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Abstract—The increasing penetration of distributed generations
(DGs) and electric vehicles (EVs) offers not only several oppor-
tunities but also introduces many challenges for the distribution
system operators (DSOs) regarding power quality. This article
investigates the network performances due to uncoordinated DG
and EV distribution. It also considers power quality-related perfor-
mances such as the neutral current, energy loss, voltage imbalance,
and bus voltage as a multiobjective optimization problem. The
differential evolution optimization algorithm is employed to solve
the multiobjective optimization problem to coordinate EV and DG
in a distribution grid. This article proposed a method to coordinate
EV and DG distribution. The proposed method allows DSOs to
jointly optimize the phase sequence and optimal dispatch of DGs
to improve the network’s performance. If the network requires
further improvement, the EV charging or discharging rate is co-
ordinated for a particular location. The efficacy of the proposed
method is tested in an Australian low-voltage distribution grid
considering the amount of imbalance due to higher penetration of
DG and EV. It is observed that the proposed method reduces voltage
unbalance factor by up to 98.24%, neutral current up to 94%, and
energy loss by 59.45%, and improve bus voltage by 10.42%.

Index Terms—Compensating neutral current, coordinated/
uncoordinated charging, distributed generation (DG) dispatch,
electric vehicle (EV), mitigating voltage unbalance.

I. INTRODUCTION

DUE to the increasing pressures of greenhouse gas emission
and climate change, electric vehicles (EVs) have been

growing as a popular choice for daily transportation. It has
been reported in [1] that 12 million EVs have been sold already.
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Estimates indicate that world cumulative sales will increase to
200 million by 2030 [1]. On the other hand, more and more
distributed generation (DG) sources, e.g., photovoltaic (PV)
solar energy and battery energy storage (BES)—are increasingly
adding to the distribution grid.

The increasing penetration of DGs and EVs induces the
network imbalance in the low voltage (LV) distribution grid
which has attracted attention in recent decades [2], [3]. The
higher penetration of EV charging loads usually distribute un-
evenly in a distribution grid [3], causes considerable voltage
imbalance, e.g., 3.44 times than balanced scenario was reported
in [3]. The uncontrolled DG integration at different penetration
levels further increases voltage imbalance [2], [4], transformer
overloading and fault currents [5], [6] in an LV distribution grid
[2], [4]. The amount of voltage, current [7], power imbalance
[8], and energy loss increase when both EV and DG units
are integrated in an uncoordinated method. This network im-
balance reduces available hosting capacity which leads to re-
duced uptake of network asset and increased reinforcement cost
[9]–[11].

The charging and discharging powers of EVs are coordinated
by using the centralized and decentralized control method [12].
In a centralized and decentralized control method, each EV
controller regulates the state of charge (SoC) of each EV to
achieve the objective (minimize the peak load, energy cost and
energy loss, mitigate the uncertainty of renewable energy (RE)
based DGs, regulate voltage and frequency) [12]. EV battery
SoC was optimized to reduce the load demand in peak time and
suitable EV charging time based on the peak demand profile
of the network was set using the artificial neural network [13].
To minimize the energy loss of the network and maximize the
energy delivered to EV [14], EV charging SoC was optimized
using the particle swarm optimization (PSO) algorithm [15].
EV charging or discharging SoC was also optimized to meet the
peak demand and minimize the uncertainty of RE-based DGs
[16]. The voltage and frequency were regulated by optimizing
the EV charging or discharging SoC [17], [18]. However, to the
best knowledge of authors, only a few articles have addressed
the mitigation of network imbalance in an LV distribution grid.
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TABLE I
MAJOR OBJECTIVES CONSIDERED EVCC IN UNBALANCED NETWORK

The objective voltage unbalance factor (VUF) was reduced by
controlling SoC value of each EV using the PSO algorithm and
assuming balanced DGs dispatch [19]. The desired objective
was optimized using the metaheuristic optimization approach
which shows more efficient performance than seen in simu-
lated annealing, backtracking algorithm, exhaustive search, and
greedy algorithm [20]. For coordinating EVs, the metaheuristic
optimization approach, i.e., genetic algorithm (GA) and PSO are
commonly used [12].

The survey conducted in [18]–[21] indicates that the EV SoC
control strategy reduces the comfort level of EV users. Another
drawback of the proposed technology is that the network imbal-
ance due to RE-based DGs is not considered in the optimization
problem. Further important imbalance indices listed in [2] form
the neutral current which is not investigated in an EV penetrated
unbalanced distribution grid. The objective function related to
EV coordinated control (EVCC) methods is listed in Table I.

