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Abstract—Cognitive radio (CR) is a promising technology for
addressing resource scarcity in wireless networks. However, in the
current CR-based framework, when resource availability changes,
existing resource allocation algorithms restart the optimization
process without using historical information. In addition, most
previous studies have focused on one or two objectives and some
have only addressed pure power control or spectrum allocation,
limiting the potential of CR. Thus, this article proposes a dynamic
multiobjective approach for power and spectrum allocation in a
CR-based environment in which the available spectrum channels
vary over time and multiple objectives are involved. This article
presents a dynamic multiobjective optimization problem (MOP)
with the objectives of energy efficiency, fairness, and spectrum uti-
lization and an approach of Pareto optimality. A dynamic resource
allocation algorithm comprising a hybrid initialization method and
feasible point generation mechanisms is proposed to solve the dy-
namic MOP. To dynamically adjust resource allocation, historical
approximate Pareto optimal solutions, represented by a center and
a manifold, are used to predict the new optima. The proposed
approach can yield a better convergence level and convergence
rate than those attained by comparable multiobjective resource al-
location algorithms. Compared with conventional single-objective
approaches, it achieves an excellent balance between the objectives.

Index Terms—Cognitive radio (CR), dynamic multiobjective
optimization, energy efficiency, fairness, resource allocation,
spectrum utilization.

I. INTRODUCTION

W ITH the Internet of Things emerging in global networks
of machines, devices, and everyday objects, more data

must be transmitted wirelessly [1]–[3]; this, in turn, has signif-
icantly increased the demands on spectrum bands and power in
wireless networks. Cognitive radio (CR) is a promising technol-
ogy that can address the problems of spectrum scarcity and the
inefficient use of the spectrum [4], [5]. Users in CR networks
can be classified as primary or secondary depending on whether
they use licensed or unlicensed spectrum bands, respectively.
CR technology senses the idle spectrum bands (called spectrum
holes) of the primary users and then allows the secondary users
to use these bands [6]–[8].
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CR can be divided into two phases. The first phase involves
sensing spectrum holes (i.e., sensing idle channels), and various
methods have been proposed for this purpose. For example, hid-
den Markov models are used to predict the idle channels on the
basis of the previous channel states [9], [10] and neural networks
have been developed to reduce dependence on prior knowledge
regarding network traffic characteristics [11]. The second phase
involves resource allocation, where power or spectrum bands,
or both, are allocated.

In this article, we used some previously proposed prediction
methods and primarily focused on a resource allocation problem
in a CR network. While addressing this problem, we considered
its size to be proportional to the numbers of users and spectrum
channels [12]–[15]. To reduce the problem size, some studies
have assumed that all users share the same spectrum channel,
for which only power control is considered [16]–[18]. However,
owing to the interference between users, the spectrum channel
cannot sufficiently support the massive data transmission on the
entire network. Some other studies have assumed that each user
transmits at a fixed power or data rate. However, in assuming so,
these studies have only addressed spectrum allocation [19]–[21],
which may result in power wastage during the data transmission.
Therefore, to realize the complete potential of a CR network, it is
reasonable to consider the joint allocation of power and spectra.

Resource allocation in a CR network aims to achieve energy
efficiency, spectrum utilization, and fairness. Energy efficiency
measures how efficiently power is consumed for data transmis-
sion [15], [17], [18], [22], [23]; spectrum utilization evaluates
how limited spectrum channels can be used for spectrum as-
signment [12], [23], [24]; and fairness assesses how fairly the
resources of a CR network are shared by users [25]. To achieve
these aims, a single-objective optimization problem considering
at most two of those metrics as objectives for resource allocation
has already been formulated. In [26] and [27], for example,
energy efficiency in beamforming for a coordinated multicell
multiuser downlink system was examined. In [28] and [29], a
framework addressing energy efficiency and spectrum utiliza-
tion in massive MIMO-enabled HetNets was proposed. In terms
of fairness, a max–min fairness metric was used to ensure that
the worst performance of a user is repaired and maximized,
a proportional fairness metric was used to allocate resources
in proportion with user demand, and Jain’s fairness metric was
used to ensure that each user delivers the same performance [16],
[21], [30].

In practice, however, the aforementioned metrics can have
conflicting objectives. For instance, when spectrum utilization is
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improved, the number of idle channels decreases, causing much
interference because of the presence of more secondary users
sharing a limited number of channels. As the interference in-
creases, the signal-to-interference-plus-noise ratio (SINR) may
decrease, which further undermines the energy efficiency. By
contrast, better energy efficiency can be achieved by allocating
more resources to secondary users, who possess better chan-
nels; however, this jeopardizes user fairness. Because of these
conflicting objectives, single-objective optimization cannot ef-
ficiently balance between these metrics [31].

To address this issue, a multiobjective optimization problem
(MOP) has been proposed, and Pareto optimality has been
adopted [13], [19], [32]. For example, Bhardwaj et al. [13]
proposed a multiband CR network scenario under quality-of-
service constraints, and they applied a modified nondominated
sorting genetic algorithm II (NSGA-II) algorithm to obtain
approximate Pareto optimal solutions. Han et al. [19] proposed
an NSGA-II-based algorithm to optimize end-to-end throughput
and spectrum utilization. Anumandla et al. [32] proposed a
multiobjective differential evolution-based algorithm to address
spectrum utilization, max–min fairness, and proportional fair-
ness.

However, two major factors can render the evolution process
inefficient. First, these multiobjective evolutionary algorithms
for resource allocation only consider a static environment in
which the number of idle spectra is fixed; when resource avail-
ability changes, the allocation algorithms restart the optimiza-
tion process without using the available historical information.
Second, efficient techniques for handling physical constraints
imposed on CR networks have not been comprehensively inves-
tigated. For example, a tree pruning method [13] was used to
directly remove infeasible points from the population, ignoring
the fact that some infeasible points are close to the feasible
points. Generic penalty methods can be adopted to better use
the information extracted from infeasible points; however, these
methods might yield premature or overdue convergence prob-
lems [33].

