC cell can be reduced by generating a small amount of
interference for a greater number of UEs. This can happen
as an effect of keeping low antenna downtilts. Here, mean
as a central tendency measure would be dependent on the
distribution of UEs and thus could be misleading in several
scenarios.

LMO KPI1 =
(
α · RSRPcell

)− [
(1− α) · IFC cell

]
(5)

2) Median RSRPcell and IFC cell : The Median is another
important statistical measure that can give a good idea about
the data distribution. In many cases, it could even be a better
choice than the mean as it is more robust against outliers. So,
in the case of a few noisy samples or when distributions are
skewed, the median could be a better measure of the central
tendency. This second version of the LMO KPI is denoted by
the equation below:

LMO KPI2 =
(
α · ˜RSRPcell

)
−
[
(1− α) · ĨFC cell

]
(6)

3) First Quartile RSRPcell and Third Quartile IFC cell :
The intuition behind the LMO KPI in the case of CCO and
ICIC is to make sure that the RSRPcell is raised to a point till
the interference caused to the neighbouring edge UEs is not
troublesome. Therefore, in this case, the first quartile of RSRP
(RSRPQ1

cell ) is kept as a target for maximization, assuming the
values above it would also increase. These low observations of
RSRP would be majorly recorded by the UEs at the cell edges.
Thus, if the situation for these worse-case scenarios is recti-
fied, it could improve the coverage situation for most of the
UEs of a cell. Then, in the case of IFC cell , if its third quartile
value is chosen for minimization, it would mean that the lower
IFC values detected by UEs below the third quartile would also
most probably reduce further. The higher values of interference
would be detected by the immediate neighbour UEs, just out-
side the target cell boundary. In case IFC

Q3
cell is selected for

minimization, it should naturally reduce the ICI caused to the
far-off neighbour UEs. Therefore, with this measure, the moti-
vation is to determine whether maximizing the RSRP

Q1
cell and

minimizing the IFCQ3
cell can provide a better Pareto frontier

for coverage and capacity trade-off. Mathematically, it can be
represented as:

LMO KPI3 =
(
α · RSRPQ1

cell

)
−
[
(1− α) · IFCQ3

cell

]
(7)

The endeavour here is to maximize the SIR but it is also
important to learn how it is done. It can either be maximized
by simply improving the situation of some UEs (mostly close
to the RNs) or while improving that of most of the UEs.
The latter is more desirable when the target is to maximize
coverage simultaneously.

V. PROPOSED SOLUTION BASED ON HYBRID

COLLABORATIVE FILTERING RECSYS

According to the hybrid design for self-organization, the
observations collected by all the RN agents are shared with
the OAM which could be hosted on public or private data-
centre(s). The proposed solution uses a Recommender System
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Fig. 2. Functional Architecture of the proposed Hybrid RecSys based Implicitly-Coordinated SON.

that detects the current ENV in a cell and recommends a PS
based on the LMO KPI predictions, for the set of all possible
PSs, computed for the particular ENV. For this, the network
variables used in the ENV definition are quantized and rep-
resented with unique ENV IDs in the RecSys. Similarly, the
values of configurable parameters are also quantized to gen-
erate PS IDs. In this work, the performance of two types of
collaborative-filtering RecSys have been observed, one based
on matrix factorization using Singular Value Decomposition
(SVD) and the other based on a neural network using a Deep
Autoencoder (DAE).

The local data of all RNs collected over the cloud is first
organized as a matrix with rows containing the actual LMO
KPIs observed for a specific ENV ID for a particular set of PS
IDs. This ENV ID-PS ID-LMO KPI (EPL) matrix is generally
a sparse matrix as all the combinations of PSs are mostly not
explored in the real network for all the possible ENVs. The
employed RecSys are trained using this consolidated sparse
matrix data to finally predict the values of LMO KPIs for the
unexplored PSs. Finally, the PSs with the highest predicted
LMO KPIs are recommended for the corresponding ENVs.

