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Fair and Privacy-Aware EV Discharging Strategy
Using Decentralized Whale Optimization Algorithm
for Minimizing Cost of EVs and the EV Aggregator

Yingqi Gu and Mingming Liu

Abstract—A key motivation to fasten roll-out of electric vehicles
(EVs) to the market is to implement vehicle-to-grid (V2G) function-
alities. With V2G in place, EV owners can have an extra freedom to
interact their battery energy with power grids, namely, by selling
their energy to the grid when their EVs are not in use. On the
other hand, EV aggregators and utility companies can leverage the
flexibility of the collected energy to implement various ancillary
services to the grids, which may significantly reduce costs of, for
instance, running spinning reserve of traditional power plants on
the grid side. However, this extra freedom also poses practical
challenges in terms of how to devise a discharging strategy for a
group of EVs that is fair and in some sense optimal. In this article,
we present a new design of EV discharging strategy in a typical V2G
energy trading framework, while leveraging the whale optimization
algorithm in a decentralized manner, a metaheuristic algorithm
that has been shown effective in solving large-scale centralized
optimization problems. We demonstrate that by using simple ideas
of data shuffling and aggregation, one can design an EV discharging
strategy in a fair, optimal, and privacy-aware manner, where the
privacy refers to the fact that no critical information of EVs should
be exchanged with the EV aggregator, and vice versa. The fairness
implies that a common discharge rate needs to be sought for all
EVs so that no one gets better benefits than others in the same V2G
program. Simulation results are presented to illustrate the efficacy
of our proposed system.

Index Terms—Decentralized optimization, electric vehicles
(EVs), vehicle-to-grid (V2G), whale optimization algorithm
(WOA).

I. INTRODUCTION

IN RECENT years, there has been an increasing interest
in providing vehicle-to-grid (V2G) as a service to users of

electric vehicles (EVs) [1]–[3]. The key concept of V2G relies
on the fact that it allows bidirectional power flow between EVs
and power grids, usually with an EV aggregator placed in the
middle acting as an agent for energy trading in the electricity
market [4], [5]. The overarching goal for the operation of such
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a V2G system is not only to maximize the benefits for the EV
aggregator but also to optimize the benefits for the EV owners
so that enough EVs can be encouraged to participate into a V2G
program [6]. For instance, an EV user may feel very reluctant to
use V2G as a service if more energy has to be dispatched from the
vehicle than its expected revenue that can be received in the end.
Thus, it becomes a practical challenge to find out a balanced V2G
strategy not only to maximize the benefits of an EV aggregator
but also to maximize the benefits of all participated EVs in a
relatively fair manner.

Hitherto, a large body of works can be found in literature
for providing ancillary services to the grids through V2G, and
most of which have a strong focus on the frequency regulation
service; see [5] and [7]–[13] for some selected works in this
direction. More specifically, from a fair design perspective, the
paper [5] discussed a set of approaches, including water-filling,
state-dependent utility, and state-of-charge (SOC) variance min-
imization, to regulate V2G energy delivery of EVs for the
grid frequency regulation service according to different specific
fairness criteria. In [14], an optimal dispatching strategy was
presented for a V2G aggregator participating in supplementary
frequency regulation while considering EV driving demand and
the benefits of an aggregator, where a fair regulation power
allocation module was built to avoid overdischarging of EVs.
Furthermore, a real-time welfare-maximizing regulation alloca-
tion algorithm was proposed in [12] in order to fairly allocate
the regulation power capacity among the EVs for the aggregator.
In [15], an adaptive dynamic programming method was pro-
posed to maximize the long-term fairness of EVs. The proposed
method has been implemented in such a way that EVs with high
SOC are chosen to discharge energy for the load shaving task,
while the EVs with high contributions can have high priority to
be charged afterward. In [7], an optimal control strategy using
dynamic programming was adopted for the V2G frequency
regulation services. In particular, the authors assumed a fair
distribution of the regulation request to the pertaining vehicles
in the article.

Apart from using V2G for frequency regulation services, other
approaches have also been found in order to manage the power
flow in a fair and decentralized manner. For instance, addi-
tive increase multiplicative decrease and other network-inspired
methodologies were adopted in [16] and [17], in order to seek
fair allocation of EV power flows while considering a set of
specific power system constraints. In particular, Liu et al. [17]
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also considered a proportional-fairness-based algorithm inspired
by a distributed price feedback mechanism. Furthermore, a fair
V2G discharging strategy was proposed in [18], where a utility
optimization problem has been solved by taking account of
the benefits of utility companies and EV users’ inconvenience
of using V2G in a microgrid scenario. More specifically, the
fairness criterion refers to the fact that the same amount of
power needs to be taken from all EVs in the V2G program
to avoid some EV owners’ having more benefits than other
users. Finally, we note that some works also have a strong
focus on the privacy-preserving perspective in V2G, where the
main idea was to not reveal any sensitive information during
the information processing, coordination, and communication
exchange between EVs and a central computing node, e.g., an
EV aggregator, using V2G; typically, these pieces of informa-
tion may include an EV user’s personal ID, an EV’s location
information, as well as payment and billing information [19]. To
address these issues, decentralized approaches have been more
preferable in V2G practices; see [20]–[22] for some recent use
cases. Finally, a comprehensive comparison between different
centralized and decentralized optimization techniques for EV
charging/discharging control has been reported in [23]–[26].