Although dynamic resource allocation in CR networks has not
been comprehensively investigated, the concept of dynamically
tracking new optima has been explored in the literature on
evolutionary computation [34]. Zhou et al. [35] investigated a
population prediction strategy for dynamic evolutionary multi-
objective optimization. In this method, the points in a Pareto
set were either represented as a center point or a manifold; an
autoregression model and the Euclidean distance were used to
predict the center point and manifold as they evolve through
time, respectively. Populations were then initialized using the
information on historical solutions. Xu et al. [36] developed a
cooperative coevolution strategy based on environmental sen-
sitivities. They adopted the differential prediction and Cauchy
mutation strategies for determining the decision variables on the
basis of their interrelation with the environment.

Motivated by the concept of dynamically tracking Pareto
optimal solutions, in this article, we address the problem of
resource allocation in a CR network by considering a dynamic
MOP with the objectives of energy efficiency, fairness, and

spectrum utilization. In the proposed problem, spectrum allo-
cation and power control are considered the discrete and con-
tinuous decision variables to be determined, respectively, and
the number of idle spectra is considered to vary dynamically
with time. To address this dynamic MOP, we propose a dynamic
multiobjective resource allocation algorithm, which comprises
a hybrid initialization method and feasible point generation
mechanisms. The hybrid initialization method can dynamically
track the new optima based on historical approximate Pareto
optimal sets. The mechanisms of generating feasible points can
avoid the need to use penalty methods for constraint handling.
As such, the resulting algorithm may exhibit improved efficiency
and be less affected by premature or overdue convergence
problems. Solving the dynamic MOP yields an approximate
Pareto optimal set and a Pareto front. The resources among
secondary users in a CR network are allocated on the basis of
a Pareto optimal solution. The simulation results indicate that
the proposed methodology can efficiently achieve an excellent
balance between the objectives relative to the existing methods.

This article makes the following three contributions to the
literature. First, our problem formulation has not been inves-
tigated in conventional CR networks; most previous studies
have focused on one or two of these objectives, and some
have only considered one type of our decision variables (i.e.,
discrete or continuous). The scenario considered in this article
is more challenging and the network flexibility induced by this
scenario can be helpful in realizing the complete potential of
CR systems. Second, we develop a few mechanisms that can
search for feasible points more efficiently than the conventional
penalty methods can, yielding a better convergence rate and
level than those attained by comparable evolutionary algorithms.
Third, the proposed multiobjective approach can dynamically
track a new Pareto optimal allocation, whereas the existing
resource allocation algorithms for CR networks must restart the
optimization whenever the network environment changes.

The rest of this article is organized as follows. Section II
describes the system models involved in a CR network, including
the metrics of energy efficiency, fairness, and spectrum utiliza-
tion. In Section III, our dynamic multiobjective approach is
detailed and analyzed. Section IV presents the simulation results
involving performance comparisons in terms of the convergence
rate, convergence level, and objective values. Finally, Section V
concludes this article.

II. SYSTEM MODELS

This section presents the system model that describes the
spectrum allocation and power control schemes in the CR net-
work. In each period t, the primary users may lease a few licensed
spectrum channels under certain interference conditions. Mean-
while, the secondary users submit their communication demand
for them to be assigned a certain amount of power and a certain
number of spectrum channels [37]–[39].

Table I summarizes the notation used throughout this article.
A CR network can be considered a multihop network, and one
node in the network can use the other nodes as relays to reach
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TABLE I
NOTATION

its destination. Let N be a set of nodes. A link comprising a
pair of nodes allows data to be transmitted between the nodes.
Let L denote a set of links and (i, j) denote a link comprising
a sender i and receiver j, where (i, j) ∈ L and ∀i, j ∈ N . Let
F denote a set of data flows, each of which represents a routing
path comprising links between a source and destination in the
network.

In this scheme, the number of available channels for sup-
porting data transmission fluctuates over time. In general, the
occupied and idle channels can be modeled as a stationary
exponential random process [20]. The ON or OFF states indicate
whether the spectrum channel is occupied by primary users or is
idle, respectively. The ON and OFF stationary probabilities, PrON

and PrOFF, of an idle spectrum channel can be expressed as

PrON =
μ

λ + μ
PrOFF =

λ

λ + μ
(1)

where μ and λ represent the occupied and idle transition rates
of the spectrum channel, respectively.

For data transmission, each link is assigned a spectrum chan-
nel and certain amount of power. Fig. 1 illustrates a resource
allocation scheme [19]. Let M(t) denote a set of idle channels
and c(i,j)(t) denote the spectrum channel assigned to link (i, j)
at time t, which satisfies the following condition:

c(i,j)(t) ∈ M(t). (2)

Let P(i,j)(t) denote the power consumed by link (i, j) at time t,
which satisfies

Pmin ≤ P(i,j)(t) ≤ Pmax (3)

where Pmin and Pmax indicate the minimum and maximum
power consumed by link (i, j), respectively.

