
IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017 889

Data-Aware Task Dispatching for
Batch Queuing System

Xieming Li and Osamu Tatebe

Abstract—This paper describes a scheduling method focusing
on exploiting the local access of a nonuniform storage-access file
system. In our approach, the file access cost is calculated and
combined with the CPU load average into a comprehensive value,
which will be used as the standard for scheduling. We evaluated
our approach in comparison with the original Torque scheduler
using three benchmarks: thput-gfpio, readgf, and BLAST bench-
marks. For thput-gfpio, the read throughput showed a 3.59 times
boost, whereas for readgf, the total execution time was reduced
to about 1/10th of the original value. Finally, using the BLAST
benchmark, the total execution time was reduced by 33%.

Index Terms—Batch queuing system, data-aware task schedul-
ing, file locality, Gfarm, nonuniform storage-access (NUSA),
scheduling.

I. INTRODUCTION

S IMULATION technology has become one of the most
important branches for scientific computations in energy

physics, genomics, astronomy, and other fields. As the granular-
ity of simulations is increasing, the demand for handling larger
data sets is growing accordingly [1], [2]. Such requirement is
met by a parallel file system that bundles multiple storage
devices and achieves a high I/O performance through simulta-
neous access. File systems such as GPFS [3], Lustre [4], pNFS
[5], and PVFS [6] require dedicated storage nodes connected
to compute nodes using a storage area network. The perfor-
mance in accessing files on such file systems can be considered
rather “uniform” because each access has to travel through the
network (Fig. 1, left). However, this approach requires a high-
bandwidth network between the compute and storage nodes,
which could incur a relatively high cost, especially for a large-
scale cluster.

In contrast, file systems such as Gfarm [7] and Google
File System [8], which federate local file systems on compute
nodes, have been proposed. In this type of file system, the
access performance can be considered “nonuniform” because
the compute node can now access the files on its local drive as

Manuscript received February 1, 2015; revised June 4, 2015; accepted
July 31, 2015. Date of publication September 22, 2015; date of current
version June 26, 2017. This work was supported by JST CREST, “System
Software for Post Petascale Data Intensive Science” and “EBD: Extreme Big
Data–Convergence of Big Data and HPC for Yottabyte Processing.”

X. Li is with the Graduate School of Systems and Information Engi-
neering, University of Tsukuba, Tsukuba 305-8577, Japan, and also with
the Core Research for Evolutional Science and Technology, Japan Science
and Technology Agency, Kawaguchi 332-0012, Japan (e-mail: risyomei@
hpcs.cs.tsukuba.ac.jp).

O. Tatebe is with the Faculty of Engineering, Information and Systems,
University of Tsukuba, Tsukuba 305-8577, Japan, and also with the Core Re-
search for Evolutional Science and Technology, Japan Science and Technology
Agency, Kawaguchi 332-0012, Japan (e-mail: tatebe@cs.tsukuba.ac.jp).

Digital Object Identifier 10.1109/JSYST.2015.2471850

well as files on the remote node through the network (Fig. 1,
right).

In addition, in a large-scale computing environment, it is rare
for a single task to occupy all computing resources. More often,
multiple jobs are executed in parallel, where a task scheduler is
utilized to control the usage of hardware resources such as the
CPU cycles, memory, and disk space. Some widely deployed
task schedulers are used, including Torque [9], Condor [10],
Platform Load Sharing Facility (LSF) [11], [12], and Open Grid
Scheduler [13]. These schedulers are suitable for a uniform
file system mainly because there is no need to consider the
file location at the task dispatch. The access performance is
nearly identical regardless of which compute node the task
is dispatched to. However, such schedulers may not be ideal
for a nonuniform storage-access file system because, if a task
is dispatched without consideration of the file allocation, it
might be assigned to a node where the file cannot be accessed
locally, thereby leading to a drop in performance. In this paper,
we describe a scheduling strategy for a nonuniform storage-
access file system that emphasizes the exploitation of high-
performance local access. In our approach, the cost of a file
access is calculated and combined with the CPU load average
into a comprehensive value. This value will then be used as the
standard for scheduling.

The contributions of this paper are as follows.

1) A design of the data-aware dispatch (DAD) algorithm,
which is applicable for various nonuniform storage-access
file systems, is proposed.

2) DAD is implemented based on the Torque scheduler.
3) DAD is evaluated using three benchmarks and shows a

significant improvement.

