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Empirically Measuring Transfer Distance
for System Design and Operation

Tyler Cody , Stephen Adams , Associate Member, IEEE, and Peter A. Beling

Abstract—Classical machine learning approaches are sensitive
to nonstationarity. Transfer learning can address nonstationarity
by sharing knowledge from one system to another, however, in
areas like machine prognostics and defense, data are fundamentally
limited. Therefore, transfer learning algorithms have little, if any,
examples from which to learn. Herein, the authors suggest that
these constraints on algorithmic learning can be addressed by
systems engineering. We formally define transfer distance in gen-
eral terms and demonstrate its use in empirically quantifying the
transferability of models. We consider the use of transfer distance in
the design of machine rebuild procedures to allow for transferable
prognostic models. We also consider the use of transfer distance
in predicting operational performance in computer vision. Practi-
tioners can use the presented methodology to design and operate
systems with consideration for the learning theoretic challenges
faced by component learning systems.

Index Terms—Computer vision, prognostics, transfer learning.

I. INTRODUCTION

MACHINE learning is moving from laboratories to the
field, however, the identically distributed environments

found in the laboratories are rarely found in the real-world.
Algorithmic approaches for dealing with nonstationarity rely
heavily on data from the new environment, however, such data
are not always available.

Applied machine learning for prognostics and health manage-
ment (PHM) is prototypical of this trend and challenge. Nonsta-
tionarities are unavoidable in PHM for machinery. Differences
in manufacturing and installment give supposedly identical
machines different initial conditions and phenomena, such as
degradation, repair, and part replacement cause behavior to drift
over a machine’s life cycle. Adding to these challenges, labeled
data from fielded machines are rarely available because when
a failure occurs, the machine is repaired or rebuilt, inducing a
distribution change or rendered irreparable.

Similarly, in defense settings, imagery related to new missions
is limited. Data collection for new missions is costly. It can
require operating in hostile territory or airspace and within
enemy field of fire. Moreover, battlefields are dynamic and often
do not afford data collection at the scale required by existing
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data-driven computer vision methods. In addition, defense is
game-theoretic in nature and adversaries can manipulate the
appearance of concerns, such as aircraft or ground vehicles, to
take advantage of an overreliance on data [1].

In both PHM and defense, algorithmic approaches for relating
behaviors between systems and over time are fundamentally
constrained. Instead of focusing on engineering ever-more adap-
tive learning systems, the authors suggest a focus on method-
ologies that support the design and operation of systems to limit
nonstationarities to acceptable levels. This interdisciplinary ap-
proach treats generalization, i.e., satisfactory predictive perfor-
mance on new data, as a systems-level goal, not a goal exclusive
to algorithm design.

Designing and operating in this way requires metrics that
bring the learning theoretic challenges of learning systems to the
systems-level. Transfer distance, the abstract distance knowl-
edge must traverse to transfer from one system to another, is focal
in domain adaptation theory and is used to relate the magnitude
of distributional change between systems to prediction error in
the new system. Although transfer distance is typically left as an
informal notion or implicit in transfer learning methods, here,
we formalize it and position it as central to the characterization
of the relationship between systems and the generalization of
their component learning systems.

We present a Bayesian approach for empirically quantifying
transfer distance. The accompanying studies offer a guide for
practitioners on how to quantify the difficulty of transfer, the
transferability of different learning tasks, and the role of sample
size in transferability, as well as how to use transfer distance to
quantify expected operational performance. We consider a case
in hydraulic actuator health monitoring, where nonstationarities
occur as the result of actuator rebuilds. We also consider a case
in computer vision with a mission context, where information
regarding a mission’s expected operating environment is used to
assess expected operational performance. We frame the former
in terms of system design and the latter in terms of system
operation. In doing so, we contribute to the broader effort of
developing principled methodologies for the systems engineer-
ing of artificial intelligence (AI).

The rest of this article is organized as follows. First, we
provide background on transfer learning, domain adaptation,
concept drift, PHM, and computer vision. We, then, justify the
use of transfer distance as a metric by drawing from domain
adaptation theory and present our methodology for quantify-
ing transfer distance. Subsequently, we apply our methodology
to characterize the transfer learning problems induced by an

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9215-5816
https://orcid.org/0000-0002-1207-4504
https://orcid.org/0000-0003-2196-6982
mailto:tcody@vt.edu
mailto:sca2c@virginia.edu
mailto:pb3a@virginia.edu
mailto:pb3a@virginia.edu


CODY et al.: EMPIRICALLY MEASURING TRANSFER DISTANCE FOR SYSTEM DESIGN AND OPERATION 4963

actuator-rebuild procedure and mission deployment. Finally,
Section VII concludes this article.

II. BACKGROUND

We briefly review transfer learning, domain adaptation, con-
cept drift, PHM, and computer vision, and note this article’s
relationship with them. In short, this article presents PHM and
computer vision case studies in empirically characterizing trans-
ferability using principles from domain adaptation and methods
from concept drift.

A. Transfer Learning

Transfer learning describes the idea of using knowledge from
source systems to help learn in a particular target system. More
formally, consider a learning problem that consists of a domain
D = {X , P (X)} and a learning taskT = {Y, P (Y |X)}, where
X = x forx ∈ X ,Y = y for y ∈ Y , andP denotes a probability
distribution. Transfer learning uses knowledge from a source
learning problem {DS , TS} to improve the learning of a function
fT : XT → YT in a target learning problem {DT , TT }, where
DS �= DT or TS �= TT [2].

Transfer learning enables learning in environments where
data are limited. Perhaps more importantly, it allows learning
systems to propagate their knowledge forward through distri-
butional changes, such as the degradation and wear of physical
components, changes in use cases and functionality, and policy
changes regarding the use of particular features X and labels
Y [3]. The classical approaches to transfer learning involve
selecting or weighing samples from the source, projecting the
source and target features into a latent space, or bounding the
parameters of the target model within a range of the source
model’s parameters [2].

Identifying whether or not transfer learning is an appropriate
solution for a particular learning problem is crucial [4]. Failure
to do so can result in negative transfer, wherein dissimilarity
between the source and target systems results in transfer learn-
ing under-performing traditional machine learning approaches.
While the extent of negative transfer is algorithm-dependent,
the existence of negative transfer is tied to the distributions
underlying the learning problem [5]. Thus, closeness between
the source and target distributions is a precondition for transfer
learning success.

B. Domain Adaptation

Domain adaptation is a subfield of transfer learning where
XS × YS = XT × YT [6]. In other words, only the probability
distributions change between the sources and target, not their
sample spaces. Domain adaptation theory places transfer dis-
tance at the center of bounding error in new environments [7],
[8]. The common approach taken is to note that the error in the
target is related to the error in the source plus some measure of
similarity between the source and target.

