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Abstract—It is challenging for malware lineage inference to
identify versions of collected malware by ensuring high accuracy
in clustering. In this article, we tackle this problem and present a
novel mechanism using behavioral features for version identifica-
tion of (un)packed malware. Our basic idea involves focusing on
intrafamily clustering. We extract the so-called family feature sets,
i.e., hybrid features specific to each family. Our intuition is that
family feature sets may achieve higher accuracy in clustering than
common feature sets, and unpacked malware found in or relevant to
such a cluster can result in the lineage inference of family members
using traditional inference methods. We conduct experiments with
two datasets, 8928 malware samples from VXHeavens and 3293
samples by manual analysis, composed of packed malware in a
large portion. The results demonstrate that we can accurately
classify samples into malware families based on the hybrid features
we choose. In addition, we can also effectively extract family feature
sets from 37 feature categories using forward stepwise selection.
For intrafamily clustering, we employed the agglomerative clus-
tering algorithm and observed that using family feature sets is
significantly more accurate than using common feature sets, which
facilitates higher accuracy lineage inference of packed malware.

Index Terms—Family classification, feature selection, lineage
inference, malware, packing, within-family clustering.

I. INTRODUCTION

THERE is a substantial growth in the amount of mal-
ware emerging annually. According to AV-TEST, the num-

ber of malware samples reported in 2008 was approximately
10 million, which increased to 127 million in 2015, indicating
a 12-fold increase [4]. However, most malware are variants of
existing ones. According to G DATA Software, new malware
species comprise only 7.41 million among 110 million malware
samples identified in 2017 [15], and it is estimated that over 80%
of malware are “packed” on distribution [23].
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Plenty of studies about malware classification based on ma-
chine learning have been performed. This area has been reaching
its maturity in both academia and industry. However, even
though malware classification can protect an end system, it does
not help malware analysts understanding malware ecosystem
in depth. Malware lineage inference involves exploring the
evolutionary relationships among collected malware samples.
Malware variants developed by the same malware authors or
variated from the same sources comprise the lineage. Lineage
inference plays an important role in malware forensics, such
as tracking the provenance of malware and naming malware
samples. In particular, lineage inference can help determine
which sample must be analyzed first and help evaluate trends in
the evolution of malware. Therefore, malware lineage inference
is a crucial step to learn how to cope with new malware in arms
race between malware authors and analysts. Past lineage infer-
ence studies attempted to determine which malware samples
had been developed in the past and which samples had been
developed relatively more recently [16], [21], [26], [31]. The
order of malware samples was denoted as a graph, and the shape
of the graph was constructed using features such as file/section
sizes, control flow graphs, and function similarities. The graph
comprises nodes and edges; nodes indicate each version of a
family, and an edge connects two adjacent versions.

Lineage inference is still challenged with the requirement that
it is necessary to handle not only unpacked malware, but also
packed malware. Unfortunately, prior studies failed to consider
packed malware, and they considered all samples in a malware
family as different versions. Given N versions of a family,
N ∗ (N + 1)/2 complexity is required to identify their chrono-
logical sequence. The complexity problems associated with
lineage inference have not been revealed from the evaluation
of previous studies that consider a small dataset, i.e., small N .
However, if a large amount of packed malware coexist in the
same family, the computational complexity for lineage inference
may increase explosively. In reality, most samples are packed,
which means that the size of N can be dramatically reduced.

In this context, version identification is a crucial step for
filtering packed malware before performing lineage inference.
A prior study categorized packed malware and unpacked mal-
ware as the same version. Haq et al. [21] unpacked and disas-
sembled a sample and then verified for function similarity with
other samples. However, their results were not satisfactory be-
cause their function coverage metric was accurate approximately
70% on average. Contrary to their approach, our perspective
assumes dynamic analysis as inevitable for accurate grouping
of unpacked malware and packed malware characterized by the
same behavior.

In this article, we present a new method of version iden-
tification to mitigate the complexity problem associated with
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lineage inference involving a large amount of packed malware.
We propose intrafamily clustering for version identification.
Intrafamily clustering easily groups a version of packed malware
and unpacked malware according to behavioral features that
can be extracted through dynamic analysis. Unpacked malware
whose lineage has not been identified can be detected after
intrafamily clustering, and its lineage can be easily inferred.
It should be noted that we do not execute lineage inference
itself but refine an input for lineage inference based on version
identification.

Our system design is straightforward and executes stepwise
feature processing and version identification. We first extract
malware features for machine learning, from sandbox, and for
static analysis. In particular, we employ several behavioral fea-
tures that can be extracted from the Cuckoo Sandbox [11]. Fea-
tures that cannot be immediately employed for machine learning
are processed using feature representation. We also reduce the
dimensionality of behavioral features to improve memory uti-
lization. Once a feature set of samples is available, the feature
sets are classified into families using classification algorithms.
We perform forward stepwise selection and intrafamily clus-
tering for each classified family. We are concerned that feature
selection employed in prior studies [1], [14], [16], [20], [40] was
commonly used, and some malware families may not have fit
into the commonly selected feature set. This is because those
families exhibit behaviors that are different from the common
characteristics. Our primary assumption is that family features
may exist upon which each malware family’s member behaves
with similar sensitivities, just as birds of the same species exhibit
similar behaviors and characteristics. Therefore, we derive the
so-called family features, not a common one. Finally, we choose
a cluster head in each cluster for lineage inference input. Our
entire system, including version identification, was evaluated on
a large-scale dataset containing 8928 malware samples obtained
from VXHeavens and 3293 samples obtained through manual
analysis. The primary contributions of our article are summa-
rized as follows.

1) New version identification system: We propose an in-
tegrated system that includes feature processing, fam-
ily classification, and intrafamily clustering for malware
version identification. Our system identifies a version of
packed malware and eventually prevents packed malware
from infecting lineage inference. We expect that our sys-
tem dramatically improves the computational complexity
of lineage inference.

