
IEEE SYSTEMS JOURNAL, VOL. 14, NO. 1, MARCH 2020 1297

Design Ontology in a Case Study for Cosimulation in
a Model-Based Systems Engineering Tool-Chain

Jinzhi Lu , Guoxin Wang , and Martin Törngren

Abstract—Cosimulation is an important system-level verifica-
tion approach aimed at integrating multidomain and multi-physics
models during complex system development. Currently, the lack of
integrating system development process with cosimulations leads
to gaps between them, decreasing the effectiveness and efficiency
of system development. Model-based systems engineering (MBSE)
tool-chains have been proposed to facilitate the integration of com-
plex system development and automated verification using a model-
based approach. However, due to the lack of formal and structured
specifications, development information sharing is difficult for sup-
porting MBSE facilitating automated cosimulations. In order to
formalize cosimulation in an MBSE tool-chain, a scenario-based
ontology is developed in this paper, using formal web ontology
language (OWL). Ontology refers to a specification expressing the
cosimulation implementations as well as the development infor-
mation represented in the models supporting the MBSE. It is il-
lustrated by a case study of a cosimulation based on Simulink.
Protocol and resource description framework (RDF) query lan-
guage (SPARQL) and semantic query-enhanced web rule language
queries are proposed for evaluating the ontology’s completeness
and logic for supporting cosimulations. The result demonstrates
that the scenario-based ontology formalizes the information re-
lated to automated cosimulation development and configurations
while using the proposed MBSE tool-chain.

Index Terms—Cosimulation, model-based systems engineering
(MBSE), ontology design, simulation automation, tool-chain.

I. INTRODUCTION

COSIMULATION aims to integrate heterogeneous multi-
domains and multi physics models for supporting system-

level verification. Developers in different domains use their own
tools to build specific domain models. System engineers then in-
tegrate such models to predict the global behaviors of the entire
system. For such complex system development, cosimulation
serves as an important verification approach for supporting
concurrent and collaborative development. Each cosimulation
scenario implements the verification activities related to the
development process and system artifacts. Therefore, well-
managed configuration and change managements among cosim-
ulation, development process, and system artifacts promote the
effectiveness and efficiency of complex system development.

However, generation of cosimulation for complex system de-
velopment is difficult because of complicated development and

Manuscript received August 31, 2018; revised January 1, 2019 and February
21, 2019; accepted April 11, 2019. Date of publication June 11, 2019; date of
current version March 2, 2020. This work was supported by the China National
Ministries (JCKY2014602B007). (Corresponding author: Guoxin Wang.)

J. Lu and M. Törngren are with the KTH Royal Institute of Technology, 10044
Stockholm, Sweden (e-mail:,jinzhl@kth.se; martint@kth.se).

G. Wang is with the Beijing Institute of Technology, Beijing 100081, China
(e-mail:,wangguoxin@bit.edu.cn).

Digital Object Identifier 10.1109/JSYST.2019.2911418

configurations across various domains. For example, interface
definitions between different developers need to be consistent
before integrating the models. Moreover, the interrelationship
management of technical resources (data, models, tool applica-
tion programming interfaces (APIs), and codes) is challenging
for simulation automation. For example, the automated devel-
opment of cosimulations requires well-managed traceability be-
tween different subsystems and cosimulation models. Further-
more, without unified representations of technical resources,
integrating the descriptions of the related cosimulations is dif-
ficult. Existing techniques are limited in promoting tool inter-
operability for cosimulation, leading to difficulties in managing
the tools and data without a specifically developed and inte-
grated platform. Finally, without support of process and change
management, cosimulation automation by integrating the de-
velopment process with detailed cosimulation operations is
challenged.

The main contribution of this paper is the design of a scenario-
based ontology to support cosimulation automation in a model-
based systems engineering (MBSE) tool-chain, which has been
proposed for integrating technical resources, system develop-
ment, and system artifacts using a service-oriented approach.
The ontology design aims to promote the traceability and in-
teroperability among technical resources, and effectiveness and
efficiency of cosimulation development and configuration in
different cosimulation scenarios, which are as follows. 1) The
scenario-based ontology aims to formalize the interrelationships
between related services supporting different types of cosimu-
lations. 2) The scenario-based ontology describes configuration
and deployment of the related services for formalizing cosimu-
lation implementations based on the scenarios.

Totally, the scenario-based ontology is proposed for formal-
izing cosimulation as specifications for supporting service or-
chestration of technical resources and automated cosimulation
execution in the proposed MBSE tool-chain.

In order to design the ontology, we propose a systems thinking
approach to define its compositions and their interrelationships
in different scenarios. Following four aspects are considered
with respect to the MBSE tool-chain: 1) Open Services for Life-
cycle Collaboration (OSLC) services of domain-specific mod-
eling (DSM) models; 2) OSLC services of technical resources;
3) Service orchestrations; 4) A web-based process management
system (WPMS) in the MBSE tool-chain.

Moreover, the ontology concepts are developed, based on for-
mal web ontology language (OWL) in Protégé, referring to an
ontology modeling tool [1]. Through a case study on the MBSE
tool-chain, the completeness and logic of the ontology are
evaluated using protocol and resource description framework
(RDF) query language (SPARQL) [2] and semantic query-
enhanced web rule language (SQWRL) queries [3].

1932-8184 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5044-2921
https://orcid.org/0000-0003-2363-8595
https://orcid.org/0000-0002-4300-885X
mailto:jinzhl@kth.se
mailto:martint@kth.se
mailto:wangguoxin@bit.edu.cn

1298 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 1, MARCH 2020

The rest of this paper is organized as follows. We discuss the
related work in Section II and present the problem statements in
Section III. In Section IV, we introduce our research method-
ology. In Section V, a scenario-based ontology is proposed in
detail. We utilize a case study to instantiate the ontology and
evaluate its completeness and logic using SPARQL and SQWRL
in Section VI. Finally, the conclusions are offered in Section VII.

II. RELATED WORK

Various aspects supporting ontology design have been re-
searched till date, including cosimulation taxonomies, ontology
design for simulation automation, and service orchestration.

A. Cosimulation Formalisms

There are various taxonomies for defining cosimulation sce-
narios. Based on Gomes’s taxonomy, cosimulations include
discrete-event, continuous-time, and hybrid cosimulations [5].
The taxonomy is classified based on the cosimulation mod-
els. Local and distributed cosimulations are classified based
on the geographical distributions [6]. Depending on the inter-
faces, standard-based and private-based cosimulations are de-
fined based on whether they are developed as per the func-
tional mocked-up interface (FMI) specification [7]. Coupling-
solver and separated-solver cosimulations are defined based
on whether the solvers are involved with the interface files
[8]. Hardware-in-loop and software-in-loop simulations are two
types of cosimulation supporting real-time system tests [9].
These taxonomies are basics to develop unified formalisms
for supporting automated cosimulations in different scenar-
ios. Without such unified formalisms, it is difficult to develop
a general platform for managing and implementing different
cosimulations.

B. Ontology Design for Supporting Simulation Automation

Ontology refers to content about the sorts of objects, their
properties, and relationships, which represent domain-specific
knowledge [10]. In the MBSE domain, basic foundation on-
tologies are mainly used for formalizing system information of
system development and artifacts, such as Jet Propulsion Lab-
oratory developed ontology based on OWL for SysML models
[11]. Except for basic foundation ontologies, domain-specific
ontology is proposed for representing the information of spe-
cific domains, such as ontology is developed for space system
development [12].

In this paper, we focus on the cosimulation platform develop-
ment, which researchers have proposed, ontologies for support-
ing information exchange. Miller and Baramidze [13] proposed
an initial framework to formalize modeling and simulation based
on the OWL, which was adopted to formalize different models
and simulation types. Grogan and Weck [14] proposed an ISoS
modeling framework for constructing system simulation infras-
tructure for system of systems (SoS) where a scenario-based
ontology formalizes all its elements, based on mathematical the-
ories and interfaces. Soyez et al. [15] proposed formalisms for
agent representations, during modeling SoS. Formalisms refer
to ontologies that describe the entities in the SoS for computing
in each agent. Most of the formalisms are used for representing
the entities of the systems themselves rather than the simulation
frameworks. Therefore, such formalisms lack the capability for
supporting automated operations in a cosimulation platform.

