
IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024 1447

An Automated Edge Computing Approach for IoT
Device Registration and Application Deployment

Vitumbiko Mafeni and Younghan Kim , Member, IEEE

Abstract—As the Internet of Things (IoT) evolves rapidly across
various industries, the number of IoT protocols and applications
is growing with vast number of heterogeneous components and
entities. In setups with thousands of IoT devices, manual deploy-
ment of applications and device registration become impractical
due to their time-consuming and costly nature, as well as the
requirement for background knowledge of IoT devices and pro-
tocols. Furthermore, IoT devices often have resource constraints
that prevent them from running complex software. Therefore,
there is a significant need to enhance and optimize edge computing
systems for IoT, making them suitable and dynamic for automated
IoT device registration and heterogeneous application deployment.
In this article, we present an edge-based framework designed to
facilitate the automated registration of diverse wireless IoT devices
and the deployment of IoT applications. To validate our approach,
we use a smart irrigation system enhanced with a containerized
machine learning model as a proof of concept. Our evaluation of the
implemented prototype demonstrates that our system is scalable
and feasible.

Index Terms—Automation, edge computing, Internet of Things
(IoT), service orchestration, wireless sensors.

I. INTRODUCTION

THE expanding landscape of the Internet of Things (IoT) has
led to the widespread deployment of devices and sensors,

dispersed across various locations to perform diverse tasks in our
daily lives. However, the integration of these physical devices
with cloud-based deployments has introduced complexities in
configuring and deploying IoT applications, presenting a signif-
icant challenge that requires prior technical expertise [1].

Traditionally, the conventional approach involves transmit-
ting sensor data to the cloud for processing and subsequently
dispatching control signals to relevant actuators within IoT
applications. This method, while widely used, has inherent
drawbacks, including increased latency, heightened network
load, and compromised privacy [2]. The emergence of edge
computing has arisen as a solution to alleviate the strain on cloud

Manuscript received 22 November 2023; revised 27 February 2024; accepted
17 April 2024. Date of publication 3 May 2024; date of current version 20 June
2024. This work was supported in part by Institute of Information and communi-
cations Technology Planning and Evaluation (IITP) grants funded by the Korea
government (MSIT) under Grant 2020-0-00946, and in part by the Development
of Fast and Automatic Service recovery and Transition software in Hybrid Cloud
Environment) and the MSIT, Korea, under the ITRC (Information Technology
Research Center) support program under Grant IITP-2024-RS-2023-00258649
supervised by the IITP. (Corresponding author: Younghan Kim.)

The authors are with the School of Electronic Engineering, Soongsil Uni-
versity, Seoul 06978, South Korea (e-mail: vitumafeni@dcn.ssu.ac.kr; young-
hak@ssu.ac.kr).

Digital Object Identifier 10.1109/JSYST.2024.3392290

infrastructure caused by massive data volumes, intricate network
configurations, and scalability concerns. However, deploying
applications at the edge for IoT remain a formidable chal-
lenge [3], exacerbated by the heterogeneous nature of protocols,
device data formats, communication capabilities, technologies,
and hardware [4], [5], [6].

Moreover, the sheer diversity of IoT devices, numbering in the
thousands and millions, necessitates interoperability at various
levels [7]. Consequently, there is an imperative need for a reliable
and automated management system capable of supporting the
rapid growth and complexity of the IoT environment in a scalable
manner. Manual deployment of IoT applications on numerous
devices within a heterogeneous setup is not only tedious and
error-prone, but also time-consuming. In dense IoT deploy-
ments, novel business models like sensing as a service demand
increased automation for the provisioning and maintenance of
IoT installations [8].

One pertinent application of IoT technology lies in agricul-
ture, specifically in the realm of smart farming practices. This
includes intelligent irrigation and livestock management, essen-
tial components for enhancing agricultural efficiency. Notably,
farming predominantly occurs in rural regions, where a signifi-
cant portion of farmers may lack awareness and understanding
of how to effectively utilize or configure IoT technologies to
optimize their operations [9].

Consider a scenario where human intervention is required for
intricate steps in the registration and configuration process of IoT
devices. When an IoT device is poised to join a network, transmit
data, or access services, it needs to undergo registration [10].
This process includes the manual entry of its unique identifiers
(such as device name or serial number, device type, and device
model and manufacturer information), along with other config-
uration settings if applicable. This manual involvement is prone
to errors due to a deficiency in awareness and knowledge of
the underlying procedures. Consequently, a substantial number
of IoT devices seeking network entry or configuration can lead
to a laborious, error-prone, and time-consuming process when
carried out manually [11].

To address these challenges, we propose an edge computing
approach. For efficient management and processing of data
originating from IoT devices, an edge service must exhibit
autonomy, statelessness, and portability. These attributes are
crucial for enabling quick migrations and deployment of edge
services across the edge-cloud-computing environment while
maintaining a high level of service availability. A powerful
solution for deploying services and applications with ease is

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0006-1397-5757
https://orcid.org/0000-0002-1066-4818
mailto:vitumafeni@dcn.ssu.ac.kr
mailto:younghak@ssu.ac.kr
mailto:younghak@ssu.ac.kr

1448 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

through container virtualization [12]. We leverage this approach
to orchestrate services and utilize portable containerized compo-
nents in IoT services. Kubernetes [13] and Docker Swarm [14],
well-known solutions for cloud orchestration, are employed in
various popular orchestration solutions for edge computing in
IoT, such as Akri, Kubeedge, Flotta, and K3s [15].