Along this line, our objective in this article is to design a V2G
program for the mutual benefits of EV users and the EV aggre-
gator by jointly solving a constrained consensus optimization
problem, where each party can only get access to its own part
of the objective function (privacy-preserving). In particular, we
shall assume that each part of the objective function is treated
(encapsulated) as the “black-box” model, and only limited in-
formation can be obtained from the model, e.g., no derivative
information can be retrieved. In fact, such an assumption is not
uncommon in current practices as more data have now been
processed and trained in a nonlocal environment, e.g., cloud,
and thus, even though the model is visible to the model creator,
it may not be fully visible or explainable to end-users. In this
regard, a centralized-based heuristic algorithm, e.g., centralized
whale optimization algorithm (CWOA),1 may be plausible for
an optimal solution, but it does not take into account users’
privacy concerns as sensitive information may be collected from
different users to carry out this computation process. Also, a
centralized solution may not easily handle hard constraints in
an optimization problem, especially in terms of the consensus
constraints of our interest here.

Thus, our contribution of this article is to propose a fair (con-
sensus) and privacy-preserving power management mechanism
by including the following features in a V2G program:

A) a privacy-aware communication mechanism, which en-
ables various information to be safely exchanged among
EV users and the EV aggregator in a V2G program;

B) a system model which captures the modeling procedures
of costs for both EVs and the EV aggregator in V2G;

C) an effective and efficient optimization algorithm that can
deal with the “black-box” models for optimization;

D) a practical system architecture that can integrate the three
parts, i.e., A, B, and C, together.

1In the following, we shall refer the WOA proposed in [27] as CWOA.

The remainder of this article is organized as follows. Section II
presents the system model for the V2G power dispatch prob-
lem. Section III reviews the existing algorithms and proposes
the system implementation steps using the decentralized whale
optimization algorithm (DWOA). Section IV demonstrates our
simulation setup and presents our simulation results. Section V
concludes this article. Finally, Section VI gives a remark on the
limitations of our current approach and outlines some thoughts
for future work.

II. SYSTEM MODEL

A. System Setup

We consider a scenario where a number of EVs are plugged-in
a large parking area managed by an EV aggregator. In particular,
some EVs can opt-in a V2G program, and such EVs can dis-
charge certain amount of energy to the grid for some economic
revenues. In reality, these EV owners can be local residents who
work nearby in the parking area. The EVs may have already been
fully charged at home, e.g., by using home solar photovoltaic
(PV) panels or distributed small wind turbines, before traveling
to the parking area. An EV as such can reserve only a small
amount of energy for traveling back home and trade in most
of the energy stored in its battery pack for monetary benefits.
With this in place, an EV aggregator can leverage the collected
battery energy from EVs to provide ancillary services to the
main power grids. We shall require that the designed discharge
rate is consistent for all EVs to avoid having some EVs getting
more benefits than others. Finally, we note that although an EV
aggregator may also provide an EV charging service for many
parked EVs, it is not our main focus in this article as our targeted
EV users are those mostly interested in making revenues from
the V2G service. Thus, we shall ignore the EV charging part in
our system model design.

We now formulate the EV discharging problem as follows.
Let N be the maximum number of EVs participated in the V2G
program during a certain period of time, e.g., during peak time
when grid needs most energy regulation. Define the set N :=
{1, 2, 3, . . . , N} for indexing total EVs in the program, and also
the set N(t), which is a subset of N, for indexing all available
EVs in the program at time t, that is, some EVs may become
unavailable due to finishing the V2G program or leaving the
parking lot earlier. Let ci(t) be the discharge rate of the ith
vehicle at time t, with cimin and cimax defined as the minimum and
maximum discharge rate of the vehicle, respectively. In addition,
we denote by SOCi(t) the SOC of the ith vehicle at time t,
and let SOCi

min be the minimum SOC of the ith vehicle that an
EV user can just accept in the V2G program. In other words,
if SOCi(t) < SOCi

min, then significant inconvenience will be
imposed to an EV user, and thus, ci(t) will be automatically
set to 0 in this situation. In practice, for example, an EV user
may set SOCi

min to 10% if the user’s home is very close to the
parking lot and to 20% if the user’s home is relatively far from
the parking lot.

During parking, each EV is connected to a V2G discharge
point. We assume that each discharge point can communicate
to a central computing server/node bidirectionally, and each
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discharge point can also send a broadcast information to other
discharge points in the same parking area. We note that such
a communication requirement can be easily satisfied through,
e.g., power-line communication infrastructures, in a practical
V2G scenario. However, any capable Internet of things device
that has Wifi/3G/LTE/5G capability on the discharge point can
also be used as an alternative. In any case, the communication
links are required so that information can be exchanged among
EV discharge points and a central computing server to jointly
determine the optimal V2G power dispatch rate.

Finally, we assume that each EV i is associated with a cost
function, fi(ci(t)), which quantitatively characterizes the net
cost when the ith EV is selling ci(t) power to the EV aggregator
through V2G. Here, the net cost refers to the fact that although
an EV can receive monetary benefits by selling its energy,
there will still be an operational cost incurred as a certain level
of inconvenience will be imposed to such an EV, including
discharge-rate-related battery wear and degradation cost. Sim-
ilarly, when an EV aggregator is buying energy from EVs, the
EV aggregator will benefit from the collected energy from all
EVs using V2G. However, there will also be an operational cost
incurred, which includes the energy cost paid to the EV users as
well as the infrastructure maintenance cost during this process.
We denote by Agg(t) the net cost function of the EV aggregator
in delivering the V2G service for EV users at time t, which is
essentially a function in terms of

∑
i ci(t).