Some ontologies were developed to support simulation au-
tomation. Benjamin et al. [16] proposed an ontology-driven
approach to support simulation automation. The approach inte-
grated modeling, simulation, scheduling analysis, and optimiza-
tion for describing the related information in a unified manner.
Other than focusing on modeling and the simulations them-
selves, ontologies were developed to support simulations in the
product lifecycle. Sirin et al. [17] proposed a model identity
card for developing models and simulation in a collaborative
design process. The model identity cards refer to one ontology
for information exchange during product development. Ming
et al. [18] proposed an ontology for reusable and executable
decision templates. Such ontology supports automated design
makings during engineering design, based on the defined unities
related to different views. Although such ontologies are used in
IT systems for simulation automation, they cannot describe tool
operations in cosimulation scenarios.

Furthermore, some researchers design ontology focusing on
cosimulation techniques. Silver et al. [19] proposed an ontology
describing discrete-event models. Others proposed formalisms
to support cosimulation based on FMI, which is a standard for
defining cosimulation interfaces [6]. Gomes et al. [20] proposed
semantic models for describing cosimulation based on the FMI.
These models describe the cosimulation activities between dif-
ferent functional mock-up units (FMUs) and a master engine.
Zeyda et al. [21] formalized a master algorithm for cosimula-
tion. Other than such formalisms, Lu et al. [7] proposed a DSM
language to formalize cosimulation tool-chains representing its
compositions and relationships. These formalisms describe the
cosimulations based on different views, particularly cosimula-
tion itself and related tool-chains. However, lack of integrating
cosimulations with product development and system artifacts
leads to difficulties for automated implementations.

C. Ontology Design for Service Orchestration
Supporting Cosimulation

Currently, service-oriented approaches are presented for deal-
ing with tool interoperability during cosimulation [22]. The de-
veloped services, representing technical resources (e.g., models,
APIs, data), are accessed by other tools or stakeholders using re-
lated uniform resource identifiers (URIs). Service orchestration
refers to one technique for manipulating such services in order to
support related operations. Through literature review, we found
several frameworks that were proposed for defining, verifying,
and deploying service orchestration in the software engineering
domains. Foster et al. [23] proposed a model-based approach
to support the automated deployment of service orchestrations.
The models first formalize the service orchestrations and are
then used to verify the service compositions based on the de-
fined needs. Labidi et al. [24] proposed an approach to define
ontology-based service-level agreements for cloud computing.
This agreement include negotiations for generating ontology
for cloud services and renegotiation for reconfiguring cloud
services.

Compared to the software engineering domains, service-
oriented approaches have been used in certain scenarios to sup-
port product development aiming to facilitate data exchange
and to promote tool interoperability. Biehl [25] proposed a
model-based approach to formalize tool-chains and to construct
service-oriented tool-chains based on OSLC services. OSLC is
an open community for creating specifications to support tool-
integration that enable conforming independent software and

LU et al.: DESIGN ONTOLOGY IN A CASE STUDY FOR COSIMULATION IN A MODEL-BASED SYSTEMS ENGINEERING TOOL-CHAIN 1299

tools to integrate their data, control, process, and presentation
during the entire life cycle. In the tool-chain, technical resources,
such as data and models, are presented as restful services ac-
cessed by other tools. Wu et al. [26] proposed a service-oriented
platform for feature-based data exchange during product design
and manufacturing. Based on these two cases, we found that
technical resources were accessed by the developed services
manipulated by service orchestrations for supporting the auto-
mated implementations of the related activities.

D. Summary

Based on literature reviews, the motivations for this paper are
summarized as follows. 1) From Section II-A, different scenar-
ios related to cosimulation are proposed. Therefore, a scenario-
based approach is used to define the ontology for formalizing
cosimulation implementations in the MBSE tool-chains. Based
on different scenarios, ontology defines their implementations
with required technical resources and development informa-
tion. 2) From Section II-B, compared with current researchers
from academia and industry, the scenario-based ontology needs
not only to formalize the development process and system arti-
facts, but also to support process management and tool opera-
tions, particularly supporting cosimulation automation. 3) From
Section II-C, a service-oriented approach is supported by the
service orchestrations to manage the interrelationships between
services for implementing cosimulations. Service orchestration
is defined as the operational and functional execution processes
involved in the design, creation, and delivery of end-to-end
OSLC services for supporting cosimulation automation. Such
service orchestrations are implemented based on the scenario-
based ontology describing the entities and their end-to-end re-
lationships using a first-order logic. Therefore, OWL is adopted
for formalizing the related ontology concepts in this paper.

In total, we focus on ontology design to support cosimu-
lation automation in an MBSE tool-chain, which involves the
adoption of DSM models to formalize the development pro-
cess, system artifacts, and cosimulation operations and of a
service-oriented approach to generate OSLC services represent-
ing the DSM models and technical resources (model, data, and
tool APIs). Moreover, the DSM models are transformed into a
WPMS linked with OSLC services of the related development
information and technical resources where stakeholders manip-
ulate the cosimulations without any manual operations. The
ontology is designed using OWL based on scenarios defined by
systems thinking that aims to support service orchestration for
the cosimulation implementations.

III. PROBLEM STATEMENT

A. Overview of the MBSE Tool-Chain

Fig. 1 [39] presents an MBSE tool-chain for supporting aero-
engine co-design. The MBSE tool-chain is used to implement
aero-engine simulation automatically [22]. Stakeholders make
use of DSM models to formalize the development process and
system artifacts. Then, the DSM models are transformed to
one WPMS to deploy technical resources and to implement
automated cosimulations in Simulink for different stakeholders.

In details, the DSM models are built based on devel-
oped meta-models describing the development process, sys-
tem artifacts, and related cosimulation operations. The meta-
models are developed based on Graph, Object, Port, Property,
Relationship, and Role (GOPPRR) approach (introduced in

Fig. 1. Scenario-based ontology supporting cosimulation automation.

Section V-A) [28]. We adopt this approach as our MBSE so-
lution, because GOPPRR is evaluated as one of the most pow-
erfully expressive meta-meta models compared to the other
DSM approach [29]. The DSM models include process (see
[22, Fig. 2]) and information [22] patterns: The process pattern
is used for formalizing the cosimulation development process,
whereas the information pattern is used for representing the re-
lated information in each work task. Using the code-generators
in the DSM tools, the DSM models are transformed into ontol-
ogy for describing the process and information patterns.

Then, OSLC adapters are developed for transforming the on-
tology and technical resources (e.g., models, tools, and data)
to OSLC entities including service providers and services. In
addition, the ontology (process pattern) is also loaded by the
compiler to generate a WPMS where the work tasks are linked
to the OSLC service providers for each work task. The required
OSLC services of DSM models and technical resources are
linked to the OSLC service providers through service orchestra-
tion templates (SoTs). Finally, the developers log into their own
accounts in the WPMS and access the required information and
technical resources in each work task through the related OSLC
services. Using the WPMS, they implement the cosimulations
automatically without any manual operations.

B. Scenario-Based Ontology Supporting Service
Orchestration for Cosimulation Automation

In the MBSE tool-chain, the WPMS is linked to the required
OSLC service providers and services representing the DSM
models and technical resources where developers access and
manipulate the technical resources. In order to orchestrate the
related OSLC entities in the WPMS, a scenario-based ontology
is proposed for formalizing the MBSE tool-chain for support-
ing cosimulation automation, as shown in Fig. 1. It depicts the
complete representation and logic of the cosimulation develop-
ment and configuration, which includes following four aspects.
1) Ontology representing the OSLC services generated from
the DSM models; this is used to formalize the development
process, system artifacts, and cosimulation implementations in
DSM models. 2) Ontology representing the OSLC services rep-
resenting technical resources; this is used to formalize the OSLC
services for manipulating and accessing the technical resources.
3) Ontology representing the SoTs; this aims to link the devel-
opment process to cosimulation implementations. 4) Ontology
representing the WPMS generated by the DSM models; this rep-
resents the WPMS for implementing the development processes
linked with the development information and cosimulation con-
figurations.