To highlight the network imbalance, this article’s main con-
tribution is to propose a multiobjective optimization problem to
coordinate EVs and DGs jointly in an unbalanced distribution
grid. In the multiobjective function, the network imbalance
indices (VUF, and the neutral current), the network’s voltage,
and the energy loss are considered, subject to various network
constraints. The differential evolution (DE) optimization algo-
rithm is used to solve the multiobjective problem. The efficacy
of the DE optimization algorithm is investigated over commonly
metaheuristic optimization approaches. An economical-tariff
timeslot is assumed to obtain an optimum solution. This article
further offers a proposal for an improved coordinating method
not present in the traditional approaches. The proposed method
jointly coordinates phases and DGs dispatch of the network
by keeping constant EV SoC in the primary control level and
optimized SoC of a group of EVs from a sensitive location in the
secondary control level to improve the voltage profile, voltage

imbalance, and the neutral current to network standard. The key
contributions of this article are as follows:

1) proposing a multiobjective optimization problem to mit-
igate the network imbalance, voltage profile and energy
loss of the network;

2) proposing an improved control approach which ensures
DSOs use the available network capacity efficiently and
increases the level of comfort to EV users.

The proposed multiobjective method is expanded upon and
the test system is described in Section II. An improved method
is proposed in Section III. Results and discussions for unco-
ordinated and proposed coordinated methods are presented in
Section IV, being considered in different network scenarios.
Section V concludes the article.

II. PROBLEM FORMULATION AND SYSTEM MODELS

In this section, the mathematical modeling of the devices
under consideration including residential loads, EVs, BESs,
and PVs are described briefly. A multiobjective optimization
problem is formulated to mitigate the network imbalance and
voltage profile of a distribution grid.

A. Modeling the Test System and Constraints

The LV distribution network, representing an urban area in
Brisbane, Australia [30], is modeled in this article. Each resi-
dential load, EV, PV, and BESs are integrated to the distribution
network. The distribution network is a three-phase four wire
system. A feeder consisting of 13 nodes [31] is considered as
test system I in this article which is supplying 88 residential
customers, whereas the test system II is assumed of having 44
nodes and 972 residential consumers. The distribution network
is connected to the MV network through a two-winding trans-
former 11/0.4 kV. In this article, the compensation devices such
as voltage regulators and shunt capacitors are not considered
for both test systems to investigate the efficacy of the proposed
method.

The load data for residential consumers were obtained from
DSO over a one year of period with average of one hour. For
modeling purpose, the power factor of each household is set
at 0.96 lagging. The load is modeled as constant active power
(P) with power factor 0.96 lagging. The residential loads are
considered as single-phase load and distributed among phases
in a distribution grid.

To represent 100% EV penetration, it is assumed that each res-
ident owns an EV which is connected to the distribution network.
In this article, 100% EV penetration is assumed to investigate the
network performance. EV charging profile depends on the bat-
tery capacity, EV charger, and the network capacity. The capacity
of the test distribution network is increased to support 100%
EV penetration. In this article, lithium-ion battery technology is
considered and a detailed model is given in [32]. Three types of
single-phase EVs were considered and the power consumption
depends on the type of EV charger at each timeslot—Level 2
HCS-50 (9.6 kW); Level 2 HCS-60 (11.5 kW); and Level 2
HCS-80 (15.4 kW). Each EV is connected to the distribution
grid in either charging or discharging mode. When EVs are not
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connected to the distribution grid, they are not in service and
are not included in the optimization process. EV owners arrive
at home and integrate their EVs to the distribution grid. It is as-
sumed that EV owners and DSOs make agreement to set desired
SoC at each timeslot (t) of a day to balance demand-generation
of a distribution grid. Each EV acts as a load while charging and
continue charging until reaching the final value of SOC. Each EV
acts as a dispatched generation source which is discharging until
reaching the minimum value of SOC. The voltage and voltage
unbalance at each node depend on the rate of EV charging or
discharging, location of EV, and EV charger efficiency η.