2) Feature processing for accuracy and efficiency: In addi-
tion to static features obtained through binary analysis, we
also extract dynamic features through sandbox analysis.
Consequently, we can precisely handle packed malware
in family classification and intrafamily clustering. In ad-
dition, we propose a feature normalization method that
reduces the dimensionality and memory requirements of
a feature set, which preserves the meaning of behavioral
information.

3) Intrafamily clustering based on family feature sets: We
employ a feature selection method and derive family fea-
ture sets based on the behavior and sensitivity of individual
families. Family feature sets can improve the accuracy of
intrafamily clustering, i.e., version identification. We ob-
served that malware families exhibit different sensitivities,
and our family feature sets represent those characteristics
well.

4) Experiments with a large-scale real-world dataset: We
collected malware samples from two sources and con-
structed a large-scale dataset for evaluating our entire sys-
tem. Our system classifies malware samples into families
and demonstrated F1-scores of above 98%. Furthermore,
intrafamily clustering based on family feature sets results
in an F1-score of about 90%, which indicates a consider-
able increase from prior version identification studies, e.g.,
70% approximately. Our experimental results also demon-
strate that our approach improves performance compared
to previous approaches in terms of feature processing and
feature selection.

The rest of this article is organized as follows. In Section
II, we describe a background of this study. (Advanced readers
may skip this.) In Section III, we present our system design.
We then explain feature processing and version identification in
Sections IV and V, respectively. In Section VI, we perform eval-
uation with thorough experiments. In Section VII, we discuss
practical impacts and limitations of our system. We describe
related work in Section VIII. Finally, Section IX concludes this
article.

II. BACKGROUND

To understand the intent and behavior of malware samples,
family classification must be considered an essential process in
malware analysis. Once the family of an unknown sample has
been identified, analysis of the sample can be easily performed
based on prior knowledge. Moreover, in terms of software en-
gineering, malware authors continuously develop malware for
bypass detection mechanisms or add functions. For example,
malware authors submit their malware to a public sandbox to
fingerprint the environment of the sandbox and then develop
more sophisticated malware [16]. Lineage inference is essential
to track malware evolution and to identify the relationships
among malware versions. However, evasion techniques present
difficulties in terms of automating family classification and
lineage inference. Packing, one of the most typical techniques,
has been applied to more than 80% of malware samples [23].
Packing compresses a binary including a code section and
a data section to reduce its size and applies obfuscation to
avoid processes such as reverse engineering. Packing outputs
a variation of the original malware binary, making it difficult
to identify malware based on static features. Using an unpacker
tools is one solution for handling packed malware using static
features, but it is difficult to determine which unpacker must be
applied.

There have been many prior studies that focused on the
classification of packed malware based on static, dynamic, and
hybrid features; however, most studies did not consider lineage
inference [1], [6], [23]. In terms of using lineage inference
to trace malware development, several studies have been con-
ducted, but these studies have limitations [16], [21], [26], [31]. It
is essential to consider the packing problem in lineage inference
as prior studies had difficulties in identifying packed malware.
Graziano et al. filtered packed samples from their dataset [16].
Lindorfer et al. applied simple generic unpacking to handle
packed malware, but they were concerned about repacked mal-
ware [31]. Jang et al. used dynamic application programming
interface (API) calls, but their approach was not proven on
packed malware [26].

The separation of unpacked malware and packed malware
must be considered in lineage inference; otherwise, all samples
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Fig. 1. System overview.

would be compared to each other, which exponentially increases
computation costs. Moreover, inferring the chronological
sequence of unpacked malware has been well defined, except
in the case of packed malware; one example involves a case in
which two packed malware samples originate from the same
unpacked sample but are packed with different packers. There-
fore, lineage inference must be performed on only unpacked
samples. In the case of packed samples that originate from the
same unpacked sample, the samples must be grouped according
to their versions, i.e., version identification. In this context,
Haq et al. attempted to identify a version of packed samples
for efficient lineage inference [21]. They first unpacked and
disassembled executables. Their version identification process
was based on function similarity of the two samples. However,
as the authors employed static features, the performance was
relatively low. Furthermore, although repacked samples from
the same packer could be handled, samples packed with more
than two packers were difficult to analyze. Therefore, behavioral
features that can be discovered beyond packers must be utilized
for accurate version identification.

III. SYSTEM DESIGN

A. System Overview

We propose a new method of version identification so that we
can create compatible inputs for lineage inference from large-
scale malware datasets. Our main objective is to derive so-called
family features from static and dynamic behaviors of malware
variants and utilize them for more accurate clustering of packed
malware. Our system design is straightforward, as illustrated
in Fig. 1, and executes stepwise feature processing and version
identification.

B. Feature Processing

Malware features must be extracted and represented before
version identification. Feature processing consists of two phases:
feature extraction and feature representation.

In the feature extraction phase, we extract pairs of static
and dynamic features from malware samples. In other words,
dynamic link library (DLL), API, entropy, section information,
etc., are extracted through static analysis, while dynamic API
call sequences and other behavioral features (e.g., file, registry,
network, and mutex) are extracted through sandbox analysis.

In the feature representation phase, we denote textual data,
such as an API call sequence or dynamic behavior, as numeric
feature vectors. Furthermore, we reduce the dimensionality of

behavioral features to reduce memory requirements. In this
process, we apply different normalization methods to each cat-
egory, considering the semantics and forms of each behavior.
Our distinguishing point is to separate malware features into
two categories: the common feature set and the family feature
set for different purposes.

C. Version Identification

In the family classification phase, malware samples that un-
derwent sandbox and static analysis are first classified into
families before being clustered. We utilize several classifica-
tion algorithms implemented in scikit-learn [39]. We apply the
algorithm, which can result in the best performance for family
classification.

Once the family of a sample has been identified, we identify
versions of the samples in each family in the intrafamily clus-
tering phase. Prior to clustering, in forward stepwise selection,
we derive a family feature set using known samples for each
family to maximize clustering accuracy. This algorithm selects
a category that produces the highest F1-score among the feature
category candidates and adds it to the empty feature set. In a
stepwise fashion, the remaining candidates are added in order
of the highest score. This algorithm ends when an added feature
does not improve accuracy.