Based on these four aspects, cosimulation scenarios are de-
fined for service orchestrations in the MBSE tool-chain.

1300 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 1, MARCH 2020

IV. RESEARCH METHODOLOGY

In order to support cosimulation automation in different sce-
narios, we develop a ontology based on OWL using systems
thinking and evaluate the ontology concepts using a case study.
These ontology concepts serve as formal representations of the
development process, system artifacts, and technical resources,
and as a descriptive logic for tool operations to support cosimu-
lation automation in the proposed MBSE tool-chain. The formal
representations are used for sharing information as middle-ware
in the tool-chain. The descriptive logic is used to orchestrate the
required technical resources based on a first-order logic during
the development and configuration of the cosimulation [30].

A. Authoring the Ontology Concepts Based on OWL
in Protégé

The ontology concepts, including the entities and relation-
ships, are defined by OWL based on the RDF triple (subject-
predicate-object). While developing the ontology concepts, the
subject and object indicating OWL classes are two entities
linked by predicates referring to OWL object properties. The
instances of the entities are OWL individuals. The attribute of
the subject (object) is defined as a data property with a data type,
e.g., string. The data property assertions define the rules that
data property satisfies the data type for checking the consistency
and reasoning. The ontology concepts are defined in Protégé,
a graphical modeling tool based on OWL where the ontology
concepts are developed for cosimulation scenarios defined in
accordance with systems thinking.

B. Systems Thinking

Systems thinking is an approach for understanding systems
by examining the interactions between the components within
the system boundary [31]. In this paper, systems thinking is pro-
posed for analyzing the compositions in cosimulation scenarios
for ontology design.

1) Identify the cosimulation scenarios: The scenarios are de-
fined in order to understand the scope of the contents (systems
boundary) of the related ontology concepts. Each scenario is
used to define one operational process for cosimulation, e.g.,
configuring simulation settings. 2) Define the entities related to
the scenarios: In each scenario, the related entities are captured,
such as the required tool and model for creating models. Such en-
tities are used for representing the subject and object in the RDF
triple of OWL [2]. 3) Define the relationships between entities:
Relationships between entities refer to connections between en-
tities. Such relationships are defined as the object properties
in OWL, such as a development process includes several work
tasks. 4) Instantiate the entities using a case study: Based on
the designed ontology, a case study is proposed for evaluating
the ontology concepts for cosimulation scenarios. In Protégé,
OWL individuals are used to formalize the instances of the en-
tities in the case study. 5) Evaluation of the case study: Through
the case study, SPARQL and SQWRL queries are proposed for
evaluating the ontology (introduced in Section IV-C).

C. Evaluation Based on Case Study

A case study is proposed to define a cosimulation scenario
based on MATLAB/Simulink [32] for evaluating the com-
pleteness and logic of the developed ontology for service

TABLE I
MEASUREMENT AND METRICS FOR ONTOLOGY EVALUATION

orchestration. In the case study, following two measurements
are considered to evaluate the ontology’s completeness and
logic for service orchestration in order to promote effectiveness
and efficiency of cosimulation using automatically as shown in
Table I.

1) The Completeness of the Representing the OSLC Services
Generated From DSM Models: SPARQL is a query language
to evaluate whether the ontology represents the OSLC services
generated from the DSM models completely. In order to support
this measurement, several metrics are defined, which are as
follows.

a) Graph-include-Objects (Relationships): refers to a situa-
tion, where one Graph OSLC service or service provider
(introduced in Section V-A) includes all the information
related to the OSLC services of its Object (or Relation-
ships). In the case study, Algorithm 1 is used to verify if
one Graph OSLC service is linked to OSLC services of
several objects and relationships.

b) Object (Relationship)-include-Points (Roles): refers to a
situation, where one Object (or Relationship) OSLC ser-
vice includes all the information related to the OSLC ser-
vices of its Points (Roles). In the case study, Algorithm 1 is
used to verify if one Object (Relationship) OSLC service
is linked to several Points (Roles) OSLC services.

c) Object (Graph and Relationship)-include-Properties:
refers to a situation, where one Object (Graph and Re-
lationship) OSLC service includes all the information re-
lated to the OSLC services of its Property. In the case
study, Algorithm 1 is used to verify if one Object (Graph
and Relationship) OSLC service is linked to OSLC ser-
vices representing its Properties.

Algorithm 1 based on SPARQL is used to query the relation-
ships between OSLC services of meta-models in order to verify
the metrics.

2) OSLC-Service Logic Related to Cosimulation Implemen-
tation: SQWRL is a query language combining OWL, DL, and
SWRL for designing the rules to assign the subject, predicate,
and object based on the defined predicates [3]. It is adopted to
evaluate whether the ontology captures the information in the
OSLC services to implement the cosimulation automatically.
Following two metrics are considered.

a) The logic representing the OSLC services from the DSM
models: indicates whether the ontology can describe the
logic in the DSM models. Two main aspects are veri-
fied in Algorithm 2: first, model-structure referring to the
model structures of the cosimulation models; and second,
process-sequence referring to the sequence orders in the
development process.

b) The logic of the OSLC services supporting automated tool
operations: indicates whether the ontology can describe

LU et al.: DESIGN ONTOLOGY IN A CASE STUDY FOR COSIMULATION IN A MODEL-BASED SYSTEMS ENGINEERING TOOL-CHAIN 1301

Algorithm 1: SPARQL Algorithm for Completeness Eval-
uation.
// Query objects in graphs
SELECT ?Graph ?Object
WHERE {
// Graph decomposite service refers to decomposite in
GOPPRR approach.
?Graph
foaf : Graph Including Relationship linking service
?Object.
}
// Query WPMS
SELECT ?Process ?Worktask
WHERE {
// ProcessHasEntities refers to an object property, where
one process has entities.
?Graph foaf : ProcessHasEntities ?Object.
}
// Query points of model components and connectors (the
same as querying properties)
SELECT ?ModelComponent ?ModelConnector ?Point
?Role
WHERE {
// foaf : Object Has point service refers to an object
property, where one object has points.
// foaf : Relationship To Input(Output) service refers
to an object property, where one relationship has one or
more input(output) roles.
?ModelComponent foaf : Object Has point service
?Point.
?ModelConnector
foaf : Relationship From Output service ?Role.
?ModelConnector foaf : Relationship To Input service
?Role.
}

the logic for automated tool operations, such as the SoT
for creating model that is verified by Algorithm 3.

V. ONTOLOGY SUPPORTING COSIMULATION

IN AN MBSE TOOL-CHAIN

In this section, we introduce the designed ontology (Fig. 1).
First, the ontology representing the OSLC services and service
providers from the DSM models, based on the GOPPRR ap-
proach, are introduced. Then, the ontology that supports the
OSLC services formalizing the technical resource is proposed.
In addition, the ontology for the OSLC services of the SoT
is defined using systems thinking based on four types of sce-
narios, including development scenario; configuration scenario;
execution scenario; and error scenario. Finally, the ontology
supporting the WPMS generated from the DSM models is
illustrated.