Our objective in this article is to solve the following optimiza-
tion problem:

min
ci(t)

∑
i∈N(t)

fi(ci(t)) + Agg(t)

s.t. ci(t) = cj(t) ∀i �= j ∈ N(t)

cimin ≤ ci(t) ≤ cimax ∀i ∈ N(t)

SOCi
min ≤ SOCi(t) ≤ 100% ∀i ∈ N(t) (1)

where we wish to find an optimal consensus solution c∗(t) for
all EVs so that the net cost for all EVs and the EV aggregator
can both be minimized. In order to solve this problem, we first
explicitly model the cost function fi(ci(t)) for EV i, and then,
we model the cost function Agg(t) for an EV aggregator.

B. Cost Function for EVs

Now, we model the net cost function fi for the ith EV.
Specifically, we shall take account of three factors: 1) mon-
etary benefits when the EV sells its energy at discharge rate
ci(t); 2) discharge-rate-related battery degradation costs; and
3) other operational costs, e.g., cable wear out and various
relevant service charges. For simplicity, we assume that the
discharge-rate-related degradation cost is dominant compared to
other V2G-related operational costs. To begin with, we denote
by ui(ci(t)) the monetary benefits for the EV selling its power
at discharge rate ci(t). Let p(t) be the unit price of V2G power
defined by the aggregator at time t; then, we have

ui(ci(t)) = p(t)ci(t). (2)

Note that (2) simply indicates that the more energy is provided
by the EV, the better monetary benefit can be obtained by the EV.
Next, let di(ci(t)) be the degradation cost when ci(t) power is
drawn from the EV i. In the literature, this degradation cost
can be modeled using a quadratic function in the following
form [28]:

di(ci(t)) = αici(t)
2 + βici(t) + γi (3)

where αi, βi, and γi are all parameters. Finally, let oi(.) be
the function, which models other related operational costs of
the EV in V2G. Since the function is weakly correlated with
the discharge rate, we assume that the cost is a constant value
across the range of all feasible discharge rates of the ith EV.
For simplicity, we shall use oi to model this lumped cost in the
following context. With all these factors, we now define

fi(ci(t), p(t)) = di(ci(t)) + oi − ui(ci(t)) (4)

as the net cost for the EV i delivering its power at the rate ci(t)
using V2G. We note that in most real-world cases, the electricity
price per unit p(t) can be consistent during a period of time
in a day, e.g., peak-time tariff or off-peak time tariff. Given
this viewpoint, our original cost function fi(ci(t), p(t)) can be
equivalently described as fi(ci(t); p), i.e., the function that is
now parameterized by the fixed unit price p. In other words,
for a given price p, fi is a function of single variable ci(t).
This new way of describing fi(ci(t), p(t)) is important from an
EV user’s point of view as now the presented cost function is
able to capture a user’s discharging behavior in V2G. It is also
important to mention that the function contains some sensitive
and private information, including regular maintenance costs
and other performance characteristic information of the EV. For
this purpose, the function fi(ci(t); p) should be strictly private
to the EV user in the V2G program, i.e., an EV aggregator
should not be given permission to access this information in
any associated computing process.

C. Cost Function for an EV Aggregator

In this section, we model the cost function Agg(t) for an EV
aggregator. Similar to what we have modeled for the EV cost
functions, we consider two main factors for modeling the net
cost incurred by an EV aggregator, including 1) the potential
benefits that the collected V2G power can be leveraged by the
EV aggregator in the energy market and 2) the monetary cost of
an EV aggregator for sourcing the V2G power from EV users.
Specifically, letU(t) be the utility that an aggregator can achieve
in V2G at time t. Clearly, U(t) is a function of ci(t) because
at a given time slot t, the utility value U(t) depends on the
V2G power collected from all EVs

∑
i ci(t). We note that U(t)

essentially captures the convenience that an EV aggregator can
benefit from the collected V2G power for various activities in
the power system operations, such as frequency regulation and
peak load compensation. Due to this diversity, how best to model
U(t) is still an open issue [29]. For instance, a convex/concave
utility function may be the best fit for a regulation service, but a
nonconvex curve could also be used to best model the efficacy
of another grid regulation service. For simplicity of our model
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Fig. 1. Some illustrative examples for fitting an EV aggregator’ utility function (100% as the highest level) with respect to the overall V2G discharged power
from EVs. The gray circles indicate an EV aggregator’s input data points, and the red curves are fitted curves using different machine learning models. Different
possibilities exist for fitting the curves, as shown in subplots (a)–(d), given different set of data. In our context, these curves are private to the EV aggregator. The
figure was generated in R.

interpretation and numerical evaluation, we shall assume that a
logarithmic function can be applied to model the beneficial part
for an EV aggregator in this article, i.e.,

U(t) = ω log

(∑
i

ci(t) + 1

)
(5)

where ω is a parameter that can be used to reflect the level of
convenience for an EV aggregator. The “+1” in (5) is to allow the
calculation when no V2G power is delivered from EVs at time t,
i.e.,

∑
i ci(t) = 0, which also indicates that no convenience will

lead to the EV aggregator when no V2G power is dispatched
from EVs. In reality, modeling of U(t) can be done through
machine learning and many neural-network-based approaches
provided that enough historical datasets can be collected from
an EV aggregator. Some illustrative examples for the potential
choices of U are presented in Fig. 1. As shown in this figure, an
EV aggregator needs to provide their data points indicated by

gray circles for model training purposes. We shall ignore further
discussions on this point as there are plenty of methods that can
be used for this application, and it is beyond the scope of this
article.