In this article, we develop and implement an edge computing
platform designed to automate application deployment and man-
age the configuration of IoT devices without human intervention.
To validate our approach, we apply it to a smart irrigation
farming system, incorporating a machine learning model. The
agricultural sector, with its unique challenges and predominantly
rural settings, exemplifies the need for automated solutions
due to potential limited awareness and technical understanding
among farmers [16]. In summary, our contributions encompass
the following.

1) Present an innovative orchestration framework based on
Kubernetes designed to enable the automated deployment
and management of IoT applications within heteroge-
neous computational environments.

2) A mechanism to remove the need for human involvement
in the configuration and registration of IoT devices. We
introduce an automated solution to seamlessly integrate
resource-constrained IoT devices into a centralized cluster
through a Kubernetes-based abstraction layer.

To demonstrate feasibility and scalability, we implement a
containerized smart irrigation farming system, supported by a
recommendation machine learning model as a workload de-
ployed

The rest of this article is organized as follows: Section II pro-
vides a review of the research background. Section III outlines
our proposed solution. Section IV delves into the experiment
setup and evaluation. Finally, Section V concludes this article.

II. BACKGROUND

This section provides a foundation, summary, and overview
of the fundamental concepts and technologies that form the basis
of the proposed system.

A. Edge Computing

Focusing on edge computing, the article in [12] explores the
potential of edge computing as a means to enhance service
delivery and performance by extending cloud resources closer
to service environments. This article conducts an analysis of
existing implementations of processing environments with edge
resources, considering quality of service (QoS) parameters and
orchestration platforms. It evaluates popular edge orchestration
platforms based on their ability to incorporate remote devices
into processing environments and adapt scheduling algorithms
to enhance QoS attributes. Experimental results compare plat-
form performance, indicating that Kubernetes and its distribu-
tions have promise for effective scheduling at the network’s
edge. However, challenges remain in adapting these tools for the
dynamic and distributed nature of edge computing environments
as it does not address wireless device heterogeneity on the edge.

Ullah et al. [15] presented MiCADO-Edge, an extension of
the MiCADO cloud orchestration framework tailored for mul-
tilayered cloud-to-edge environments. It automates microser-
vices deployment across cloud and edge nodes, emphasizing
monitoring and enforcing user-defined runtime management
policies. Real-world case studies in video processing and secure
healthcare data analysis validate MiCADO-Edge’s practicality.

A framework, FogDEFT, introduced in [17] investigates the
limitations of conventional cloud-centric IoT applications in
meeting latency requirements. This fog computing federation
framework leverages topology and orchestration specification
for cloud applications (TOSCA) for service deployment within
fog environments. FogDEFT standardizes distributed applica-
tion design using TOSCA service templates, ensuring inter-
operability across heterogeneous fog devices. This framework
overlooks automated IoT wireless devices registration.

In the article [18], an edge computing IoT-based solution for
strawberry farming addresses challenges by collecting, analyz-
ing, and predicting data related to cultivation. The platform
integrates monitoring services, manages IoT devices for data
collection, and employs computer vision for real-time disease
detection. However, it lacks details on automating IoT applica-
tion deployment and device registration.

Furthermore, we also came across [19], which investigates on
resource orchestration within the device-edge-cloud continuum,
with a specific emphasis on edge artificial intelligence (AI). The
article argues that to meet the growing demands of intelligent
applications in this continuum, resource orchestration should
incorporate edge AI, emphasizing local autonomy and intelli-
gence. However, we find it lacking in terms of edge automation.

Resende [20] presented a solution that is designed to automate
the provisioning and life cycle management of IoT end nodes.
The study mentions that current methods of provisioning and
managing of IoT end nodes are manual involving static software
deemed to be insufficient for expansion.

While our study focuses on edge computing, highlighting
software defined wireless sensor networks (SDWSN) is crucial
due to their tight relation to IoT. Wireless Sensor Networks
(WSN) face challenges like limited computational capability
and energy constraints. software defined networking (SDN),
with an external controller managing network intelligence, aims
to address these challenges. SDWSN merges these concepts,
enhancing efficiency, and sustainability [21], [21], [23].

Comparing edge computing and SDWSN highlights their dif-
ferences. SDWSN focuses on networking while edge computing
emphasizes local processing. In addition, SDWSN may rely on
centralized servers for scalability which may face latency issues
while edge computing distributes computation for independent
local processing.

B. Containerization and Container Orchestration

Several articles are dedicated to containerization and accord-
ing to the official documentation [25], [24], a container can
be described as a standardized software unit that bundles both
code and all its dependencies. Containerization is a technol-
ogy that enables developers to package their applications and

MAFENI AND KIM: AUTOMATED EDGE COMPUTING APPROACH FOR IoT DEVICE REGISTRATION AND APPLICATION DEPLOYMENT 1449

dependencies into lightweight, portable containers that can run
anywhere [25], [26].

Containerization guarantees application portability, simplify-
ing deployment, testing, and migration. Containerized applica-
tions can scale up or down seamlessly in response to chang-
ing environmental conditions, such as varying traffic demands.
Furthermore, containers ensure reproducibility, maintaining a
consistent working environment regardless of the number of
executions [27]. Docker, a leading containerization platform,
offers a robust ecosystem of tools and services for building,
deploying, and managing containers [28].

Container orchestration, as defined in [29], automates the
deployment, supervision, scaling, and networking of contain-
ers. Various tools, including Kubernetes, Docker Swarm, and
Apache Mesos, manage container life cycles effectively. Kuber-
netes, originating from Google engineers, enables users to build
application services spanning multiple containers, schedule con-
tainer instances across clusters, dynamically adjust counts, and
oversee long-term operational status. Kubernetes streamlines
manual procedures associated with deploying and scaling con-
tainerized applications.