These bounds can be loosely represented by the following
inequality:

εT ≤ εS + δ + C (1)

where εT and εS are the errors in the source and target, respec-
tively, δ is the transfer distance between domain distributions,
and C is a term that accounts for relevant complexities, e.g.,
VC-dimension [8] and sample size. Although inequality (1)
is a rough approximation of the underlying learning theory,
specifications can be added to arrive at proper, learning theoretic
bounds using statistical divergence [7], H-divergence [8], the
Rademacher complexity [9], or integral probability metrics [10].

And, as Redko et al. [11] showed in their extensive survey of
domain adaptation theory, εS and δ are the core terms in the-
oretical upper-bounds on error in new environments εT . Terms
for capacity, sample size, information complexity, and others,
provide nuance, but do not drive the upper-bound except in their
extreme realizations. Moreover, inequality (1) emphasizes the
term δ because it most directly couples systems-level design
and operation to transferability and generalization difficulty of
component-level learning systems. It is not clear that terms re-
lated to algorithm design and hypothesis class selection provide
a similar mechanism.

C. Concept Drift

Whereas transfer learning considers distributional change
between a source and target, concept drift considers distribu-
tional change that occurs in streaming data from one stable
distribution, termed as a concept, to another. There are many
metrics similar to transfer distance used in the concept drift
literature to characterize drift [12]. Drift in these streaming
systems has been modeled and simulated using the Gaussian
mixture models (GMMs) [13], [14]. Many methods use the
Hellinger distance to calculate distributional divergence because
it is bounded [0, 1] and symmetric [12], [15]. Consistent with
concept drift literature, we use a combination of the GMMs and
the Hellinger distance to characterize distributional change.

D. Prognostics and Health Management

PHM is concerned with the use of prognostics and diagnostics
for the management of machine health [16]. In mechanized
systems generally, it is essential for continuous operation, and,
thus, is an important field of engineering research. As machine
down-time is the eminent failure in production systems [17],
PHM is crucial to economic productivity. Furthermore, PHM
helps safeguard critical systems, such as gears in rotorcraft [18],
whose failure can cause loss of propulsion mid-flight, and air
filtration systems [19], whose failure in high pressure environ-
ments, such as submarines, can be equally catastrophic, among
others [20].

Currently, machine health management is dominated by time-
based maintenance schedules, however, there is an increasing
interest in and use of data-driven PHM for adaptive schedul-
ing [21]. This has led to extensive application of machine
learning for health state classification and remaining useful life
regression. There is a much smaller body of literature, however,
using transfer learning to deal with the challenges these methods
face in practice due to the aforementioned nonstationarities
and label constraints [22]–[26]. While feature selection and
metric learning use notions related to transfer distance and offer
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Fig. 1. Data-driven models inform maintenance actions, which change the
distribution of their data. Nonstationarity is inherent in PHM.

promising directions for further development [27]–[29], they
are still scoped to designing better learning algorithms, not to
designing better systems for learning algorithms.

Nonstationarity is a fundamental challenge in PHM. In data-
driven PHM, sensor data from machines are used for prognostics
and diagnostics to inform operations management. When a
maintenance action is taken, such as a machine rebuild, where
the machine is deconstructed and rebuilt, the distribution of the
sensor data changes. This cycle is shown in Fig. 1. Minor physi-
cal differences in the tensions of fasteners or locations of sensors
can degrade predictive performance. The extent of degradation is
difficult to ascertain because after an example of failure occurs,
the system will be repaired, inducing a distribution change, or
will be deemed irreparable.

Thus, in PHM systems, there is a real limit in our ability to
address nonstationarity with algorithm design; it is necessary to
take into account the role of system design in the generalization
of learning. And to that end, it is necessary to have metrics, which
can link notions like the design of maintenance procedures, e.g.,
regarding details like tensions and sensor locations, to notions
like the transferability of knowledge.

In recent work, we extensively studied PHM for hydraulic ac-
tuators in order to better place related data-driven modeling in a
systems context, including cost and power constraints [30]–[33].
These studies have used a fault-simulating test-bed that consists
of two matched rotary actuators, where one acts as the actuator
and the other acts as the load [34]. Here, we use data collected
from this test-bed to extend the literature on data-driven PHM for
hydraulic actuators by explicitly modeling the transfer distance
associated with a rebuild procedure. Previously, we showed
that sample transfer can be used to recover performance across
the rebuild [35]. Here, instead of solving the transfer learning
problem, in contrast, we use transfer distance as a means of
characterizing the transfer learning problem associated with the
rebuild.

E. Computer Vision

Computer vision is a broad field concerned with visual per-
ception and pattern recognition. In recent years, deep learning
has overtaken handcrafted feature engineering methods for pro-
cessing images in the computer vision research literature [36],
[37]. Instead of extracting expert-defined features from images
as a preprocessing step, deep learning takes raw images as inputs
and learns to both extract its own features and make predictions
as part of a single, end-to-end process. While deep learning
increases predictive performance and allows for novel use cases,
it is heavily reliant on large datasets [38].

As previously described, in defense applications, this presents
a bottleneck to deployment. Image classifiers have been trained
to detect planes and their orientation when parked in airports’
aprons using knowledge transferred from general visual recog-
nition tasks [39]. However, such models are highly dependent
on the airports included in training. As we will demonstrate,
classifiers can suffer a decrease in performance when the biomes
surrounding the airports change between training and operation.
We calculate the transfer distance associated with transferring a
model from one geographical region to another, as in a mission
deployment scenario, and use it to anticipate model degradation.
We use an autoencoder for dimension reduction, similar to
existing approaches to an explainable AI [40].

An explainable AI seeks to alleviate challenges in AI as-
surance, including ethics, bias, fairness, and robustness, by
making models, their training, and their inputs and outputs
interpretable [41]. Deeper methodology concerns analysis of
counterfactuals and causality, for example, in terms of graph
neural networks [42]. Methods targeting robustness are varied
and a subject of ongoing research [43], [44]. While robustness
is typically framed in terms of stability against perturbation, the
use of transfer distance herein alternatively concerns changes
in stable points altogether, i.e., not in maintaining performance
within a neighborhood of a particular system but rather between
and across systems (due to life cycles, changes in use, etc.). Thus,
transfer distance is relevant to traditional notions of robustness,
but also applicable to assured and explainable AI broadly.

III. METHODS

Transfer distance is usually referred to informally, e.g., to
describe near or far transfer. It is implicit in the use of the
Wasserstein distance [45], maximum mean discrepancy [46],
[47], generative adversarial networks [48], [49], and others,
to calculate distributional-divergence-based components of loss
functions in transfer learning algorithms. We consider transfer
distance explicitly, in a way that may not necessarily be useful
in calculating loss functions, but is interpretable to system
designers and operators. Transfer distance is defined as follows.