Conventionally, RecSys encounter a problem known as the
Cold Start problem [12], [38] where it becomes difficult to
generate good recommendations for users (ENVs) with fewer
actual observations for the set of items (PSs). This is because
there is a lack of information to estimate the preferences of
the particular user precisely. For such cases, in [34], a random
PS from the list of top overall best-performing PSs are recom-
mended until a significant amount of observations are available
for appropriate recommendations. In this work, to address the
cold start situations, an additional Deep Neural Network based
Regression (DNNR) model is trained that is able to predict the
LMO KPI based on the unquantized values of the ENV and
PS variables. The PS with the highest predicted LMO KPI is
recommended for the ENVs facing the cold start situation (see
Fig. 2). The details about the three discussed models – SVD
RecSys, DAE-RecSys and the DNNR model are elaborated in
the following subsections.

A. Singular Value Decomposition Based RecSys
(SVD-RecSys)

Singular Value Decomposition (SVD) is one of the state-
of-the-art collaborative filtering approaches that has gained a
lot of popularity over the last few years. In this case, SVD is
used to generate a fully-specified low-rank approximation of
the sparse LMO KPI matrix. This way it can provide LMO
KPI predictions for the unobserved PSs for any given ENV.
For a PS p applied to an ENV e, the computation for LMO
KPI prediction is done using the Eq. (8) [39] [40].

r̂ep = μLMOKPI + be + bp + vT
p ue (8)

where the elements of vector vp contain the latent features
of p and the vector ue captures the degree of suitability that
an ENV e possesses for each of the latent features. The bias
parameters be and bp account for the deviations in LMO
KPI for ENV and PS respectively, from the overall mean
LMO KPI, μLMO KPI . The readers can refer to [34] for more
details about how the SVD-RecSys model is used to gener-
ate PS recommendations for the observed ENVs based on the
approximated LMO KPI predictions.

B. Deep Autoenocder Based RecSys (DAE-RecSys)

Over the past few years, Deep Learning (DL) too has gained
a lot of interest in the domain of RecSys due to its flexibility
and capability to capture the nonlinear and nontrivial dynam-
ics within the input data. Several DL-based RecSys have been
explored in diverse domains [41] and one of the architec-
tural paradigms involves the application of Autoencoders for
such recommendation tasks [42], [43], [44], [45]. The authors
in [46] even demonstrate the superiority of Autoencoders as
collaborative filtering based RecSys over popular matrix fac-
torization techniques like SVD. Therefore, in this work, a Deep
Autoencoder-based RecSys (DAE-RecSys) has been addition-
ally studied as a potential solution for self-organizing and
self-coordinating network functions.
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Fig. 3. LMO KPI prediction for PS recommendation.

An autoencoder is an unsupervised learning based neural
network architecture that is composed of three components
- encoder, code or bottleneck and decoder. The aim of this
network is to reconstruct the input in the output layer by trying
to learn a function

h(re ; θ) ≈ re (9)

Here, re = (re1, . . . , ren ) represents a sparse LMO KPI
vector for any ENV e ∈ E = {1 · · ·m} when corresponding
PS p ∈ P = {1 · · · n} has been configured for it. θ denotes the
set of model parameters {W 1, . . . ,W L−1, b1, . . . , bL−1}
where W L−1 and bL−1 refers to the weights and biases
between the layers L − 1 and L − 2 of an autoencoder for
which the layers can be represented by l ∈ {0, . . . ,L− 1}.

Generally, autoencoder-based RecSys can be exploited in
two ways. It can either be used to capture low-dimensional
feature representations at the bottleneck layer or to generate
a fully specified prediction for the sparse input vector in the
reconstruction layer. The latter case is used in this work. The
output of l th layer is denoted by z l

e which can be defined as

z l
e =

⎧
⎪⎨

⎪⎩

re (l = 0)

σ
(
W l · z l−1

e + b l
)

(0 < l < L− 1)

W l · z l−1
e + b l (l = L− 1)

(10)

where σ stands for sigmoid activation function which is a
nonlinear function represented by

σ(x ) =
1

1− e−x (11)