A. Ontology Formalizing the OSLC Services Based on the
GOPPRR Approach

The GOPPRR approach is adopted to define and develop
meta-models for constructing the DSM models. The GOPPRR

Algorithm 2: SQWRL Algorithm for Checking the Logic
of DSM Models.
// Query input points of relationships
ModelConnectorService(?Relationshipinstal)
ΛModelComponentObjectService(?modelcomponent)
ΛModel Component InportService
(?ObjectinputInstal)
ΛObject Has point service(?modelcomponent,
?ObjectinputInstal)
ΛRoleConnectingPoint service(?ToRole,
?ObjectinputInstal)
ΛRelationship ToRole service(?Relationshipinstal,
?ToRole)
− > sqwrl : select(?Relationshipinstal,
?modelcomponent, ?ObjectinputInstal)
// Query process sequences in the WPMS
SI WPMS RelaBetweenPoint Sequence(?Seq)
Λ SequenceRelationshipFrom(?Seq, ?From)
Λ SequenceRelationshipTo(?Seq, ?to)
− > sqwrl : select(?Seq, ?From, ?to)

meta-meta models include Graph, Object, Point, Property, Role,
and Relationship, shown as follows.

1) Graph is a collection of Object, Relationship, and Role
represented as one window (one integrated concept of a
class diagram and package in unified modeling language
(UML)). The graph can be a visual diagram on the top
level or lower level decomposed by one Object.

2) Object is one entity in Graphs (class concepts in UML).
3) Point is a port in Objects.
4) Relationship is one connection between the different

Points of Objects.
5) Role is used to define the connection rules mirrored to the

relevant Relationship. For example, one Relationship has
two Roles. Each is defined to connect with one Point in
Objects. Then, the Relationship is connected with these
Points in the Objects.

6) Property refers to one attribute of the other five meta-meta
models.

Based on these concepts, ontology formalizing GOPPRR ap-
proach is developed based on OWL [33]. Then, the DSM model
concepts are transformed into the related OSLC services through
such ontology, as shown in Fig. 1. In order to define the ontology
that formalizes the OSLC services of the DSM models, several
transformation rules from the OSLC service providers and ser-
vices of the GOPPRR meta-meta models to OWL concepts are
defined as follows. 1) The OSLC services of Graph, Object,
Point, Property, Relationship, and Role are transformed into the
Class concepts in OWL. 2) The OSLC services of the meta-meta
model concepts, other than the GOPPRR concepts, are defined
as Object properties in OWL, such as the Graph-including-
Objects refers to one OSLC service representing one Graph,
including Objects. The details of Object properties are listed
in Table II, which are read as that entities in the row do some
entities in the column, such as O graphid

a include O objectidb .1

3) The property values in the OSLC services are defined as
data property assertions. The Property OSLC service links to
the related OSLC entity of the data property assertions in the

1The following tables are the same.

1302 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 1, MARCH 2020

Algorithm 3: SQWRL Algorithm for Checking the Logic
for Create-Models.
// Query open & close tool
Create cosimulation model ST (?create(close)
ModelTp1)
Λ ToolService(?Tool)
Λ1 1 open(close) tool service(?open(close)Tool)
Λ cmTp implement Open(Close)
ToolAPI(?createModelTp1, ?Open(Close)Tool)
Λ Open/CloseToolAPI linkingT ool

(?Open(Close)Tool, ?Tool)
−> sqwrl :select(?createModelTp1, ?OpenTool, ?Tool)
// Query open&save&close model APIs
Create cosimulation model ST (?createModelTp1)
Λ SM service(?Model)
Λ 2 5(3/2) create(save/close) SM service
(?createModel)
Λ cmTp implement Create(save/close)ModelAPI
(?createModelTp1, ?create(save/close)Model)
Λ Create/Open/Save/Close model linking sm
(?createModel, ?Model)
− > sqwrl : select(?createModelTp1,
?Model, ?Open(save/close)Tool)
// Query add model component
SM component service(?modelComponent)
Λ 3 1 add SM component service(?addComponent)
Λ Add/Delete component linking SM component
service(?addComponent, ?modelComponent)
− > sqwrl : select(?Model, ?modelComponent)
// Query add FMU interface
SM Interface service(?Interface)
Λ 5 1 insert SM interfaceservice(?addInterface)
Λ Add/Delete interface linking SM
interfaceservice (?addInterface, ?Interface)
− > sqwrl : select(?Model, ?Interface)
// Query add model connectors
SMconnector outport service(?ConnectorOutput)
Λ SMconnector inport service(?ConnectorInput)
Λ SM component inport service(?ComponentInput)
Λ SMcomponent outport service
(?ComponentOutput)
Λ 4 1 add SM connector service(?addConnector)
Λ SM connector service(?SMConnector)
Λ Add/Delete connector linking SM connector
(?addConnector, ?SMConnector)
Λ SM ConnectorInput linking ComponentOutput(
?ConnectorInput, ?ComponentOutput)
Λ SM ConnectorOutput linking ComponentInput(
?ConnectorOutput, ?ComponentInput)
− > sqwrl : select(?Model, ?SMConnector,
?ConnectorInput, ?ConnectorOutput)

data property OSLC service. For example, one OSLC service
of Property Tool name links to a data property OSLC service
Simulink with assertions “Simulink.”

Therefore, the required entities for the scenario-based ontol-
ogy in Fig. 1 are defined as follows.

Definition 1: Token ::= refers to a collection of ontology
concepts. Token : refers to all the options of one variable. O iba
refers to an ontology concept of OSLC service i. The b refers to

TABLE II
OBJECT PROPERTIES AMONG THE O DSM (DETAILS IN [33])

variables of the ontology concepts; a (which can be defined as
the name of O i) referring to the ath O i (0 < a < n), where n
is the total number of ontology concepts.

Definition 2: Token ⇒ refers to the linking between two
OSLC services, in this case, the O property and the related
object property assertions

O property ⇒ objectPropertyt (1)

where objectProperty is the object property, and t refers to the
type of object property

O dsm ::= {O graph(id,t)
a , O objectidb , O roleid

c ,

O relationshipid
d , O pointide , O propertyid

f } (2)

where O dsm refers to the ontology concepts of the OSLC
services and service providers generated from the DSM mod-
els. id refers to the instance types of ontology concepts (meta-
model), such as the SysML requirement diagram (one meta-
model based on Graph), which is an instance type of Graph.
For example, O graph(id,t)

a refers to the OSLC services or
OSLC service providers generated from the related Graphs;
id refers to its Graph instance, such as the Worktask Graph (see
Section VI); t indicates whether the related Graph is transformed
into OSLC service (s) or service provider (sp). For example,
O graph

(W orktask,sp)
W orktask1 refers to one OSLC service provider gen-

erated from Worktask1 Graph in the DSM models. O objectidb ,
O roleid

c , O relationshipid
d , O pointide , and O propertyid

f are
the OSLC services of the related DSM model concepts.

B. Ontology Formalizing Technical Resources

In Fig. 1, technical resources supporting cosimulation are
formalized, which include the simulation models, FMUs, tools,
tool APIs, data files, and entities in each simulation model.
Therefore, the ontology of the OSLC services representing the
technical resources is as follows:

O ts ::= {O sma,O fmub,O tooltTc , O toolAPI
(apiT ,tT)
d ,

O Datafilesdf T
e , O EntitiesInModela} (3)

where O_ts refers to an OSLC service collection transformed
from the technical resources; O sma refers to the ontology of
the OSLC service generated from the ath simulation model;
O fmub refers to the ontology of the OSLC service gener-
ated from the bth FMU; O tooltTc refers to the ontology of the
OSLC service related to the cth tool; tT refers to the follow-
ing tool types: first, master (M), referring to a simulation tool
for manipulating other tools during cosimulation; and second,
slave (S), referring to a simulation tool controlled by the mas-
ter. O toolAPI

(apiT ,tT)
d is the ontology of the OSLC service

LU et al.: DESIGN ONTOLOGY IN A CASE STUDY FOR COSIMULATION IN A MODEL-BASED SYSTEMS ENGINEERING TOOL-CHAIN 1303

TABLE III
TOOL APIS TO SUPPORT COSIMULATIONS

TABLE IV
RELATIONSHIPS (OBJECT PROPERTIES) BETWEEN THE OSLC SERVICES

GENERATED FROM THE TECHNICAL RESOURCES

mirrored to the dth tool API, where apiT refers to one of the
API types illustrated in Table III. O Datafilesdf T

e refers to the
ontology of the OSLC service generated from the eth data file,
where dfT refers to the two types of data files: first, interface
files for cosimulation (IF); and second, result files for cosimu-
lation (RF). O EntitiesInModela is a collection of ontology
concepts of the OSLC services generated from the entities in
the ath simulation model. The object properties of the ontology
representing the OSLC services generated from the technical
resources are illustrated in Table IV.