Definition 1 (Transfer Distance): The transfer distance be-
tween a source and target learning system, denoted by S and T ,
respectively, is a measure δ

δ : PS × PT → IR

on probability measures PS and PT from the source domain DS

and task TS and target domain DT and task TT , respectively.
More general definitions are possible. This definition directs

our interest toward the marginal distributions P (X) from the
domains D and posterior distributions P (Y |X) from the tasks
T . For the purposes of explainability and analysis, we model
these distributions explicitly, in closed-form, and take a Bayesian
approach to constructing the posterior. We only fit P (X|Y ), and
using an estimate for the prior P (Y ), construct the marginal
P (X) and posterior P (Y |X).

Our algorithm for computing transfer distances can be de-
scribed as follows. We assume thatXS = XT = X ,YS = YT =
Y , that X is continuous, and that Y is discrete. We first fit the
likelihood distributions PS(X|Y = y) and PT (X|Y = y) for
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all y ∈ Y . We construct PS(X) and PT (X) using a prior P (Y )
and the total probability law, and then construct PS(Y = y|X)
and PT (Y = y|X) for all y ∈ Y using the Bayes theorem. We,
then, sample from X × Y according to the source and target
distributions and calculate the transfer distance δ using these
samples. This process is shown in Algorithm 1.

We use the GMMs to fit the likelihoods P (X|Y ), i.e., as
the fitter method in fit function of Algorithm 1. The Gaussian
mixture modeling is a clustering technique whereby a mixture
of probability weighted multivariate Gaussian distributions is fit
to data. Each point is assigned to a single multivariate Gaussian,
i.e., its cluster. For a GMM with K clusters

p(X) =

K∑
k=1

πkN (X|μk, σk)

where p(X) is the density function of X , πk is the probability
weight of cluster k, and N is the multivariate Gaussian distri-
bution with mean μk and covariance σk.

Here, an empirical prior probability—the ratio of the sample
size of each label to the total number of samples—is used
to estimate P (Y = y) and construct P (X) from the GMMs
of P (X|Y ), except for the binary classification problem in
PHM where sensitivity to P (Y = y) is considered. Methods for
estimating P (Y = y) are historic, varied, and often application-
specific [50]. Our use of empirical priors is not a recommenda-
tion, per se, and choice of an alternative approach is a means by
which practitioners can tailor their use of the transfer distance
methodology to their specific application.

Explicitly, closed-form models of the source and target allow
for a rich set of distance functions. Different applications may
call for different distances, and closed-form distributions afford
this flexibility. In our case, we use the Hellinger distance and
the Kullback–Leibler (KL) divergence as our transfer distances
δ. For the sake of computation, distributions are discretized by
sampling a region defined over the union of the supports of the

distributions in question.1 Given two discrete probability distri-
butions P = (p1, . . ., pn) and Q = (q1, . . ., qn), the Hellinger
distance between P and Q is

H(P,Q) =
1√
2

√√√√
n∑

i=1

(
√
pi −

√
qi)2.

H is symmetric and bounded [0, 1], whereH = 0 implies that
the distributions are completely identical andH = 1 implies that
they do not overlap at all. The KL divergence between P and Q
is

KL(P,Q) =

n∑
i=1

pi log
pi
qi
.

The KL is not symmetric and is unbounded above [0,∞),
where its lower bound implies that the distributions are com-
pletely identical. The Hellinger distance is used for the PHM
case studies in system design and the KL divergence is used for
the computer vision case studies in system operation. The reason
for changing distance measures is to underscore the generality
of the proposed methodology.

IV. TRANSFER DISTANCE FOR SYSTEM DESIGN

In system design, transfer distance can be used to design
systems with an awareness of the generalization difficulty faced
by component learning systems. Generalization difficulty con-
cerns the difficulty of achieving a certain level of error on new
data. Different design decisions can be associated with different
generalization difficulties. inequality (1), i.e.,

εT ≤ εS + δ + C

suggests that a higher transfer distance δ is associated with a
higher demand on the error in the source εS and the term C
to keep the upper bound on error in the target εT the same as

1Near-zero values are treated as zero to bound the supports.
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with a lower transfer distance. Therefore, transfer distance has
a strong, fundamental influence on generalization difficulty.

In cases where the distance between the source and target
is, for example, associated with some physical change in the
system, we can use transfer distance as a means of associating
the physical change with generalization difficulty. Consider the
generalization of prognostics models across system rebuilds.
In previous work, we found that while binary health states for
hydraulic actuators can be classified with an accuracy of 98%
when trained and tested on the same actuator, but when the
actuator is deconstructed and rebuilt, the same classifier does
marginally better than random guessing [35]. When transfer
learning is applied, classification accuracy recovers to almost
90%.

In the following, transfer distance is used to characterize the
generalization difficulty associated with a particular actuator-
rebuild procedure. We show, how an analysis of transfer distance
can be used to understand why the original classifier failed, to
suggest why transfer learning worked, and ultimately, to inform
the iterative design of rebuild procedures to limit degradation in
predictive performance across system rebuilds. We quantify the
generalization difficulty associated with the rebuild procedure
in terms of the transfer distance between binary and multiclass
health state classification before and after the rebuild. Then, we
quantify the number of samples required to achieve a stable
estimate of transfer distance.

Faults were simulated on a hydraulic actuator, the actuator
was deconstructed and rebuilt, and the faults were resimulated.
The failure modes considered are opposing load, external load,
bypass valve, and leak valve failures, among miscellaneous
others. The hydraulic-actuator test stand is equipped with sen-
sors to collect acceleration, pressure, flow, temperature, and
rotary position. In preprocessing, to capture aspects of time-
dependence, the data are first windowed and summarized by the
mean and standard deviation of each window. Then, to reduce the
dimension of the data, principal component analysis is applied.
The first two principal components capture 90% of the variance
in the windowed features. These two components are used in
our studies.

A. Transfer Distance Induced by Rebuild

First, we consider binary health state classification, where
we learn to predict whether the hydraulic actuator is healthy,
Y = 0, or damaged, Y = 1. The original actuator is the source,
the rebuilt actuator is the target, and we are interested in em-
pirically quantifying the change in the binary classification
problem induced by the rebuild process, i.e., the changes in the
distributions underlying the problem. There are 789 healthy and
1480 damaged samples in the source, and 1098 healthy and
1822 damaged samples in the target.