Data transmission in a communication network can be af-
fected by factors, such as fading and SINR. Three types of
fading are widely considered: path loss; slow fading, caused
by shadowing; and fast fading, caused by the Doppler effect

Fig. 1. Illustration of power control and spectrum allocation in a CR network.

and multipath delay. This article assumes that path loss as the
dominating fading effect [13], [40]; the path loss function can
be expressed as

li,j =
GTx

i G
Rx
j

dαi,j
(4)

where GTx
i and GRx

j represent the antenna gains of transmitter i
and receiver j, respectively; di,j is the distance between nodes
i and j; and α is the loss exponent parameter. The SINR at time
t can be expressed as [13]

SINR(i,j)(t) =
li,jP(i,j)(t)

ε0 +
∑

(a,b)∈Lc(i,j)(t)
\{(i,j)} la,jP(a,b)(t)

(5)

where ε0 ∼ N(0, σ2
0) is a Gaussian random variable with a mean

of 0 and variance of σ2
0 and Lc(i,j)(t) is a set of links sharing the

spectrum channel c(i,j)(t). A constraint on (5) is imposed as

SINR(i,j)(t) ≥ γ (6)

where γ represents an SINR threshold.
In the CR network, each node has only one transceiver, which

cannot transmit and receive data simultaneously. Therefore, the
maximum capacity of each node is equally distributed to the
links [19]. Let the set of links sharing node i be denoted as

Li = {(a, b)| a = i ∨ b = i, (a, b) ∈ L}. (7)

Then, the transmission opportunity on link (i, j) is expressed as

q(i,j) = min

{∣∣∣∣ 1Li

∣∣∣∣,
∣∣∣∣ 1

Lj

∣∣∣∣
}

∀i, j ∈ N . (8)
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The data rates of link (i, j) at time t can then be expressed in
terms of (5) and (8), as follows:

R(i,j)(t) = q(i,j)B log2(1 + SINR(i,j)(t)) (9)

where B is the bandwidth of the spectrum channel.
The variables c(i,j)(t) and P(i,j)(t) are controlled to achieve

optimal transmission performance. For simplicity in the follow-
ing discussion, we introduce the following notation:

xxx(t) =
[ · · · c(i,j)(t) · · · P(i,j)(t) · · · ] (10)

where xxx(t) comprises 2|L| decision variables—specifically, |L|
discrete decision variables c(i,j)(t) and |L| continuous decision
variables P(i,j)(t). To appropriately distribute the power and
spectrum channels among secondary users, we consider the
following performance metrics: energy efficiency, fairness, and
spectrum utilization.

Energy efficiency can be defined as the ratio of the network
throughput to power consumption [41]

FEE(xxx(t)) =

∑
f∈F

∑
(i,j)∈Lf R(i,j)(t)∑

f∈F
∑

(i,j)∈Lf P(i,j)(t)
(11)

where Lf is the set of links that constitute the data flow f .
According to (4), the SINR expressed in (5) decreases with

the distance between two nodes. The data rates may fluctuate
greatly between the links in each data flow. Thus, fairness can
be expressed as follows [13]:

FFair(xxx(t)) =
∑
f∈F

∑
(i,j)∈Lf

(R(i,j)(t)− R̄(t))2 (12)

where

R̄(t) =
1

|Lf |
∑

(i,j)∈Lf

R(i,j)(t).

For the full utilization of the spectrum channels for data
transmission, spectrum utilization is considered and defined as
follows [19]:

FSpec(xxx(t)) =
|L|

|Mu(t)| (13)

where Mu(t) is the set of spectrum channels occupied by L
at time t. For instance, let M(t) = {m1,m2,m3}, where m1

and m3 are assigned to the links for data transmission; we have
Mu(t) = {m1,m3}.

III. PROPOSED DYNAMIC MULTIOBJECTIVE APPROACH

This section presents a dynamic multiobjective approach for
resource allocation among secondary users in a CR network.
A dynamic MOP that considers energy efficiency expressed
in (11), fairness expressed in (12), and spectrum utilization
expressed in (13) is formulated. To efficiently explore the deci-
sion variable space, we developed a few methods for generating
feasible values for the two types of decision variables; we then
analyze these methods for feasibility. Subsequently, a dynamic
multiobjective evolutionary algorithm is proposed to approxi-
mate the Pareto optimal solutions.

The dynamic MOP is formulated as

max
xxx(t)

FEE(xxx(t))

min
xxx(t)

FFair(xxx(t))

max
xxx(t)

FSpec(xxx(t))

subject to (2), (3), and (6) (14)

where FEE(xxx(t)) and FFair(xxx(t)) are conflicting objective func-
tions. Maximizing the energy efficiency FEE(xxx(t)) can lead to
allocating more resources to users with better channels, thus de-
grading user fairness (i.e., yielding a large value of FFair(xxx(t))).
FSpec(xxx(t)) and FEE(xxx(t)) are also conflicting objective func-
tions. Increasing the spectrum utilization FSpec(xxx(t)) deceases
the number of idle channels, causing much interference and
reducing the SINR; a smaller SINR value implies less energy
efficiency as measured by FEE(xxx(t)). Given such a conflict,
a global optimal solution that simultaneously achieves these
objectives does not exist, and hence, conventional and efficient
single-objective optimization algorithms cannot be applied in
this case. As such, a Pareto optimality approach [42] must be
adopted, which induces much complexity.

Remark 1: A Pareto optimal (also called nondominated) so-
lution indicates the impossibility of improving one objective
value without degrading the others. Thus, a set of approximate
Pareto optimal solutions is desired, which can be obtained by
solving the dynamic MOP. The associated objective vectors of
the approximate Pareto set are termed as the approximate Pareto
front.

In addition to the complexity induced by the conflicting objec-
tives, the following two types of decision variables are involved
in (14): 1) discrete spectrum allocation variables c(i,j)(t) and 2)
continuous power control variables P(i,j)(t) in xxx(t). Although
conventional population-based multiobjective evolutionary al-
gorithms can be used to determine an approximate Pareto set of
MOPs [43], they usually consider purely continuous or discrete
decision variables. An MOP with mixed types of decision vari-
ables, such as those indicated in (14), has not been thoroughly
investigated in the literature.