The rest of this paper is organized as follows. Section II intro-
duces previous research related to the present topic. Section III
provides an overview of Gfarm and the Torque scheduler from
a task-scheduling perspective. Next, Section IV describes the
design of data-aware task scheduling for Gfarm. Section V
then presents an evaluation based on thput-gfpio, readgf, and
BLAST benchmarks. Finally, we provide some concluding
remarks in Section VI.

II. RELATED RESEARCH

Scheduling algorithms have been widely studied from var-
ious perspectives. In this section, we focus on those works
emphasizing file allocation.

Schedulers for Hadoop/MapReduce [14]: The default FIFO
scheduler of MapReduce tries to schedule map tasks on the

1937-9234 © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

890 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017

Fig. 1. Uniform (left) and nonuniform (right) storage-access file system. For a uniform system, each access from a compute node has to travel through the
network and has a similar performance. For a nonuniform system: some of the accesses are completed locally (2), whereas other accesses go through the network
(1), where the performance might differ.

machine that contains the needed file. If a failure occurs, the
tasks will be dispatched to nodes near the file. Because tasks
can be assigned either locally or remotely, the file system used
can be considered a nonuniform storage-access file system.

There are many approaches to improve the default FIFO
scheduler from the perspective of file locality [15]–[20]. These
works depend on the unique characteristics of the Map/Reduce
programming model, making them inappropriate for general-
purpose nonuniform storage-access file systems.

Delay scheduling (DS) [15] was designed to tackle the con-
flict between locality and fairness. In [15], when a job is to be
scheduled next according to the fairness but cannot be launched
locally, it waits for a small amount of time and allows other
jobs to launch instead. The authors argue that the tasks are
likely to run locally with little compromise in fairness. The base
assumptions of this approach are the following: 1) each job has
a nearly identical execution time, and it will finish relatively
quickly, and 2) there will always be a local node with a file(s)
that the job requires. If 1) fails, delayed jobs may have to wait
a relatively long time, and if 2) fails, the jobs will not find a
suitable node at all.

Wang et al. presented a locality and energy-aware scheduling
method [16] that takes advantage of file locality. They defined
a method to evaluate the energy efficiency and developed an
algorithm to maximize the efficiency when considering both the
locality and energy. Their approach is based on the assumption
that each file has a fixed number of replicas. Although this is
the basic characteristic of the MapReduce model, it may not
hold true for other general-purpose nonuniform storage-access
file systems.

Data-Aware Scheduler for Grid and Distributed File System:
In [21] and [22], Stork scheduler, a data-aware scheduler for a
grid, was proposed. Stork scheduler manages the in/out staging
of files across a grid and arranges the storage space at the desti-
nation. The sender and receiver might not share a name space.
In [23], a scheduling method for balancing the workload when
considering the locality, network state, and current workload
is presented. In this approach, files are divided into multiple
blocks of the same size and distributed and replicated across the
nodes. Because each block size is identical, the execution time
and load impact of local and remote tasks can be determined.
The estimated execution time and load are then used to balance
the workload. Because certain nonuniform storage-access file
systems such as Gfarm do not divide files into blocks, the file

sizes may differ from each other completely, and the execution
time of each task can therefore not be predicted before the
execution, which make this an inapplicable approach.

Scheduling Methods for NUMA: In [24]–[27], methods ex-
ploiting the locality to gain a better loop and OpenMP per-
formance are described. The meaning of the term “locality”
in these works differs significantly from the one used in our
context. In these works, locality refers to the advantages of
accessing local memory, whereas in our work, it refers to the
merit of accessing data.

In [28], a hardware scheduling approach, where the scheduler
is provided with task’s data requirements, was proposed. This
approach exploits the information of data placement and usage
history to calculate the affinity for each CPU core and makes
the scheduling decision. However, this approach depends on
a specific programming language and model, which makes it
inapplicable for batch queuing systems.

Data-Aware Scheduling LSF Plugin for Gfarm: The methods
in [29] and [30] are the most relevant approaches that we are
currently aware of. The LSF Gfarm plugin tries to take advan-
tage of the effective local file access in Gfarm but emphasizes
the manipulation of replicas. In these methods, the tasks are
dispatched to a compute node with the required data locally,
and the workload is distributed by creating a replica on a new
host (such that a task can be dispatched to it). The authors
proposed two approaches to optimize the creation of a replica:
1) a method for selecting the best node to create the replica
when considering the source, destination, and network loads,
and 2) a method for categorizing the jobs to make sure that
the time and performance will not be wasted when creating the
replica.