Concerning the monetary cost for an EV aggregator, instead
of using a unit price signal p(t), here, we interpret this cost as the
energy generation cost from the perspective of energy exchange
in the electricity market. In particular, we see the procurement of
V2G power as an energy generation process where the energy
is not directly generated by physical power plants, e.g., wind
power plants, combined heat and power, and PV plants, but in
a similar alternative manner. Namely, the incurred cost can be
regarded as if the same amount power can be sourced from other
physical power plants from an operational perspective. In this
regard, it is worth noting that the quadratic functions have been
commonly adopted for modeling the generation costs of power
plants in the literature (see [30]–[32]). With this in mind, we
mathematically present the cost for the EV aggregator M(t) as
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follows:

M(t) = a

(∑
i

ηici(t)

)2

+ b

(∑
i

ηici(t)

)
+ c (6)

where a, b, and c are coefficients of the generation cost for a
power plant, and ηi denotes the energy inversion efficiency
from dc to ac at each discharging point for the ith EV, which
implies that only ηici(t) amount of (ac) power will be eventually
delivered to the grid. In practice, the efficiency factor ηi can be
modeled as a constant value depending on the specific types
of vehicle models [21] connected to the V2G discharge point.
For instance, the energy conversion efficiency for a Nissan Leaf
Plug-in EV can be 86.4%, as reported in [21]. We note that α
is usually a positive constant value which makes the function
M(t) as a quadratic function with convexity. Combining both
(5) and (6), the net cost function Agg(t) of an EV aggregator
can be formulated as

Agg(t) = M(t)− U(t). (7)

Comment: We note that the parameters for cost functions in
(4) and (7) can be well estimated using a data-driven approach,
where data come from a user’s historical observations when
using the V2G program. In particular, we assume that these cost
functions are usually encapsulated using learning models, and
users can make real-time predictions of their costs by invoking
such as REST API calls (as models can be deployed off-site). In
this regard, other details of the model, including mathematical
expression of the fitted function and derivative-related informa-
tion of the cost function, are usually implicit to the users. Thus,
we assume that both cost functions fi and Agg are “black-box”
models, and only the function value can be evaluated but with a
cost, e.g., communication and API fees.

III. ALGORITHMS AND IMPLEMENTATIONS

In fact, the optimization problem (1) can be easily solved in
a centralized optimization framework using programming tech-
niques. However, a centralized algorithm is usually implemented
in a batch manner, typically by an optimizer located at the central
computing node facilitated at the EV aggregator. In this way,
it is usually required that both cost functions fi and Agg are
exposed to a central node, which may be impossible for EV users
as sensitive information can be contained or factored into the
cost function fi. When a centralized algorithm is implemented
and converged at the central node, the optimal solution will
be communicated to each EV for further handling. In contrast,
a decentralized algorithm is designed to be implemented at a
computing unit closer to the EVs, e.g., an edge node. In this
setup, each EV may still communicate limited information to
its neighboring networks and a computing node for feedback,
but the overall goal is to find an optimal solution for EVs in a
collaborative and privacy-preserving way.

In this article, we are interested in the design of a decentralized
algorithm that can be useful for addressing the problem (1). More
specifically, a decentralized approach has several advantages
over the centralized one, especially considering the perspectives
of privacy preserving and agent actuations. In our problem, both

EVs and the EV aggregator define their own cost functions,
which reflect their preference in choosing the optimal discharge
rate in V2G for their benefits. Clearly, neither side is willing
to share their own information to the other side. This problem
becomes even more intractable given that both cost functions
are treated as “black-box” models.

A. Existing Optimization Algorithms

In the literature, many decentralized approaches have been
proposed, which are able to solve an optimization problem
similar to (1) (see [17], [18], [29], and [33]–[36]). Among
many others, the alternating direction method of multipliers
(ADMM) algorithm has been recently proposed as an evolution
of other well-known optimization algorithms such as the method
of multipliers and dual ascent [37], [38]. As an alternative to
ADMM-like algorithms, our key idea is to adopt a recently
proposed whale optimization algorithm (WOA) and to inves-
tigate how it can be adapted to solve the problem (1) in a
decentralized framework while satisfying various requirements.
Our key motivations for using WOA can be summarized as
follows.

1) Agent actuation: ADMM-like algorithms essentially de-
compose the central optimization problem to some sub-
optimization problems, which can be easily solved at
the edge side. This requires each local agent be able to
solve a “smaller” optimization problem through a local
optimizer [38]. In contrast to ADMM, the WOA-based
algorithm does not need such an ability; instead, it requires
each agent to simply follow predefined heuristic.

2) Elasticity: ADMM-like algorithms are mainly used to
solve convex optimization problems by leveraging the
derivative information of the objective function. Special
designs are usually required to deal with complex non-
convex objective functions. In contrast, the WOA-based
algorithm is designed to deal with complicated objec-
tive functions without relying on derivative information
of such functions. This feature makes the WOA-based
algorithm an ideal tool to tackle with the optimization
problem of our interest in this article.

3) Robustness: The WOA-based algorithm is essentially a
heuristic algorithm, and algorithm parameters are weakly
correlated with the network dimension and the type of cost
functions. As we shall see later, the WOA-based algorithm
can converge effectively for our problem by changing
values of different hyperparameters.