C. Frameworks and Tools

While numerous studies have explored novel architectures
that enhance edge computing in various ways, many of these
frameworks lack certain components necessary for automation.

TOSCA is employed in [2] to introduce the FogDEFT frame-
work, designed to address interoperability and heterogeneity in
IoT devices. This framework presents a user-friendly paradigm
for modeling and dynamically deploying fog services remotely,
on-demand, and on the fly. However, in contrast to our methodol-
ogy, this research overlooks the management of a larger quantity
of IoT devices.

EdgeX is a framework to manage profile information for
various IoT devices and support AI inference model operation
presented in [30]. The article highlights the need for edge
computing and weaknesses of cloud computing, such as de-
layed response time for processing service requests and security
concerns regarding data confidentiality. However, we find the
framework proposed to lack specific details on how the ML
applications and services can be deployed and scaled efficiently
to support increasing traffic demands in case many devices are
connected. In addition to that, we also find it lacking a procedure
on automating IoT device registration hence requiring human
intervention to handle configurations.

In our study we simplify IoT device registration process,
which involves carefully considering security measures to con-
firm the legitimacy of connecting devices before granting them
access to services. In this context, a relevant study [31], in-
troduces a fog computing-based system model for IoT archi-
tecture, focusing on remote authentication to ensure secure
device-to-device communication. While authentication is vital,
it is just one aspect of the broader framework. Automating
decision-making for communication requests between devices,
eliminating human intervention, can reduce errors, enhance sys-
tem availability, and better support time-sensitive applications.
Containerized and automated authentication approaches offer

effective automation solutions. In such approach, it can enable
seamless scaling using orchestration tools to efficiently verify
the presence of unique IDs among IoT devices within a database
of known devices. However, the methodology presented in this
article does not incorporate containerization and orchestration.
The absence of these elements limits the utilization of declarative
methods for automation.

Several papers [32], [30], [34] present approaches and archi-
tectures based on TOSCA to automate deployments of applica-
tions in the cloud or extending the cloud to the edge. However,
TOSCA has limitations and not flexible on the edge due to
its inability to keep track of run time deployments and offer
reconfiguration decisions on the fly. Although TOSCA aims
to be vendor-agnostic, the manuscripts above do not specify
how to handle scalability issues in TOSCA. When managing
very large and complex applications or when dealing with rapid
scaling requirements. Orchestrating and managing numerous
components can become resource-intensive.

Ferry et al. [35] introduced another framework called
SERVERLEss4I0T in their publication. This framework
functions as a platform for creating, deploying, and managing
applications across the Cloud-Edge-IoT spectrum. Specifically,
they present the platform as a tool for specifying and deploying
serverless functions on both Cloud and Edge resources, along
with deploying necessary supporting services and software
stacks throughout the entire Cloud-Edge-IoT continuum. To
validate their solution, tests were conducted on a smart building
equipped with multiple IoT devices. While the manuscript
provides valuable insights, it does not explicitly clarify the
scalability and feasibility of their system in large-scale IoT
environments.

The authors introduced the smart environmental monitoring
and analytical in real-time (SEMAR) framework in their publica-
tion [36]. The article’s primary objective is to enhance the devel-
opment of smart cities by presenting SEMAR as a solution to the
challenges associated with integrating various IoT application
systems. SEMAR is designed to offer flexibility, interoperability,
and efficient data handling. Significantly, this framework lacks
the integration of orchestration or containerization technologies
for streamlined deployments, and it also overlooks auto-scaling,
a crucial aspect for accommodating increased traffic from IoT
devices.

SEnviro Connect framework is proposed in [37] focusing
on the role of IoT platforms as a transversal middleware in
addressing challenges like device heterogeneity, support for a
large number of connected devices, system reliability, safety,
energy efficiency, and third-party usability. While employing
containerization via Docker, this method neglects the aspect
of scaling up containers to handle additional requests. Further-
more, the framework fails to capitalize on orchestration tools
for harnessing declarative or internet-based configurations, thus
missing out on opportunities for automation.

Numerous cutting-edge open-source orchestration frame-
works are specifically designed to tackle edge computing chal-
lenges within the realm of IoT devices.

KubeEdge is an open-source system designed to expand the
native orchestration capabilities of containerized applications
to edge hosts, as detailed on their official website [38]. By

1450 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

leveraging Kubernetes, this platform specifically focuses on
orchestrating containerized IoT application services within IoT
edge computing environments. In a recent article authored by
Kim [39], an in-depth evaluation of the framework is presented,
encompassing aspects such as the distribution of computational
resources and the latency experienced between various edge
nodes. However, configuring KubeEdge can be challenging,
requiring complex knowledge about networking and operating
system to deploy it [40].

The Akri [41] framework is another noteworthy player in the
IoT-edge computing domain, functioning as a Kubernetes Re-
source Interface. It simplifies the integration of diverse leaf de-
vices, such as IP cameras and USB peripherals, into a Kubernetes
cluster. Akri also supports embedded hardware resources like
GPUs and FPGAs. Notably, it efficiently identifies nodes with
access to these devices and manages workload scheduling based
on their availability. However, it is important to highlight that
Akri does not provide out-of-the-box support for IoT wireless
device discovery.