Making a replica is indeed an effective way to exploit the
effective local access of Gfarm. However, the LSF Gfarm
plugin lacks the ability to deal with a “fake data-intensive job”
that refers to a large data set but only accesses a small part of it.
For example, Blastp and Blastx from the BLAST benchmark
refer to the same data set and have similar execution times,
which cannot be differentiated using this method. Executing
Blastp locally and remotely shows an insignificant difference
of 0.02%, whereas the difference in execution time for Blastx is
about 17.28%. Moreover, because a task is forced to run locally
using the LSF Gfarm plugin, vacant compute nodes will not be
usable until the required data are replicated to them, which may
occasionally be a waste of resources.

LI AND TATEBE: DATA-AWARE TASK DISPATCHING FOR BATCH QUEUING SYSTEM 891

III. TECHNICAL BACKGROUND

In this section, the details of the Torque Resource Manager
and Gfarm File System are briefly summarized, with the former
being used as the basis of our implementation and the latter
having certain key features utilized in the proposed work.

A. Torque Resource Manager

The Torque Resource Manager [9] is an open-source product
derived from the original PBS project. It consists of three main
components, i.e., pbs_server, pbs_sched, and pbs_mom.

pbs_mom resides on execution hosts, as is responsible for
controlling the job.

pbs_sched accepts commands from pbs_server, talks with
pbs_mom to maintain the latest information of the execu-
tion hosts, and makes scheduling decisions.

pbs_server is the central part of the entire system, accepts
tasks from clients, initiates scheduling on pbs_sched, and
monitors the jobs on pbs_mom.

In this paper, the main modification is made to pbs_sched,
whereas pbs_mom remains completely untouched. In addition,
the pbs_server and qsub commands are minimally changed
to pass information regarding the referenced data of a task.
We expanded the system using the command-line option −g,
allowing the user to specify a set of files through the qsub

command as follows:

qsub −g file1, file2, . . .task.sh.

Alternatively, the file set can be specified through the following
directive in the batch file:

#PBS −g file1, file2, . . .

This information will be sent to pbs_sched and used to
determine the allocation of tasks.

B. Gfarm File System

The Gfarm file system is a globally distributed file sys-
tem used to share data and support distributed data-intensive
computing [7]. Instead of setting a dedicated storage node, it
federates the local file systems of compute nodes and man-
ages them using a single namespace. The Gfarm file system
has multiple instances of gfsd as the storage daemon, which
access the local file system, and a master–slave gfmd as the
metadata daemon, which manages the file metadata including
the hierarchical namespace, file properties, directory structure,
and replica information.

Each compute node in Gfarm can access its local storage
using gfsd and its remote storage using gfsd on other nodes
via the network (see Fig. 2). Gfarm does not divide one file
into multiple nodes, but it achieves a scalable performance by
duplicating the replica in several nodes. Gfarm can be accessed
through the Command Line Interface, API, and FUSE [31]
through gfarm2fs.

Fig. 2. Basic structure of Gfarm.

Fig. 3. Performance variation of Gfarm.

C. Nonuniformity of the Gfarm File System

As described previously, a compute node in Gfarm can
access a file both locally and remotely, which makes Gfarm
a nonuniform storage-access file system. The difference in
performance is discussed in this section. We evaluated the
throughput of Gfarm using the thput-gfpio benchmark, which
comes with the Gfarm package, the results of which are shown
in Fig. 3.

For this evaluation, the file size was set to 512 MB, and
1-Gb/s Ethernet was used. As shown in Fig. 3, the throughput
of the local access dominates the remote access for all chunk
sizes. Therefore, it is safe to conclude that utilizing local access
is preferable under normal situations.

892 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017

IV. DATA-AWARE TASK DISPATCH

As discussed in the previous section, most of the existing
works depend on some particular constraints, such as a fixed
number of replicas or a fixed task size. However, these assump-
tions do not hold true for some general-purpose nonuniform
storage-access file systems such as Gfarm. In this paper, the
data-aware task dispatch (DAD) is proposed to exploit local
access regardless of those conditions. We implemented DAD
on the Gfarm file system and Torque scheduler, but it can be
easily implemented on other systems like Hadoop/MapReduce.

A. File Locality and Score

The traditional scheduler takes the CPU load average as the
primary factor when selecting a compute node for a specific
task. In contrast, DAD introduces fileLocality, a parameter
that indicates the difficulty of accessing the data set, and
combines it with load average as a comprehensive Score to
determine the most suitable node. These two parameters are
described in detail in the following.