For unknown samples, we match packed samples to un-
packed samples of the same version based on agglomerative
clustering [9], [16], [23], [25], [26], [28], [30], [34], [36]
with the family feature set. After clustering, each intrafamily
cluster denotes each version in a family. In each cluster, an
unpacked malware sample can be detected through cluster head
selection for later lineage inference. Although lineage infer-
ence itself is beyond the scope of our study, we expect that
only cluster heads i.e., unpacked samples, will be fed into the
lineage inference process. As prior lineage inference studies
have focused on the correlation of unpacked samples [16], [26],
the output of our system can be utilized as inputs to their
approaches.

Our approach may seem confusing because we use both
classification and clustering algorithms; however, the classifi-
cation and clustering procedures are fully separated and have
different purposes. Classification algorithms are used for family
classification by creating a model based on the training dataset,
which we refer to as known malware samples in our system.
The trained model classifies the test dataset, which we refer
to as unknown malware samples in our system. On the other
hand, clustering algorithms are used for intrafamily clustering
but do not involve creating a model. We do not consider known
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samples as the training dataset. We rather use the known samples
only for selecting family features. The clustering algorithm only
identifies the relationships among unknown samples according
to selected family feature sets.

IV. FEATURE PROCESSING

A. Overview

Feature processing involves the extraction and representation
of malware features that must be used for family classification
and intrafamily clustering based on machine learning. In
the feature extraction phase, we essentially employ dynamic
analysis to handle packed malware. However, dynamic
analysis exhibits difficulties involving trace dependence and
antivirtualization, and therefore, to mitigate these problems and
improve accuracy, we also apply static analysis, which produces
high-code coverage.

In the feature representation phase, we focus on three factors.
First, each malware family may exhibit different sensitivities;
therefore, it is necessary to extract not only a common feature set,
but also a different feature set from each family to improve the
accuracy of intrafamily clustering. In the family classification
phase, using family feature sets can be challenging because
input malware samples have not been classified. We extract
a common feature set, applied commonly to all families, for
family classification. For intrafamily clustering, we extract a
so-called family feature set, applied differently to each family,
where candidates of a family feature set comprise a common
feature set and behavioral features. Second, some behavioral
information, such as API call sequences, consists of lists of
strings whose length is flexible; therefore, we convert these
data into numeric feature vectors that are applicable to machine
learning. Third, malware samples include a variety of feature
attributes, resulting in the curse of dimensionality. We employ
dimensionality reduction to reduce the size of features being
converted.

B. Feature Extraction

1) Sandbox Analysis: A sandbox can analyze a batch of
malware samples without affecting the host system because
it initializes a virtual machine state after analyzing a malware
sample. Behavioral features beyond API and system calls that
are exposed during execution, such as file, network, and registry
features, can be extracted by sandbox analysis. We extract tens
of behavioral features from the Cuckoo Sandbox [11], such as an
API call sequence, and details of the behavioral features that the
Cuckoo Sandbox offers are described in Table I. Our behavioral
features consist of 12 primary categories. Each feature category
includes subcategories used for real feature vector construction.
Cuckoo Sandbox also includes static features that are extractable
from the portable executable (PE) header, and compile time and
section information reported by the Cuckoo Sandbox are used
as additional features.

Malware with antivirtualization analyzes its running environ-
ment and verifies whether it is on a real or virtual machine.
When the malware detects a virtual machine, it ends execution
or performs another function. Third-party sandbox developers
have offered and shared a hardened version of the Cuckoo
Sandbox to mitigate this problem [7]. The hardened sandbox
can mitigate antivirtualization because it constructs the same
running environment as a real machine, and we applied this
version of the Cuckoo Sandbox for reliable sandbox analysis.

TABLE I
MALWARE BEHAVIOR FEATURE CATEGORIES EXTRACTED

FROM CUCKOO SANDBOX

TABLE II
GENERAL API GROUPS BY MALWARE GROUP

2) Static Analysis: The DLL and API information imported
into the PE files for binding dynamic libraries denote good
features for analyzing the behavioral characteristics of malware.
We selected 171 DLLs and 1279 APIs to collect optimal features.
The intrinsic behavior of malware is denoted by basic units of
behaviors, such as a key logger, DLL injection, and antidebug-
ging. When analyzing the appearance of a basic behavior and
using this as a feature, the result can be more precise than using
a large number of DLLs and APIs. The major DLLs and APIs
affected by malware are described in Table II.

Entropy implies a degree of disorder and increases when
applying obfuscation techniques such as packing, which can
result in changes in sections of the PE file. Therefore, we can
derive features of malware by combining the analysis of the PE
file and evaluating the degree of entropy.

C. Feature Representation

1) Common Feature Set: We include static features and dy-
namic API call sequence(s) in the common feature set. We can
immediately use the static features extracted in the previous
phase, but feature representation is performed to improve ac-
curacy. In the case of major malicious activities, it is important
to consider the completeness of the basic unit of operation as a
feature. Therefore, the rate of the appeared API patterns among
related API patterns is derived as a feature value. In the case
of entropy, malware that applies obfuscation techniques tends
to use an unknown section name, thereby creating a difference
in the distribution of entropy between known sections and un-
known sections.
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Sequential data are not applicable to machine learning be-
cause their length varies across samples; therefore, to fix the
length of API call sequences, we represent those sequences as
2-grams, reflecting their shorter sequence pattern and capturing
the basic semantics of the program. An N -gram separates se-
quential data into patterns of a certain length and then counts
the frequency of patterns with a sliding window of size N . We
extract all API functions that a malware called during execution
from the sandbox and list them sequentially. The sliding window
increases the frequency of a 2-gram value corresponding to its
position, while the window moves from the beginning of an API
sequence to the end.