The ontology of the OSLC services representing the entities
in each simulation model are defined as follows:

O EntitiesInModela

::= {O smComponenttype
b , O smConnectorc ,

O smConfigurationd,O smParametere ,

O smPointT ype
f , O smResultg} (4)

where O smComponenttype
b is the ontology of the OSLC

services representing the bth model component (MC), includ-
ing two types: first, MC and second, FMU interface (FI).
O smConnectorc is the ontology of the OSLC services trans-
formed from the cth model connector. O smConfigurationd
is the ontology of the OSLC service mirrored to the dth sim-
ulation configuration; O smParametere is the ontology of
the OSLC service mirrored to the eth simulation parameter;
O smResultg is the ontology concept of the OSLC services
from the gth simulation result; O smPointT ype

f refers to the f th
point in the MCs, which includes four types: Connector input;
connector output; component input; and component output. The
object properties between O sma and O EntitiesInModela
are illustrated in Table V.

TABLE V
OBJECT PROPERTIES BETWEEN O_sm AND ITS ENTITIES

Fig. 2. Development process and subscenarios of the work task in a develop-
ment scenario.

C. Ontology Formalizing the SoTs Supporting
Cosimulation Scenarios

DSM models are adopted for formalizing the development
processes and system artifacts, e.g., requirement. After model
transformations, a WPMS linked with OSLC entities represent-
ing DSM models and technical resources is generated. To sup-
port cosimulation automation through WPMS, several linkings
among the WPMS, OSLC services, and service providers are
defined as shown in Fig. 3, which are:

1) Linking the human work task (HWT) and automated work
task (AWT) in the WPMS to the related OSLC service
providers mirrored to the work task Graphs in the DSM
models (see Section VI).

2) Linking OSLC services of the model structure and verifi-
cation & validation Objects in the work task Graph to the
related OSLC services representing the model structure
and verification & validation Graphs.

3) Linking the decision gates in the WPMS to the OSLC
service provider of the decision gate graphs, which the
DSM model concepts in the decision gate graphs are not
included in this paper. The OSLC services of the informa-
tion in the decision gate graphs are linked to the related
OSLC services representing decision gate Objects in the
process Graphs.

4) Linking OSLC service providers of the Graph concepts
to the SoTs, including the following: a) SoTs of the devel-
opment scenario; b) SoTs of the configuration scenario;
c) SoTs of the execution scenario; d) SoTs of the error
scenario.

The SoTs are designed based on the four cosimulation
scenarios in accordance with systems thinking: Development
scenario; configuration scenario; execution scenario; and error
scenario. Such SoTs are linked with the OSLC services of the
required technical resources and development information in
each OSLC service provider of Graph. As shown in Fig. 2, the
SoTs are defined for orchestrating services among the WPMS,
OSLC services, and service providers generated from the DSM

1304 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 1, MARCH 2020

Fig. 3. Case study for evaluating cosimulation automation in the MBSE
toolchain.

TABLE VI
OBJECT PROPERTIES BETWEEN O ds, O ts, AND O dsm (CFM REFERS TO

THE COMPONENT FROM MODE SHOWN IN SECTION VI)

models and technical resources. In order to implement the four
cosimulation scenarios, except for ontology representing OSLC
entities generated from technical resources, the SoTs are linked
to the related O dsm through OWL object properties for cap-
turing sufficient information and implementing cosimulations.

1) Development Scenario: In order to support the develop-
ment scenario, the ontologies of the related SoTs are defined as

O ds ::= {O dtta} (5)

where O ds is a collection of SoTs for the development sce-
nario. O dtta refers to the ath SoT supporting the development
scenario, where t refers to the SoT types, including. 1) down-
loading the component template for component development; 2)
downloading a model template for the FMU; 3) generating the
FMU; 4) making a decision in the decision gates; 5) reviewing
the results; and 6) uploading the components for cosimulation.

The O dtta is defined where t refers to the number of each
type, as listed in Table VI.

The six service templates are linked to two types of OSLC en-
tities: first, OSLC services of the required technical resources;
and second, OSLC services of the DSM model concepts (in-
troduced in Section VI). Therefore, in the case study, object
properties between the entities are illustrated in Table VI.

2) Configuration Scenario: This scenario is used to create
cosimulation models using technical resources, based on the
DSM models. During creating models, parameter, solver, and
cosimulation interface configurations are implemented before
each simulation execution. Fig. 1 represents configuration and
execution scenarios defined based on two different cosimulation
situations. The entities including tools, models, interfaces, and
FMUs are used in the cosimulation. The dashed lines indicate
the mapping relationships, for example, one interface is mapped

to the related interface execution files. Several Tool Operation
Service concepts (toSer) are defined to represent a set of tool
operations for implementing the cosimulation configurations
and executions. The black lines with arrows indicate the toSer
concepts in the configuration scenario. The red lines with arrows
indicate the toSer used in the execution scenario. The details are
explained as follows.

1) Fig. 1(a) depicts tool coupled cosimulations. In this case,
the tools are directly implemented to support cosimulation
execution. During the cosimulations, there are two types
of tools: first, O toolM1 (Tool1); and second, O toolS2
(Tool2).

2) Fig. 1(b) depicts FMU-based cosimulations. In this case,
one FMU (O fmu1) is generated from one model in Tool2
(O toolS2) as middle-ware for implementing the cosimu-
lations in Tool1 (O toolM1).

3) Model1 (O sm1) is a model implemented in O toolM1 .
Model2 (O sm2) is a model implemented in O toolS2 .

4) The interface1 (O smComponentF I
1) refers to

one interface block communicating with interface2
(O smComponentF I

2) in model2.
5) The InterfaceExe1 (O DatafilesIF

1) refers to one execu-
tion file supporting communications between interfaces.

6) The Resultfile1 (O DatafilesRF
1) refers to one result file

for the cosimulations.
During cosimulation configurations, toSers for three opera-

tional situations in the configuration scenario are defined as
1) Configuration toSer refers to tool operations for configur-

ing tools, e.g., setting the solver.
2) Configuration toSer1 refers to tool operations for creat-

ing/deleting the models in the tools, including
a) toSer1.1 refers to the tool operations for models,

such as open model and create models.
b) toSer1.2 refers to the tool operations for adding and

deleting blocks or interface blocks, e.g., insert in-
terface.

c) toSer1.3 refers to the tool operations for managing
interface execution files, e.g., generating the inter-
face execution files.

3) Configuration toSer2 refers to tool operations for config-
uring models, such as parameter and interface settings.

Based on the entities and three operational situations used in
the configuration scenarios, the ontology is defined as follows:

O cs ::= {O sca ,O openMb,O cmc,O closeMd,O pce}
(6)

where O cs is a collection of SoTs for creating cosimulation
models in the configuration scenario; O sca is the ath SoT to
configure tools; O openMb is the bth SoT to open models;
O cmc is the cth SoT to create models; O closeMd is the dth
SoT to close models; and O pce is the eth SoT to configure
parameters.

As shown in Table VII, apiT in O toolAPI
(apiT ,tT)
d is defined

as id illustrated in Table III. The object properties between
O cs and tool APIs are illustrated for supporting cosimulation
automation in the configuration scenarios.

3) Execution Scenario: This scenario is defined for trigger-
ing the cosimulation executions and managing the simulation
results where following toSers are defined for two operational
situations, as shown in Fig. 1.