The fileLocality(t, h), which indicates the difficulty of
accessing the data set referenced by task t when it is dispatched
to a specific compute node h, is defined as follows:

fileLocality(t,h)=

[
n∑

y=1

locality(fy,h)

/
n∑

y=1

sizeof(fy)+1

]/
2

locality(fi, h) =

{
−sizeof(fi) if on(fi, h)

sizeof(fi) other
(1)

where the locality(fi, h) is a value determined by the size of
file fi and whether compute node h has a replica of fi. If one
of the replicas of fi is on h, the cost of accessing it will be
smaller, and therefore, the file size of fi will be subtracted to
make the “cost” smaller and vice versa. The fileLocality(t, h)
is the normalized sum of the locality(fy, h) ranges [0, 1].

The comprehensive Score can be calculated in advance
using the fileLocality as follows:

Score(t, h) = fileLocality(t, h)× β

+ load(h)× (1 − β) (0 ≤ β ≤ 1). (2)

The load average load and fileLocality are unified into
Score using parameter β. Here, β is a modifier used to adjust
the strength of DAD. When β = 1, the scheduler will ignore the
CPU load at dispatch. Although there should be a method for
acquiring the optimal value of β, we leave this for future work
and only show the effectiveness of this particular parameter.
Score can now be used to judge whether a host is desirable

for a job execution in the exact way in which the load average
is used in a CPU-focused scheduler, with consideration of both

TABLE I
SYMBOLS USED

Fig. 4. Task order causing performance degradation.

the CPU load and the file locality. The symbols used in this
section are listed in Table I.

B. DS for Data-Aware Scheduling

We found that the order of the tasks might cause a drastic
degradation in the performance. An example of this is shown
in Fig. 4, in which there are eight tasks in a queue, with four
requiring file A and the other four requiring file B. Because
there are two nodes for each referenced file, the ideal case is
for each node to be dispatched with two local tasks. This can be
achieved by the arranging tasks as AABBAABB. However, if
the tasks come in the order of AAAABBBB, after the first two
tasks are dispatched (phase 2 in Fig. 4), the following two tasks
will be dispatched to the two available nodes remaining without
a needed file. Finally, half of the tasks has to access the file
remotely, which will cause a significant drop in performance
for data-intensive tasks.

We applied DS [15] to alleviate this issue. DS is a simple
idea for a scheduler to achieve locality in the Hadoop file
system. In DS, when a task is to be dispatched according to
the scheduling policy but has no local node, instead of being
executed immediately, it waits for a few slots so that it can be
executed locally.

C. Implementation of DAD

We chose Gfarm for the underlying file system and imple-
mented DAD by modifying the naive FIFO scheduler included

LI AND TATEBE: DATA-AWARE TASK DISPATCHING FOR BATCH QUEUING SYSTEM 893

in the Torque package. In this section, some of the details for
implementing DAD are discussed.

Communication Cost: DAD needs to know the files a job
refers to and the nodes where those files reside. The information
regarding the replica is managed by the metadata server of
Gfarm, i.e., gfmd. Therefore, the scheduler has to communicate
with gfmd before making a decision. Because only one file
can be queried each time, a task refers to many files, thereby
requiring communication multiple times. We exploit a hash
table to store such information and reduce the amount of
communication with gfmd. Similarly, the file size is also hashed
to avoid redundant communication.

Redundant Wait Time: An issue may arise when naively
implementing DS for data-aware dispatching on Gfarm. The
original DS was designed for the Hadoop file system in which
each task can find a node with all of the access files. However, in
Gfarm, a task can refer to multiple files, and each compute node
might hold only a small portion of such files. Therefore, it is
possible that neither of the compute nodes satisfies the standard
of “local.” In this case, waiting for a local node would be a
waste of time. DAD will judge whether it is necessary for a job
to wait for the next available slot. If a job is not local to either
of the compute nodes, it will not be delayed.

Scheduling by Queue: When submitting two groups of tasks,
where both groups refer to the same file sets, it is more prefer-
able to submit them to two different queues because, when all
of the tasks are submitted to a single queue, if the first task
of a group cannot find a local node, the following tasks in the
same group are not likely to find a local node as well. The time
used in calculating the Score for these nodes will be wasted.
On the other hand, when the two groups of tasks are submitted
to different queues, where all tasks in the same queue refer to
the same file set, the scheduler can judge only the first task in
the queue and skip the rest.

In summary, the pseudocode of DAD is given in Algorithm 1.
The algorithm starts at DATAAWAREDISPATCH, and it first
calculates the fileLocality of each execution host by calling
GETFILELOCALITY and calculates the Score using (2). It
then finds a free node with the lowest Score. If theScore of this
node is smaller than a predefined local threshold lShold, the
node is selected as a local execution node. If the Score exceeds
lShold and no other nodes have a Score smaller than lShold,
the node is selected as a remote execution node. Otherwise, no
nodes are selected, and the task will be delayed until the wait
time exceeds the wait limit wLimit.