Another layer of difficulty in solving (14) originates from the
constraint expressed in (6), which introduces nonbox constraints
on the decision variables. Box constraints, such as those shown
in (3), can be readily addressed within the framework of generic
evolutionary algorithms, whereas nonbox constraints, such as
those expressed in (6), require a special mechanism during
the evolution process. Algorithms can use penalty methods
to address nonbox constraints; however, this technique cannot
efficiently determine the feasible points.

Remark 2: In a penalty method for addressing maximization
problems, a penalty is subtracted from the objective functions
if a point violates the constraints; infeasible points are then
eliminated gradually during the evolution process. In this case,
a scaling constant is required to indicate how great a penalty
to levy for the violation; a bad choice of the constant may
lead to premature or overdue convergence. Furthermore, there
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is no guarantee on how fast the penalty method can remove the
infeasible points from the population; if the removal is slow, the
algorithm has low efficiency.

Finally, problem (14) has a dynamic property, as indicated
by the presence of the temporal term t. The number of idle
channels can vary with time. As such, population initialization
in multiobjective evolutionary algorithms is often required when
the environment associated with the problem changes, which
further decreases the algorithm’s efficiency during the obser-
vation period. To address the difficulties induced by multiple
conflicting objectives, mixed types of decision variables, nonbox
constraints, and the dynamic property, feasible search mecha-
nisms, and efficient initialization for mixed types of decision
variables and multiple objectives are required.

As a first step to developing these methods, we consider the
following generic procedure of multiobjective evolutionary al-
gorithms. First, an initial population that comprises points is ran-
domly generated. Second, genetic operations, such as crossover
and mutation, are applied to generate a new population. In
this step, crossover is performed on a pair of candidate points
and produces another pair of points, termed as the offspring;
in addition, mutation is performed on a candidate point and
produces a new point, termed as a mutant. Genetic operations
are often conducted probabilistically. Third, a few points are
selected from the original and new populations on the basis of
their associated performance, and points are removed if they
exhibit low Pareto optimality. This evolution process is iterated
until a certain stopping criterion is attained.

Following the aforementioned generic procedure, we propose
Algorithm 1 to efficiently initialize the points during the ob-
servation period. Then, genetic operations involving crossover
and mutation are applied to the points in accordance with Al-
gorithms 2 and 3, respectively, during the evolution process. If
the points are infeasible, they are repaired using Algorithm 4.
Finally, using Algorithms 1–4, Algorithm 5 produces an approx-
imate Pareto set and front, and selects a final solution for power
and spectrum allocation in the CR network.

For population initialization, Algorithm 1 adopts a prediction
strategy modified from [35] to track the new optima. Let T
denote the memory size of the database that stores previous
data points. We first construct the database if the historical
information is insufficient to construct a prediction model. The
following notations are used to represent point xxxn(t) in the
population Γ(t) and the components cn,(i,j)(t) and Pn,(i,j)(t)
of this point:

Γ(t) = {xxx1(t),xxx2(t), . . .,xxxNmax(t)} (15)

where

xxxn(t)

=
[ · · · cn,(i,j)(t) · · · Pn,(i,j)(t) · · · ] , n = 1, . . ., Nmax.

Owing to the dynamic feature of the available resources, the
boundary of the discrete decision variables varies over time
and makes dynamic optimization more difficult. To address this

issue, in Step 1.1 of Algorithm 1, let us transform the discrete
decision variables into continuous variables within a fixed inter-
val (i.e., cn,(i,j)(t− ρ) ∈ (0, 1], ρ = 1, 2, . . .,min{t− 1, T}).
In Steps 1.2 and 1.3, each component of the point is represented
by a center and a manifold. In Step 1.2, an autoregression model
is applied to predict the centers c̄n,(i,j)(t) and P̄n,(i,j)(t), which
can be described as

c̄n,(i,j)(t) =

g∑
τ=1

λn,τ,cc̄(i,j)(t− τ) + εn,(i,j),c̄

P̄n,(i,j)(t) =

g∑
τ=1

λn,τ,pP̄(i,j)(t− τ) + εn,(i,j),p̄ (16)

where εn,(i,j),c̄ ∼ N(0, σ2
n,(i,j),c̄), εn,(i,j),p̄ ∼ N(0, σ2

n,(i,j),p̄),
λn,τ,c and λn,τ,p denote the autoregression parameters, and
c̄(i,j)(t− τ) and P̄(i,j)(t− τ) are calculated as

c̄(i,j)(t− τ) =
1

Nmax

Nmax∑
n=1

cn,(i,j)(t− τ)

P̄(i,j)(t− τ) =
1

Nmax

Nmax∑
n=1

Pn,(i,j)(t− τ).

Remark 3: In (16), the centers of interest, c̄n,(i,j)(t) and
P̄n,(i,j)(t), are predicted using a linear combination of historical
data to which white noise is added. This prediction method is
based on the assumption that the underlying network dynamics
change gradually with time. As such, the current Pareto optimal
solutions of interest are close to the past Pareto optimal solutions;
thus, the added white noise provides perturbations to the past
Pareto optimal solutions to approach the current Pareto optimal
solutions.

According to (16), the associated linear equations for different
periods can be approximated as

ψn,c ≈ φcΛn,c and ψn,p ≈ φpΛn,p (17)

where

ψn,c =
[
c̄n,(i,j)(t− 1) · · · c̄n,(i,j)(t− T + g + 1)

]T

φc =

⎡
⎢⎢⎢⎣

c̄(i,j)(t− 2) · · · c̄(i,j)(t− g − 1)
c̄(i,j)(t− 3) · · · c̄(i,j)(t− g − 2)

...
...

...
c̄(i,j)(t− T + g) · · · c̄(i,j)(t− T + 1)

⎤
⎥⎥⎥⎦

Λn,c =
[
λn,1,c · · · λn,g,c

]T
ψn,p =

[
P̄n,(i,j)(t− 1) · · · P̄n,(i,j)(t− T + g + 1)

]T

φp =

⎡
⎢⎢⎢⎣

P̄(i,j)(t− 2) · · · P̄(i,j)(t− g − 1)
P̄(i,j)(t− 3) · · · P̄(i,j)(t− g − 2)

...
...