LU et al.: DESIGN ONTOLOGY IN A CASE STUDY FOR COSIMULATION IN A MODEL-BASED SYSTEMS ENGINEERING TOOL-CHAIN 1305

TABLE VII
OBJECT PROPERTIES BETWEEN O CS AND THE RELATED OSLC SERVICES OF

THE TOOL APIS (IMPL REFERS TO IMPLEMENT)

1) Execution toSer refers to the tool operations for triggering
cosimulations.

2) Execution toSer1 refers to the tool operations for manag-
ing the simulation results.

Based on the two operational situations and required entities,
ontology for the execution scenario is defined as follows:

O se ::= {O sma,O sexet
a , O toolMc ,O toolAPI(:,c)

: ,

O Datafiles:
:} (7)

where O se is a collection of SoTs supporting simulation exe-
cutions. O sexet

a is the SoT during the ath simulation execution
where t refers to two types of SoTs including the following.

1) Triggering execution (TE) is an SoT for triggering the
master tool (O toolMc).

2) Managing results is an SoT for generating and re-
viewing the result files for the cosimulations (such as
O Datafiles:

:).
O sma is the ontology of the OSLC services representing the

ath simulation model for implementing O sexet
a in the master

tool. O toolMc is the ontology of the OSLC services represent-
ing the master tool for implementing the simulation models.
O toolAPI(:,c)

: refers to the OSLC services of all the APIs
in the master tool c to execute the simulations. O Datafiles:

:
refers to all the data files related to O sexeT E

a .
4) Error Scenario: During cosimulation, some errors may

occur and stop the simulations. When these errors occur, the re-
lated OSLC services detecting errors are updated in the WPMS.
To formalize them, the ontology for the error scenario is

O er ::= {O sma,O error
(t,tool)
b , O sexeT E

c } (8)

where O er is a collection of SoTs for error scenarios. O sma is
the ontology representing an OSLC service of the ath simulation
model. During simulation execution c (O sexeT E

c), the bth error
occurs, where tool refers to the tool (including Master and Slave)
occurring errors. The t in O error refers to 1) execution error:
Some errors occur during simulation executions and 2) interface
mismatch error: Some errors occur during inserting interfaces
for creating the cosimulation models.

D. Ontology for WPMS

In the MBSE tool-chain, a WPMS is generated from DSM
models to implement the cosimulations for developers auto-
matically. The WPMS is created based on BPM Camunda [34]
whose process engine is developed based on business process

TABLE VIII
RELATIONSHIPS BETWEEN THE SERVICES OF THE WORK TASKS IN A WPMS

model and notation (BPMN) [35]. Thus, the ontology repre-
senting the WPMS is defined as follows based on the BPMN
models:

O wpms ::= {O process:} (9)

where O wpms refers to the ontology of the WPMS including
all the O process concepts. O processi is the ontology of the
ith process implemented in the WPMS where several activities
are defined

O processi ::= {AWTa,HWTb,

Startc , Endd,DecisionGatee , Sequencef } (10)

where AWT refers to the ath work task implemented auto-
matically in the WPMS; HWT refers to the bth work task
implemented by humans; Start is the cth start node of a process;
End refers to the dth termination of the process; DecisionGate
refers to the eth process for making decision; and Sequence
refers to f th sequence relationship connecting with the previ-
ous elements in the process. The object properties between such
elements are illustrated in Table VIII.

VI. CASE STUDY AND EVALUATION

A. Introduction

A case study is proposed for evaluating the completeness
and logic of the scenario-based ontology, as shown in Fig. 3.
This case study refers to a cosimulation scenario based on
MATLAB/Simulink, in which the MATLAB FMI toolbox [36]
is used to load the FMUs in Simulink, implemented using
our proposed MBSE tool-chain. First, stakeholders build the
DSM models to formalize the cosimulation process, system
artifacts, and information for cosimulation operations. The
DSM models and technical resources, such as Simulink models
for cosimulation, are then transformed into a WPMS with
OSLC entities including OSLC services and service providers.
Based on the scenario-based ontology, each work task in the
WPMS is accessed to the related OSLC service provider linked
with the required OSLC services representing the development
information and technical resources. Through the WPMS,
stakeholders control and manipulate the technical resources to
implement cosimulation automatically.

In Table III [39], the meta-models of the DSM models are
developed, based on the GOPPRR approach in the previous
work [27]. Meta-models of the process pattern are developed
for constructing the process and subprocess graphs based on the
BPMN. which include main entities as following. 1) Process
Graph, which is a graph for illustrating the cosimulation pro-
cesses. 2) Start Object, which is a process start node. 3) Work
task, which is a work task in the process referring to the Activity
in BPMN. There are two types of work tasks: The HWT, which

1306 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 1, MARCH 2020

is a work task implemented by developers, and the AWT, which
is a work task implemented automatically. 4) Decision gate,
which is a Gateway in the BPMN, referring one node forking
and the merging of paths depending on the expressed conditions.
5) End, which is a process termination node.

In order to formalize the information pattern related to the
cosimulations, three other graphs are proposed, as shown in
Table III [39], which are as follows.

1) The WorkTask graph refers to a collection of Require-
ment, Component, Tool, FMU, ComponentFromModel,
and Modelstructrue entities and their relationships. It is
used to represent the related information in each work
task. Such meta-models are extended from the require-
ment diagram of the SysML [37].

2) ModelStructure graph refers to a collection of cosimula-
tion components and their connectors.

3) V&V refers to a process that describes the cosimulation
parameter settings and executions, including the task that
refers to a simulation, parameter configurations (pc), sim-
ulation configurations (sc), simulation results, simulation
review, start, and end nodes. The Associate and Sequence
relationships are used to present connections between
them.

In the case study, DSM models are built to formalize one
cosimulation process using such meta-models, which includes
following four working tasks and one decision gate, as shown
in Fig. 3 (process pattern). 1) WorkTask1 defines the require-
ments of the cosimulation, as shown in Fig. 3 (WorkTask1).
The requirements for the cosimulation, building models, and
V&V, and their relationships are formalized. 2) WorkTask2 de-
fines one cosimulation model structure and its related require-
ment and function, as shown in Fig. 3 (WorkTask2). The model
structure Object is decomposed into a model structure Graph
including two MCs and their relationships, as shown in Fig. 4(a)
(model structure). It represents two components in one Simulink
model (sm1). 3) WorkTask3 defines one MC and one FMU for
constructing the cosimulation model. Moreover, the related re-
quirements and functions are also defined, as shown in Fig. 3
(WorkTask3). The MC and FMU are defined and mirrored to
the two components in the model structure [see Fig. 4(a) (model
structure)]. 4) WorkTask4 defines the V&V and related require-
ment, as shown in Fig. 3 (WorkTask4). The V&V block is de-
composed into a V&V Graph, which represents a set of task
Objects referring to the simulation executions in a sequence.
Each task Object is associated with the parameter settings, sim-
ulation configurations, and results.

Then, the DSM models are transformed to ontology rep-
resenting these DSM models. Then, using the WPMS com-
piler and OSLC adapters, the ontology and technical resources
are transformed into the WPMS, OSLC services, and services
providers (see Fig. 1 [39]). The technical resources include
MATLAB/Simulink, MATLAB FMI toolbox, related tool APIs,
Simulink components in the Simulink model, and FMUs. Af-
ter the WPMS is generated, stakeholders login into their own
accounts and access the OSLC services of the DSM models
for reviewing development information. Moreover, they create
simulation models based on the model structure Graph through
OSLC services referring to the SoTs during WorkTask4. Such
SoTs are linked to the OSLC services of the DSM models
to capture the required information and of the technical re-
sources to implement tool operations. During creating models,
the MATLAB FMI tool box and Simulink are implemented

to load the FMU and add the related components and con-
nections in Simulink. Then, OSLC services for the parameter
and simulation configurations are then accessed to implement
the Simulink model configurations. Furthermore, the OSLC
services for the simulation execution are used to control the
simulation executions, after which the results are reviewed in
the OSLC services linked to the WPMS. Finally, the OSLC
services of such simulation results are loaded by the design
gate in WPMS aiming to decide whether the process is ter-
minated. When the results are satisfied by the decision condi-
tions, the process is ended. Otherwise, the process goes back
to Start.