In this article, EV batteries which are modeled as load act
as constant active power with unity power factor at a timeslot
(t). EVs dispatched power is modeled as generation source with
unity power factor at a timeslot (t) of a day. Each EV is charging
or discharging at the desired level of SoC at a timeslot (t). In the
optimization process, the SoC value of each EV varies between
minimum SoC values SOCmin to maximum SoC value SOCmax

as given in (1). NEV represents the number of total EVs. The n
represents an EV which belongs to NEV. The t represents each
timeslot of a day which belongs to T (24 h). EV charging or
discharging SoC value should not be less than the minimum
SoC value and must be limited to the maximum SoC value. The
charging PEVch or discharging power PEVdch transfer to the
distribution grid depends on the EV charger and distribution grid
infrastructures. The EV power consumption or dispatch should
be within the limit as given in (2) and (3) at a timeslot (t)

SOC(n, t)min ≤ SOC (n, t) ≤ SOC(n, t)max (1)

P (n, t)EV_dch min ≤ P (n, t)EV_dch ≤ P (n, t)EV_dch max (2)

P (n, t)EV_ch min ≤ P (n, t)EV_ch ≤ P (n, t)EV_ch max (3)

where n ∈ NEV and t ∈ T .
EVs with different charger ratings are connected among

phases (phase-a, phase-b, and phase-c) in a distribution grid.
The total power Pt is the lumped sum of three-phase power. The
Ф belongs to three-phase (phase-a, phase-b, and phase-c). The
degree of imbalance τ due to unequal distribution of EVs among
phases is modeled in (4). EV charging loads move from phase A
(Pa) and phase C (Pc) to phase B (Pb) with the increasing value
of τ . The value of τ = 0 means that EVs are equally distributed
among phases and the value of τ gradually increases to 100%

Pa = Pa − τ

Pb = Pb + 2× τ

Pc = Pc − τ (4)

where τ = % of Pt

3 , Pt =
∑

Φ∈a,b,c
PΦ.

For a PV solar power plant, the intermittent characteristics
of solar energy plays an important role on the active power
output [33]. The PV output power depends on solar irradiance
Iir in kW/m2. Moreover, the active power output of a PV plant
depends on PV solar array efficiency (ε) and the corresponding
temperature factor f(T) for ambient temperature (T) [34]. The
PV plant produces the direct current (dc) power output PPVdc

as given in the following equation:

PPVdc = Parray × ε× Iir × f(T ). (5)

It is assumed that BESs are integrated with the PV solar plant.
In this article, the PV solar and BES are considered as a DG
unit. The output dc power of each DG unit is converted to the
alternating current (ac) by using the inverter for integrating to
the distribution grid. The development of converter technology
allows the output power of each DG unit to be controllable. In
this article, it is assumed that each household has a DG unit
rated from 5 to 20 kW. In the optimization process, the output
active power PDG and reactive power QDG of each DG at node
or bus (i) are constrained as shown in (6) and (7) at a timeslot
(t) of a day. The node or bus i belongs to the total bus NBus of
a distribution grid

P (t)iDG_min ≤ P (t)iDG ≤ P (t)iDG_max (6)

Q (t)iDG_min ≤ Q (t)iDG ≤ Q (t)iDG_max (7)

where i ∈ NBus and t ∈ T .
In this article, the 15:00 hr of a summer day is considered as

an investigating time slot (t). Our aim is to improve the network
performance which does not depend on the EV charging cost
[22]. The network performance is investigated in this article by
considering residential load profile and EVs at the investigating
timeslot. The EV and DG constraints are applied at the investi-
gating time slot (t). In the optimization process, the real time (the
investigating time slot) demand of residential and EV charging
load, delivered power through EV discharging and dispatched
power from each DG (PV plant and BES) unit are considered in
this article.

The unbalanced load flow (ULF) model which was proposed
in [35] is applied in this article to model the distribution network.

Assuming an arbitrary branch (l, m) in the distribution net-
work, the terminal voltages of the branch are expressed by the
Kirchhoff voltage law [36] as given in the following equation:

Vl = Vm − ZlmIlm (8)

where Vl = [V a
l , V

b
l , V

c
l , V

n
l ],Vm = [V a

m, V
b
m, V

c
m, V

n
m]is the

three -phase voltage at bus l and m.Ilm = [Ialm, I
b
lm, I

c
lm, I

n
lm]is

the vector of three-phase current flowing from l to m. Zlm

presents impedance which consists of the resistance Rlm and
reactance Xlm as described in [37]. The impedance Zlm is
converted to Ylm and the injected current Ijl at a bus for a given
phasej can be calculated from the following equation:

I
j

l =

N∑
m=1

∑
q∈a,b,c

Y
jq

lmV
q

m. (9)

The three-phase power flow problem (10) is given as follows:

S
j

l = V
j

l (I
j

l )
∗
= V

j

l

N∑
m=1

∑
q∈a,b,c

(Y
jq

lm)
∗
(V

q

m)
∗

(10)

where S
j

l is the delivered complex power. In this article, the
DigSILENT Power Factory software package is able to execute
ULF by using the Newton Raphson method described in [38].
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To restrain the impact of optimization in the investigating time
slot (t), the maximum branch current and the number of lines
should remain the same. The total amount of delivered power
by DG (PV and BES) and EV discharging power into the net-
work after optimization PDG_optimized will not exceed the total
existing (uncoordinated) DG dispatch power PDG_uncoordinated

of that network as shown in (11) and (12). The total power con-
sumption due to optimization Pload˙optimized should be remained
same as uncoordinated power consumption Pload˙uncoordinated

shown in (13) and (14)

∑
i∈NBus

P (t)iDG_optimized ≤
∑

i∈NBus

P (t)iDG_uncoordinated

(11)
∑

i∈NBus

Q
i

DG_optimized
(t) ≤

∑
i∈NBus

Q
i

DG_uncoordinated
(t) (12)

∑
i∈NBus

P (t)iload_optimized =
∑

i∈NBus

P (t)iload_uncoordinated

(13)
∑

i∈NBus

Q
i

load_optimized
(t) =

∑
i∈NBus

Q
i

load_uncoordinated
(t) (14)

V (t)iavg_uncoordinated ≤ V (t)iavg_optimized (15)

P (t)loss_optimized ≤ P (t)loss_uncoordinated (16)

where i ∈ NBus and t ∈ T .
The bus voltage after optimization Vavg˙optimized must be

equal or above the uncoordinated network’s bus voltage
Vavg˙uncoordinated as shown in (15) at the investigating timeslot.
The total power loss constraint (16) can be defined that the total
optimized power loss Ploss˙optimized should be less than or equal
to the uncoordinated network’s power loss Ploss˙uncoordinated at
the investigating timeslot (t).

B. Multiobjective Function

The proposed multiobjective function considers the four main
objectives as follows.

1) Voltage Unbalance Factor: In this article, the most com-
monly used indicator VUF is employed for analysis to under-
stand the degree of imbalance during power flow computation.
VUF is defined as the ratio between negative sequence voltage
components V– and positive sequence voltage components V+.
For voltage imbalance, the following (17) is used for calculating
the VUF. In Australia VUF <2% is the network standard [39],
[40]. The objective γ1 for voltage unbalance factor is as shown
in the following equation at a timeslot (t):

γ1 = VUF =

∣∣V (t)−
∣∣i

∣∣V (t)+
∣∣i (17)

where i ∈ NBus and t ∈ T .
2) Neutral Current: The neutral current of an ideal balanced

system is zero, whereas neutral current In is a summation
of three-phase current (Ia, Ib, Ic) at the supporting feeder as

shown in (18). The neutral current can be minimized by mini-
mizing the objective γ2 as shown in the following equation:

I(t)n = γ2 = I(t)a + I(t)b + I(t)c (18)

where t ∈ T .
3) Bus Voltage: The bus voltage in an unbalanced distri-

bution grid is defined as the average voltage Vavg of phases
(phase-a, phase-b, and phase-c) as shown in (19), and the slack
bus voltage Vs is 1.05 p.u. Our aim is to increase the average
bus voltage at each node by minimizing the deviation between
the slack bus voltage and average bus voltage. Equation (20)
is expressed the objective function γ3 to improve the node/bus
voltage at a timeslot (t)

V (t)iavg =

∑
Φ∈a,b,c

V (t)iΦ

3
(19)

γ3 =
∑

i∈NBus

∣∣V (t)s − V (t)iavg
∣∣ (20)

where i ∈ NBus and t ∈ T .
4) Energy Loss: The energy loss is proposed as an objective

function γ4. The energy loss of the network is a lumped sum
of line losses of each branch at a timeslot (t) as shown in (21),
where rbr, Ibr are respectively resistance, and current of branch
(br) and Nbranch are the total number of branches in the system