...
P̄(i,j)(t− T + g) · · · P̄(i,j)(t− T + 1)

⎤
⎥⎥⎥⎦

Λn,p =
[
λn,1,p · · · λn,g,p

]T
.
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The least squares solutions to (17) can be expressed as

Λn,c ≈ (φTc φc)
−1φTc ψn,c

Λn,p ≈ (φTp φp)
−1φTp ψn,p. (18)

Then, the variances of the approximation errors σ2
n,(i,j),c̄ and

σ2
n,(i,j),p̄ in (16) are calculated as

σ2
n,(i,j),c̄

=
1

T−g−1

t−1∑
ζ=t−T+g+1

[
c̄n,(i,j)(ζ)−

g∑
τ=1

λn,τ,cc̄(i,j)(ζ − τ)

]2

σ2
n,(i,j),p̄

=
1

T−g−1

t−1∑
ζ=t−T+g+1

[
P̄n,(i,j)(ζ)−

g∑
τ=1

λn,τ,pP̄(i,j)(ζ − τ)

]2

.

(19)

In summary, the centers c̄n,(i,j)(t) and P̄n,(i,j)(t) in (16) use
λn,τ,c and λn,τ,p in (18), and use variances σ2

n,(i,j),c̄ of εn,(i,j),c̄
and σ2

n,(i,j),p̄ of εn,(i,j),p̄ in (19).

In Step 1.3, manifolds c̃n,(i,j)(t) and P̃n,(i,j)(t) are estimated
as

c̃n,(i,j)(t) = cn,(i,j)(t− 1)− c̄(i,j)(t− 1) + εn,(i,j),c̃

P̃n,(i,j)(t) = Pn,(i,j)(t− 1)− P̄(i,j)(t− 1) + εn,(i,j),p̃ (20)

where εn,(i,j),c̃ ∼ N(0, σ2
n,(i,j),c̃) and εn,(i,j),p̃ ∼

N(0, σ2
n,(i,j),p̃). The variances σ2

n,(i,j),c̃ and σ2
n,(i,j),p̃ are

calculated as

σ2
n,(i,j),c̃ = (cn,(i,j)(t− 1)− c̄(i,j)(t− 1))2

+ min
n′=1,...,Nmax

(cn,′(i,j)(t− 2)− c̄(i,j)(t− 2))2

σ2
n,(i,j),p̃ = (Pn,(i,j)(t− 1)− P̄(i,j)(t− 1))2

+ min
n′=1,...,Nmax

(Pn,′(i,j)(t− 2)− P̄(i,j)(t− 2))2.

(21)

In Step 1.4, we repair the components of the points that are
outside the boundary in accordance with the following:

cn,(i,j)(t)

:=

{
c̄n,(i,j)(t) + c̃n,(i,j)(t), if cn,(i,j)(t) ∈ (0, 1]
cn,(i,j)(t− 1) + r1(t)(1− cn,(i,j)(t− 1)), otherwise

Pn,(i,j)(t)

:=

{
P̄n,(i,j)(t) + P̃n,(i,j)(t), if Pn,(i,j)(t) ∈

[
Pmin, Pmax

]
Pn,(i,j)(t− 1) + r2(t)(1− Pn,(i,j)(t− 1)), otherwise

(22)

where r1(t), r2(t) ∈ [0, 1] are random numbers. The discrete
components cn,(i,j)(t) are then recovered using (23). Because
the points are generated around the previous data points, the so-
lution diversity of the prediction strategy can be reduced. To rem-
edy this problem, we randomly generate some points in Step 2.

Algorithm 1: Hybrid Initialization (t > 1).

Input: Historical information of population Γ(t− ρ) and
available spectrum channel M(t− ρ),
ρ = 1, 2, . . .,min{t− 1, T}.

Parameters: Memory size T , reference quantity g,
population size Nmax, and prediction parameter δ.

Output: Γ(t).
if t ≤ T then

Database Construction: randomly generate half of Γ(t)
and the other half by randomly sampling the points from
Γ(t− 1).
else

Step 1) Let Γ′(t) = ∅.
for n = 1, 2, . . ., Nmax do

Step 1.1) Perform boundary mapping.
For each (i, j) ∈ L:

cn,(i,j)(t− ρ) :=
cn,(i,j)(t− ρ)

|M(t− ρ)|
where ρ = 1, 2, . . .,min{t− 1, T}.

Step 1.2) Perform center prediction.
For each (i, j) ∈ L:
Generate components c̄n,(i,j)(t) and P̄n,(i,j)(t) of xxxn(t)
using (16) with coefficient vectors Λn,c and Λn,p in (18)
and variances σ2

n,(i,j),c̄ and σ2
n,(i,j),p̄ in (19) for all

(i, j) ∈ L.
Step 1.3) Manifold Estimation: generate components

c̃n,(i,j)(t) and P̃n,(i,j)(t) of xxxn(t) using (20) with
variances σ2

n,(i,j),c̃ and σ2
n,(i,j),p̃ in (21).