The Masked Mean Squared Error (MMSE) is used as the
loss function for training the DAE. Mathematically, it can be

represented as

argmin
θ

m∑

e=1

∥
∥me ◦ (re − h(re ; θ)

)∥
∥2
2

m∑

e=1

∥
∥me

∥
∥
1

+ λ·∥∥θ∥∥2
2

(12)

where (◦) represents Hadamard product, me =
(me1, . . . ,men ) is a mask vector such that mep = 1 if
rep is observed, else mep = 0, and λ is the regularization rate
for L2 penalty. Once the model is trained with parameters θ̂,
a prediction of LMO KPI for ENV e for any PS p using the
DAE-RecSys can be computed using Eq. (13).

r̂ep =
(
h
(
re ; θ̂

))

p
(13)

The PS that generates the highest r̂ep is recommended for
the target ENV (depicted with dark green colour in Fig. 3(a)).
The neural network architecture for DAE-RecSys used for this
work is as follows: 2160, 128, 256, 256, dp(0.65), 256, 128,
2160; which means four layers in the encoder (2160, 128,
256, 256), coding layer or bottleneck layer of 256 and four
layers in the decoder (256, 256, 128, 2160). A dropout layer
with a drop probability of 0.65 is introduced at the output of
the encoder for regularization and to avoid over-fitting. The
Sigmoid activation function is used for all the layers except
the last layer of the decoder which is kept linear.

C. Deep Neural Network Based Regression Model (DNNR)

In order to generate better recommendations for the ENVs
for which there are fewer observations logged in the database,
a Deep Neural Network based Regression model is employed
in conjunction with the applied RecSys engine. It models the
relationships between the discussed ENV and PS variables and
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TABLE I
REGRESSION MODEL BENCHMARK

generates corresponding predictions for LMO KPIs. The dif-
ference in the approach for predicting LMO KPIs as compared
to the RecSys-based approaches has been depicted in Fig. 3.
Instead of abstracting the details of the observed ENV (with
an ENV ID) and only looking at the sparse vector of actual
LMO KPIs, in this case, the actual continuous values of the
ENV and PS variables are used for predicting the LMO KPIs.
Therefore, the DNNR model takes the set of ENV and PS
variables as input and predicts the value of the correspond-
ing LMO KPI. Once the LMO KPI predictions for all the PS
combinations are available for the detected ENV, the PS corre-
sponding to the highest predicted LMO KPI is recommended
(depicted with dark green colour in Fig. 3(b))

Several linear and non-linear regression methods have been
explored for this exercise and based on the model accura-
cies, the DNNR model is selected. Table I consists of the test
losses of the models trained with the respective regression
algorithms. A grid search is performed to determine the best
set of hyperparameters for all the ML-based regression algo-
rithms. For comparing the accuracy of the evaluated models,
one-third of the total collected data (test set), not used during
model training, is used to compute the Root Mean Squared
Error (RMSE) between actual and predicted LMO KPI val-
ues. In Table I, among the various regression algorithms, it
can be observed that the test RMSE of the DNN regression
model is the lowest and is therefore used in the hybrid RecSys
for closed-loop online evaluation. The details of the explored
regression algorithms are not in the scope of this paper but
the readers can refer to [47] as a starting point.

For every ENV that is facing a cold-start situation, the
DNNR model is used to predict the LMO KPI for each
combination of PS. This is computationally more expensive
than RecSys but the probability of cold-start situations should
reduce over time. In this case, any ENV with less than 10
actual observations in the EPL matrix is considered to be a
cold-start case.

The following neural network architecture is adopted for the
DNNR model - 12, 64, 64, 1, where the Sigmoid activation
function is used for all the layers except the output layer. The
continuous values of the ENV and PS variables are used as
inputs to the model. Instead of the derived ENV variable DIC,
the number of UEs interfered with the corresponding levels of
interference (L1/L2/L3/L4) are used. A normalization layer is
introduced at the input as a pre-processing step. Normalization

TABLE II
SIMULATION PARAMETER CONFIGURATIONS

ensures that the scale of the output and that of the gradients
are not affected by the difference in the scales of the inputs,
making the training process more stable. The relevant model
hyperparameters are listed in Table II.