2) Family Feature Set: We include all behavioral features
extracted in addition to the static features and API call sequences
included in the common feature set to construct the family
feature set. The Cuckoo Sandbox represents most behavioral
data as a list of strings. As discussed previously, the behavior of
flexible length, such as an API call sequence, is inapplicable to
machine learning. To apply this type of behavior to machine
learning, behavioral data must be converted into a numeric
feature vector. We refer to the method that is applied to an
API call sequence, which represents behavior as 1-gram. In
other words, each behavior of all malware is represented by
each attribute, and the value of each attribute is specified by the
number of appearances of each behavior.

Our method exponentially increases the size of features be-
cause we add all behaviors of malware as attributes. To improve
the performance of machine learning, we reduce the dimension-
ality of behavioral features by reducing the number of attributes
by using only a part of each attribute name, considering the
semantics and hierarchy of behaviors. We normalize features
using different reduction methods depending on the different
semantics and form of each category, as follows. With a 32-bit
IP address, we use only the first 16 bits, the high-level value. For
example, we use only 192.168 from 192.168.56.25 and discard
the last 16 bits, the low-level value. We split domain-type data
with a comma and then use the last value. We round off floating
point values and convert them into integers. We divide port
numbers and file size by 100. We split a registry key value with
“/” and then use the first and the last values. We employ only
extensions of commands and file names. In particular, malware
frequently accesses itself, which corresponds to file behavior.
We express this case as itself. We use the remaining categories
without modifications.

V. VERSION IDENTIFICATION

A. Overview

In this section, we present a description of a method for
identifying the versions of a family based on the family classifi-
cation phase and intrafamily clustering phase. We consider the
classification and clustering for different phases. It is essential
to classify malware samples into families in the family classi-
fication phase in advance to identify versions of each family.
Clustering algorithms can assign malware samples into groups,
but cannot identify which family a sample belongs to. Therefore,
we apply a classification algorithm rather than clustering.

We identify versions of classified samples in terms of a family
in the intrafamily clustering phase. In other words, we identify
the relationships among malware samples in a family. As the
amount of packed malware that can be created from an unpacked

malware is considerable, it is inefficient to identify the lineage
of all samples in one family. Therefore, we focus on grouping
unpacked malware and the packed malware derived from the
unpacked malware into the same version. Our system should also
be able to group samples of a new version. We apply a clustering
algorithm that can create a variable number of clusters. It must be
noted that we do not observe a lineage graph itself of a family.
Nevertheless, clusters we create in this phase can replace the
elements, i.e., nodes, of a lineage graph that previous studies
have created [16], [21], [26].

B. Family Classification

In the family classification phase, a multiclass classifier is
applied to classify samples of a number of families. The classifier
requires a common feature set and labels assigned to malware
families as training data. We train the classifier using a training
dataset; for samples in a testing dataset, the family classifier
predicts their families. As the performance of machine learning
is dependent on the dataset and features, it is crucial to select
an appropriate classification algorithm. Scikit-learn [39] is a
machine learning framework based on Python [35] and pro-
vides representative classification and clustering algorithms with
open-source libraries. The most typical classification algorithms
are Decision Tree (DT), Random Forest (RF), Support Vector
Machine (SVM), Naive Bayes (NB), Gaussian Process (GP),
and K Nearest Neighbor (KNN). We evaluated these algorithms
by applying tenfold cross validation.

C. Agglomerative Clustering

Agglomerative clustering is one of hierarchical clustering
algorithms, that begins with clusters consisting of only one
sample, and then expands clusters by merging two clusters with
the highest similarity. We consider the similarity of two clusters
as to be the similarity of features of the samples when there is
one sample of each in both clusters. When there are more than
two samples of each in both clusters, we consider the similarity
of the clusters as the average of the similarities of all features
in all samples. This process proceeds until there remains no
clusters to be merged or all samples have been merged into one
cluster.

We utilized the agglomerative clustering libraries provided by
scikit-learn [39]. The agglomerative clustering of scikit-learn
requires, in advance, the number of clusters as an input value.
It merges clusters in a bottom-up approach and stops when the
number of clusters matches the input value. In this article, we
set the number of clusters as the number of versions for each
family.

However, the clustering must be based on a threshold to ac-
commodate new versions in the real world. In this case, clusters
can be merged only when their similarity is above the threshold.
This approach is independent of the number of clusters, i.e.,
versions, but a number of outliers may arise and the accuracy
may drop. Therefore, the threshold must be well defined for
flexible and accurate clustering.

D. Forward Stepwise Selection

Considering our feature representation method, we compare
the performance of each feature category rather than applying
a statistical feature selection method. Among the feature cate-
gories, we wish to focus on identifying a combination with the
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Algorithm 1: Forward Stepwise Selection.
procedure forward stepwise selection

Foriginal = {f1, f2, f3, . . . , fn}
Foptimal = {}
Soptimal, count = 0
while count < n do
Spartial = 0
for all f ∈ Foriginal do
S = agglomerative(Foptimal + f )
if S > Spartial then
Spartial ← S
Fpartial ← f

end if
end for
if Spartial > Soptimal then
Soptimal ← Spartial
Foriginal.pop(Fpartial)
Foptimal.push(Fpartial)

else
break

end if
count← count+ 1

end while
return Foptimal

end procedure

highest F1-score of for clustering; however, there are countless
combinations, and therefore, measuring their F1-scores is cal-
culation intensive. We use forward stepwise selection to reduce
calculations involving measurements and comparisons. Forward
stepwise selection is a greedy algorithm and measures improve-
ments in performance while evaluating feature candidates in
a stepwise fashion. As similar to the pseudocode described in
Algorithm 1, the feature category candidates are added in the
order of highest accuracy, and this process ends when adding
a feature category does not enhance accuracy. If the number of
feature category candidates is n, the maximum computational
complexity of forward stepwise selection is n(n+ 1)/2. In other
words, the algorithm requires a complexity of O(n2). On the
other hand, the number of calculations grow exponentially when
investigating all combinations, which requires a complexity of
O(2n).