γ4 =
∑

br∈Nbranch

rbr × |Ibr|2 (21)

where i ∈ NBus and t ∈ T .
Therefore, each objective is combined in the proposed mul-

tiobjective (22) with corresponding importance factor ψ, ζ,
β, κ. The higher value of importance factor indicates more
improvement on the corresponding objective function. The sum
of importance factors must be equal to 1

OFproposed = min (ψ × γ1 + ζ × γ2 + β × γ3 + κ× γ4)
(22)

where ψ + ζ + β + κ = 1.
The linear scalarization method employed in this article re-

duces computation burden more than Pareto-based methods [21]
for solving the multiobjective optimization problem efficiently.
In this article, each individual objective (the neutral current or
VUF or bus voltage or energy loss) is not within the same scale.
So, it is challenging to choose an appropriate value of weighting
factor for solving multiobjective optimization problem. The
scaling problem of objectives is obtained by employing ideal
and nadir values [18] of individual objectives to convert each
objective to the same scale. Each optimization problem (energy
loss, voltage imbalance, node voltage, and the neutral current) is
solved individually as a single objective function to get nadir and
ideal value [41]. In this article, a method which is addressed in
[19] is employed for fuzziffication of objective functions convert
each objective to the same scale [0, 1]. Each individual objective
value is converted to fuzzy variable within the same scale using
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the following equation:

fk =

⎧⎪⎨
⎪⎩

0 when fj ≤ 0

fj when 0 <fj< 1

1 when fj ≥ 1

(23)

where fj =
γh−γnadir

h

γideal
h −γnadir

h

and h, j, k = 1, 2, 3, 4.

The value of fuzzy variable fj for each objective function
may not be within the scale [0, 1]. If the value of fj is above 1,
the proposed formula (23) restricts the value of fuzzy member
fk to 1 and if the value of fj is negative, it replaces by 0 and
keeps the same value fk = fj if within [0, 1]. In this way, we
ensure the fuzzy membership of each objective is kept within the
same scale [0, 1]. Therefore, the proposed multiobjective (22) is
converted with fuzzy members to the new multiobjective, shown
as follows:

OFproposed = min (ψ × f1 + ζ × f2 + β × f3 + κ× f4)
(24)

where ψ + ζ + β + κ = 1.
The network performances are obtained using the three-phase

ULF. The DigSILENT power factory software package executes
the ULF by using the Newton Raphson method. The proposed
optimization problem is solved using the DE optimization algo-
rithm. This algorithm is described in [31] and is implemented
using the DigSILENT power factory package. Both tasks (the
ULF and DE optimization) are implemented by using the DigSI-
LENT power factory language capability (DPL) script which is
linked to the SCADA server via a text file.

III. PROPOSED METHOD

A centralized control method is proposed here to improve
the network performance. The assumptions under which this
approach is implemented are that a central controller has access
to data, e.g., demand, generation, and network configuration at
each timeslot (t) and the DSO has the following features:

1) capability to resequence phases dynamically at each node;
2) an efficient converter to control output power of DGs;
3) an efficient EV charger to control charging or discharging

power.
The flowchart shown in Fig. 1 illustrates the logic flow of

the proposed method. The input data and required information
are imported from the supervisory control and data acquisition
(SCADA) network and stored in a linked text file at the SCADA
server. Those data are passed to the simulator DigSILENT power
factory using the DPL capability at each time slot (t) of a day.
The network performance is calculated at the time slot (t). The
control criteria include the amount of allowable neutral current
(TC), allowable number of nodes (NBVolt) violating the standard
bus voltage and allowable number of nodes (NBVUF) having
VUF more than standard VUF. The standard bus voltage is
0.95 –1.05 p.u. and VUF value is less than 2% according to
Australian network standard [39], [40]. If the control criteria
are violated, the DE optimization algorithm will be executed by
using the DPL capability. The best fitness of the objective (24) is
achieved by considering constraints (6)–(7) and (11)–(16). The
constraints (13) and (14) keep the EV charging or discharging

Fig. 1. Flowchart of the proposed method.

power unchanged. The proposed method recommends an opti-
mal phase sequence (coordinate EVs with desired SoC) at the
respective node and optimum DGs dispatch among phases per
node. In this article, the phase sequence {A, B, C} is presented
as 0, whereas the sequence of phases {B, C, A} is given as P and
{C, A, B} is as N. The optimal coordination of phase sequence
and optimum dispatch of DGs is expressed as the primary control
approach.