The empirical prior P (Y = 0) is given by the ratio of
healthy samples to damaged samples, but such a prior implies
almost even–odds of failure. We approximate the empirical
prior as P (Y = 0) = 0.40 and compare against P (Y = 0) ∈
{0.9, 0.99, 0.999}. The same priors are used for both the source
and target.

TABLE I
HELLINGER TRANSFER DISTANCE FOR RELEVANT DISTRIBUTIONS

Note: δX|Y does not depend on P (Y ).

The fitted likelihoods and the constructed posterior probabil-
ity of being healthy are plotted in Fig. 2. The likelihood densities
in Fig. 2(a) and (b) show the source in red and target in blue,
fit with 2-component GMMs, where each concentric ellipse
represents one standard deviation from a component’s mean.
The plotted points are from samples held-out from the fitting
process. Whereas the healthy densities overlap closely between
the source and target, the damaged densities do not. The target,
rebuilt actuator has a larger spread in the distribution of damaged
data when represented by its first two principal components.
Classification likely dropped because of this increased variance.
Despite this difference, the posteriors, shown in Fig. 2(c) for
P (Y = 0) = 0.40, are fairly similar. Transfer learning likely
succeeded at bringing accuracy back to nearly 90% because the
increased variance in the damaged likelihood did not strongly
affect the posterior.

Transfer distances δ are shown in Table I. As in the plots,
the healthy likelihoods are closer than the damaged likelihoods.
Notably, the transfer distance between the marginals P (X) is
larger than that between the posteriors P (Y = 0|X). In other
words, there are changes in the distribution of the sensor data that
do not have a material effect on the binary classification problem.
We can also note that as the prior odds of failure decrease, δX and
δY=0|X decrease as well, because the difference in the damaged
likelihood is weighted less.

These results show that the rebuild procedure affects the distri-
butions of damaged data far more than the distribution of healthy
data. This means that while healthy behavior appears similar
across rebuilds, failure does not. This is particularly worrisome
because in fielded systems we will typically only have access
to healthy samples. The transfer distance between the healthy
source and target data suggests a much smaller change than
that actually occurs. This finding reaffirms our position that
designing systems to avoid difficult transfer learning problems
is essential to AI engineering because there are distributional
changes over a system’s life cycle that we cannot sample and
empirically characterize in the field.

In PHM systems, it may be the case that some failure modes
are similar across many machines or many rebuilds, whereas
others are not. Transfer distance provides a means for empir-
ically quantifying how transferable failure modes are relative
to each other, and thereby serves as a mechanism for directing
related engineering effort, such as data collection and algorithm
design.
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Fig. 2. Likelihood densities and healthy posterior distributions. Each point corresponds to a single instance of windowed sensor-features. (a) p(X|Y = 0).
(b) p(X|Y = 1). (c) P (Y = 0|X).

Fig. 3. Posterior distributions for different failure modes. Each point corresponds to a single instance of windowed sensor-features. (a) p(X|Y = 1).
(b) p(X|Y = 2). (c) P (Y = 5|X).

TABLE II
HELLINGER TRANSFER DISTANCE FOR RELEVANT DISTRIBUTIONS

Since transfer learning comes with associated costs and risks,
it is important to know where it is needed and where it is not.
A need-based approach not only allows for reduced knowledge
transfer and retraining, but it also allows transfer learning algo-
rithms to specifically focus on transferring knowledge for those
failure modes that need source knowledge the most.

We quantify the transfer distance between failure modes in
the source and target using a multiclass health state classifica-
tion problem. Now, Y = {0, 1, 2, 3, 4, 5} where Y = 0 signifies
healthy and Y = 1, . . ., 5 signify opposing load, external load,
bypass valve, leak valve, and other failures, respectively. We
have a similar number of samples between source and target
and across failure modes. Using the presented methodology we
fit a posterior distribution ∀y ∈ Y . Table II shows the likelihood
and posterior transfer distances for each failure mode.

Opposing load failures have a posterior transfer distance of
0.64 and leak valve failures have a posterior transfer distance
of 0.88. This suggests that the sensor-data representations of

opposing load failures in the source and target actuators are
closer than those of leak-valve failure. Put flatly, opposing-load
failures look more similar after the rebuild than leak-valve
failures.

Fig. 3 shows the source and target posterior probabilities for
opposing load, external load, and other miscellaneous failures.
The overlap of the distributions in the plots corresponds to the
posterior transfer distances in Table II. Perhaps an algorithm
designer may conclude that knowledge transfer is feasible for
opposing load failures, but not for other failures. Or, perhaps a
systems engineer would suggest redesigning the rebuild proce-
dure to bring those failure modes with a higher transfer distance
closer in the PCA space.

B. Transfer Distance and Sample Size

We have shown how transfer distance can be used to character-
ize transferability and provide insights for system and algorithm
design. It is important to note that the distribution of the target
actuator has a certain sample complexity. Transfer learning that
relies on measures of distributional difference should wait for
the distribution to settle first; otherwise, methods, such as sample
weighting and selection, will be using inaccurate estimates
of distributional divergence. Similarly, transfer distance may
require a number of samples to be collected before it can be
considered a reliable metric for design and operational decision-
making.

In the hydraulic actuators, each sensor-feature, e.g., the mean
of acceleration 1, the standard deviation of pressure 1, etc., has its
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Fig. 4. Top-left plot shows how the empirical CDF of the standard deviation of a pressure gauge changes with sample size. The top-right plot shows how many
samples it takes for different sensor-feature types to converge to a stable value, labeled according to sensor-type. The bottom plot shows the transfer distance
between GMMs trained on a subsample of target data and a full sample of target data.

own sample complexity. Note the top-left plot in Fig. 4, which
shows the empirical cumulative distribution functions (CDFs)
associated with different size samples of the standard deviation
of a pressure gauge. The CDF appears not to settle until 150 to
200 samples. If we use the Kolmogorov–Smirnov (KS) statistic,
which gives the largest absolute difference between two uni-
variate CDFs, we can test when successive increases in sample
size no longer change the distance between a sensor-feature’s
CDF in the source and target. In the top-right plot of Fig. 4, the
point where the change in the KS statistic between the source
and target for successive sample sizes changes less than 5%
is plotted for each type of sensor-feature, e.g., acceleration,
pressure, etc. Apparently, the distances between the source and
target univariate CDFs converge at different rates. Accelerations
have the largest KS statistics, but also the lowest sample size to
settle.

We are learning using multiple sensor-features, thus, we are
interested in how they settle jointly. In the bottom plot of Fig. 4,
we consider sensor-feature interdependence by calculating the
Hellinger transfer distances δ between target subsamples of a
size corresponding to the x-axis and the full target sample.
Transfer distances δY |X and δX|Y=0 decrease as sample size
increases, and transfer distances δX and δX|Y=1 roughly follow
the same trend. Based on these results, it appears as though it

takes at least 300 to 350 samples in the target before estimates
of distributional divergence are stable. Note, that in practice, we
often will only be able to conduct this analysis using the healthy
data.