B. Whale Optimization Algorithm

The WOA is inspired by the foraging behavior in groups of
humpback whales.2 This special hunting method, also known as
the bubble-net feeding method, is done by creating distinctive
bubbles along a “nine”-shaped spiral path [27], with an aim to
encircle the prey and attack it (using bubble-net). At every time
instance, only two actions could be done by a whale, namely,
either encircling a prey or using bubble-net to attack the prey,

2Without explicit mentioning, we shall just call whales in our context.
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Fig. 2. Schematic diagram of the V2G scenario using the DWOA. Note that V2V indicates the communication between EVs, and V2N indicates the communication
between vehicles and the EV aggregator (network). Both communications are required in Step 2.

and both actions are done in a random manner. Moreover, there
are two options for a whale when encircling a prey, that is, a
whale can either follow the current best whale, i.e., the one that
is mostly close to the location of prey, or move toward a random
whale’s position. Interested readers should refer to [27] for more
details of the CWOA, and we shall ignore further discussion
on the CWOA. Instead, we give some useful observations as
follows.

1) CWOA is able to solve both constrained and uncon-
strained optimization problems. For constrained optimiza-
tion problems, a fitness function usually includes a penalty
term to reduce the search space. The simplest choice of the
penalty function is the death penalty [27], which simply
assigns a large value (for minimization problems) to the
objective function in the case that constraints cannot be
satisfied. In our problem, this implies that a search agent
cannot be the optimal agent (solution) if the position of
such an agent is not in the consensus form, which is a hard
constraint for CWOA.

2) CWOA intends to find out the best search agent based
on a fitness function, which depends on the states of all
search agents. In our context, this fitness function requires
the information of all cost functions of EVs and the EV
aggregator, which addresses the concern on “black-box”
models but not on the privacy-preserving aspect.

C. DWOA and Proposed System Implementations

In Section III-B, we have seen that there are two challenges
for using CWOA in our system design, namely: 1) dealing with

the hard constraint due to the consensus requirement and 2)
the privacy-preserving mechanism for both EVs and the EV
aggregator. In this section, we borrow the fundamental ideas
from CWOA and devise the DWOA to better tackle with the
two challenges. To implement DWOA, our proposed system
architecture is illustrated in Fig. 2, which includes three main
components, namely, an EV aggregator, an edge computing
node (ECN), and a group of EVs using V2G. Based on this
architecture, our system operates in four steps.

Step 1. Initialization: In this step, an ECN initializes M
whales in a sequence. Each whale essentially represents a po-
tential optimal discharge rate to be evaluated by each EV at the
later phase. When an initial (random) sequence of numbers has
been generated, the ECN broadcasts this sequence to both EVs
and the EV aggregator through proper communication channels,
e.g., WiFi or power-line communication.

Step 2. Local Evaluation, Data Shuffling, and Aggregation:
For each EV i, let chi (k) be the value of the hth element at the
kth iteration in the received sequence of length M . Similarly,
we use the same notation for the same copy of data sequence
received by the EV aggregator. Given the unit price p, each EV
evaluates fi(c

h
i (k); p), ∀i, h and the EV aggregator evaluates

Agg(
∑

i c
h
i (k)), ∀h. This finishes the local evaluation part in

Step 2. However, these locally evaluated data values cannot be
sent directly to ECN for further processing as it violates the
privacy-preserving requirement in our system design. To deal
with this concern, we propose a data shuffling and aggregation
procedure to allow privacy-preserving computing for these val-
ues at the ECN. For this purpose, let us denote Ni(k) the set
of neighbors of the ith EV at the kth iteration. In this regard,
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Algorithm 1: Data Shuffling and Local Aggregation.

1: for each EV i ∈ N(t) do
2: Splits each mapping (chi (k), fi(c

h
i (k); p)), ∀h, into

two copies.
3: Sends one copy to anyone of its neighbors in Ni(k).
4: Reserves one copy locally.
5: Aggregates received copies from other neighbors to

construct a new mapping (chi (k), f
∗
i (c

h
i (k); p))

6: Sends the new mapping (chi (k), f
∗
i (c

h
i (k); p)) to

ECN for further processing.
7: end for
8: for the EV aggregator do
9: Splits each mapping (chi (k),Agg(

∑
i c

h
i (k))), ∀h,

into two copies.
10: Sends one copy to anyone of its neighbors in Na(k).
11: Reserves one copy locally.
12: Aggregates received copies from other neighbors to

construct a new mapping (chi (k),Agg∗(
∑

i c
h
i (k))).

13: Sends the new mapping (chi (k),Agg∗(
∑

i c
h
i (k))) to

ECN for further processing.
14: end for

note that the EV aggregator can always be seen as one of the
neighbors in Ni(k) for the ith EV. Similarly, the available EVs
are also seen as neighbors of the EV aggregator, which can be
described using the set Na(k). It is worth mentioning that the
neighboring set defines those agents which can be connected
by the agent of interest, i.e., it is the outdegree rather than the
indegree of a node (vertex) in a corresponding directed graph for
communication links. With this in mind, the algorithm to imple-
ment this proposed procedure is demonstrated in Algorithm 1.

For EVs, the splitting operation essentially divides the value
of fi(c

h
i (k); p), ∀i, h into two parts in an arbitrary manner.