Last, Flotta is another framework applicable in the domain of
IoT-edge computing. As described in the framework’s documen-
tation [42], it introduces an efficient approach to centralize the
management of edge devices. This is achieved through the use of
Kubernetes Custom Resource Definitions (CRDs), which excel
at overseeing diverse device configurations. However, Flotta
does not support the an automated registration, management and
automation of IoT wireless devices. Conversely, it does not offer
support for the automatic scaling of pods in instances where
there is a sudden increase in traffic from IoT devices. Energy
monitoring, a crucial aspect of IoT, is also not covered as an out
of the box feature in Flotta.

Upon reviewing the existing literature on related works,
frameworks, and tools for facilitating edge computing, several
common factors have emerged that contribute to the realization
of automation, scalability, and interoperability at the edge. The
accumulated research affirms the substantial potential of edge
computing, particularly in the context of IoT. Among the most
noteworthy and prevalent elements that facilitate automated
deployment of IoT applications and ensure interoperability are
as follows.

1) Containerization: Bundles application libraries and de-
pendencies into a single component, simplifying applica-
tion migration and scaling. This approach enables easy
redeployment without extensive reconfiguration, as all
dependencies are packaged together.

2) Orchestration: Allows for efficient and repetitive deploy-
ment of the same application, enhancing adaptability in
dynamic computing environments.

3) Wireless Device Discovery and Registration: Stream-
lines onboarding and management, ensuring scalability,
interoperability, security, and effective device monitor-
ing in dynamic environments. The framework should
seamlessly add new IoT devices, automatically config-
uring them based on their attributes to minimize manual
setup.

4) Uniformity and Interoperability: Ensures that devices with
diverse protocols and data formats can connect and com-
municate seamlessly, fostering a cohesive and efficient IoT
ecosystem.

5) Heterogeneous Wireless Device Support: An effective IoT
edge computing framework should accommodate diverse
wireless devices, managing various protocols and connec-
tivity standards. This flexibility enables the framework
to adapt to evolving IoT deployments, beyond specific
protocols or wired devices.

Table I presents a summary of comparison of the discussed
frameworks concerning their alignment with the primary focus
of our manuscript. We illustrate the key components necessary
for an automated edge computing framework. In the table, “�”
signifies the presence of a particular factor or component within
the framework, while an “x” indicates not supported.

III. PROPOSED FRAMEWORK FOR IOT DEVICE REGISTRATION

AND APPLICATION DEPLOYMENT

This article presents an automated framework specifically
crafted for deploying IoT applications and facilitating the regis-
tration or onboarding of IoT devices. The framework is tailored
to address the intricacies of IoT environments marked by the
diversity of wireless communication technologies and protocols,
including Zigbee, Sigfox, Bluetooth Low Energy (BLE), and
Wi-Fi.

The proposed framework acknowledges that users may
lack expertise in establishing IoT systems, especially in
deploying IoT applications and conducting device registration,
as discussed in [9]. Automation becomes crucial in addressing
these challenges, streamlining IoT processes, reducing errors,
optimizing costs, and meeting stringent QoS requirements,
particularly for time-sensitive applications. In conventional
farming, farmers spend a significant amount of time monitoring
and assessing crops, as highlighted in [43] and [44], making
smart agriculture essential to optimize farming practices and
minimize manual labor.

Fig. 1 depicts the comprehensive architecture of our proposed
framework, seamlessly built on top of an existing edge com-
puting framework, namely Flotta. The proposed framework is
strategically divided into three principal components: the cloud
components, edge components, and wireless end-node devices.
Here, we describe the roles and functions of each component
within the framework.

A. Cloud Components

The cloud component acts as the central server, managing
edge, and end nodes comprehensively. It deploys workloads and
monitors edge node status continuously. During setup, critical
information about wireless IoT end nodes, like unique identifiers
and device names, is stored in the cloud data store. This ensures
discoverability and enables automatic registration for preregis-
tered end nodes, eliminating the need for human intervention.

MAFENI AND KIM: AUTOMATED EDGE COMPUTING APPROACH FOR IoT DEVICE REGISTRATION AND APPLICATION DEPLOYMENT 1451

TABLE I
COMPARING THE MENTIONED FRAMEWORKS FOR ENABLING AUTOMATED IOT EDGE COMPUTING

Fig. 1. Proposed architecture for automating IoT devices registration and applications deployment.

Our framework, built on Project-Flotta, harnesses Kubernetes
CRDs for enhanced capabilities. An operator creates a con-
figuration CRD, typically an EndNodeAutoConfig YAML file,
defining criteria for identifying end node devices as they connect
to the platform on the edge. Criteria include wireless commu-
nication, protocol, workload to deploy upon device discovery,
and selection of the edge node for configuration application. If
no specific edge node is designated, the configuration applies
uniformly to all edge nodes in the cluster.

Applying the CRD configuration deploys the specified de-
vice driver to the preferred Edge Node, initiating the discovery
process and listening for specified wireless end devices. Upon
detecting a designated end node device, the edge operator or-
chestrates automatic deployment of the specified edge workload,
often a machine learning model. An ML controller facilitates
model training within the cloud environment. For reference, an
example of the EndNodeAutoConfig Custom Resource (CR) is
provided in Listing 1.

1452 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

Integrating with the kubernetes efficient power level exporter
(Kepler) open-source project [45], we have enabled energy
monitoring within our framework. The power meter pod operates
on the cloud worker nodes, serving to display metrics collected
from the edge regarding power usage for each edge node. In
addition, it incorporates a machine learning component utilized
for predicting the energy consumption of each edge node. The
power estimator leverages this machine learning model to offer
future analytics.

Listing 1: Kubernetes CR YAML for EndNodeAutoConfig.