V. EVALUATION

DAD can be applied to various task schedulers by modifying
its dispatch phase. In our experiment, we implemented DAD
on the Torque scheduler and compared it to the original to see
the performance gain as evaluated through three benchmarks,
i.e., thput-gfpio, readgf, and BLAST benchmark [32]. These
benchmarks are explained in detail in the following. We ran
the experiment using a cluster at the University of Tsukuba.
The specifications of the machine and software used are listed
in Table II.

Algorithm 1 Data-Aware Dispatching

1: function GETFILESIZE(filePath)
2: Communicate with gfmd and get file size of filePath,

then store the result to hash table;
3: end function
4: function GETFILEEXIST (filePath, nodeName)
5: Communicate with gfmd and return if filePath is on

nodeName, then store the result to hash table;
6: end function
7: function GETFILELOCALITY(job, nodeName)
8: fileMatch, fileMisMatch, fileTotalSize← 0
9: for f in job.fileUsed[] do

10: size← GETFILESIZE(f)
11: if GETFILEEXIST(f, nodeName) then
12: fileMatch← fileMatch+ size
13: else
14: fileMisMatch← fileMisMatch+ size
15: end if
16: end for
17: return ((−fileMatch+ fileMisMatch)/

(fileT otalSize× 2)) + (1/2)
18: end function
19: function DATAAWAREDISPATCH(job)
20: lShold← local threshold;
21: wLimit ← max delay time;
22: minScore ← FLOAT_MAX;
23: pNode, gNode ← NULL; //possible and good node.
24: ifWait ← false; //if need to wait for a good node
25: for each execution node h do
26: Locality ← GETFILELOCALITY(job, h);
27: Score ← Locality × β + loadAverage×

(1 − β);
28: if h is not free ∧Score < lShold
29: ifWait ← true;
30: end if
31: if h is free ∧Score < minScore then
32: pNode ← h;
33: minScore ← Score;
34: if Score < lShold then
35: gNode ← h;
36: end if
37: end if
38: end for
39: if pNode = NULL then
40: return NULL;
41: end if
42: if gNode �= NULL
43: return gNode;
44: end if
45: if job.wT ime < wLimit ∧ ifWait = true then
46: job.wT ime++;
47: return NULL;
48: end if
49: return pNode;
50: end function

894 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017

TABLE II
EVALUATION SPECIFICATION

Fig. 5. Evaluation result using thput-gfpio.

A. thput-gfpio

The thput-gfpio benchmark is included in the Gfarm file
system package and is used for evaluating the read, write, and
copy performance of Gfarm. This benchmark is utilized to show
the I/O performance gain made by DAD. In our experiment, 20
different 1-GB files were generated beforehand and distributed
evenly to four compute nodes. In addition, 20 thput-gfpio tasks
were submitted to read each file accordingly. This experiment
shows the boost in I/O speed brought about by DAD. The re-
sults are shown in Fig. 5. Only eight tasks had a relatively high
throughput when using the stock Torque scheduler and were
tasks accidentally dispatched to the local node. Five of these
tasks suffered from a degraded performance with a throughput of
around 1400 MB/s because some of the remote tasks were in con-
tention for I/O resources. The remaining tasks had to access the
required file through the network, which caused the throughput to
drop drastically. In contrast, using DAD, tasks were dispatched
to the local node and showed a high performance level. Finally,
the average throughput of a task dispatched by the Torque
scheduler is 780.11 MB/s, whereas that dispatched by DAD is
2803.61 MB/s, which is a 3.59 times increase in throughput.

B. readgf

An increase in throughput performance can be clearly ob-
served in the previous benchmark, but the behavior of the tasks

Fig. 6. Evaluation results from readgf: The makespan for 20 readgf tasks was
56.38 s using the stock Torque scheduler and 5.63 s with DAD. (a) Stock Torque
scheduler. (b) DAD.

Fig. 7. Evaluation of the BLAST benchmark.

remained unknown. The readgf benchmark was developed to
reveal detailed task-scheduling information such as the start

LI AND TATEBE: DATA-AWARE TASK DISPATCHING FOR BATCH QUEUING SYSTEM 895

Fig. 8. Gantt chart of the original Torque scheduler (left) and DAD (right) (β = 0.8, and Delay = 2).

time, execution length, and makespan. The main workload of
readgf is reading files on Gfarm. In this experiment, 20 different
1-GB files were made beforehand and distributed evenly to four
compute nodes. In addition, 20 readgf tasks were submitted to
read each file accordingly. The results are shown in Fig. 6.