E. Cluster Head Selection

After clustering, we select a cluster head in each cluster for
lineage inference. Considering the fact that packing increases
the entropy of a malware binary, several prior studies judged a
sample with the lowest entropy as unpacked [24], [33]. However,
there are some samples that exhibit reduced entropy as a result
of packing. We observed that through packing, the size of
known sections (e.g., “.text,” “.bss”) decreases and the size of
unknown sections increases. In addition, some packed samples
have section names (e.g., “.upx,” “.vmprotect”) that indicate that
the sample is obviously packed. We first filter out those samples,
but there are some packed samples with only known sections.
Rather than measuring entropy, we measure the sum of the raw
data size of known sections for each remaining sample and then
find identify and consider the sample with the highest value in
a cluster as the unpacked sample.

TABLE III
SAMPLES USED IN FAMILY CLASSIFICATION (FROM VXHEAVENS)

TABLE IV
SAMPLES USED IN FRAMEWORK EVALUATION (VXHEAVENS DATASET)

VI. EVALUATION

All of our evaluations were performed on a system comprising
an Intel Core i5-6600 CPU @ 3.30 GHz, 32-GB RAM, and
Ubuntu 16.04.2 LTS. We set all parameters, except the number
of clusters, for ML algorithms as default.

A. Dataset

Our system was evaluated and calibrated based on three types
of datasets. Two of these were obtained from VXHeavens [22]
and the third was the reliable manually created dataset.

We first collected malware samples from VXHeavens. We
then filtered samples that did not match the family label from
the Cuckoo Sandbox, which is based on the VirusTotal family
labels. We separated and used samples for verifying group
classification and for that of the entire framework, including
intrafamily clustering. Table III presents VXHeavens samples
used in group classification verification. We excluded families
with less than 100 or more than 1000 samples from this dataset,
resulting in 3889 malware samples used in group classification
verification.

Furthermore, we selected samples to be packed in the remain-
ing families, and created variants using six popular packers.
Table IV presents the VXHeavens dataset with 288 unpacked
and 8640 packed malware involving 15 families that were used
for framework verification. All of the unpacked samples had
unique MD5 hash values. We measured the time of compilation
(compile time) of the first compiled sample and that of the last
compiled sample for each family. We observed that we can
identify versions of some samples according to their compile
time for each family, but there are other samples with corrupted
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TABLE V
SAMPLES USED IN FRAMEWORK EVALUATION (RELIABLE DATASET)

compile times. For example, in the family VanBot, five unpacked
samples exhibited normal compile times, but two exhibited
corrupted compile times. This phenomenon also appeared in
other families, Xorer, Cmjspy, Lydra, MoSucker, BO2K, Cakl,
and Virut. In another family, DarkMoon, all samples exhibited
an identical compile time of “1992-06-19 22:22.” Therefore,
we consider each version of each unpacked sample because we
cannot identify the versions of all samples in a family based on
the compile time alone.

We used other sources to verify our framework more reliably.
First, we collected malware that has been manually classified
by a malware expert (20 malware samples in each family).
These families are marked with asterisks in Table V. In addition,
we utilized three antivirus vendors, Symantec, Kaspersky, and
Ahnlab V3. We used only malware samples whose detected
names from three vendors are the same. We also packed these
unpacked samples using the six packers. Table V presents a
reliable dataset with 119 unpacked and 3174 packed malware in
12 families that were used for the entire framework verification.
As in the VXHeavens dataset, all of the unpacked samples in the
reliable dataset had unique MD5 hash values. We observed that
families such as Virut, Agent, and Hupigon included samples
with corrupted compile times. In addition, all samples in each
family of Elkern, Domaiq, Zbot, Turkojan, and Upatre exhibit
identical compile times. Therefore, we apply the same consid-
eration as for the VXHeavens dataset.

B. Packers

The six packers we used to pack malware include UPX,
ASPack, PECompact, PETite, NSPack, and VMProtect. UPX,
PETite, and PECompact can adjust a packing depth from one to
nine. That is, we can create nine variants from one unpacked
sample. As the depth of the other packers is fixed to one,
we can create only one variant from one unpacked malware.
The maximum number of possible packed samples from one
unpacked sample was 30. UPX and PETite can automate batch
processing via python, but the others are based on GUI, and so
batch samples were manually constructed.

C. Family Classification

1) Algorithm Selection: We evaluated classification algo-
rithms by employing a tenfold cross validation in which the
process is repeated ten times. We used samples of Table III and
compared the average classification accuracy of each algorithm.

TABLE VI
PERFORMANCE COMPARISON FOR EACH CLASSIFICATION ALGORITHM

The abbreviation of algorithms are mentioned in Section V-B.

Table VI presents the F1-scores and area under the curve (AUC)
for the six classification algorithms. RF achieved not only the
highest F1-score and AUC but also relatively short analysis
time. Malware features such as API call count are generally
discrete, while other algorithms suit to continuous features. On
the other hand, RF can examine various feature combinations,
so it performs well discovering decision boundary of malware
families. In this reason, we chose RF for family classification.

2) Results: We measured the performance of family clas-
sification based on the selected algorithm. The F1-scores of
family classification were 99.25% and 98.17% for VXHeavens
and the reliable dataset, respectively. Fig. 2 presents the overall
performance of family classification based on the receiver oper-
ating characteristic (ROC) curve. ROC curves of both datasets
covered most of the graph, which means that the classification
was performed very precisely. Fig. 3 presents detailed results
using the confusion matrix. The accuracies for each family were
over 99% except for four families of the VXHeavens dataset and
two families of the reliable dataset.

D. Intrafamily Clustering

1) Family Feature Set and Clustering Accuracy: In this ex-
periment, we analyze the results of intrafamily clustering based
on several feature sets and agglomerative clustering. For each
dataset, we used half of the samples, i.e., known samples, for
feature selection and then selected features for clustering the
remaining half of the samples, i.e., unknown samples.