The algorithm described in Algorithm 1 illustrates the auto-
mated deployment of a designated workload. In addition, during
subsequent heartbeats, if the end node is identified as being in an
unhealthy state, predefined actions are executed. For instance,
in the event of an IoT application crash or unresponsiveness,
the recovery procedure may include an automatic application
restart. Alternatively, alerts or notifications may be dispatched
to inform administrators or operators of the problem, enabling
them to intervene manually if required.

B. Edge Components

At the edge, the edge node establishes a secure connection
with the cloud node through the exposed Edge application
programming interface (API), employing mutual authentication.
To sustain this connection, the edge node sends a heartbeat signal

Algorithm 1: Automated IoT Application Deployment.
1: while true do
2: EdgeManager receive a heartbeats from

EdgeNode every HeartbeatT imer
3: EdgeManager verify request and maintains mutual

authentication with EdgeNode.
4: if isEndNodeRegistered(EndNodeID) = false

then
5: Manager ← EdgeManager.Save to Observer

from EdgeNode.
6: if writeDeviceInfoToStatus(EdgeNode) =

true then
7: Manager ← Configuration.Automated

deploy application
8: return Success
9: else

10: return Error
11: end if
12: else
13: if isDeviceHealthy(EndNodeID)) = false

then
14: Manager ← Configuration.RecoveryAction
15: end if
16: end if
17: end while

every 5 min to the Edge API as a Service on port 9001. During
each heartbeat exchange, the edge node, centrally managed by
the device worker, undertakes several crucial tasks. It retrieves
new configurations from the cloud, updating its settings accord-
ingly. In the presence of a valid internet connection, it syncs
with the cloud, pushing and pulling relevant updated data and
configurations. As part of this process, the edge node conducts
a data pull operation, retrieving and storing all pre-existing end
node data in a Node Data Store, typically utilizing SQLite for
this purpose. The configuration also includes specifications for
device drivers, outlining the image and repository required for
the image to function as a workload through Podman. Once the
image is retrieved and initiated, it actively scans for compatible
end node devices within its range. Upon activation of an end
node device by a user (e.g., a farmer), the device driver extracts
the device’s unique identifier (serial number) and device name.

The wireless IoT device drivers employ event-driven com-
munication through the message queuing telemetry transport
(MQTT) broker. Here, the IoT wireless device driver publishes
the gathered information to the MQTT broker, while the device
worker subscribes to all relevant topics. The device worker, is
responsible to converting to a standard data format for all types
of IoT end nodes and push to the server. Likewise, it converts
and maps the instructions from the cloud to specific data format
for an IoT end node through the MQTT broker then the device
driver. The following are the topics;
� $device/edge/upstream/ble
� $device/edge/upstream/+
� $device/edge/upstream/availability/ble

MAFENI AND KIM: AUTOMATED EDGE COMPUTING APPROACH FOR IoT DEVICE REGISTRATION AND APPLICATION DEPLOYMENT 1453

� $device/edge/upstream/availability/+
� $cloud/driver/downstream/ble
� $cloud/driver/downstream/+
These MQTT topics are categorized into three distinct groups:

upstream, downstream, and availability.
Within the upstream topics, such as $de-

vice/edge/upstream/ble, signifies that data from
BLE devices is transmitted. If there were another wireless
protocol in use, such as Wi–Fi, the corresponding topic
would be formatted as $device/edge/upstream/wifi.
Similarly, for downstream topics, the structure follows suit. The
availability topic serves the purpose of allowing IoT devices to
report unexpected disconnections.

The device worker then cross-references the incoming IoT
device information with the data stored in the Node Data Store.
If a match is found, the IoT wireless device is granted automatic
registration without the need for further user configurations.
During subsequent edge node heartbeats, the edge node updates
the cloud regarding the status and information of connected
wireless IoT devices. It does this by pushing relevant information
to the cloud, contingent on an available internet connection. The
communication between the device worker and various device
drivers occurs via MQTT topics, facilitating data exchange and
coordination. Moreover, our framework is extensible by adding
more device drivers to support more IoT wireless communica-
tion technologies and protocols.

Furthermore, our framework categorizes end node devices
into two types: input and output devices. Input devices can accept
commands, such as switches or actuators, enabling them to exe-
cute boolean functions like toggling ON/OFF. Conversely, output
devices, like sensors, solely observe and collect environmental
data without accepting commands. The configurations retrieved
from the cloud contain specific commands to be transmitted to
end node devices capable of receiving such instructions. The
device driver plays a critical role in mapping data from diverse
formats into a universal format understood by the device worker.
Upon successful device registration and the transmission of sta-
tus updates to the cloud via the Edge API, the specified workload,
as configured in the EndNodeAutoConfig CR, is automatically
deployed. In our specific case, we deploy a Machine Learning
model that serves as a preprocessing tool and functions as a
recommendation system for optimizing the smart farm irrigation
system. The algorithm 2 shows the process of an automated
device registration as explained.

Ultimately, our utilization of Kepler, leveraging eBPF [46],
facilitates dynamic kernel energy monitoring aspect. Kepler
harnesses eBPF to obtain performance counters and various
system statistics to gauge workload energy consumption based
on these metrics, subsequently exporting them as Prometheus
metrics. These exported metrics, through device workers on the
edge to the cloud, are then accessed by the Power Meter pod
located within the cloud worker nodes during each heartbeat
transmission.

IV. EXPERIMENT SETUP AND EVALUATION

Our experimental system configuration encompasses a cloud
cluster, an edge node, and a network of IoT wireless devices.