The two subfigures in Fig. 6 are Gantt charts. The x-axis is
the timing axis, which records the start and end times of the
tasks plotted on the y-axis. As shown in Fig. 6(a), using the
FIFO scheduler, only some of the tasks have a significantly
short line, which means that the interval between the start and
end times was short and that the task was read efficiently from
the local node. Conversely, using DAD, as shown in Fig. 6(b),
all of the tasks had short lines, indicating that they performed
efficient local access.

C. BLAST Benchmark

In the aforementioned section, DAD was evaluated using two
benchmarks whose main workload is file access. In this section,
DAD is evaluated using the mixed-workload BLAST bench-
mark. BLAST is an algorithm for comparing primary biological
sequence information. The BLAST benchmark [32] simulates
the typical workload obtained from an analysis and consists of
multiple subbenchmarks. We chose Blastn and Blastx for our
benchmark because they refer to different file sets and have a
significant difference in performance when executed locally or
remotely. Because the two tasks refer to different sets of files,
they were submitted to a different queue by Torque, where all
tasks in the queue refer to the same set of files. For DAD, the
tasks in each queue were dispatched interleavely, and thus, tasks
referring to different files were processed in an interleaving
manner to avoid excess judgment regarding the DS.

We ran the evaluation using different β and Delay values,
and the results are shown in Fig. 7. The total execution time
using the original Torque scheduler was 266.9 s, whereas the
best case for the DAD scheduler (β = 0.8, with a Delay of 2,
as indicated by the dark bar in Fig. 7) had a total execution time
of 178.0 s, which is a 33% time reduction when compared with
the original Torque scheduler. The Gantt chart of the original
Torque scheduler and the best case for DAD are shown in Fig. 8.
One obvious difference is that there is only one clear line for the
Torque scheduler but two for DAD. This is because the Torque

scheduler sees two queues as one large queue, whereas DAD
dispatches the task in each queue once each time (top, Blastx
bottom, Blastn). It is also obvious that there are more “local”
tasks when using DAD than using the original Torque scheduler
when comparing the same tasks in two charts.

To see how β and Delay affect DAD, we fixed one parameter
and changed another. Next, we created a chart and overlapped
it with the best DAD case, where β = 0.8 and Delay = 2. The
results are shown in Fig. 9. First, we fixed the Delay to 2
and changed β to 0.0 and 1.0, corresponding to the graphs
in the upper left and upper right, respectively. When β is set
to 0, DAD will degrade to a scheduler that does not consider
the data location and will therefore have a similar perfor-
mance as the original Torque scheduler. On the other hand,
when β is set to 1, the DAD shows a similar performance as the
best case.

Next, when β is fixed to 0.8 and Delay is changed to 0 and 4,
the results correspond to the graphs at the bottom-left and
bottom-right of Fig. 9, respectively. When Delay is set to zero,
DAD does not delay a task when no local nodes are available,
thereby incurring a long line on the chart and ending up with
a longer total execution time. On the other hand, when Delay
is set to 4, tasks have a greater chance to be executed locally.
In contrast, for the best case, some longer tasks are executed
earlier, resulting in a shorter total execution time.

D. Results and Discussion

The main purpose of DAD is to take advantage of local
access in nonuniform storage-access file systems and thus
improves the file I/O performance. Because the main workload
of thput-gfpio and readgf is file reading, the file placement
will have a great impact on the benchmark performance.
For the thput-gfpio benchmark, the average throughput was
780.11 MB/s with the Torque scheduler and 2803.61 MB/s with
DAD. The same trend can be observed from readgf, where
the makespan was 56.38 s with Torque scheduler and 5.63 s
with DAD.

The third benchmark, BLAST, has a mixed workload that
includes CPU- and IO-intensive tasks, and it was chosen to
evaluate the effects of different values of β. When β = 0, DAD
degrades to a normal algorithm that considers only the CPU

896 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017

Fig. 9. Overlapped Gantt chart with different parameter settings for DAD and the best cases (Delay = 2, β = 0.8). The x-axis is the timing axis that records
the start times and end times of the tasks which are plotted in the y-axis. The dark lines are the best case when Delay = 2 and β = 0.8, and the light lines are
the cases with an altered parameter.

1) Upper left (Delay = 2, and β = 0.8 versus 0.0): DAD degrades to a normal FIFO scheduler and thus has a similar execution time as the original Torque
scheduler.