The optimum EVs and DGs configuration is exported to
the SCADA server by using the DPL script. The network is
reconfigured by using the SCADA framework. The network
performance is obtained by executing the ULF. If the control
criteria are still not achieved, the proposed method performs
a secondary control approach, where the sensitive location is
obtained based on the sensitive fitness (25). The sensitive fitness
of each node or bus is the summation of bus voltage and VUF
deviation. The bus voltage deviation is the deviation between
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Fig. 2. Neutral current with increased the degree of imbalance.

standard minimum voltage (Vmin) and the bus voltage of a node
at the investigating time (t). The VUF deviation is defined as the
deviation between standard maximum VUF (VUFmax) and the
VUF of a node at the investigating time (t). For this approach,
Vmin = 0.95 p.u. and VUFmax = 2% is considered.

f (t)isensitive=
(
Vmin−V (t)iavg

)
+
(
VUF(t)i −VUFmax

)
.

(25)
The node having higher positive value based on sensitive

fitness (25) is considered as a sensitive node or location. The
charging or discharging power of EVs connected at the sensi-
tive node is optimized to improve the network performance. If
satisfactory network performance is still not achieved, a group of
EVs charging or discharging power of another sensitive location
will optimize. The proposed method repeats EV coordination
procedures until it satisfies the control criteria.

The proposed method allows participation of both DSOs and
EVs to improve the network performance. The DSO resequences
phases and coordinates DGs dispatch to reduce participation of
EV users at the primary control. If the network performance is
still below the control criteria, EVs charging or discharging rate
is optimized in a particular location at the secondary control. In
this way, the proposed control method maximizes the level of
comfort of an EV user.

IV. RESULTS AND DISCUSSION

In order to evaluate the effectiveness of the proposed method,
we implemented it in both test systems. The distribution system
in the test systems is considered as a three-phase unbalanced grid
by uneven distribution of EVs. The impact of uncoordinated EVs
distribution among phases is investigated by varying the degree
of imbalance τ according to (4) subject to load flow convergence.

Fig. 2 shows that the neutral current is increasing with in-
creasing the degree of imbalance from 0% to 60%. The load
flow does not converge beyond the degree of imbalance 60%.
This article evaluates the performance of the proposed method
considering the following three scenarios by varying the degree
of imbalance τ .

1) Scenario I: Uncoordinated method.
2) Scenario II: Proposed coordinated method considering the

degree of imbalance τ = 30%.
3) Scenario III: Proposed coordinated method considering

the degree of imbalance τ = 40%.

TABLE II
OPTIMAL REPHASING AND POWER DISPATCH PER NODE (TEST SYSTEM I)

A. Scenario I: Uncoordinated Method

In scenario I, EVs are connected in an uncoordinated EV
charging method. The degree of imbalance τ due to EV charg-
ing is 30%. Each DG unit is also dispatching power to the
distribution network. The impact of uncoordinated method is
investigated by executing the ULF considering τ is 30%. In
the test system I, the VUF value is above 2% (from 2.85% to
9.50%) at all the buses, and the bus voltage is below 0.95 p.u
(0.85–0.92 p.u) at 10 buses out of 13 buses. The bus voltage is
below 0.95 p.u at 19 buses out of 44 buses in the test system II.
The obtained results show a significant amount of energy loss
(190.64 kW) and the neutral current (49.58 A) at the supporting
feeder of the test system I. The neutral current at the test system
II is 195.49 A and energy loss is 1359.427 kW.

B. Scenario II: Proposed Coordinated Method Considering
the Degree of Imbalance τ = 30%.

The DE optimization algorithm is carried out to solve the
optimization problem (24) considering scheduled generation.
The proposed coordinated method is applied to both the test
system I and II considering τ is 30%.

The weighting factor is selected based on the importance
of corresponding network performance. The single objective
(VUF) optimization shows that it also reduces the bus voltage
[19], the neutral current [42], and the energy loss of a distribution
network [42]. The optimization of the neutral current and VUF
as a multiobjective also increases bus voltage [31]. Our aim has
more importance on reducing the network imbalance VUF, and
the neutral current. For this reason, we assign higher importance
factor for the network imbalance (neutral currentψ= 0.35, VUF
ζ = 0.35), voltage β = 0.2, and energy loss κ= 0.1 to solve the
proposed multiobjective (24) in this article.