In the context of machinery, depending on the nature of a
maintenance procedure, the time to estimate the new distribution
of sensor-data may change. This period relates to the lag-time
before we can transfer knowledge to the new system to support
data-driven PHM. The design of maintenance procedures to
influence the length of this intervention is an important aspect
of keeping PHM systems functioning.

V. TRANSFER DISTANCE FOR SYSTEM OPERATION

In system operation, transfer distance can be used to oper-
ate systems with an awareness of the expected generalization
performance of component learning systems. Generalization
performance concerns a learning system’s error on new data.
Different operational decisions are associated with different
expected generalization performances. Inequality (1) suggests
that transfer distance plays a fundamental role in determining the
upper bound on error in new environments. Therefore, transfer
distance has a strong connection to expected generalization
performance.
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Fig. 5. MNIST in latent space. (a) MNIST original, source images (left) and rotated, target images (right) in the variational autoencoder’s latent space.
(b) The variational autoencoder’s latent space shows the effect of rotation varies by digit.

In defense applications of computer vision, look angle, pixel
density, time of day, and biome, for example, can vary between
missions. Even when the sample spaces of images X and image
labels Y have the same structure, the probability distributions
associated with those sample spaces can differ drastically. Some-
times, one can intuit the existence of significant differences, for
example, between image classification problems in the tundra
and jungle. Other times, it is not as clear, for example, between
classification problems in the Southern and Northern California.
In either cases, transfer distance can empirically support or reject
such intuition.

In the following, we first explore the relationships between
transfer distance and expected generalization performance on
the canonical handwritten digit recognition dataset MNIST [51].
Then, with this understanding, we explore an application in
defense where a model trained to detect the presence of aircraft in
the Southern California is deployed on a mission in the Northern
California [52]. In both cases, we use autoencoders to com-
press the images into a low-dimensional, latent representation
before applying the Algorithm 1 to compute transfer distances
of interest. We use the GMMs as before, but now use the KL
divergence instead of the Hellinger distance as our measure of
transfer distance δ.

A. MNIST and Expected Operational Performance

Just as transfer distance can be used as a metric for assess-
ing the difficulty of generalization associated with a particular
system design, it can be used to assess expected operational
performance. Unlike in system design, in system operation we do

not have direct control over transfer distance. We are not looking
to change transfer distance directly, but rather, to operate in such
a way that performance remains satisfactory.2 Viewed discretely,
we have a training environment, the source, and an operating
environment, the target, and are interested in identifying if
generalization performance in the operating environment will
be satisfactory.

To see how transfer distance relates to expected operational
performance, consider the MNIST handwritten digit recognition
problem. The dataset contains examples of handwritten digits 0
through 9. We let the original data act as the source, training
environment. To create a target we rotate all original data by
90-degrees clockwise. We fit a variational autoencoder to the
source images and use it to represent the source and target images
as bivariate Gaussian distributions [53].

The transformed images are plotted in Fig. 5(a) according to
their Gaussian means μ. Whereas 0, 1, and 6 are well separated
in the source, as shown in the left plot, no rotated digits are
well separated in the target, as shown in the right plot. The
target images are interspersed with each other and have a smaller
variance in μ1 and μ2 than the source images. This immediately
suggests that the rotation of the images has a significant effect
on P (X).

This difference inP (X) is not the same for all digits, however.
Consider the digits 0, 3, and 6, as shown in Fig. 5(b). While all
show differences, both the source and target “0” and “6” images
share some overlap. In contrast, the source and target “3” images

2In general, design and operation are inextricable, but herein we establish a
dichotomy to emphasize the dual use of transfer distance.
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Fig. 6. Higher transfer distance digits have low recall.

are almost partitioned by μ1 = 0.5. It makes intuitive sense that
0 and 6 are more similar because of the invariance of circles to
rotation.

To investigate further, we use a random forest to classify
digits [54]. When we calculate the recall on the rotated, target im-
ages of a classifier trained on the nonrotated, source images we
find that those digits with a higher transfer distance (in this case
a higher KL divergence) have a lower recall, as shown in Fig. 6.
Different to accuracy, recall considers the true positive rate, i.e.,
the ratio of correct classifications to number of instances of that
class. “0” images have the highest recall and lowest transfer
distance. And while digits “1” and “6” have low recall and low
transfer distance, there are no cases of high transfer distance
and high recall. Thus, it seems high transfer distances have low
recall. Given a measurement of transfer distance, we can form an
empirical judgement of expected operational performance and,
correspondingly, can make empirically informed operational
decisions. In the following, we consider a “go, no go” mission
deployment problem in aircraft detection.

B. Mission Scenario in Aircraft Detection

Object detection from overhead imagery is a core function in
defense systems. Despite the success of high-capacity models,
like deep learning, image classifiers are not global. Classifiers
trained in one geographic region suffer performance degradation
when deployed in other geographic regions. Fundamentally, this
occurs because of a change in the underlying distribution of
images. Transfer distance can be used to anticipate and detect
drops in performance by comparing the distributional difference
between samples from the training and operating environments.

Consider a case where a classifier is trained to detect the
presence of aircraft in the Southern California and is tasked with
operating in the Northern California. Example images are shown
in Fig. 7. There are roughly 20 000 images from the Southern
California and 12 000 images from the Northern California.
We trained a convolutional neural network to detect aircraft on
Southern California images.

When classifying held-out images from the Southern Califor-
nia the classifier’s accuracy is nearly 98%, but when classifying
images from the Northern California accuracy drops to nearly
85%, as shown in Fig. 8. The classifier still has predictive power,

Fig. 7. Example aircraft images and nonaircraft images from California in the
top and bottom rows, respectively.

Fig. 8. Shown is the classification accuracy of a convolutional neural network
trained in the Southern California evaluated on the Southern California images,
in blue, and on the Northern California images, in orange, over the course of ten
training epochs.

but, in critical applications like defense, the difference between
a 2% error rate and a 15% error rate is significant enough to
constitute failure.

In order to apply our transfer distance methodology, we first
train an autoencoder on the Southern California images. To do
this, we initialize a convolutional autoencoder with weights
from the VGG-16 image classification network and then we
fine-tune those weights [55]. We use the autoencoder to encode
the images into vectors. Then, we find the principal components
of the encoded Southern California images and transform all
images into the first two principal components, as in the actuator
example. In contrast to the actuator example, however, because
of the size of the dataset, we batch the data into samples of 100
before fitting GMMs.