VI. SIMULATION SETUP

A cellular network comprising 7 tri-sectored eNBs is simu-
lated over a C++ libraries-based system-level, discrete-event
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TABLE III
TRAFFIC SCENARIOS - UE DISTRIBUTION AND SPEEDS

LTE network simulator provided by Nokia Bell Labs Germany
and the Institute of Communication Networks and Computer
Engineering at the University of Stuttgart, Germany. The sim-
ulator comprises a wrap-around implementation around the
target 21-cell network cluster to ensure better coverage and
ICI approximations. A Python-based ML engine for training
and executing the employed ML models is interfaced with
the network simulator. The relevant simulation configuration
parameters have been summarized in Table II.

Simulation campaigns are conducted with each simulation
iteration consisting of 11 different traffic scenarios. The traf-
fic scenarios are created with different combinations of UEs
belonging to five mobility groups (refer Table III). Each traffic
scenario is simulated for 200 seconds and after every sce-
nario, the network is reset and the UEs are randomly initialized
according to the configurations of the respective scenarios. The
simulation computations happen over snapshots of 100 mil-
liseconds and the configured SON interval is 2 seconds. A
warm-up period of 40 snapshots, i.e., 4 seconds of simula-
tion time is considered before the logging and closed-loop
recommendations begin.

A homogeneous cellular network scenario of urban macro-
cell, similar to a simulation scenario specified by 3GPP [48] is
considered so that the evaluations and observations could be
comparable to real network deployments. Since the simulation
involves several different mathematical models for the channel,
antennas, mobility etc., (refer Table II), the data may be less
noisy as compared to that collected from real deployments.
The simulator implements a wrap-around around the origi-
nal simulated layout such that the simulated network is like a
patch from a continuous cellular network. In real networks, a
significantly higher amount of observations may be required
to train ML models with similar accuracies. Although basic,
the Random-Walk mobility model could be quite sufficient
for coverage and capacity computations. The learning of the
incorporated ML models should not be very different even
with highly realistic mobility models. In order to cover most
of the types of trivial mobility scenarios in mobile networks,
several different traffic scenarios of low, medium and high
mobility have been simulated. Moreover, the design of the

solution ensures that the monitoring and configuration enforce-
ment is strictly local and it would be interesting to see the
performance of such a distributed solution in a heterogeneous
network too.

A random exploration phase is first conducted by randomly
configuring the values of the PS variables over all the simu-
lated traffic scenarios and the corresponding observations are
logged in a database. The observations comprise of the val-
ues of ENV variables, PS variables and the corresponding
LMO KPI variables. The values of RSRPcell and IFC cell are
computed by taking a time average of the next five snapshot
samples after any PS configuration is updated. Two-thirds of
the data collected after the random exploration phase is used
to train the three discussed models and one-third is used for
evaluation of the models. A grid-search is conducted for each
of the models and the most suitable hyperparameters used for
their training are specified in Table II.

In order to benchmark the effect of the application of the
three discussed LMO KPIs, the SVD RecSys proposed in [34]
is used online with the network simulator. The SVD RecSys
model is trained for different values of α for the three versions
of the LMO KPI and global values of the relevant network
KPIs are monitored for comparison. This way the impact of
the local behaviour of the RecSys models over the overall
network targets can be observed.

Finally, the SVD RecSys proposed in [34] is treated as
a baseline and the performance of the two discussed hybrid
RecSys are compared with it. In addition, a static configuration
with SFR applied and with one of the overall best-performing
PS is also simulated to show the network performance when
there is no learning and dynamic configuration. In this case,
a PS with PFcentre = 1.0, ECB = 0.9 and DTant = 15◦ is
considered as one of the best PS for the simulated network lay-
out. Intuitively, maximum transmit power for centre UEs with
SFR in place, and ECB close to cell-centre can ensure good
signal strength for most of the UEs in the cell. Apart from
that, a downtilt of 15◦ is observed to be the most suitable
configuration for inter-site distances of 500 m [17].