Algorithm 2: Automated IoT Device Registration.
1: while true do
2: EdgeNode sends a heartbeat signal to CloudNode

every HeartbeatT imer.
3: Maintain mutual authentication with CloudNode.
4: if HeartbeatT imer > 0 then
5: Config ← EdgeNode GET Configuration

from CloudNode.
6: if !empty(Configuration) then
7: NodeDataStore← EdgeNode sync

CloudNode.
8: if

pluginDiscoverWirelessEndNode() = true
then

9: if deviceLocalDB(EndNodeID) = true
then

10: if registerDevice(EndNodeID) = success then
11: return Success
12: else
13: return Error
14: end if
15: end if
16: end if
17: end if
18: end if
19: end while

The cloud cluster consists of one master node and two worker
nodes, all of which are Nucs equipped with Intel Core i5-5250 U
CPUs running at 1.60 GHz. Each node boasts 8 GB of RAM,
500 GB of ROM, and is outfitted with 2 CPU cores. Our setup
relies on Kubernetes version 1.23 and Flotta version 0.2.0.
To achieve automation, we have developed an operator using
Kubebuilder [47], and the corresponding GitHub repository for
our operator can be accessed online.1

On the edge side, our test-bed configuration leverages com-
monly used IoT hardware platforms. We use the Raspberry Pi
Model 4B with a 1.5 GHz 64-bit quad core ARM Cortex-A72
processor and 4 GB of RAM. In our setup, we employ an Ether-
net connection on the Raspberry Pis as the backbone network to
connect to the cloud. Moreover, each Raspberry Pi is equipped
with a Zigbee USB Gateway stick (ConBee II) and a manufac-
turer builtin Bluetooth module to capture Zigbee signals and
BLE signals respectively not forgetting Wi–Fi communication.

For our end nodes, we utilize NodeMCU devices, including
both ESP32, which offers BLE and Wi-Fi capabilities, and
ESP8266, which provides Wi-Fi functionality. These nodes are
equipped with DHT11 temperature and humidity sensors. We
test Zigbee devices by using Aqara temperature and humidity
sensors. Table II provides details about the devices we utilized
for testing our framework. We created 118 configurations for the
IoT devices, deploying them with various settings, attributes, and
capabilities. Virtual IoT devices are created to easily achieve
hundreds of IoT devices connected to our framework. Our
experiment primarily focused on comparing with the manual

1https://github.com/vitu1234/flotta-operator

https://github.com/vitu1234/flotta-operator

1454 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

TABLE II
END NODE DEVICES SIMULATED IN OUR EXPERIMENT

Fig. 2. Processing time for end node registration to IoT applications deploy-
ment.

configuration method and comparison with another framework,
SEMAR.

The manual device registration process involves entering
information for each device into the system, either by manual
input or scanning a manufacturer’s QR code. Users input details
for device identity, security credentials, and communication
parameters. This includes a unique device name, type, authen-
tication setup, communication protocols, and security protocols
like TLS/SSL. Additional details such as manufacturer info,
firmware version, and a device description may also be provided
but not required. Upon connecting to the network, the device may
get manual approval before being provisioned.

Unlike the manual registration process, to successfully
register end-node devices and deploy IoT applications automat-
ically, a four-step process is followed. It begins with metadata
extraction, collecting essential information about the device.
Then, device authentication verifies the device’s identity by
cross-referencing its unique identifiers with data from the cloud.
Next, IoT applications are deployed, with the initial deployment
taking longer due to image retrieval. Last, synchronization and
integration ensure the device stays updated with the latest set-
tings. Metadata extraction is vital for authentication, and the
time for each step is represented in Fig. 2.

In our experiment, we aimed to showcase the practicality of
our framework by evaluating its performance in automatically
registering IoT end nodes and deploying predefined applications

Fig. 3. Success rate, manual versus our framework.

compared to a manual approach. The registered IoT end nodes
appear in the web dashboard and Kubernetes control plane on
the EdgeDevice CR.

We begin our evaluation by comparing the success rates of
manual and automated IoT device registrations. The success rate
measures the percentage of registrations completed without er-
rors, assessing complexities like managing duplicate attributes,
addressing network errors, and enforcing device name/ID
limitations. It also considers accuracy of information, error-
handling, validation checks, and system reliability, providing
insights into the effectiveness and reliability of our registration
process.

SRT(%) =
SD
D
× 100 (1)

where

SRT is the Success Rate expressed in percentage,

SD represent the number of successful deployments and

device registration,

D represent the total number of deployments, failed

and successful.

In contrast to the manual approach, our framework incorpo-
rates validation mechanisms during device registration to detect
and address duplicate attribute values, significantly reducing the
likelihood of data inconsistencies and conflicts within the IoT
network. We use the mathematical equation in 1 to calculate the
success rate. While deployment success varied, our framework
consistently achieved a success rate above 90%, surpassing
the manual system, especially as the number of IoT devices
increased, resulting in a decreased success rate, as depicted in
Fig. 3.

We further compared the efficiency of our automated frame-
work with a manual approach for IoT device registration and
application deployment. In the manual process, tasks are sequen-
tial and labor-intensive, resulting in linear growth patterns. Our
automated framework, on the other hand, registers devices and
deploys applications automatically, exhibiting constant growth
rates and significant efficiency and scalability advantages. For
118 IoT devices, the manual approach takes up to 22 min, while
our automated method completes the process in just 1.5 min,

MAFENI AND KIM: AUTOMATED EDGE COMPUTING APPROACH FOR IoT DEVICE REGISTRATION AND APPLICATION DEPLOYMENT 1455

Fig. 4. IoT End Nodes registration and application deployment time, Manual
vs Our Framework.

highlighting the clear benefits of automation in saving time
and enhancing scalability in IoT deployments. Fig. 4 reveals
significant results from this comparison.