Step 1.4) Perform boundary demapping.
For each (i, j) ∈ L:
Generate components cn,(i,j)(t) and Pn,(i,j)(t) of xxxn(t)
using (22); assign

cn,(i,j)(t) :=
⌈
cn,(i,j)(t)|M(t)|⌉ (23)

where �·� denotes the ceiling function. Add xxxn(t) to
Γ′(t).
end for
Step 2) Point Generation: randomly sample δNmax

points from Γ′(t), and randomly generate additional
(1− δ)Nmax points to produce Γ(t).

end if

Algorithms 2 and 3 present our crossover and mutation de-
signs that are applied to the points representing the values of the
decision variable vector xxxn(t, k) with iteration k. For discrete
decision variables cn,(i,j)(t, k), the crossover operation is per-
formed in an element-by-element manner. Two components of
distinct points that are randomly selected from the population
are swapped based on a random binary integer. Although the
mutation operation is a vector-based method, a few discrete
components of the points are randomly selected and shuffled. For
the continuous decision variable Pn,(i,j)(t, k), both crossover
and mutation operation apply a modified Laplace genetic oper-
ation [44]. The truncated Laplacian random variable β(t, k) in
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Algorithm 2: Crossover Operation.

Input: xxxn′(t, k) and xxxn′′(t, k).
Output: xxxn(t, k).

For each (i, j) ∈ L:
Assign

cn,(i,j)(t, k) :=

{
cn,′(i,j)(t, k), if d = 0
cn,′′(i,j)(t, k), if d = 1

(24)

where d is a random binary number and cn,′(i,j)(t, k)
and cn,′′(i,j)(t, k) are discrete components of xxxn′(t, k)
and xxxn′′(t, k), respectively.

Assign

Pn,(i,j)(t, k) :=
1

1 + β(t, k)
(Pn′(i,j)(t, k)

+ β(t, k)|Pn,′(i,j)(t, k)− Pn,′′(i,j)(t, k)|
− Pmin) + Pmin (25)

where β(t, k) ∈ [0, 1] is a truncated Laplacian random
variable, and Pn,′(i,j)(t, k) and Pn,′′(i,j)(t, k) are
continuous components of xxxn′(t, k) and xxxn′′(t, k),
respectively.

Algorithm 3: Mutation Operation.

Input: xxxn′(t, k).
Output: xxxn(t, k).

Discrete components cn,(i,j)(t, k) of xxxn(t, k) are the
same as those of xxxn′(t, k) except that �|L|/2�
components are randomly selected and shuffled.

Continuous components Pn,(i,j)(t, k) of xxxn(t, k) are
generated by (25), where Pn,′(i,j)(t, k) is obtained from
xxxn′(t, k) and Pn,′′(i,j)(t, k) is randomly generated from
[Pmin, Pmax].

Step 1 is generated by Laplace(0, 1) with a truncated interval
[−5, 5], and transformed into the interval [0, 1].

In Algorithms 2 and 3, points are generated and satisfy (3).
However, they can violate the constraint in (6) due to the
inappropriate spectrum allocation. To address this problem,
Algorithm 4 presents a heuristic adjustment method for repairing
the infeasible points. In Step 2, if the link inxxxn′(t, k) violates the
constraint in (6), then the reallocation operation is applied. Thus,
the violation condition can be alleviated without degrading the
objective value of (13). If the link still violates the constraint,
we replace xxxn′(t, k) with a feasible point that is randomly
selected from the population in Step 3. In Step 4, we perform
a hypermutation operation. Because the SINR values remain
constant, the feasibility of the solution can be maintained during
the evolution process, as shown in Theorem 1.

Theorem 1: Algorithms 2 and 4 produce xxxn(t, k) that satis-
fies (3) and (6).

Proof: For any given network topology, the condition in (3)
is satisfied according to (25). The SINR function in (5) can be

Algorithm 4: Adjustment Operation.

Input: Infeasible xxxn′(t, k) and feasible xxxn′′(t, k).
Output: xxxn(t, k).

Step 1)
For each (i, j) ∈ L:
Evaluate SINR(i,j)(t, k) associated with xxxn′(t, k)
using (5).

Step 2)
For each (i, j) ∈ L:
Substitute the discrete component cn,′(i,j)(t, k) of
xxxn′(t, k) with another component cn,′(i,′j′)(t, k) if
SINR(i,j)(t, k) < γ, where

1 ≤ |Lcn,′(i,′j′)(t,k)| ≤ |Lcn,′(i,j)(t,k)| −m

for some positive interger m.
Step 3) Assign xxxn(t, k) := xxxn′(t, k).
For each (i, j) ∈ L:
Evaluate SINR(i,j)(t, k) associated with xxxn(t, k)
using (5); assign xxxn(t, k) := xxxn′′(t, k) if
SINR(i,j)(t, k) < γ.

Step 4) Select two different sets of links with the same
size and swap their components; if
|Lcn,(i,j)(t,k)| = |Lcn,(i,′j′)(t,k)|, then allocate the
spectrum channel cn,(i,′j′)(t, k) to link (i, j) associated
with xxxn(t, k).

simplified as

SINR(i,j)(t, k)

=
Pn,′(i,j)(t, k)

ε0
ω1

+ ω2

∑
(a,b)∈Lc

n,′(i,j)(t,k)\{(i,j)} Pn,′(a,b)(t, k)

for all (i, j) ∈ L, where ω1 and ω2 are the path loss constants.
The reallocation operation in Step 2 of Algorithm 4 decreases
the size ofLcn,′(i,j)(t,k), increasing SINR(i,j)(t, k). In the hyper-
mutation operation in Step 4, SINR(i,j)(t, k) remains constant
because |Lcn,(i,j)(t,k)| = |Lcn,(i,′j′)(t,k)|. We thus have

SINR(i,j)(t, k)

=
Pn,(i,j)(t, k)

ε0
ω1

+ ω2

∑
(a,b)∈Lcn,(i,j)(t,k)\{(i,j)} Pn,(a,b)(t, k)

=
Pn,(i,j)(t, k)

ε0
ω1

+ ω2

∑
(a,b)∈Lc

n,(i,′j′)(t,k)\{(i,′j′)} Pn,(a,b)(t, k)
≥ γ

which maintains the feasibility of the solution. �
Using Algorithms 1–4, Algorithm 5 presents our dynamic

multiobjective approach to resource allocation in the CR net-
work. Algorithm 5 approximates the Pareto set and associated
Pareto front with a finite number of points. The initial points are
generated by Algorithm 1. A tournament selection [45] is then
applied to create a mating pool in which the genetic operations
presented in Algorithms 2 and 3 are performed. Algorithm 4
ensures that all points are feasible; otherwise, the adjustment
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Fig. 2. Network topology of a CR network.

operation is conducted. If too many points are obtained, any
update methods for an archive can be used to remove a few
nondominated points. Finally, the approximate Pareto front and
set are obtained, and a final solution, termed a knee solution,
which achieves excellent overall performance in meeting the
objectives, can be selected using the minimum Manhattan dis-
tance approach [46].