The proposed method solves the multiobjective optimization
problem (24) subject to the network constraint (11)–(16). The
proposed method coordinates the phase sequence, and DG power
dispatch per phase per node as shown in Tables II and III. The
rephasing nodes are listed with the type of phase sequence (P for
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TABLE III
OPTIMAL REPHASING AND POWER DISPATCH PER NODE (TEST SYSTEM II)

positive and N for negative phase sequence) and optimal power
dispatch per node or bus. The proposed method is not recom-
mending all nodes to participate in rephasing which reduces
the rephasing execution time. The optimum power delivered
to each node is controlled by regulating the dispatch of DG
unit. The EV discharging power is kept constant at the investing
timeslot (t).

The improvement of VUF and bus voltage using the proposed
coordinated method compared to the uncoordinated method is
as shown in Figs. 3 and 4 of the test system I. Figs. 3 and 4 show
that the proposed coordinated method minimizes the VUF value
below 2% at all buses and reduces VUF value up to 98.24% at
node #bus 645 compared to the uncoordinated method. The bus
voltage is improved above 0.95 p.u. at all the buses and improves
the bus voltage up to 9.44% compared to the uncoordinated
method. The proposed method reduces the neutral current from
49.58 to 3.13 A and the energy loss from 190.64 to 77.31 kW.
The performance of the proposed method is compared with the
uncoordinated method of the test system II is given in Figs. 5
and 6. The efficacy of the proposed method is summarized in
Tables IV and V.

From Tables IV and V, it is observed that the maximum
VUF value is 9.50% (B 611) in the uncoordinated method. The
proposed method reduces the maximum VUF value to 1.91% (B
611), which is even less than the minimum VUF value 2.85%
(B 692) obtained in the uncoordinated method in test system
I. In test system II, the proposed coordinated method reduces

Fig. 3. Voltage at different node (test system I).

Fig. 4. Voltage unbalance factor at different node (test system I).

Fig. 5. Voltage unbalance factor at different node (test system II).
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Fig. 6. Voltage at different node (test system II).

TABLE IV
NETWORK PERFORMANCE OF THE TEST SYSTEM I

TABLE V
NETWORK PERFORMANCE OF THE TEST SYSTEM II

the maximum VUF value from 2.83% to 1.37%. The minimum
value of bus voltage is 0.87 p.u. at the test system I and 0.91 p.u.
at the test system II. The proposed coordinated method improves
bus voltage, where the minimum value of bus voltage is 0.95 p.u
for both test systems. The control criteria are achieved by using
the proposed control method with primary control approach and
the proposed method does not require to implement secondary
control approach. Therefore, the proposed coordinated method

Fig. 7. Voltage at different node (τ = 40%).

improves the network performance without reducing EV charg-
ing power or importing power from the external grid.

C. Scenario III: Proposed Coordinated Method Considering
the Degree of Imbalance τ = 40%.

In this scenario, it is assumed that the power delivered to
the distribution grid, the residential and EV charging demands
remain same as in scenario I. The degree of imbalance τ is
considered 40% in this scenario III. The network performance
is executed by using the ULF. The increased degree of imbalance
increases the VUF up to 12.02% (B 611) and decreases the bus
voltage to 0.82 p.u. (B 611) in the test system I.

The coordinated method proposed is applied to the test sys-
tem I. Its performance is presented by two control approaches:
primary control and secondary control. The method is compared
with the uncoordinated method as given in Figs. 7 and 8. From
Figs. 7 and 8, it is observed that the primary control approach
(optimum rephasing and DG dispatch) increases bus voltage and
reduces the voltage imbalance. But the bus voltage is still below
the control criteria (0.95 p.u.) at the #bus 632, #bus 633, and
#bus 634 and the VUF value is still below the control criteria
at nodes #bus 611, #bus 632, # bus 633, #bus 634, #bus 645,
# bus 646.

The proposed method recommends to implement the sec-
ondary control approach to satisfy the control criteria. The
sensitive location (node in a distribution grid) is selected based
on the value of sensitive fitness (25). The worst node #bus
634 is selected as a sensitive location. The EV charging or
discharging power of bus 634 is optimized for solving (24)
subject to individual EV constraint (1)–(3). In this article, the
control criteria are achieved after optimizing EV SoC of sensitive
locations # bus 634, # bus 633, and #bus 646. Figs. 7 and 8 show
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Fig. 8. Voltage unbalance factor at different node (τ = 40%).

that the bus voltage above 0.95 p.u and VUF is less than 2% at
all the node.