This splitting method is valid only if the two divided values
add up the same as the original one. Then, one copy will be
sent to a neighboring EV/aggregator, which ensures that the
local aggregated value for the mapping will be different, i.e.,
f ∗
i (c

h
i (k); p) �= fi(c

h
i (k); p) as the ith EV also receives different

copies from other neighbors, which will be used for its local
aggregation for f ∗

i (c
h
i (k); p). Similar idea also applies for the

EV aggregator. It is this procedure that makes the data flow
privacy aware for different parties involved in the computation.
In particular, the ECN is not able to identify fi or Agg from the
received data flow. However, as we shall see later, the ECN will
use this information to steer the search agent to a better solution
by leveraging a WOA-based approach. To better illustrate this
idea, we now give a numerical example.

Example: We assume that for the EV i, there are two mapping
pairs that have been evaluated, namely, (1, 5) and (2, 10). We
also assume that for the EV j, there are also two mapping pairs
that have been evaluated, i.e., (1, 7) and (2, 20). The second value
in each mapping pair is different as it depends on the EV’s own
cost function in our case. We assume that EV i is the neighbor

of the EV j, and vice versa. We assume that the values will be
split in the following manner.

1) (1, 5) → (1, 2) and (1, 3); (2, 10) → (2, 3) and (2, 7).
2) (1, 7) → (1, 5) and (1, 2); (2, 20) → (2, 5) and (2, 15).
Next, we assume that EV i will send one arbitrary copy of

each mapping to EV j, and so does EV j. After this swapping,
the new local copies from both EVs are reported as follows.

1) (1, 5) → (1, 2) and (1, 5); (2, 10) → (2, 15) and (2, 7).
2) (1, 7) → (1, 3) and (1, 2); (2, 20) → (2, 5) and (2, 3).
After local aggregation, we can obtain the new mappings for

both EVs as follows.
1) EV i: (1, 5) �→ (1, 7); (2, 10) �→ (2, 22).
2) EV j: (1, 7) �→ (1, 5); (2, 20) �→ (2, 8).
Finally, we note that although the splitting and sending pro-

cedures are fully arbitrary, the total sum for all mappings related
to a specific key value is equivalent. For example, before Step
2, the total sum for the discharge rate 1 is 12, and this result is
consistent after Step 2.

Step 3. ECN Aggregation, DWOA, and Decision Making:
After finishing Step 2, the ECN has received all local aggregated
copies from EVs and the EV aggregator. Next, the ECN is
required to determine which discharge rate is more preferable for
the optimization problem (1) given all mappings received. Con-
sidering the objective function defined in (1), the ECN carries out
another local aggregation to find out which discharge rate results
in the minimal total mapped value. Taking the example above,
the ECN will select discharge rate 1 instead of 2 to proceed
simply because discharge rate 1 has a total mapped value 12,
but discharge rate 2 has a total mapped value 30.

After the aggregation at the ECN, the most preferable dis-
charge rate from current configurations has been selected. How-
ever, there is still no guarantee that the current best solution is
the best solution among all other discharge rates. To address this
concern, we now present the DWOA in Algorithm 2, where α is
a scalar linearly decreased from 2 to 0, and r is a random number
between [0, 1].

Step 4. Updating Parameters for Next Iteration: In Step 3, the
ECN has obtained the best current solution from local aggregated
results, and the DWOA is used to improve the current solution
and outputs the adjusted solution for a potentially better solution.
In the final step, i.e., Step 4, the ECN will broadcast this updated
solution to all EVs and the EV aggregator for the next iteration.
After this broadcast, all EVs and the EV aggregator will evaluate
their new mappings and start the loop from Step 2 again until
the simulation terminates (i.e., maximum number of iterations
has been reached).

Remark: The key idea of the proposed system implementation
is to set up a mechanism so that different parties, i.e., EVs
and the aggregator, can be involved in such a joint calculation
without violating any privacy constraint. Roughly speaking, the
aggregation step at the ECN can be seen as an evaluation of the
fitness function in the CWOA to determine which solution is
the “lead whale.” The ECN implements the proposed DWOA to
steer other solutions (“nonlead whales”) toward better solutions
(“hunting positions”) given the current best solution (“the lead
whale position”). Finally, the broadcast mechanism at the ECN
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Algorithm 2: Decentralized Whale Optimization Algo-
rithm.

1: if k < kmax then
2: for h = 1, 2,..., M do
3: Update A = 2αr − α.
4: Update C = 2r.
5: Update random numbers l ∈ [−1, 1] and p ∈ [0, 1].
6: if p < 0.5 then
7: if |A| < 1 then
8: chi (k + 1) = ch

∗
i (k)−A |C · ch∗

i (k)− chi (k)|
9: else if |A| ≥ 1 then

10: Select a random ch̃i (k).
11: chi (k + 1) = ch̃i (k)−A |C · ch̃i (k)− chi (k)|
12: end if
13: else if p ≥ 0.5 then
14: Calculate di = |ch∗

i (k)− chi (k)|
15: chi (k + 1) = di · el · cos(2πl) + ch

∗
i (k)

16: end if
17: end for
18: Check if chi (k + 1), ∀h goes beyond the search

space and amend it.
19: Return chi (k + 1), ∀i ∈ N(t).
20: k = k + 1
21: Proceed to Step 4.
22: else
23: Return ch

∗
i (kmax), ∀i ∈ N(t), and stop the

calculation.
24: end if

preserves the consensus for the optimal solution. We shall expect
that after maximum number of iterations, kmax, the final value
ch

∗
i (kmax) can be used as the optimal solution for (1) at a given

slot t.