Tables VII and VIII present derived family feature sets and
the common feature set on the VXHeavens dataset and the
reliable dataset, respectively. In the column labeled feature set
in Table VII, we listed feature categories in order of priority
(i.e., highest F1-score). The compile time was the most accurate
feature category in most of the families. Each of the following
behavioral categories slightly improved the score compared to
using only the primary category. Using other behavioral features,
we could accurately cluster samples in a family in which the
compile time was manipulated, such as Lydra, Cakl, or Dark-
Moon. In particular, only behavioral features were selected for
the Lydra family. As shown in Table VIII, only four families
whose most accurate category was the compile time appeared
in the reliable dataset. The number of families that used only
behavioral features was seven. Our experiments on the reliable
dataset indicate that we can best understand the behavior of a
family and cluster samples in a family based on behavior of
versions.

Fig. 4 presents the F1-score of intrafamily clustering accord-
ing to various feature sets. Individual static, dynamic, and hybrid
features should not be derived, and so they include no dashed
lines. Average F1-scores of clustering using each of three fea-
tures were also very low: approximately 30% for the VXHeavens
dataset and approximately 70% for the reliable dataset. The
performances of the static and hybrid feature appear almost the



4552 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 3, SEPTEMBER 2020

Fig. 2. (Left) ROC curve and AUC of family classification on each dataset. (Right) Zoomed-in view. (a) VXHeavens dataset. (b) Reliable dataset.

Fig. 3. Confusion matrix of family classification result on each dataset. (a) VXHeavens dataset. (b) Reliable dataset.

TABLE VII
RESULT OF FEATURE SELECTION IN THE VXHEAVENS DATASET

The row named each family denotes the family feature set and the row named common
denotes the common feature set.

same because most values of the dynamic feature were zero or
one, i.e., insignificant, but those of the static feature were very
large, i.e., significant.

In the feature selection phase, the performance of the common
feature set appeared comparable to family feature sets. However,

TABLE VIII
RESULT OF FEATURE SELECTION IN THE RELIABLE DATASET

The row named each family denotes the family feature set and the row named common
denotes the common feature set.

the common feature set demonstrated drastic decrease in F1-
score on some families in intrafamily clustering because those
families exhibit different sensitivities to the common feature set.
Using common feature sets, the average F1-score of clustering
was 85.15% and 76.44% for each dataset, respectively. On the
other hand, the average F1-score of clustering based on family
feature sets was 93.29% and 89.30% for each dataset, which is
superior to the selected common feature set.
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Fig. 4. F1-score of each family in intrafamily clustering on each dataset. The
dashed lines indicate the highest F1-score of intrafamily clustering obtained
while deriving feature sets, and the solid lines indicate the F1-score of intrafamily
clustering based on derived feature sets. (a) VXHeavens dataset. (b) Reliable
dataset.

In the VXHeavens dataset, there were some families whose
F1-score of clustering with common feature sets outperformed
the family feature set, but the difference was very trivial.
The difference between two feature sets was very significant
in Lydra, DarkMoon. The result of the reliable dataset demon-
strated a similar aspect of the VXHeavens dataset. In intrafamily
clustering, family feature sets outperformed the common feature
set, except for the family Hupigon. In summary, we verified
that family feature sets are more effective and more flexible for
identifying new samples than the common feature set.

Compared to the prior work of Haq et al. [21], our clustering
approach based on family feature sets seems more accurate than
that in their system, which demonstrated approximately 70%
of function coverage for their dataset. We tried to compare two
systems in a same condition, but we could not get an open source
and dataset of Haq et al. Although we cannot give an objective
comparison, we believe that our system will also result in similar
performance well on other dataset.

2) Cluster Head Selection: In this experiment, we measure
the degree to which unpacked malware are accurately detected
in each cluster based on cluster head selection. Table IX presents
the accuracy of unpacked malware detection for the two datasets
using entropy, sum of raw data size of known section, or the prod-
uct of both. The results indicate that the accuracy of identifying a
sample with the highest sum of raw data size of known sections is

TABLE IX
UNPACKED MALWARE DETECTION ACCURACY OF EACH FEATURE

AND DATASET (%)

higher than that of identifying a sample with the lowest entropy
or using the product of both. In addition, our method could find
unpacked samples in most of the clusters.

3) Dimensionality Reduction: In this experiment, we ana-
lyzed changes in the performance of intrafamily clustering be-
cause of dimensionality reduction, i.e., feature normalization
of the behavioral features. We compared the results of nor-
malization for behavioral features in terms of family feature
sets, clustering accuracy, and memory requirements against the
results that do not involve normalization.

Changes in family feature sets because of feature normal-
ization were insignificant in both the VXHeavens and reliable
datasets. For the VXHeavens dataset, seven out of 15 families
changed their selected feature sets. They added, removed, and
replaced one or two feature categories. Exceptionally, Dark-
Moon added six categories through normalization. Compile time
retained its original priority for all families in the dataset. For the
reliable dataset, four out of 12 families changed their selected
feature sets. Three families replaced only one category, but
Upatre added ten categories through normalization.

Overall, feature normalization reduced peak memory con-
sumption in terms of both feature selection and clustering. For
the VXHeavens dataset, normalization reduced peak memory
consumption from 983.49 to 628.84 MiB in the feature selection
phase and from 404.86 to 375.72 MiB in the clustering phase.
For the reliable dataset, normalization reduced peak memory
consumption from 975.50 to 444.66 MiB in the feature selection
phase and from 332.70 to 333.71 MiB in the clustering phase. For
both datasets, the reduced memory consumption in the feature
selection phase was much larger than that in the clustering phase.
Therefore, we determined that feature normalization is effective
in feature selection, which tests a variety of feature category sets.