When we calculate transfer distances δX between samples
drawn from the Southern California, we find them to have a mean
KL divergence of 5.60. When we calculate transfer distances
δX between samples drawn from the Southern and Northern
California, we find them to have a slightly higher mean KL
divergence of 5.97. This suggests that samples drawn from the
Southern and Northern California are, on average, farther from
each other than two samples drawn from the Southern California.
The small difference in expected transfer distance corresponds
to the slight drop in the classification accuracy in Fig. 8. While
this transfer distance may seem small, it highlights a general
difference between the Southern and Northern California images
for deeper analysis. We can investigate further by calculating
transfer distances δX|Y of correctly and incorrectly classified
images.
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Fig. 9. First two principal components of true positives and false negative
classifications when classifying images in the Northern California using a
classifier trained in the Southern California. Misclassified Northern California
aircraft images do not share a center of mass with the Southern California aircraft
images. (a) True Positives. (b) False Negatives.

Correctly classified Northern California aircraft images have
a KL divergence of 0.94 from Southern California aircraft im-
ages, while misclassified Northern aircraft images have a KL
divergence of 1.99, twice as high. These distances correspond
to true positive and false negative cases, respectively. Correctly
classified nonaircraft images from the Northern California have
a KL divergence of 2.34 from Southern California nonaircraft
images, while misclassified nonaircraft images from the North-
ern California have transfer distance of 3.11. Note, the transfer
distance for incorrectly classified images is higher than the trans-
fer distance for correctly classified images for both aircraft and
nonaircraft images. That is, higher transfer distance correlates to
higher error. We can analyze why this is so by using the principal
components of the encoded images.

True positives refer to correctly classified aircraft images
and false negatives refer to incorrectly classified aircraft im-
ages. The true positives and false negatives associated with the
classifier trained on the Southern California overhead imagery
are shown in Fig. 9(a) and (b), respectively. Notice that the
correctly classified aircraft images are near the center of mass
of the Southern California aircraft images while the incorrectly
classified aircraft images are not. In other words, the incorrectly
classified Northern California aircraft images are in the tails of
the distribution of the Southern California aircraft images.

This suggests that system operators can empirically inform
“go, no go” deployment decisions using transfer distance. In
this case, the transfer distance between unlabeled images δX
suggests a slight drop in the performance. Further, transfer
distance between misclassified images is higher than that of the
correctly classified images. Before deployment, system oper-
ators can use this empirical evidence to anticipate challenges
to mission success. After deployment, system operators can

use transfer distance to adjust their confidence in the model’s
classification accuracy in real-time.

VI. REMARKS AND LIMITATIONS

In the preceding, we demonstrated how to use transfer dis-
tance to compare the transferability of binary and multiclass
health state classifiers. In doing so, we showed how transfer
distance can be used to quantify the transferability of both
generalized and specific modes of failure across maintenance
procedures. In addition, we showed how to determine the num-
ber of samples needed for stable estimates of transfer-distance
and transfer-learning parameters, and discussed the role of the
design of maintenance procedures in the length of this inter-
vening period. We also demonstrated transfer distance’s use
in computer vision. In particular, we identified what kind of
images are least transferable across changes in look angle and
we anticipated and analyzed degradation in aircraft detection
performance between geographic regions. We used different
measures of transfer distance and generalization performance
as well as different sized data-sets from different domains,
i.e., sensor data and images, to highlight the generality of the
presented transfer distance methodology. The varied concerns of
these case studies may appear disparate when viewed bottom-up,
but, when viewed top-down, transfer distance presents itself as
an application-agnostic methodology for systems engineering.

The presented systems engineering methods are complemen-
tary to algorithmic methods. They are necessary in the many
cases where data will not be available to sufficiently adapt
component learning systems. They are complementary because
robust and sample-efficient learning algorithms require less
consideration in system design and operation, and more consid-
eration in system design and operation requires less robustness
and sample-efficiency from learning algorithms.

While the calculation of transfer distance using the Bayesian
method presented herein is not computationally efficient, the
purpose of transfer distance as a formal concept is to elevate
its use beyond the definition of loss functions for machine
learning. The Bayesian formulation emphasizes the varied roles
of all the terms in the Bayes theorem, trading off computational
efficiency for richness of information. Negotiating this tradeoff
as appropriate for a given application and its available data are
left to practitioners.

It is important to note that the full Bayesian characterization of
transfer distance is not needed to use transfer distance to inform
decisions in system design and operation. As mentioned, domain
adaptation theory for upper-bounding error in new environments
is built around the use of marginal distributions P (X), i.e.,
unlabeled data. In addition, the distributions of the domain
and task do not necessarily need to be fit empirically. Expert
knowledge, e.g., in the form of physical models or mission
profiles, can provide physics-based or judgmental models of
distributions. And so, the data used to calculate transfer distance
do not need to be the same as the data used by transfer learning
algorithms, therefore, transfer distance can be estimated during
operation in cases with insufficient data for transfer learning.
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VII. CONCLUSION

As machine learning is deployed into systems, it is important
to consider the role systems engineering plays as a mechanism
for generalization. Systems engineering for AI requires metrics
that can relate learning-theoretic concerns to the systems-level.
Transfer distance is such a metric. In learning theory, it is central
to the bounding of prediction error of learned models in new
settings, such as rebuilt actuators or new look angles. At the
systems-level, it serves as a measurement of the closeness of
learning problems, and thereby a metric for designing and oper-
ating systems with the generalization performance of component
learning systems in mind.

Herein, we formally defined transfer distance as a measure,
presented an algorithm for calculating it, and demonstrated its
use in system design and operation. We emphasized how, by
using transfer distance as a metric, systems can be designed
to influence generalization difficulty and can be operated to
influence generalization performance. Better matching system
design and operation with component learning systems means
a lower chance of negative transfer, or at least a heightened
ability to anticipate negative transfer, less frequent occurrences
of drift or more anticipatable drift, and, overall, a lower burden
on algorithmic robustness.

In future work, we plan to further explore the use of transfer
distance in engineering practice. For example, in designing
rebuild procedures, we aim to characterize the sensitivity of
transfer distance to the tensions of fasteners, locations of sensors,
and the manufacturer of replacement parts. Also, in making “go,
no-go” operational decisions, e.g., in unmanned aerial systems,
we aim to tie mission success to the transfer distance between
training and operating environments. Lastly, the emphasis on
problem domain and task in the definition of transfer distance
follows from the status quo focus on problem solving in the
machine learning literature. Future work should investigate the
empirical use of transfer distancex between learning algorithms
and their systems more broadly.

ACKNOWLEDGMENT

The authors would like to thank Luna Innovations, Inc. for
providing a portion of the data used within this article. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the Naval Sea Systems Command. Also, an
early draft of the presented results is available on the arXiv [56].