D. System Interfaces

We note that it is not the main focus of this article to devise
various practical interfaces for the real-world implementation
of the proposed system; however, we find it would be useful to
provide some general observations to facilitate the operation and
deployment of such a system in reality.

1) EV users: When an EV arrives at the parking area, the user
needs to specify a minimal acceptable SOC value SOCi

min
to be used for the V2G program.

2) EVs: Each EV needs to have an onboard software tool,
which is able to evaluate/retrieve its cost value, split cost
mappings, and conduct local aggregation procedures re-
quired in Step 2. Each EV is required to have a commu-
nication capability with its connected V2G discharging
point through mutually acceptable V2G communication
standards/protocols.

3) V2G discharging points: The communication/computing
unit of each discharging point needs to exchange messages
with other discharging points, which are managed by the
EV aggregator. The unit is also able to exchange messages
with the ECN and the central server at the EV aggregator.

The unit can communicate the real-time pricing signal and
the current discharge rate information to the connected
EV. The unit should also know the energy conversion
efficiency for the connected EV, i.e., ηi, and this can be
easily estimated from the dc–ac power.

4) ECN: The unit can be a smart gateway or a server located
closer to the discharging points in a real-world scenario.
This unit is required to conduct all the computing and
communication tasks in Steps 1, 3, and 4.

5) EV aggregator: Similar to what is required for EVs in
Step 2, the central server at the EV aggregator is required
to evaluate/retrieve its cost value, split cost mappings, and
conduct local aggregation procedures given the discharge
rates received from the ECN. The server also communi-
cates to EVs through the discharging points.

IV. SIMULATIONS

In this section, we introduce our simulation setup in
MATLAB, and then, we evaluate the performance of our pro-
posed system implementations.

A. Simulation Setup

We consider a simple scenario with 100 EVs connected to an
EV aggregator for energy trading using V2G. We assume that the
initial SOC of a group of EVs is uniformly distributed between
80% and 90% upon arrival, with a minimal SOC uniformly
distributed between 10% and 20%. For a given EV, we assume
that its battery size is uniformly distributed between 15 and
30 kWh, which is consistent with most commercial EVs in
the market. Moreover, we specify the minimal discharge rate
cimin = 0 kW, and the maximum discharge rate cimax = 6.6 kW,
which is consistent with the ac level 2 standard connector in [39].
For a given price signal p = 0.02, we set the parameters for both
EVs and the EV aggregator to obtain the cost functions for our
simulations. For simplicity of our system model, we assume
that each EV has only one neighbor, either an EV or the EV
aggregator. In Fig. 3, we show (a) the original cost functions for
EVs and (b) the altered (locally aggregated) cost functions for
EVs after one iteration of Step 2. Likewise, in Fig. 4, we show the
original cost function for the EV aggregator in (a) and the altered
cost function after Step 2 in (b). It is clear that all functions have
been altered for the privacy-preserving computing.

B. Simulation Results

To begin with, we shall evaluate the dynamic performance
of the proposed system. For this purpose, we first assume that
100 EVs are connected to the V2G discharging points at the
start of the simulation, and the DWOA will be implemented to
calculate the optimal consensus discharge rate for the 100 EVs
within 150 algorithm iterations. After that, let 50 EVs still be
connected to the discharge points, so that the system will be
adapted to recalculate the new optimal solution for the EVs. By
default, we assume that there is only one whale involved in the
calculation in this case, i.e., M = 1. The simulation result is
shown in Fig. 5. This result demonstrates that the DWOA can
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Fig. 3. Cost functions of 100 EVs used in the simulation (a) before Step 2 and
(b) after Step 2.

Fig. 4. Cost function of the EV aggregator used in the simulation (a) before
Step 2 and (b) after Step 2. Note that we only evaluate the case of our interest,
in which the discharge rates of all EVs are consistent.

very efficiently capture the rapid change of EVs connected to
the V2G points. Specifically, the first optimal solution has been
found in less than 25 iterations to 4.46 kW, and the new optimal
solution for 50 EVs has been converged to 4.78 kW within just
30 iterations of the algorithm.

In Figs. 6–9, we illustrate the efficacy of the proposed system
from the perspective of energy management. Fig. 6 shows the
overall V2G power that can be provided to the grid during the
time when EVs are available, i.e., SOCi(t) > SOCi

min. Due to
the unavailability of some EVs over time, the total available
power from EVs to the grid decreases as expected. It is worth
noting that with 100 EVs plugged in for V2G, the EV aggregator

Fig. 5. Converged results for the DWOA solution for 100 EVs (within 0-150
iterations) and 50 EVs (after 150 iterations).

Fig. 6. V2G power delivered to the grid while EVs are available.

Fig. 7. Evolution of the optimal discharge rate for EVs during V2G.
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Fig. 8. Evolution of the optimal cost when EVs set to the optimal discharge
rate during V2G.

Fig. 9. Evolution of the available energy for EVs during V2G.

can supply a peak power of 450 kW for the grid demand. Fig. 7
shows how the optimal discharge rate will be evolved during
this process by using DWOA. We have found that when EVs
gradually “leave out” the discharge points, the optimal discharge
rates will be changed accordingly to capture the benefits for
the remaining EVs, which still use V2G. Here, we also note
that the obtained optimal discharge rate is significantly different
compared to optimizing the benefits for one party only, e.g.,
the optimal discharge rate for only the EV aggregator is around
3.2 kW, as shown in Fig. 4.