Remark 4: Conventional algorithms and the proposed algo-
rithm use the Pareto rank in the evolution process, yielding a
time complexity that is approximately equal to that of [47]

O(2kmaxNmax(tcom +Nmax − 1)) (26)

where tcom represents the average computational time for an
objective evaluation. With the same complexity, the proposed
algorithm can efficiently generate feasible solutions in the evo-
lution process, as shown in Theorem 1.

Remark 5: This article assumes that the nodes are static,
which has been the general setting in most relevant studies;
however, the proposed approach can be applied to a scenario
in which dynamic nodes are involved if their positions change
gradually. In this scenario, the concept of dynamically tracking
new Pareto optimal solutions using historical data remains valid.
This is because the previous positions of dynamic nodes may
differ little from their current positions, and therefore, new
Pareto solutions for resource allocation can be close to the past
Pareto solutions. The proposed approach becomes invalid if
the nodes are rapidly changing their positions, as in the case
of vehicular communication networks. In this case, complete
multiobjective optimization must be performed in each period,
which substantially impairs the algorithm’s efficiency.

IV. NUMERICAL RESULTS

This section presents a numerical analysis that we conducted
for the proposed multiobjective approach for resource allocation
in a CR network. Fig. 2 shows the network topology adopted
in our simulations, which is similar to the scenario considered
in [19] and [48]. In the figure, |N | = 60 nodes are randomly

Algorithm 5: Dynamic Resource Allocation.

Input: Dynamic MOP in (14); Γ(t− ρ), M(t− ρ), and
xxx∗(t− ρ) for ρ = 1, 2, . . .,min{t− 1, T} if t > 1.

Parameters: Memory size T , reference quantity g,
population size Nmax, prediction parameter δ, and
maximum iteration kmax.

Output: Approximate Pareto set Γ(t) and knee xxx∗(t).
if t > 1 and M(t) = M(t− 1) then

Memory Maintenance: Let Γ(t) = Γ(t− 1) and
xxx∗(t) = xxx∗(t− 1).

else
Step 1) Population Initialization: Use Algorithm 1 to

generate Γ(t) if t > 1; otherwise, randomly generate
points to produce Γ(t).
Step 2) Evolution: let Γ(t, k) = Γ(t).
for k = 1, 2, . . ., kmax do

Step 2.1) Use tournament selection over Γ(t, k) to
create a mating pool. Apply crossover and mutation
operations in Algorithms 2 and 3 to the mating pool
with rate μ and 1− μ, respectively. Add the offspring
and mutants to Γ(t, k). For an infeasible
xxxn′(t, k) ∈ Γ(t, k), randomly select a feasible point
xxxn′′(t, k) ∈ Γ(t, k) and apply Algorithm 4 to produce a
feasible point xxxn(t, k) ∈ Γ(t, k).

Step 2.2) Remove the dominated points from Γ(t, k).
Use an update method for archives to reduce the size if
|Γ(t, k)| > Nmax.
end for
Step 3) Knee selection: Select the knee xxx∗(t) on the

basis of the approximate Pareto front and the associated
Pareto set Γ(t, kmax). Let Γ(t) = Γ(t, kmax).

end if

deployed over a 1000 m × 1000 m area; there are |L| = 55
links between nodes and |F| = 5 data flows in the network. The
number of available spectrum channels is |M(t)| ∈ (10, 25).
The transition rates μ = 1.1 and λ = 1.2 in (1) were set as those
in [5] and [14]. Most of the following parameters were chosen
in accordance with [13] and [19]: power consumption bounds
Pmin = 10 mW andPmax = 30 mW; antenna gainsGTx

i = GRx
j =

1, ∀i, j ∈ N ; path loss exponentα = 3; additive white Gaussian
noise (AWGN) variance σ2

0 = 1; SINR threshold γ = 10 dB;
and channel bandwidth B = 5 MHz.

For the performance evaluation, the proposed approach was
compared with conventional multiobjective evolutionary algo-
rithms and single-objective optimization methods, which were,
specifically, the SPEA-II and NSGA-II with fixed power meth-
ods modified from the work in [19]; NSGA-II method modified
from the work in [21]; modified fairness minimization (FairMin)
method based on the work in [49] and [50]; modified energy
efficiency maximization method (EEMax) based on the work
in [12], [51], and [52]; and spectrum utilization maximization
(SpecMax) method modified from the work in [13]. Given the
tradeoff between solution diversity and algorithm efficiency in
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Fig. 3. (a) Dynamic spectrum resources. (b) Sample Pareto front and knee at
t = 1.

TABLE II
COMPARISON OF EXISTING RESOURCE ALLOCATION METHODS

Algorithm 1, we assigned different values to the prediction
parameter δ: when δ = 0, only random generation was applied;
when δ = 1, only the prediction strategy was applied; when
δ = 0.5, both random generation and the prediction strategy
were applied.

Fig. 4. Convergence analysis of multiobjective evolutionary algorithms for the
dynamic spectrum resource scheme shown in Fig. 3(a). (a) t = 1. (b) t = 25.
(c) Average performance over iterations.
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Fig. 5. Number of infeasible solutions during the evolution process.