VII. RESULTS AND OBSERVATIONS

In this section, first, a Pareto analysis of the three evaluated
LMO KPIs is demonstrated using the SVD-RecSys proposed
in [34] where α is varied by a resolution of 0.1. Then, the
performances of the two hybrid RecSys are compared with
the baseline approach and also with the case with Static Best
PS + SFR.

A. Pareto Analysis of the Evaluated LMO KPIs

To analyze the impact of the three variants of the LMO
KPI on coverage, interference and capacity, the following four
parameters are observed:

• RSRP Outage (%)
• Mean Network RSRP (dBm)
• Mean Network SINR (dB)
• Mean Interference Detected (dBm)
RSRP Outage (%) is the percentage of UEs that detect serv-

ing cell RSRP below a certain threshold (refer Table II). RSRP
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Fig. 4. Pareto Analysis of LMO KPI1.

Outage and Mean Network RSRP are observed to infer the
status of coverage, Mean Interference Detected shall indicate
the detected levels of ICI and Mean Network SINR can be
referred to evaluate the capacity of the network. These four
parameters (or Network KPIs) have been normalized to visu-
alize them together. The readers can refer to Table V of the
Appendix for the actual values of the discussed network KPIs.
The Mean Network RSRP and Mean Interference Detected
are directly influenced by the LMO KPIs while RSRP Outage
and Mean Network SINR are the KPIs on which the effect is
desirable indirectly. Along with the effect on the four param-
eters, the corresponding adjusted values of RF parameters –
PFcentre and DTant are also depicted below them according
to the respective values of α. In these distribution plots, darker
colours represent higher values of PFcentre and DTant . These
would give an impression of how the chosen LMO KPIs affect
the recommendations for antenna parameters.

Analytically, LMO KPI1 (refer Eq. (5)) denotes that at
higher values of α, the objective is to maximize the mean
RSRP of the cell and at lower values of α, the emphasis should
be on minimizing the interference created by the target cell
to its neighbours. Although recommendations are generated
locally by each RN agent to maximize the respective LMO
KPIs, eventually the interest should be to monitor the overall
effect of all the local changes on the network-level KPIs. The
plots for LMO KPI1 are depicted in Fig. 4. In congruence
with Eq. (5), in Fig. 4a also, it can be seen that when α is
raised from 0 to 1, the values of mean network RSRP (green)
increases and the mean interference detected (red) reduces in
the opposite direction. In other words, the trend of these two
KPIs is proportional. This is intuitive because the increment
in signal strength of a cell also increases the ICI caused to

Fig. 5. Pareto Analysis of LMO KPI2.

Fig. 6. Pareto Analysis of LMO KPI3.

its neighbours. Thus, the effect on these parameters is aligned
according to the chosen LMO KPI. But it is also important
to pay attention to the effect on RSRP outages (blue) as it
increases as the value of α increases. It can be implied that
at higher values of α, the optimization algorithm is trying to
increase the mean RSRP by focusing the signal strength for a
limited number of UEs which results in higher values of RSRP
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Fig. 7. Distribution of RSRP Outage (Coverage) and SINR (Capacity) over one complete simulation iteration.

outages. Consequently, the mean RSRP improves but not the
situation of coverage holes, i.e., RSRP outages. This can be
also inferred by the selections of higher values of PFcentre

and DTant (see Fig. 4b and 4c respectively) with increasing
values of α. Higher values of DTant indicate that the signal
strength is focused on the UEs close to the RN. Since the cov-
erage at the cell edges is not good, the resulting ICI caused
is also limited. This way the signal quality is improved for
the UEs in coverage and the mean SINR (orange) values are
persistently high at higher values of α.