In terms of accuracy, normalization exhibits some positive
effect on the result of intrafamily clustering. For the VXHeavens
dataset, normalization improved the F1-score by approximately
0.13% in the feature selection phase and 0.78% in the clustering
phase. For the reliable dataset, the F1-score was improved by
approximately 0.72% in the feature selection phase and 3.97% in
the clustering phase. Unlike memory consumption, normaliza-
tion played a bigger role in improving the accuracy of clustering
compared to feature selection. These results indicate that our
method can not only significantly reduce memory consumption,
but also improve clustering accuracy.

VII. IMPLICATIONS AND DISCUSSION

A. Practical Impact

In the current malware environment that mostly consists of
packed malware samples, our approach plays a crucial role in
version identification associated with large-scale lineage infer-
ence. We can handle packed malware based on hybrid analysis.
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Moreover, we can analyze not only malware that is packed
once, but also multipacked malware. In particular, three Agent
samples and four Elkern samples were already packed by UPX
before we collected the reliable dataset. Two Agent samples
were already packed by ASPack. We repacked them using the
other five packers by considering new variants. In terms of
family classification, the F1-scores of these families created by
Agent samples and Elkern samples were 99.49% and 100%,
respectively. In intrafamily clustering, the accuracy of clustering
was 100% for those samples.

Our intrafamily clustering method is expected to dramatically
reduce the complexity of lineage inference. Most prior lineage
inference studies considered all samples to be individual ver-
sions, including packed samples. We do not have to infer the
lineage of packed samples for each version; their lineage can
be inferred by their unpacked samples. Although the amount of
the complexity improvement of lineage inference is different,
we expect that the improvement is observable in all families
of our datasets. The expected computation of lineage inference
using our approach for the VXHeavens dataset is at least 986
times (for the Lydra family) faster than existing approaches, and
it is 1271 times faster for the Horst family. Even though the
performance improvement in Elkern is relatively low compared
to other families in the reliable dataset, we can still infer the
lineage of the family 150 times faster. Lineage inference for the
Zbot family is expected to be 1891 times faster, which denotes
the largest performance improvement.

We determined that feature selection can considerably im-
prove the accuracy of intrafamily clustering for version identi-
fication. The selection of a common feature set improved the
accuracy of intrafamily clustering compared to single features
such as static, dynamic, and hybrid features. The common fea-
ture set also demonstrated performance that is similar to family
feature sets in the feature selection phase, which was performed
on known samples. However, the common feature set could not
accommodate any unknown samples, which indicates a drastic
fall in F1-scores. On the other hand, our family feature sets
exhibit a clustering F1-score of approximately 10% higher than
the common feature set. Our experimental results verified that
most malware families exhibit their own sensitivity of behavior,
and our family feature sets represent these properties well.
Although it is clear that a common feature set is required for
family classification, the family feature set corresponding to a
certain family is considered crucial for intrafamily analysis.

B. Limitations and Future Work

Our approach addresses some problems in lineage inference
but not the lineage inference itself. As lineage inference involves
identifying the sequence of malware samples, our study must
be extended in this direction. However, our current concept
involves identifying a version of packed malware rather than
drawing timelines of malware development. Nevertheless, the
future direction is very simple: clusters we created can replace
elements used to construct a lineage graph that previous studies
developed. It is easy to infer the lineage of clusters because we
only have to infer the lineage of selected samples for each cluster.

Although we proposed a method for selecting a cluster head,
there may be no unpacked samples in a cluster. Consequently,
a packed sample in this cluster will be selected, and this can
present several limitations involving lineage inference. More-
over, our methods are based on heuristics, and therefore, some

samples may not fit into our rule. However, there are several
possible solutions; for example, we can unpack a sample whose
packer is obviously known by the specified packer. Even when a
sample’s packer is unknown, we can use a generic unpacking
algorithm [10], [19], [23]. The generic unpacking algorithm
cannot be successfully applied to all samples as yet, but the
approach is continuously being developed. Unpacking all sam-
ples is inefficient, but unpacking one sample for each cluster
only requires little complexity.

Our family classification model may not identify malware
variants well when the sample’s feature has been modified to
a certain extent. Even in the case of new malware families,
our model cannot identify them because they have not been
trained. This drawback is referred to as concept drift, and several
prior studies attempted to address this problem [12], [27], [32],
[41]. In this context, a more sophisticated study should be
conducted, in which new malware variants and new malware
families continuously emerge in the real world.

VIII. RELATED WORK

A. Malware Lineage Inference and Version Identification

Although our main objective of this study is solving the
problem of the existing lineage inference approaches, they
should be leveraged with our system together. Some malware
lineage researchers focused on the premise that malware authors
continue developing their work [13], [16], [21], [26], [28], [31].

Lindorfer et al. analyzed the lineage of self-evolving mal-
ware [31]. They used control flow graphs and used Anubis
Sandbox as a simple generic unpacker for handling packed
malware. They also correlated control flow graphs and dynamic
API to compensate for each feature; however, their method
could be defeated by multilayer packing. Meanwhile, our feature
processing method facilitates the analysis of repacked malware.

Jang et al. experimented on lineage inference of malware
development in the Cyber Genome Program [26]. They used
agglomerative clustering to group similar samples and repre-
sented the lineage of each cluster using two types of graphs.
They compared the performance of lineage inference using
various features such as section size, binary code, and dynamic
instruction.

Graziano et al. identified the lineage of malware submitted
to Anubis Sandbox [16]. They first filtered packed samples
and then used agglomerative clustering and ssdeep to group
similar binaries. They determined whether a cluster involves
malware development using hybrid features. They also used
feature selection algorithms such as chi-square, gain ratio, and
belief-F to enhance performance.

The main limitation of the prior three studies is the lack of ver-
sion identification. Haq et al. considered malware version iden-
tification and extended it to lineage inference [21]. They mainly
utilized function information of a binary, which can be extracted
through unpacking and disassembly. They demonstrated the ac-
curacy of version identification on benign software, but the accu-
racy was not high enough. Nevertheless, their concept of match-
ing packed samples to unpacked ones inspired our approach and
reduced the computational complexity of lineage inference.