B. Evaluation Methods

In the case study, we use Protégé to develop the ontology
based on the OWL. In order to verify the completeness and logic
of the ontology, SPARQL is adopted to evaluate whether the
ontology can describe the OSLC services generated by the DSM
models completely. Moreover, SQWRL is adopted to evaluate
whether the ontology can represent the logic for supporting
cosimulation automation.

Individuals of the OWL models are then defined in Protégé,
including the following: 1) OSLC service providers and services
generated from the DSM models, as shown in Fig. 3; 2) OSLC
services of SoTs; 3) OSLC services of the required technical
resources; and 4) the generated WPMS; then, Twinkle [2] and
Protégé are used for implementing the SPARQL and SQWRL
queries.

1) Evaluation Based on SPARQL Queries: SPARQL is
adopted for evaluating the completeness of the ontology to
describe the OSLC services of the DSM models. In the case
study, the completeness evaluation includes the following: 1)
querying the complete information (OSLC services of the Ob-
ject/Relationships/Property) in the OSLC service providers of
the model structure, process, work task, and verification and
validation Graphs in the DSM models; 2) querying the com-
plete information in the WPMS (Worktask as an example);
3) querying the OSLC services representing the Points and
Roles in the OSLC services of the MCs and connectors in
the model structure Graph; 4) querying the OSLC services
of the properties in the OSLC services of the Objects and
Relationships.

Algorithm 1 is an SPARQL algorithm proposed for complete-
ness evaluation.

2) Evaluation Based on SQWRL Queries: SQWRL queries
are adopted to verify whether the ontology captures the logic
for implementing the cosimulation automatically. The logic in-
cludes the following two parts. 1) Logic describing the OSLC
services related to the DSM models: first, model structure refers
to the logic of the OSLC services describing MCs connected
to each other; second, process sequence refers to the logic
describing the sequence orders of the DSM model concepts,
such as the sequence order in the process. 2) Logic supporting
tool operations: creating model is adopted as an example for
evaluation.

Algorithm 2 is an SQWRL algorithm adopted for verify-
ing the logic of the DSM models. O objectmodelcomponent

: , O
relationshipRelationshipinstal

: , and O pointObjectinputInstal
:

are defined first that refer to the individuals representing the
OSLC services of the Object, Relationship, and Point concepts
in DSM models. Furthermore, the individuals are queried using

LU et al.: DESIGN ONTOLOGY IN A CASE STUDY FOR COSIMULATION IN A MODEL-BASED SYSTEMS ENGINEERING TOOL-CHAIN 1307

Fig. 4. (a) DSM models to formalize the cosimulation development and configurations. (b) OWL models of the DSM models. (c) Evaluation using SPARQL
and SQWRL.

the several object properties listed in the following, representing
the OSLC services related to them.

1) Object_Has_point_service refers to one OSLC service
representing a relationship, where one Object has several
Points.

2) Relationship_ToRole_service refers to one OSLC service
representing a relationship, where one Relationship has
one Role as its end.

3) RoleConnectingPoint_service refers to one OSLC service
representing a relationship, where one Role is connected
to one Point.

Moreover, SQWRL is adopted to evaluate the logic support-
ing the tool operations, as shown in Algorithm 3. First, the
OSLC services of opening (closing) tools are queried. Then, the
OSLC services of the tool operations related to the models are
queried, such as opening model. Furthermore, the OSLC ser-
vices supporting tool operations, which are related to the MCs,
FI, and model connectors, are queried to evaluate whether the
related OSLC services are queried with the required informa-
tion. For example, OSLC services of adding model component
needs information about the related components and models.

C. Summary and Limitations

From the results, we found that all the metrics mentioned
in Table I were satisfied. Through the SPARQL query, the
contents related to the DSM model concepts were found to
be described completely as shown in Fig. 4(c), which are 1)
the OSLC services of the Objects/Relationships in the service
providers of each work task; 2) the Worktask in the WPMS; 3)
the OSLC services of the Points in the OSLC services of Ob-
jects/Relationships; 4) the OSLC services of the Properties of
the related Graphs, Objects, Relationships, Roles, and Points.

The results from the SWRQL queries were utilized for evalu-
ating the logic of the DSM models and tool operations support-

ing simulation automation. The logic of the DSM models refers
to the descriptions on how the Points in the Objects connect with
each other through the Relationships. Two main metrics were
verified through Algorithm 2, which are as follows.

1) The Points connected by model connectors in the Model
structure Graphs were queried. Based on the queried in-
puts and outputs, the logic of the linking of the model
connectors with the Objects is represented.

2) The logic representing the linking of the Process Sequence
Relationships with the Objects in the Process Graphs was
queried. Through the results, the Objects were queried in
association with each sequence, illustrating the sequence
orders.

In Algorithm 3, the tool operations for creating models were
queried as one example in shown in Fig. 4(c). From the results,
we determined that all the information required for each tool
operation is depicted. From the previous evaluation, we can in-
fer that the scenario-based ontology is designed to satisfy the
completeness and logic for supporting cosimulation automation
for the case study in our MBSE tool-chain. However, there are
several limitations in this paper. 1) The proposed OWL-based
approach is used to provide a framework aiming to develop on-
tology for service-orchestrations in the MBSE tool-chain. The
approach is expected to design ontology for general cosimula-
tion setups for different scenarios. Moreover, formal verifica-
tions for the functionalities of ontology will be developed using
contract theory in the future [38]. 2) The designed scenario-
based ontology is limited to an MBSE tool-chain developed in
the previous work [39]. Other scenarios for cosimulations are
not included and will be extended in the future. For example,
model exchange methods except for the FMI are not included.
3) The current decision-making template is defined as an OSLC-
service linking to the OSLC service of decision gate Objects.
In future, the decision-making template will be linked with the
OSLC service provider of the decision gate Graph.

1308 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 1, MARCH 2020

VII. CONCLUSION

In this paper, a scenario-based ontology was presented for
service orchestration supporting automated cosimulation in an
MBSE tool-chain. The ontology is basic of service orchestra-
tions for linkings between a WPMS, OSLC entities representing
the DSM models, technical resources, and SoTs. Through a case
study, SPARQL and SQWRL were used to evaluate the com-
pleteness and logic of the ontology. The results demonstrated
that stakeholders manipulated the tools to implement the cosim-
ulations automatically, through the WPMS in the MBSE tool-
chain. Moreover, the ontology serves as a potential specifica-
tion for realizing simulation automation in general cosimulation
platforms. In future, we intend to develop ontologies for other
complex scenarios in order to support more complicated design
automation.

REFERENCES

[1] S. Durbha, R. King, and N. Younan, “An information semantics approach
for knowledge management and interoperability for the global earth ob-
servation system of systems,” IEEE Syst. J., vol. 2, no. 3, pp. 358–365,
Sep. 2008.

[2] N. Kumar and S. Kumar, “Querying RDF and OWL data source using
SPARQL,” in Proc. 4th Int. Conf. Comput., Commun., Netw. Technol.,
Jul. 2013, pp. 1–6.

[3] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean, “SWRL: A semantic web rule language combining OWL and
RuleML,” W3C Member Submission, vol. 21, pp. 1–157, 2004.

[4] L. Jinzhi, C. De-Jiu, G. Didem, and T. Martin, “An investigation of func-
tionalities of future tool-chain for aerospace industry,” in Proc. INCOSE
Int. Symp., 2017, pp. 1408–1422.

[5] C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe, “Co-
simulation: State of the art,” Univ. Antwerp, Antwerp, Belgium, Tech.
Rep. 1702.00686, Feb. 2017.

[6] Modelica Association Project “FMI,” “Functional mock-up interface for
model exchange and co-simulation,” Modelica Association, Tech. Rep.,
2013.