REFERENCES

[1] C. Rogers et al., “Adversarial artificial intelligence for overhead imagery
classification models,” in Proc. IEEE Syst. Inf. Eng. Des. Symp., 2019,
pp. 1–6.

[2] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2009.

[3] T. Cody, S. Adams, and P. A. Beling, “A systems theoretic perspective on
transfer learning,” in Proc. IEEE Int. Syst. Conf., 2019, pp. 1–7.

[4] M. T. Rosenstein, Z. Marx, L. P. Kaelbling, and T. G. Dietterich, “To
transfer or not to transfer,” in Proc. Int. Conf. Neural Inf. Process. Syst.
Workshop Transfer Learn., 2005, pp. 1–4.

[5] Z. Wang, Z. Dai, B. Póczos, and J. Carbonell, “Characterizing and avoiding
negative transfer,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 11293–11302.

[6] J. Jiang, “A literature survey on domain adaptation of statistical clas-
sifiers,” 2008. [Online]. Available: http://sifaka. cs. uiuc. edu/jiang4/
domainadaptation/survey

[7] J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Wortman, “Learning
bounds for domain adaptation,” in Proc. Adv. Neural Inf. Process. Syst.,
2008, pp. 129–136.

[8] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W.
Vaughan, “A theory of learning from different domains,” Mach. Learn.,
vol. 79, no. 1, pp. 151–175, 2010.

[9] M. Mohri and A. Rostamizadeh, “Rademacher complexity bounds for
non-I.I.D processes,” in Proc. Adv. Neural Inf. Process. Syst., 2009,
pp. 1097–1104.

[10] C. Zhang, L. Zhang, and J. Ye, “Generalization bounds for domain adap-
tation,” in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 3320–3328.

[11] I. Redko, E. Morvant, A. Habrard, M. Sebban, and Y. Bennani, “A survey
on domain adaptation theory,” 2020, arXiv:2004.11829.

[12] G. I. Webb, R. Hyde, H. Cao, H. L. Nguyen, and F. Petitjean, “Char-
acterizing concept drift,” Data Mining Knowl. Discov., vol. 30, no. 4,
pp. 964–994, 2016.

[13] J. Wu, X.-S. Hua, and B. Zhang, “Tracking concept drifting with Gaussian
mixture model,” Int. Soc. Opt. Photon. Vis. Commun. Image Process.,
vol. 5960, 2005, Art. no. 59604L.

[14] J. Diaz-Rozo, C. Bielza, and P. Larrañaga, “Clustering of data streams
with dynamic Gaussian mixture models: An IoT application in indus-
trial processes,” IEEE Internet Things J., vol. 5, no. 5, pp. 3533–3547,
Oct. 2018.

[15] G. Ditzler and R. Polikar, “Hellinger distance based drift detection for
nonstationary environments,” in Proc. IEEE Symp. Comput. Intell. Dyn.
Uncertain Environ., 2011, pp. 41–48.

[16] K. L. Tsui, N. Chen, Q. Zhou, Y. Hai, and W. Wang, “Prognostics and health
management: A review on data driven approaches,” Math. Problems Eng.,
vol. 2015, pp. 1–17, 2015.

[17] J. Li and S. M. Meerkov, Production Systems Engineering. Berlin, Ger-
many: Springer, 2008.

[18] I. R. Delgado, P. J. Dempsey, and D. L. Simon, A survey of current
rotorcraft propulsion health monitoring technologies. Cleveland, OH,
USA: Nat. Aeronaut. Space Admin., Glenn Res. Center, 2012.

[19] F. Landolsi, H. Jammoussi, and I. Makki, “Air filter diagnostics & prog-
nostics in naturally aspired engines,” in Proc. IEEE Int. Conf. Prognostics
Health Manage., 2017, pp. 61–65.

[20] M. Eftekhari, M. Moallem, S. Sadri, and M.-F. Hsieh, “Online detection of
induction motor’s stator winding short-circuit faults,” IEEE Syst. J., vol. 8,
no. 4, pp. 1272–1282, Dec. 2013.

[21] W. Zhang, D. Yang, and H. Wang, “Data-driven methods for predictive
maintenance of industrial equipment: A survey,” IEEE Syst. J., vol. 13,
no. 3, pp. 2213–2227, Sep. 2019.

[22] F. Shen, C. Chen, R. Yan, and R. X. Gao, “Bearing fault diagnosis based
on SVD feature extraction and transfer learning classification,” in Proc.
IEEE Prognostics Syst. Health Manage. Conf., 2015, pp. 1–6.

[23] J. Xie, L. Zhang, L. Duan, and J. Wang, “On cross-domain feature fusion
in gearbox fault diagnosis under various operating conditions based on
transfer component analysis,” in Proc. IEE Int. Conf. Prognostics Health
Manage., 2016, pp. 1–6.

[24] W. Lu, B. Liang, Y. Cheng, D. Meng, J. Yang, and T. Zhang, “Deep model
based domain adaptation for fault diagnosis,” IEEE Trans. Ind. Electron.,
vol. 64, no. 3, pp. 2296–2305, Mar. 2017.

[25] W. Zhang, G. Peng, C. Li, Y. Chen, and Z. Zhang, “A new deep learning
model for fault diagnosis with good anti-noise and domain adaptation
ability on raw vibration signals,” Sensors, vol. 17, no. 2, pp. 425–445,
2017.

[26] X. Li, Y. Hu, M. Li, and J. Zheng, “Fault diagnostics between different
type of components: A transfer learning approach,” Appl. Soft Comput.,
vol. 86, 2020, Art. no. 105950.

[27] S. Uguroglu and J. Carbonell, “Feature selection for transfer learning,”
in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discov. Databases, 2011,
pp. 430–442.

[28] X. Zhong, S. Guo, H. Shan, L. Gao, D. Xue, and N. Zhao, “Feature-based
transfer learning based on distribution similarity,” IEEE Access, vol. 6,
pp. 35551–35557, 2018.

[29] Y. Xu et al., “A unified framework for metric transfer learning,” IEEE
Trans. Knowl. Data Eng., vol. 29, no. 6, pp. 1158–1171, Jun. 2017.

http://sifaka. cs. uiuc. edu/jiang4/domainadaptation/survey
http://sifaka. cs. uiuc. edu/jiang4/domainadaptation/survey


CODY et al.: EMPIRICALLY MEASURING TRANSFER DISTANCE FOR SYSTEM DESIGN AND OPERATION 4973

[30] S. Adams et al., “A comparison of feature selection and feature extraction
techniques for condition monitoring of a hydraulic actuator,” in Proc. Annu.
Conf. Prognostics Health Manage. Soc., 2017.