Furthermore, Fig. 8 shows how the optimal cost can be
changed accordingly when the optimal discharge rate has been
applied in Fig. 7. As expected again, the overall optimal cost
increases when EVs gradually become unavailable, i.e., the EV
aggregator now acts as the dominant factor, which has an optimal
cost around 0.9 reflected in Fig. 4. Fig. 9 shows how the available
energy evolves for each EV in V2G. Clearly, it shows that the

Fig. 10. Estimated distance to home according to the initial SOC specified by
the EV users.

discharge rate is indeed the same for a group of EVs, which are
currently available at the discharge points. It also shows that EVs
will immediately become unavailable when its current SOC is
less than what it initially specified. Finally, to further illustrate
how the initial SOC can affect EV users’ traveling distance back
home, we plot our simulation result in Fig. 10. We assume that
the distance per kWh is 8.26 km according to [40], and the
resulting histogram shows that with current configurations for
SOCi

min, most EV users (45%) can have a home distance between
20 and 30 km without any concern on the energy depletion
back home. This will largely motivate local EV users to use
the proposed V2G program.

To further illustrate the efficacy of the DWOA, we have also
compared the dynamic performance of the DWOA with the
CWOA and the Grey Wolf optimization algorithm (GWOA) [41]
as our baseline algorithms. We note that in order to implement
both CWOA and GWOA, a penalty item has to be introduced
for the evaluation of the fitness function. In this case, we set the
maximum penalty for violating the consensus constraint being
10. The simulation result is shown in Fig. 11. Clearly, the pro-
posed DWOA can effectively converge to optimality with a very
limited number of iterations. In contrast, the other two baseline
algorithms cannot converge to the optimal solution within 300
iterations due to the hard consensus constraint. However, we do
observe that CWOA achieves a better result compared to GWOA
as in the latter case, the algorithm has been stuck in dealing with
the constraint and can hardly evolve.

Since the DWOA is also a heuristic algorithm, it is useful
to discuss its statistical performance as well. Specifically, we
shall investigate how the algorithm can perform with changes
in different hyperparameters, such as the number of whales
parameter M and the maximum number of iterations kmax. For
this purpose, we applied the default setup of cost functions
as aforementioned and then conducted 10 000 independent
algorithm experiments for each scenario of our interest.3 First,

3We used MATLAB R2019b on a Macbook Pro (macOS Version 10.14.6)
with 2.3-GHz Intel Core i9 and 16-GB 2400-MHz DDR4 memory.
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Fig. 11. Comparison of simulation results for three optimization algorithms.

TABLE I
SIMULATION RESULTS BY CHANGING kMAX WHILE FIXING M = 1

TABLE II
SIMULATION RESULTS BY CHANGING M WHILE FIXING kMAX = 300

we progressively increased kmax from 50 to 400, while fixing
the number of initialized whales M of each EV to 1. The
corresponding simulation results are included in Table I. The
results show that with increasing value of kmax, the mean value
of the converged discharge rate remains almost identical for all
cases and with nearly negligible value of the standard derivation
shown in the third column. The last column in the table lists the
actual running time of the system of all independent experiments
in our simulation environment. This can be used as an estimator
for further evaluation of system time complexity. Clearly, the
system running time increases with increasing value of kmax.
However, the parameter kmax shows very little sensitivity in
terms of accuracy, i.e., the mean value of the final converged
discharge rates in all runs (Mean DR) and its standard derivation
(Std DR).

Finally, we investigate a scenario by varying the number of
whales M while fixing kmax to 300. These results are presented
in Table II. It is clear that both Mean DR and Std DR have been
almost consistent in all cases with a negligible value of Std DR.

However, the overall computation time has been significantly
increased compared to the results in Table I due to the fact that
more whales need to be updated in each algorithm iteration.

V. CONCLUSION

In this article, our overachieving goal is to minimize the
overall net costs for both EVs and the EV aggregator in a
privacy-preserving manner. To do this, we modified the WOA to
its decentralized form, DWOA, to solve an optimal consensus
problem while leveraging simple ideas of data shuffling and
aggregation to address the privacy concerns when multiusers
need to be involved in the joint computing process. Many sim-
ulation results have been included to demonstrate the efficacy
of the proposed system implementation. Specifically, we have
evaluated the dynamical performance of DWOA and how it
performs on the grid side. We have also presented results on
how the proposed algorithm is compared with other two baseline
algorithms, and our results have shown that the DWOA can con-
verge to optimality very efficiently compared to others. Finally,
we have shown some statistical results to further illustrate the
robustness of our proposed system in solving the challenging
V2G problem. In particular, we have shown that the DWOA can
converge to optimality within 50 algorithm iterations, which can
almost be done instantly in a real-world V2G scenario referring
to the little computation time revealed in our simulation results.

VI. LIMITATIONS AND FUTURE EXTENSIONS

The work presented in this article is an important step toward
“a privacy-preserving system design of a fair V2G program
involving both EVs and the EV aggregator.” This is only a first
step of work, and it neglects some aspects of a complete solution,
which will be the key topics in our future work. For instance,
the proposed system does not model the complex time-varying
evolution of communication links in the V2G network, as well as
how it affects the optimal solution and the system implementa-
tion. Finally, we assumed that the EV users in the V2G program
are mostly interested in selling their battery power to the grid,
and we did not consider the charging aspect, which a user may
also need in the V2G program, which may be investigated in
future work as well.
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