Then, the plots of LMO KPI2 (refer Eq. (6)) are depicted
in Fig. 5. In this case also, the trends of mean RSRP and
mean interference created (see Fig. 5a) are quite similar to
the previous case, i.e., mean interference created and mean
RSRP increases with increasing values of alpha. But in con-
trast to LMO KPI1, it can be observed that there is a check
on the RSRP outages as the value of α increases. This is also
accordingly reflected in the configuration recommendations of
PFcentre (Fig. 5b) and DTant (Fig. 5c). For increasing val-
ues of α, the occurrences of high values of these parameters
are comparatively less than in the previous case. Furthermore,
considering the SINR plot as well, this can be seen as a
better trade-off between interference and coverage. The high-
est values of SINR are around the middle values of α, and
beyond a point, the SINR starts dropping again. Intuitively,
this makes sense as increasing the coverage overlap between
cells increases the interference and deteriorates the SINR.

The plots for the third case, i.e., LMO KPI3 (refer Eq. (7))
are presented in Fig. 6. Here, the outage situations are very low
at higher values of α but the aggregate signal strength (RSRP)
and signal quality (SINR) are compromised (see Fig. 6a). This
must be because of the low recommended DTant (Fig. 6c) and
PFcentre values (see Fig. 6b) compared to both the previous
cases. The overall trends of the considered network KPIs fol-
low that of the second case (RSRP and Interference created
increases with increasing α, SINR peaks towards the cen-
tre and then starts dropping again and RSRP outages reduce
as α increases) but here they seem to be more sensitive to
the varying values of α. The rise and drops are quite steep.
The values of SINR drop significantly beyond a certain point
and it is difficult to define a good range of operation in
this case. Therefore, LMO KPI3 can lead to an overreac-
tive system and it may not be a reasonable choice for every
occasion.

It could be observed that a good range of operation for α
would be somewhere between 0.4 - 0.6. Considering α = 0.5,

Fig. 8. Mean Network RSRP Distribution (One Simulation Iteration).

Fig. 9. RSRP Outage Percentage Distribution (One Simulation Iteration).

the distribution of network-level RSRP Outage and SINR val-
ues for the three evaluated LMO KPIs, observed over one
complete simulation iteration are also compared (see Fig. 7).
These plots provide a closer look into the effect of the three
LMO KPIs over the two significant parameters indicating the
status of coverage and capacity. Clearly, a concentrated dis-
tribution around the bottom-right corner would be the best
situation and among the four cases that are compared, the
distribution for LMO KPI2 seems to be the most convinc-
ing trade-off. In this case, there is a significant reduction in
outages (or coverage holes) with a minimal compromise on
SINR (capacity). Overall, the variance is also comparatively
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Fig. 10. Mean Network SINR Distribution (One Simulation Iteration).

Fig. 11. Radio Link Failures Distribution (One Simulation Iteration).

Fig. 12. Closed-loop Performance Comparison Summary.

low which indicates that the situation is consistent most of the
time and also considering multiple traffic scenarios.

B. Overall Closed-Loop Performance Comparison

The LMO KPI2 is selected as the objective function for
optimization and then the RecSys-based SON-coordination

TABLE IV
LIST OF ACRONYMS

solutions are executed in a closed-loop with the network
simulator. The baseline SVD RecSys with LMO KPI1 (as
proposed in [34]) is executed again with the current simula-
tion setup and the performance of the hybrid RecSys solutions
are compared against it in terms of Mean Network RSRP,
Mean network SINR, RSRP Outage percentage and Radio
Link Failures. α = 0.5 is configured for all the cases. For
the sake of completion, the Static Best PS + SFR scenario
is also executed to compare the performance of the solutions
with a static configuration where there is no dynamic learning
and adjustment.

As discussed in the previous sections, the implicitly coor-
dinated CCO-ICIC solutions try to optimize the LMO KPI
for each cell without being aware of the global network state.
If the selection of the LMO KPI is justified for the given
problem and if the operation of the local RN agents is truly
self-organized, then the global effect of the distributed solution
should be stable and visible at the network level. Therefore,
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TABLE V
PARETO ANALYSIS WITH VARYING α AND LMO KPIS

the comparison of the global network level KPIs are depicted
in Fig. 8, 9, 10 and 11.