[31] R. Meekins et al., “Cost-sensitive classifier selection when there is ad-
ditional cost information,” in Proc. Int. Workshop Cost-Sensitive Learn.,
2018, pp. 17–30.

[32] K. M. Farinholt et al., “Developing health management strategies using
power constrained hardware,” in Proc. Annu. Conf. Prognostics Health
Manage. Soc., 2018, vol. 10, no. 1.

[33] S. Adams et al., “Hierarchical fault classification for resource constrained
systems,” Mech. Syst. Signal Process., vol. 134, 2019, Art. no. 106266.

[34] S. Adams, P. A. Beling, K. Farinholt, N. Brown, S. Polter, and Q. Dong,
“Condition based monitoring for a hydraulic actuator,” in Proc. Annu.
Conf. Prognostics Health Manage. Soc., 2016.

[35] T. Cody et al., “Transferring random samples in actuator systems for binary
damage detection,” in Proc. IEEE Int. Conf. Prognostics Health Manage.,
2019, pp. 1–7.

[36] X. Xiao, D. Xu, and W. Wan, “Overview: Video recognition from hand-
crafted method to deep learning method,” in Proc. IEEE Int. Conf. Audio
Lang. Image Process., 2016, pp. 646–651.

[37] L. Nanni, S. Ghidoni, and S. Brahnam, “Handcrafted vs. non-handcrafted
features for computer vision classification,” Pattern Recognit., vol. 71,
pp. 158–172, 2017.

[38] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016.

[39] Z. Chen, T. Zhang, and C. Ouyang, “End-to-end airplane detection using
transfer learning in remote sensing images,” Remote Sens., vol. 10, no. 1,
pp. 139–153, 2018.

[40] S. Bulusu, B. Kailkhura, B. Li, P. Varshney, and D. Song, “Anomalous
instance detection in deep learning: A survey,” IEEE Access, vol. 8,
pp. 132 330–132 347, 2020.

[41] F. A. Batarseh, L. Freeman, and C.-H. Huang, “A survey on artificial
intelligence assurance,” J. Big Data, vol. 8, no. 1, pp. 1–30, 2021.

[42] A. Holzinger, B. Malle, A. Saranti, and B. Pfeifer, “Towards multi-modal
causability with graph neural networks enabling information fusion for
explainable AI,” Inf. Fusion, vol. 71, pp. 28–37, 2021.

[43] M. A. Hanif, F. Khalid, R. V. W. Putra, S. Rehman, and M. Shafique,
“Robust machine learning systems: Reliability and security for deep neural
networks,” in Proc. IEEE 24th Int. Symp. On-Line Testing Robust Syst.
Des., 2018, pp. 257–260.

[44] G. Lecué and M. Lerasle, “Robust machine learning by median-of-
means: Theory and practice,” Ann. Statist., vol. 48, no. 2, pp. 906–931,
2020.

[45] J. Shen, Y. Qu, W. Zhang, and Y. Yu, “Wasserstein distance guided
representation learning for domain adaptation,” in Proc. 32nd AAAI Conf.
Artif. Intell., 2018.

[46] S. J. Pan, J. T. Kwok, and Q. Yang, “Transfer learning via dimensionality
reduction,” in Proc. 23rd Nat. Conf. Artif. Intell., 2008, pp. 677–682.

[47] M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Deep transfer learning
with joint adaptation networks,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 2208–2217.

[48] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous deep
transfer across domains and tasks,” in Proc. IEEE Int. Conf. Comput. Vis.,
2015, pp. 4068–4076.

[49] Y. Ganin et al., “Domain-adversarial training of neural networks,” J. Mach.
Learn. Res., vol. 17, no. 1, pp. 2096–2030, 2016.

[50] E. T. Jaynes, “Prior probabilities,” IEEE Trans. Syst. Sci. Cybern.,
vol. TSSC-4, no. 3, pp. 227–241, Sep. 1968.

[51] Y. LeCun, “The MNIST database of handwritten digits,” 1998. [Online].
Available: http://yann. lecun. com/exdb/mnist/

[52] P. Kamsing, P. Torteeka, and S. Yooyen, “Deep convolutional neural
networks for plane identification on satellite imagery by exploiting transfer
learning with a different optimizer,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp., 2019, pp. 9788–9791.

[53] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013,
arXiv:1312.6114.

[54] M. Pal, “Random forest classifier for remote sensing classification,” Int.
J. Remote Sens., vol. 26, no. 1, pp. 217–222, 2005.

[55] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[56] T. Cody, S. Adams, and P. A. Beling, “Empirically measuring transfer
distance for system design and operation,” 2021, arXiv:2107.01184.

Tyler Cody received the Ph.D. degree in systems
engineering on a systems theory of transfer learning
from the University of Virginia, Charlottesville, VA,
USA, in 2021.

He is currently an Assistant Research Professor
with the Virginia Tech National Security Institute,
Blacksburg, VA. His research has been applied to
machine learning for engineering systems broadly,
including hydraulic actuators, industrial compressors,
rotorcraft, telecommunication systems, and computer
networks. His research interests include developing

principles and best practices for the systems engineering of machine learning
and artificial intelligence.

Stephen Adams (Associate Member, IEEE) received
the M.S. degree in statistics and the Ph.D. degree in
systems engineering from the University of Virginia,
Charlottesville, VA, USA, in 2010 and 2015, respec-
tively.

He is currently an Associate Research Professor
with the Virginia Tech National Security Institute,
Blacksburg, VA. He has experience developing and
implementing numerous types of machine learning
and artificial intelligence algorithms. His research has
been applied to several domains including activity

recognition, prognostics and health management, psychology, cybersecurity,
data trustworthiness, natural language processing, and predictive modeling
of destination given user geo-information data. His research interests include
applications of machine learning, artificial intelligence in real-world systems,
feature selection, machine learning with cost, transfer learning, reinforcement
learning, and probabilistic modeling of systems.

Peter A. Beling received the Ph.D. degree in oper-
ations research from the University of California at
Berkeley, Berkeley, CA, USA, in 1992.

He is currently a Professor with the Grado
Department of Industrial and Systems Engineering,
Blacksburg, VA, USA, and an Associate Director
of the Intelligent Systems Laboratory, Virginia Tech
National Security Institute, Blacksburg, VA. His re-
search has found applications in a variety of domains,
including mission engineering, cyber resilience of
cyber-physical systems, prognostics and health man-

agement, and smart manufacturing. His research interests include the intersec-
tions of systems engineering and artificial intelligence (AI), and include AI
adoption, reinforcement learning, transfer learning, and digital engineering.

http://yann. ignorespaces lecun. ignorespaces com/exdb/mnist/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