The increasing degree of imbalance τ increases the voltage
imbalance and the neutral current, and decreases bus voltage in a
distribution grid. The constraint of keeping constant demand per
node in the rephasing method is the limitation to balancing the
distribution grid completely. The unbalanced distribution grid
requires more power supply [43] but the total output power gen-
eration of the network remains constant (13), (14). Though the
primary control approach, considering both constraints, cannot
achieve the control criteria, the proposed method ensures com-
fortability for EV users. In the secondary control approach, 32
EVs out of 88 EVs charging or discharging power is controlled.
Therefore, the proposed method offers comfortability to the rest
of 56 EV users in scenario III, whereas all EV users in scenario II.
This method therefore benefits EV users more than conventional
methods discussed in [19].

In this article, the DE optimization algorithm is used to
solve the multiobjective optimization problem (24). Our aim
is to investigate the efficacy of the DE optimization algorithm
by comparing with commonly used optimization algorithms,
e.g., GA and PSO to solve EVCC problem [12]. The control
parameters (e.g., crossover, mutation, acceleration constants,
etc.) of GA, PSO, and DE are initialized. The optimum value of
control parameters is obtained when the best fitness is achieved.
The optimum crossover probability is 0.77 and mutation prob-
ability is 0.15 for GA, whereas the crossover rate is 0.88 and
mutation factor (F) is 0.18 for the DE algorithm. The optimum
acceleration coefficients c1 = 0.25, c2 = 0.31 and inertia weight
= 0.8 are the values applied in the PSO algorithm. The GA,
PSO, and DE algorithms are implemented by considering 10 000
evaluations and optimum parameter values to the test system II
by using the proposed method.

Fig. 9 shows the efficacy of optimization algorithms for min-
imizing the fitness with respect to the number of iteration. The
fitness value is zero after 153 iterations using the DE optimiza-
tion algorithm. The DE optimization algorithm requires fewer

Fig. 9. Performance of GA, PSO, and DE algorithms (proposed method).

Fig. 10. Statistical performance of GA, PSO, and DE algorithms (proposed
method).

TABLE VI
NETWORK PERFORMANCE OF GA, PSO, AND DE ALGORITHM

iterations for minimizing the fitness value compared with GA
and PSO. The statistical analysis results are presented through
a box plot in Fig. 10. This (see Fig. 10) shows that all statistical
indicators have reduced to a point for the DE algorithm, meaning
higher homogeneity around the median over GA and PSO.
Table VI shows that the DE algorithm improves the network
performance more than GA and PSO. From, Figs. 9 and 10, and
Table VI, it can be concluded that the DE optimization algo-
rithm shows faster convergence speed and improved network
performance over GA and PSO.
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V. CONCLUSION

The proposed method is used to solve the multiobjective op-
timization problem, subject to network constraint. The efficacy
of the proposed method is evaluated, considering the following
three scenarios:

1) uncoordinated method;
2) coordinated method considering 30% network imbalance;
3) coordinated method considering 40% network imbalance

in this article.
The uncoordinated method increases the VUF value up to

9.50%, and the bus voltage decrease to 0.87 p.u., due to un-
coordinated EV and DG distribution. The proposed method is
applied to the test distribution grid, considering the scheduled
generation. The proposed method shows improvement of the
network performance (bus voltage above 0.95 p.u. and VUF
less than 2% for all buses) and allows DSOs to resequence
phases and for optimum dispatch of DGs per-phase-per-node
of a distribution grid. In scenario II, the proposed method does
not require control of EV charging or discharging power. The
joint optimization approach of the proposed method increases
the level of comfort of the EV user because it does not change
the charging or discharging rate of each EV. The proposed
method recommends managing the SoC of a group of EVs in a
location where the joint optimization approach does not improve
the network performance to the desired level, as discussed in
scenario III. The multiobjective optimization problem is hereby
solved by using the DE optimization algorithm. This algorithm
shows not only greater homogeneity and computational superi-
ority but also improves the network performance over the more
commonly used optimization algorithms GA and PSO. There-
fore, this article recommends the optimizing of phase sequence
and DG dispatch at the primary control approach, combined
with controlled EV SoC at the corresponding secondary control
approach. The method proposed in this article is general and
applicable to any LV unbalanced distribution grid.
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