2) Upper right (Delay = 2, and β = 0.8 versus 1.0): Because the CPU load does not experience a bottleneck for dominant tasks, the slight change in β does
not lead to an obvious difference in execution time.

3) Bottom-left (β = 0.8, and Delay = 2 versus 0): DAD does not try to delay a job, causing many more remote jobs (and longer lines).
4) Bottom-right (β = 0.8, and Delay = 2 versus 4): In the best case, some longer tasks are executed earlier, resulting in a shorter total execution time.

load average, and therefore, the performance is identical to that
of the original Torque scheduler. On the other hand, because
the BLAST benchmark has a mixed workload, the improvement
with DAD is not drastic but is still significant. The makespan is
reduced from 266.9 to 178.0 s.

VI. CONCLUSION AND FUTURE WORK

For the nonuniform storage access file system, it is quite
important to take advantage of effective local access. DAD
offers a method to schedule tasks while striking a balance
between CPU load average and file locality. In an evaluation
using thput-gfpio, the average throughput of a task dispatched
by the original Torque scheduler is 780.11 MB/s, whereas that
dispatched by DAD is 2803.61 MB/s, which is about a 3.59
times increase in throughput. Moreover, an evaluation using
readgf shows a 90% decrease in makespan compared with the
original Torque scheduler. Finally, in an evaluation using the
BLAST benchmark, the best case (β = 0.8 and Delay = 2) has
a total execution time of 178.0 s, which is a 33% time reduction
from the 266.9 s of the original Torque scheduler.

Moreover, because different tasks might refer to different
files and the tasks may read/write with a different size even
when referring to the same file, it would be inappropriate to
set a fixed β value for different kinds of tasks. Therefore, as
a future study, we considered adding a function for a task to
specify the β value when being submitted.

REFERENCES

[1] T. Sugimoto et al., “Large-bandwidth data acquisition network for
XFEL facility, SACLA,” in Proc. ICALEPCS, Grenoble, France, 2011,
pp. 626–629.

[2] SLAC, Menlo Park, CA, USA. [Online]. Available: https://portal.slac.
stanford.edu/sites/lcls_public/Pages/Default.aspx

[3] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for large
computing clusters,” in Proc. Conf. FAST , 2002, pp. 231–244.

[4] P. Schwan, “Lustre: Building a file system for 1,000-node clusters,” in
Proc. Linux Symp., 2003, pp. 380–386.

[5] B. Pawlowski, D. Noveck, D. Robinson, and R. Thurlow, “The NFS
version 4 protocol,” in Proc. 2nd Int. SANE, 2000, pp. 1–20.

[6] R. B. Ross, R. Thakur, P. Carns, and W. Ligon, “PVFS: A parallel file sys-
tem for Linux clusters,” in Proc. 4th Annu. Linux Showcase Conf., 2000,
pp. 391–430.

[7] O. Tatebe, K. Hiraga, and N. Soda, “Gfarm grid file system,” New Gener.
Comput., vol. 28, no. 3, pp. 257–275, Jul. 2010.

LI AND TATEBE: DATA-AWARE TASK DISPATCHING FOR BATCH QUEUING SYSTEM 897

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
ACM SIGOPS Operating Syst. Rev., vol. 37, no. 5, pp. 29–43, 2003.

[9] “Adaptive Computing,” Torque Resource Manager, Provo, UT, USA.
[Online]. Available: http://www.adaptivecomputing.com/products/open-
source/torque/

[10] T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor: A dis-
tributed job scheduler,” in Beowulf Cluster Computing With Linux.
Cambridge, MA, USA: MIT Press, 2001, pp. 307–350.

[11] LSF.IBM. [Online]. Available: http://www-03.ibm.com/systems/
platformcomputing/products/lsf/index.html

[12] S. Zhou, X. Zheng, J. Wang, and P. Delisle, “Utopia: A load sharing
facility for large, heterogeneous distributed computer systems,” Softw.,
Practice Experience, vol. 23, no. 12, pp. 1305–1336, 1993.

[13] Open Grid Scheduler. SUN. [Online]. Available: http://gridscheduler.
sourceforge.net

[14] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[15] M. Zaharia et al., “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. 5th ACM Eur. Conf.
Comput. Syst., 2010, pp. 265–278.

[16] X. Wang and Y. Wang, “An energy and data locality aware bi-level
multiobjective task scheduling model based on MapReduce for cloud
computing,” in Proc. IEEE/WIC/ACM Int. Conf. WI-IAT, 2012, vol. 1,
pp. 648–655.