B. Machine-Learning-Based Malware Analysis

Grouping malware samples is an essential step to be per-
formed before lineage inference. Since quite long time ago,



PARK et al.: BIRDS OF A FEATURE: INTRAFAMILY CLUSTERING FOR VERSION IDENTIFICATION OF PACKED MALWARE 4555

previous studies have shown the effectiveness and preciseness of
machine learning algorithms in malware analysis [2], [29], [38].
Similar to our family classification, there has also been studied
about identifying the family of a detected malware sample
by using clustering algorithms [5], [6], [23], [25]. Especially,
Bailey et al. [5] and Bayer et al. [6] ran a sample in a virtual
environment to handle polymorphic malware. Hu et al. also
handled packed malware using only static features by applying
a generic unpacking algorithm that runs a binary in part [23].
Those works are closely related to our approach, considering that
we also leverage a clustering algorithm in intrafamily clustering.

Recently, many researchers have been trying to detect android
malware by extending the existing malware analysis methods
to smartphone [3], [8], [37], [42]. Meanwhile, Grosse et al.
proposed the direction to more secure detection model, showing
that ML-based malware detectors are potentially vulnerable
to adversarial examples [17], [18]. This area is still growing
continuously, so our concept can be not only improved, but also
migrated to other platforms.

C. Feature Engineering and Feature Selection

Which malware feature should be extracted and leveraged is
closely related to the performance of malware analysis. There
have been various works that studied about malware features to
improve the effectiveness and preciseness of malware analysis.
Increased dimensionality of features can cause problems associ-
ated with computation time, and so some studies applied feature
hashing [23], [25]. As a consequence of dimensionality reduc-
tion, those studies could considerably reduce runtime while
also preserving accuracy. However, feature hashing reduces the
dimensionality of the set size, which may result in collisions.

Feature selection is a good solution for simplifying feature
sets and improving accuracy. Several studies applied feature
selection algorithms in this regard [1], [20], [40], [43]. Informa-
tion gain, chi-square, fisher score, and semantic network can be
used to select well-performing feature candidates. In particular,
Ahmadi et al. [1] derived a feature set by using the forward
stepwise selection algorithm. We applied the same algorithm,
but we derived family feature sets instead of the common feature
set that Ahmadi et al. derived.

IX. CONCLUSION

As the amount of packed malware grows with each passing
year, lineage inference is an inevitable significant challenge that
must be considered. In this article, we proposed a novel approach
that executes stepwise feature processing and version identifi-
cation. The various methods of feature processing introduced
in this article assisted in mitigating the problem of malware
packing. We were able to not only classify malware into families,
but also reduce the computational complexity of feature selec-
tion using the forward stepwise selection algorithm. In addition,
we improved the accuracy of intrafamily clustering by creating
family feature sets. Our experiments on two datasets verified
the reliability of framework evaluation, and current experiments
demonstrate that we can effectively handle a significant amount
of packed malware for lineage inference. We also discussed the
limitations of our approach and possible directions for future
work. Finally, the proposed method mitigates the feature and
packing problems in terms of accuracy and calculation complex-
ity that prior lineage inference studies experienced. Therefore,

it would be a promising direction to adopt our approach to the
traditional lineage inference.
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[43] Z. Zhu and T. Dumitraş, “FeatureSmith: Automatically engineering fea-
tures for malware detection by mining the security literature,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 767–778.

Leo Hyun Park received the B.S. degree in computer
engineering from Kwangwoon University, Seoul,
South Korea, in 2017. He is currently working toward
the Ph.D. degree with Information Security Labora-
tory, Yonsei University, Seoul.

His research interests include information security
and privacy, malware analysis, usable security, ar-
tificial intelligence security, machine learning algo-
rithms, and adversarial machine learning.

Jungbeen Yu received the B.S. degree in information
security from Daegu Catholic University, Gyeongsan,
South Korea, in 2016, and the M.S. degree in infor-
mation security from Yonsei University, Seoul, South
Korea, in 2018.

His research interests include information security
and privacy, malware analysis, artificial intelligence
security, and machine learning.

Hong-Koo Kang received the B.S., M.S., and Ph.D.
degrees in computer science from Konkuk Univer-
sity, Seoul, South Korea, in 2002, 2004, and 2009,
respectively.

From 2009 to 2010, he was a Lecture Professor of
Computer Science with Konkuk University, Seoul. He
is currently a General Researcher of Security Threat
Response R&D with Korea Internet and Security
Agency, Naju, South Korea. His research interests
include malware analysis, web security, cyber threat
intelligence, and artificial intelligence security.

Taejin Lee received the B.S. degree from the Pohang
University of Science and Technology, Pohang, South
Korea, in 2003, the M.S. degree from Yonsei Uni-
versity, Seoul, South Korea, in 2008, and the Ph.D.
degree from Ajou University, Suwon, South Korea,
in 2017.

He has conducted R&D research with Korea In-
ternet and Security Agency, Naju, South Korea, from
2003 to 2016. He is currently a Professor with Hoseo
University, Asan, South Korea. His research inter-
ests include malware analysis, network security, and
artificial intelligence security.

Taekyoung Kwon (M’02) received the B.S, M.S.,
and Ph.D. degrees in computer science from Yonsei
University, Seoul, South Korea, in 1992, 1995, and
1999, respectively.

He is currently a Professor of Information Security
with Yonsei University, Seoul, where he is a Director
of the Information Security Lab. From 1999 to 2000,
he was a Postdoctoral Research Fellow with the Uni-
versity of California, Berkeley, CA, USA. From 2001
to 2013, he was a Professor of Computer Engineering
with Sejong University, Seoul. His research interests

include authentication, cryptographic protocols, network security, software and
system security, usable security, artificial intelligence security, and adversarial
machine learning.

Dr. Kwon is on the Director Board of the Korea Institute of Information
Security and Cryptology and on the Editorial Committee of the Korean Institute
of Information Scientists and Engineers. He is a member of the Association for
Computing Machinery and USENIX.

https://www.python.org/
http://scikit-learn.org/stable/index.html


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