[7] J. Lu, M. Törngren, D.-J. Chen, and J. Wang, “A tool integration language
to formalize co-simulation tool-chains for cyber-physical system (CPS),”
in Software Engineering and Formal Methods. Berlin, Germany: Springer,
2018, pp. 391–405.

[8] J. Lu, J. Ding, F. Zhou, and X. Gong, “Research of tool-coupling based
electro-hydraulic system development method,” in Proc. 6th Int. Asia
Conf. Ind. Eng. Manage. Innov., 2016, pp. 213–224.

[9] J. Fitzgerald, P. G. Larsen, and M. Verhoef, Collaborative Design for
Embedded Systems, J. Fitzgerald, P. G. Larsen, and M. Verhoef, Eds.
Berlin, Germany: Springer, 2014.

[10] B. Chandrasekaran, J. Josephson, and V. Benjamins, “What are ontologies,
and why do we need them?” IEEE Intell. Syst., vol. 14, no. 1, pp. 20–26,
Jan. 1999.

[11] D. A. Wagner, M. B. Bennett, R. Karban, N. Rouquette, S. Jenkins, and
M. Ingham, “An ontology for state analysis: Formalizing the mapping to
SysML,” in Proc. IEEE Aerosp. Conf., Mar. 2012, pp. 1–16.

[12] C. Hennig, A. Viehl, B. Kämpgen, and H. Eisenmann, Ontology-Based
Design of Space Systems (Lecture Notes in Computer Science), vol. 9982,
P. Groth et al., Eds. Cham, Switzerland: Springer, 2016.

[13] J. Miller and G. Baramidze, “Ontologies for modeling and simula-
tion: An initial framework,” 2004. [Online]. Available: http://cobweb.
cs.uga.edu/∼jam/jsim/DeMO/paper/journal/final/demojournal-5.pdf

[14] P. T. Grogan and O. L. de Weck, “The ISoS modeling framework for
infrastructure systems simulation,” IEEE Syst. J., vol. 9, no. 4, pp. 1139–
1150, Dec. 2015.

[15] J.-B. Soyez, G. Morvan, R. Merzouki, and D. Dupont, “Multilevel agent-
based modeling of system of systems,” IEEE Syst. J., vol. 11, no. 4,
pp. 2084–2095, Dec. 2017.

[16] P. Benjamin, M. Patki, and R. Mayer, “Using ontologies for simulation
modeling,” in Proc. Winter Simul. Conf., Dec. 2006, pp. 1151–1159.

[17] G. Sirin, C. J. J. Paredis, B. Yannou, E. Coatanea, and E. Landel, “A
model identity card to support simulation model development process in a
collaborative multidisciplinary design environment,” IEEE Syst. J., vol. 9,
no. 4, pp. 1151–1162, Dec. 2015.

[18] Z. Ming, G. Wang, Y. Yan, J. D. Santo, J. K. Allen, and F. Mistree, “An
ontology for reusable and executable decision templates,” J. Comput. Inf.
Sci. Eng., vol. 17, no. 3, 2017, Art. no. 031008.

[19] G. A. Silver, J. A. Miller, M. Hybinette, G. Baramidze, and W. S. York,
“DeMO: An ontology for discrete-event modeling and simulation,” SIM-
ULATION, vol. 87, no. 9, pp. 747–773, Sep. 2011.

[20] C. Gomes et al., “Semantic adaptation for FMI co-simulation with hier-
archical simulators,” SIMULATION, vol. 95, pp. 241–269, Apr. 2018.

[21] F. Zeyda, J. Ouy, S. Foster, and A. Cavalcanti, Formalising Cosimulation
Models (Lecture Notes in Computer Science), vol. 10729, A. Cerone and
M. Roveri, Eds. Cham, Switzerland: Springer, 2018.

[22] J. Lu, D. Gürdür, D.-J. Chen, J. Wang, and M. Törngren, “Empirical-
evolution of frameworks supporting co-simulation tool-chain develop-
ment,” in Trends and Advances in Information Systems and Technologies
(Advances in Intelligent Systems and Computing), vol. 745. Berlin, Ger-
many: Springer, 2018, pp. 813–828.

[23] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “An integrated workbench
for model-based engineering of service compositions,” IEEE Trans. Serv.
Comput., vol. 3, no. 2, pp. 131–144, Apr.–Jun. 2010.

[24] T. Labidi, A. Mtibaa, W. Gaaloul, and F. Gargouri, “Ontology-based SLA
negotiation and re-negotiation for cloud computing,” in Proc. IEEE 26th
Int. Conf. Enabling Technol.: Infrastructure Collaborative Enterprises,
Jun. 2017, pp. 36–41.

[25] M. K. S. Biehl, “A modeling language for the description and development
of tool chains for embedded systems,” Ph.D. dissertation, Dept. Mach.
Des., KTH Roy. Inst. Technol., Stockholm, Sweden, 2013.

[26] Y. Wu, F. He, D. Zhang, and X. Li, “Service-oriented feature-based data
exchange for cloud-based design and manufacturing,” IEEE Trans. Serv.
Comput., vol. 11, no. 2, pp. 341–353, Mar./Apr. 2016.

[27] J. Lu, D. Chen, J. Wang, and M. Torngren, “Towards a service-oriented
framework for MBSE tool-chain development,” in Proc. 13th Annu. Conf.
Syst. Syst. Eng., 2018, pp. 568–575.

[28] S. Kelly, K. Lyytinen, and M. Rossi, “MetaEdit+ a fully configurable
multi-user and multi-tool case and came environment,” in Advanced Infor-
mation Systems Engineering. Berlin, Germany: Springer, 1996, pp. 1–21.

[29] H. Kern, A. Hummel, and S. Kühne, “Towards a comparative analy-
sis of meta-metamodels,” in Proc. Compilation Co-Located Workshops
DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, VMIL’11,
2011, vol. 1, pp. 7–12.

[30] R. R. Smullyan, First-Order Logic, vol. 43. Berlin, Germany: Springer
Science & Business Media, 2012.

[31] H. W. Lawson, A Journey Through the Systems Landscape. London, U.K.:
College Publications, 2010.

[32] M. Simulink and M. A. Natick, The Mathworks. Natick, MA, USA: Math-
Works, 1993.

[33] W. Hongwei, L. Jinzhi, W. Guoxin, and M. Changfeng, “Ontology support-
ing model-based systems engineering based on a GOPPRR approach,” in
New Knowledge in Information Systems and Technologies. WorldCIST’19
(Advances in Intelligent Systems and Computing 930). Cham, Switzer-
land: Springer, 2019.

[34] A. Fernandez, “Camunda BPM platform loan assessment process lab,”
Queensland Univ. Technol., Brisbane, QLD, Australia, Tech. Rep.
8725853, 2013.

[35] M. Geiger, S. Harrer, J. Lenhard, M. Casar, A. Vorndran, and G. Wirtz,
“BPMN conformance in open source engines,” in Proc. IEEE Symp. Serv.-
Oriented Syst. Eng. Mar. 2015, pp. 21–30.

[36] A. Modelon, “FMI toolbox for Matlab,” 2014. [Online]. Available:
http://www.modelon.com/products/fmi-toolbox-for-matlab

[37] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML: The
Systems Modeling Language. San Mateo, CA, USA: Morgan Kaufmann,
2014.

[38] J. Westman and M. Nyberg, “Extending contract theory with safety in-
tegrity levels,” in Proc. IEEE 16th Int. Symp. High Assur. Syst. Eng.,
Jan. 2015, pp. 85–92.

[39] J. Lu, J. Wang, D. Chen, J. Wang, and M. Torngren, “A service-oriented
tool-chain for model-based systems engineering of aero-engines,” IEEE
Access, vol. 6, pp. 50443–50458, 2018.

http://cobweb.cs.uga.edu/jam/jsim/DeMO/paper/journal/final/demojournal-5.pdf
http://cobweb.cs.uga.edu/jam/jsim/DeMO/paper/journal/final/demojournal-5.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