We continue evaluating our approach through an assessment
of our framework’s performance as we scaled up the number of
IoT devices by comparing it to another framework (SEMAR)
in [36]. To start the comparison, we conducted a thorough
examination of system performance by conducting a latency
experiment. This experiment focused on communication be-
tween edge nodes and IoT end nodes, comparing it to SEMAR.
Four distinct test scenarios were involved with varying message
rates—100, 500, 1500, and 2500 messages per second—while
concurrently increasing the number of IoT devices.

Messages used for ingestion, generated via simulation, rep-
resent distinct phenomena. They average 55 bytes for up-link
transmission and 30 B down-link from the device plugin. These
messages consist of six primary components: header, metadata,
device properties, security, control, and additional information.
The header contains device specifics like ID and connection
details. Metadata provides information on device properties.
Security enables secure transmission with validation tokens.
Control includes device acknowledgment and operational status.
Additional information includes longitude and latitude based on
the main board’s geographical position.

Notably, in our framework, the maximum latency recorded
was 2.98 s during the most demanding scenario: transmitting
2500 messages per second from 1000 IoT end nodes. In con-
trast, SEMAR experienced a latency of 6.6 s under identical
conditions and with the same number of IoT nodes. At lower
message rates and increased device numbers, latency exhibited
a slight upward trend but remained within acceptable limits.
The marginal differences in latency across diverse test cases
suggest that our system performs consistently well, even under
extreme conditions. This underscores the system’s efficiency
and robustness, indicating positive scalability and a capacity to
handle substantial workloads. Latency persists at higher value
across all test cases within SEMAR. The evaluation of this
explanation is illustrated in Fig. 5.

Our automation algorithms are designed for efficiency, ideal
for resource-constrained IoT environments. Each algorithm has
constant time complexity (O(1)), with perpetual loops involving
operations like conditional checks, function calls, and assign-
ments, all considered constant-time factors. Space complexity

Fig. 5. Latency at various rates.

Fig. 6. CPU utilization.

is also low (O(1)), as the algorithms primarily use variables
for references and data, without variable-sized data structures.
The computational load remains consistent over time due to
perpetual loops involving operations, such as heartbeat verifica-
tion, mutual authentication, configuration retrieval, and device
registration.

After experimenting with our algorithms, the outcomes indi-
cate that our framework effectively manages a substantial num-
ber of devices without depleting available resources. Notably,
with 125 IoT devices connected to both frameworks, the highest
CPU usage reached 56% in our framework, while SEMAR
framework reached up to 75% CPU usage for the same number of
devices. However, performance may be affected by factors, such
as the efficiency of underlying functions, external dependencies,
and network conditions. It must also be noted that we only tested
up to 120 IoT devices for CPU usage as the workloads used were
resource intensive and we could not exceed connecting beyond
120 IoT devices. These findings are visually depicted in Fig. 6.

We conducted further comparison between our framework
and SEMAR with a focus on response time. As elucidated
in [36], measuring response time, determining the time differ-
ence between transmitting data to the device plugin and receiv-
ing the corresponding message. The process for obtaining this
information is straightforward in the case of HTTP POST. When
the IoT device transmits data to the server using the REST API
service, the response message is promptly returned. However,

1456 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

Fig. 7. Average response time.

for MQTT, the program is tailored to measure the response
time. This adaptation involves sending the MQTT message to
the device when data is stored in the storage. The response
time for HTTP and MQTT plugins is illustrated in (2) and (3),
respectively.

R̄THTTP =
1

N

N∑

i=1

(treceivei − ttransmiti) (2)

where

ttransmiti is the time of data transmission,

treceivei is the time of response reception,

N is the total number of instances.

R̄TMQTT =
1

M

M∑

j=1

(tstorej − ttransmitj) (3)

where

ttransmitj is the MQTT message transmission time,

tstorej is the data storage & MQTT message reception time,

M is the total number of instances.

For 1000 devices, the average response time in our framework
is 630 ms, outperforming SEMAR which recorded a average
response time of 800 ms. This performance difference is il-
lustrated in Fig. 7. As we increase the number of IoT nodes
in both frameworks, our framework outperforms the SEMAR
framework, which registered a longer response rate. The trend
indicates that as the number of IoT nodes increases, the response
rate also rises in both frameworks, with our framework con-
sistently exhibiting shorter response times. The difference in
response rate between the frameworks remains negligible for up
to 400 IoT devices, but becomes noticeable once the number of
IoT devices reaches 500 and beyond.

We continued our experiment and evaluation through a com-
prehensive comparison between our framework and SEMAR,
focusing on average throughput. We ingested our device plugins
with requests per second, simulating 1 to 1000 virtual IoT
devices or publishers distributed in 13 incremental steps (1, 2,

Fig. 8. Throughput ingestion.

Fig. 9. Throughput ingestion after scaling.

5, 7, 10, 25, 50, 75, 100, 250, 500, 750, 1000) using JMeter [48]
and the MQTT plugin as a load generator [49].

In SEMAR, a maximum average of 1994 messages per second
is reached with 25 IoT devices and a rate of 200 messages per
second sent from each IoT device. Once the number of IoT
devices exceeds 25, there is a decline in the number of messages,
with other rates showing a similar trend. This is attributed to the
saturation of requests that the framework can handle, competing
with the ingestion rate of the server.