Remark 6: Both SPEA-II and NSGA-II with fixed power
were multiobjective evolutionary algorithms used to solve

max
c(i,j)(t) ∀(i,j)∈L

FEE(c(i,j)(t))− ηD(c(i,j)(t))

max
c(i,j)(t) ∀(i,j)∈L

FSpec(c(i,j)(t))− ηD(c(i,j)(t))

subject to (6) (27)

where

D(c(i,j)(t)) = max{γ − SINR(i,j)(t), 0}.
If D(c(i,j)(t)) > 0, then c(i,j)(t) is infeasible. In (27), only
the decision variables representing the spectrum allocation of
links were to be determined (i.e., the power usage was fixed). In
addition, Algorithms 2 and 3 were used for genetic operations.

For a convergence analysis of the multiobjective methods,
a normalized knee distance value that ought to decrease over
the iterations was used for evaluating the convergence [46].
The autoregression model in Algorithm 1 was designed using a
memory sizeT = 10 and reference quantity g = 3. Our dynamic
multiobjective approach was realized using Algorithm 5 with
a population size Nmax = 50, prediction parameter δ = 0.5,
maximum iteration kmax = 150, crossover probability μ = 0.9,
and mutation probability 1− μ = 0.1. Fig. 3(a) and (b) presents
a realization of the dynamic spectrum resources and a sample
Pareto front, respectively. The algorithm convergence was ex-
amined at periods t = 1 and t > 1. When t = 1, no historical
information existed and only feasible search mechanisms were
used by our approach. This setting examined direct optimization
without considering the dynamic characteristic of the CR-based
network. When t > 1, the number of available channels changed
over two consecutive periods. In this setting, historical data can
be used to improve the convergence rate, leading to a dynamic
MOP.

Fig. 4(a) shows the algorithm convergence rates and levels at
t = 1. Our approach yielded the best convergence levels among

Fig. 6. Average objective values of various methods over the observed time
period. (a) Energy efficiency. (b) Fairness. (c) Spectrum utilization.

all multiobjective methods, as indicated by the smaller knee
distances attained. This is attributable to our feasible search
mechanisms, which can efficiently determine the feasible points
unlike conventional penalty methods that are developed for
constraint handling. The different values of δ in the proposed
approach had no real effect on our algorithm’s performance,
which was due to a lack of historical data, leading to similar
convergence rates and levels. For the other setting, Fig. 4(b)
shows the numerical results sampled at t = 25. The proposed
approach outperformed the comparable methods in terms of
the rate and level of convergence; the comparable methods
initialized the population randomly without accounting for the



CHUANG et al.: DYNAMIC MULTIOBJECTIVE APPROACH FOR POWER AND SPECTRUM ALLOCATION IN COGNITIVE RADIO NETWORKS 5427

information available from the previous optimization. The con-
vergence rate of our proposed method was affected by δ: a larger
δ yielded faster convergence because more historical data were
used for the prediction. Conversely, the convergence level was
slightly degraded for a large δ value because it incurred less
solution diversity. The parameter δ can, thus, be tuned to balance
the convergence rate and level as desired. Fig. 4(c) presents
the average convergence performance over a given period with
consistent observations.

Under the same time complexity as that observed in (26),
Fig. 5 shows the number of infeasible solutions obtained for
the comparable algorithms in each iteration. With the same
population size, the number of infeasible solutions at different
iteration numbers represents the efficiency of the algorithms in
the exploration. The proposed approach was efficient, as indi-
cated by its production of feasible points under all conditions;
our method could do so because of our proposed mechanism
for feasible generation. The comparable methods were less
efficient in the exploration. The following two findings can be
observed from Fig. 5. First, both NSGA-II and SPEA-II with
fixed power had fewer decision variables to be determined than
NSGA-II. Fewer decision variables implied fewer constraints to
be satisfied, leading to fewer infeasible points when they were
randomly generated. As such, when the initial populations were
generated (k = 1), the two methods using a fixed power yielded
fewer infeasible points than NSGA-II did. Second, the number
of infeasible points produced by NSGA-II with or without fixed
power eventually approached zero, whereas this number was not
reduced in SPEA-II with fixed power.

Fig. 6 shows the average performance in terms of the ob-
jectives, whose numerical values are summarized in Table II.
The single-objective optimization methods achieved the best
performance in their individual dimensions but performed the
worst in other dimensions. The proposed approach outperformed
the comparable multiobjective methods, with all these methods
striking a balance between the objectives; moreover, our method
attained performance that was close to that achieved by single-
objective optimization methods on each objective.

V. CONCLUSION

This article focused on power and spectrum allocation and
considered the energy efficiency, fairness, and spectrum utiliza-
tion of CR networks. The following conclusions were drawn.

1) A dynamic MOP was formulated, in which the available
spectrum channels varied over time and multiple objec-
tives were involved. To solve the MOP, we proposed
a dynamic multiobjective resource allocation algorithm
comprising a hybrid initialization method and feasible
point generation mechanisms.

2) A theoretical analysis for Theorem 1 was conducted to ver-
ify the feasibility-preserving mechanisms in Algorithm 4.
The theorem is based on the concept that a crossover
operation is applied to meet the power constraints and
that an adjustment method for the set of links is applied to
meet the SINR constraint. By conducting these operations

sequentially, our algorithm guaranteed a feasible genera-
tion of random points.

3) Our proposed approach maintained a satisfactory balance
between all objectives and yielded a better convergence
rate and level than existing multiobjective methods.

4) The proposed approach was considered valid if the CR net-
works were composed of static or dynamic sensing nodes
that only changed their positions gradually. Further re-
search is required to formulate a multiobjective approach
for resource allocation in a rapidly time-varying network
topology, e.g., a vehicular communication network.
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