It can be observed that there is a significant improvement
in the RSRP outages and Radio Link Failures (RLFs) and that
marginally pulls down the detected average signal strength
(RSRP). This is quite certain to happen but the coetaneous
improvement in mean network SINR shows that reduction in
coverage holes does not come at the cost of reduced capac-
ity. These distribution plots cover the observations logged over
one complete simulation iteration with the mentioned 11 traf-
fic scenarios. The overall summary with the ensemble average
of the four network KPIs is depicted in Fig. 12. Additionally,
the TX power consumption for centre UEs is also compared
to determine the efficiency of the solution in terms of power
savings. This demonstrates how the dynamic adaptation of
transmit power along with antenna downtilt can save energy
wherever possible.

VIII. CONCLUSION

The concept of Self-Organizing Networks (SON) for
autonomous operations and management of cellular networks
has existed for almost a decade but there are only a few prac-
tical solutions that are capable of meeting the expectations
of network operators. In the past few years, many researchers
and engineers have been trying to exploit the rapidly enhancing
capabilities of measurement, processing, storage and advanced
ML-based optimization algorithms in this direction. Along
with self-organization, another important aspect that needs to
be tackled during network optimization is to achieve coor-
dination between the closely related and conflicting network
functions with diverse use cases and goals. The realization of
such solutions will depend on how well they scale to the needs
of future mobile networks like dynamic updates in the num-
ber and topologies of cell sites, number of RAN features and
parameters, traffic patterns changing over time and geographic
locations and so on.

In this work, while keeping into consideration the gener-
ality and scalability of the solution design, the focus is to

propose and evaluate a data-driven approach to jointly achieve
the goals of two SON functions – CCO and ICIC by fol-
lowing the design principles of self-organization and implicit
SON-coordination. The definition of the local utility func-
tion that is expected to be optimized at each of the RNs is
of utmost importance in this design. It should be carefully
defined such that the local objectives of each site are fulfilled
without compromising that of its neighbours and eventually
achieve the overall network targets efficiently. Apart from that,
the comprehension of the state of the environment is also
extremely critical. The attempt has been to ensure that the
design is distributed with localized interactions and inferences,
and that can finally demonstrate an emergent behaviour while
achieving adaptability and scalability. The merits of implicit
SON-coordination in such a truly self-organized architecture
can be clearly implied as it can easily scale to multiple other
intertwined SON functions and for any size of the network.

In this study, a thorough analysis of the multiple explored
versions of LMO KPIs is conducted over the complete range
of the introduced coverage-interference trade-off parameter.
The recommendations of different PS configurations with
respect to the adopted LMO KPIs demonstrate how the optimal
parameter configuration space is altered according to the
respective local goals. Finally, the closed-loop performance of
the hybrid architectures of two kinds of RecSys, one based
on matrix factorization and another using a deep autoen-
coder, employing the most appropriate LMO KPI variant is
compared against the baseline state-of-the-art solution. In the
proposed hybrid RecSys-based SON-coordination solutions, a
deep neural network based regression model is exploited for
the cold-start scenarios.

Significant overall improvements of around 36% have been
observed in terms of coverage along with an increment of
approx. 0.2 dB in SINR, which translates to around 2%
improvement in capacity. In addition, the gain in terms of
power savings using the proposed algorithms, while configur-
ing the considered configuration parameters as a combination,
is also noteworthy. The balance between coverage overlap and
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ICI becomes more critical for future networks that should
facilitate the stringent requirements of Ultra-Reliable Low-
Latency Communication (URLLC) applications [49]. In the
future, it would be interesting to advance the hybrid SON-
coordination solution towards a fully-distributed architecture
with support for decentralized model training using Federated
Learning, so that the bandwidth required for the huge transfers
of network management data can be minimized. This would
make the solution more scalable in terms of data handling and
more efficient with respect to the communication resources
required for network management.

APPENDIX

The absolute values of the relevant network KPIs observed
with the three variants of the LMO KPI have been tabulated
in Table V.
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