[17] M. Hammoud and M. F. Sakr, “Locality-aware reduce task schedul-
ing for MapReduce,” in Proc. IEEE 3rd Int. Conf. CloudCom, 2011,
pp. 570–576.

[18] S. Ibrahim et al., “LEEN: Locality/fairness-aware key partitioning for
MapReduce in the cloud,” in Proc. IEEE 2nd Int. Conf. CloudCom, 2010,
pp. 17–24.

[19] B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus: Locality-aware
resource allocation for MapReduce in a cloud,” in Proc. ACM Int. Conf.
High Perform. Comput., Netw., Storage Anal., 2011, pp. 1–11.

[20] X. Zhang, Z. Zhong, S. Feng, B. Tu, and J. Fan, “Improving data locality
of MapReduce by scheduling in homogeneous computing environments,”
in Proc. IEEE 9th ISPA, 2011, pp. 120–126.

[21] T. Kosar and M. Livny, “Stork: Making data placement a first class citizen
in the grid,” in Proc. IEEE 24th Int. Conf. Distrib. Comput. Syst., 2004,
pp. 342–349.

[22] T. Kosar and M. Balman, “A new paradigm: Data-aware scheduling in
grid computing,” Future Gener. Comput. Syst., vol. 25, no. 4, pp. 406–413,
2009.

[23] J. Jin, J. Luo, A. Song, F. Dong, and R. Xiong, “BAR: An efficient
data locality driven task scheduling algorithm for cloud computing,” in
Proc. IEEE/ACM 11th Int. Symp. Cluster, Cloud Grid Comput., 2011,
pp. 295–304.

[24] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, M. Spiegel, and J. F. Prins,
“OpenMP task scheduling strategies for multicore NUMA systems,” Int.
J. High Perform. Comput. Appl., vol. 26, no. 2, pp. 110–124, May 2012.

[25] A. Muddukrishna, P. A. Jonsson, V. Vlassov, and M. Brorsson, “Locality-
aware task scheduling and data distribution on NUMA systems,” in
OpenMP in the Era of Low Power Devices and Accelerators. Berlin,
Germany: Springer-Verlag, 2013, pp. 156–170.

[26] M. Durand, F. Broquedis, T. Gautier, and B. Raffin, “An efficient OpenMP
loop scheduler for irregular applications on large-scale NUMA ma-
chines,” in OpenMP in the Era of Low Power Devices and Accelerators.
Berlin, Germany: Springer-Verlag, 2013, pp. 141–155.

[27] H. Li, S. Tandri, M. Stumm, and K. C. Sevcik, “Locality and loop schedul-
ing on NUMA multiprocessors,” in Proc. IEEE ICPP, 1993, vol. 93,
pp. 140–147.

[28] B. Khan et al., “Architectural support for task scheduling: Hardware
scheduling for dataflow on NUMA systems,” J. Supercomput., vol. 71,
no. 6, pp. 2309–2338, 2015.

[29] X. Wei et al., “Implementing data aware scheduling in Gfarm(R) using
LSF(TM) scheduler plugin mechanism,” in Proc. Int. Conf. Grid Comput.
Appl., 2005, pp. 3–5.

[30] J. Jiang, G. Xu, and X. Wei, “An enhanced data-aware scheduling algo-
rithm for batch-mode data intensive jobs on data grid,” in Proc. IEEE
ICHIT , 2006, vol. 1, pp. 257–262.

[31] FUSE. [Online]. Available: https://portal.slac.stanford.edu/sites/
lcls_public/Pages/Default.aspx

[32] G. Coulouris, “BLAST Benchmarks,” Nat. Inst. Health, Bethesda,
MD, USA. [Online]. Available: http://fiehnlab.ucdavis.edu/staff/kind/
Collector/Benchmark/Blast_Benchmark

Xieming Li received the M.Eng. degree from the
Graduate School of System and Information Engi-
neering, University of Tsukuba, Tsukuba, Japan, in
2014, where he is currently working toward the Ph.D.
degree.

His main research interests are grid computing
and distributed file systems.

Mr. Li is a member of the Information Processing
Society of Japan.

Osamu Tatebe received the Ph.D. degree in com-
puter science from the University of Tokyo, Tokyo,
Japan, in 1997.

He was with the Electrotechnical Laboratory and
National Institute of Advanced Industrial Science
and Technology (AIST) until 2006. He is currently
a Professor with the Department of Computer Sci-
ence, University of Tsukuba, Tsukuba, Japan. His
research areas are high-performance computing,
data-intensive computing, and parallel and distrib-
uted system software.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