We provide the relationship between messages per second,
rates, and the number of devices, along with the formula to
calculate the throughput, as shown in (4) and (5) to arrive at
the figures depicted in Figs. 8 and 9

T̄ = f(x, y, r) (4)

where T is the throughput f(x, y, r) is a function that maps the
number of devices>xmessages per second yand rates rto the
throughput.

This relationship can further be expressed mathematically as
follows:

T̄ (x, y, r) = g(x) · y · r (5)

MAFENI AND KIM: AUTOMATED EDGE COMPUTING APPROACH FOR IoT DEVICE REGISTRATION AND APPLICATION DEPLOYMENT 1457

Fig. 10. Energy consumption and duty cycles.

Fig. 11. Edge node life time and duty cycles.

where T (x, y, r)is the throughput as a function of the number
of devices x messages per second y and rates rg(x) represents a
function that describes how throughput varies with the number
of devices. For our framework, a maximum average of 2189
messages per second is reached with 25 IoT devices and a
rate of 200 messages per second sent from each IoT device.
Similar to SEMAR, our device plugins in the containers fail to
contain all the requests beyond 25 IoT devices. To address this,
we scale up the pods, since we are utilizing an orchestration
and containerization approach in Kubernetes. This analogy is
illustrated in Fig. 9.

We utilize Kubernetes operations to enhance our system’s
capacity by leveraging its scalability feature. When surpassing
25 IoT devices, we scale up device plugin pods to manage
increasing requests, supporting up to 500 IoT devices and 2500
messages per second at a rate of 200. Scaling continues as needed
to handle incoming requests effectively. Our framework demon-
strates remarkable scalability, managing a substantial volume of
messages and a larger number of devices, surpassing SEMAR.
Refer to Fig. 9 for results.

We finally conducted a comparative analysis of our proposed
framework with SEMAR, focusing on energy efficiency. Our
investigation centered on the correlation between energy con-
sumption and duty cycles, as well as the impact of duty cycles
on edge node lifespan. Throughout the energy consumption and
duty cycles study, we maintained a consistent number of end-
node devices (1000 end nodes) and utilized identical workloads
for testing each edge node across both frameworks. We leveraged

Kepler, which offers an energy monitoring dashboard which
helped us to derive our results.

Considering that a 100% duty cycle implies zero sleep time
and consequently high energy consumption, we limited the
duty cycle to between 1% and 10% to see the actual impact.
Our findings revealed a direct relationship between duty cy-
cle increments and energy consumption in both frameworks.
However, our framework exhibited superior energy efficiency
compared to SEMAR. This superiority stems from our adop-
tion of a containerized approach to workloads, enabling the
starting and stopping of containerized applications without the
overhead associated with managing the entire operating system.
Consequently, this approach facilitates more efficient resource
utilization and enhanced energy efficiency [50], [51]. The results
of the explanation are depicted in Fig. 10.

Conversely, the life time of an edge node is contingent upon
its overall energy consumption, with higher lifespans correlating
inversely with duty cycles. This relationship is visually repre-
sented in Fig. 11. Although our framework demonstrates a slight
advantage over SEMAR, it remains imperative to minimize duty
cycles in both frameworks to achieve optimal power manage-
ment.

V. CONCLUSION

This article focuses on extending Kubernetes to the edge for
IoT device management, with a focus on automating IoT device
registration and application deployment. The goal is to reduce
human involvement, enhance interoperability, and streamline
management within heterogeneous configurations. Our testing
demonstrates the framework’s superior performance, efficiency,
and scalability compared to manual approaches and other frame-
works, even with hundreds of IoT end nodes. Future work
should explore implementing predictive machine learning for
edge node autoscaling, maintenance, and developing node-based
load balancing mechanisms for dispersed IoT setups.

REFERENCES

[1] U. Breitenbücher, K. Képes, F. Leymann, and M. Wurster, “Declarative vs.
imperative: How to model the automated deployment of iot applications?,”
in Proc. 11th Adv. summer Sch. Serv. Oriented Comput., 2017, pp. 18–27.

[2] S.N. Srirama and S. Basak, “Fog computing out of the box with FOGDEFT
framework: A case study,” in Proc. IEEE 15th Int. Conf. Cloud Comput.,
2022, pp. 342–350.

[3] A. C. Beltrão, B. B. N. de França, and G. H. Travassos, “Performance
evaluation of kubernetes as deployment platform for IoT devices,” in Proc.
Ibero- Amer. Conf. Softw. Eng., 2020, pp. 96–110.

[4] D. C. Y. Vargas and C. E. P. Salvador, “Smart IoT gateway for heteroge-
neous devices interoperability,” IEEE Latin Amer. Trans., vol. 14, no. 8,
pp. 3900–3906, Aug. 2016.

[5] N. Pazos, M. Müller, M. Aeberli, and N. Ouerhani, “Connectopen-
automatic integration of IoT devices,” in Proc. IEEE 2nd World Forum
Internet Things, 2015, pp. 640–644.

[6] S. N. Srirama, “A decade of research in fog computing: Relevance,
challenges, and future directions,” Softw.: Pract. Experience, vol. 54, no. 1,
pp. 3–23, 2024.

[7] K. Kotis and A. Katasonov, “An ontology for the automated deployment of
applications in heterogeneous IoT environments,” Semantic Web J., 2012.

[8] L. Kiefer, “Concept and implementation of a tosca orchestration engine for
edge and IoT infrastructures,” Master’s thesis, Univ. Stuttgart, Stuttgart,
Germany, 2021.

[9] M. R. M. Kassim, “IoT applications in smart agriculture: Issues and
challenges,” in Proc. IEEE Conf. Open Syst., 2020, pp. 19–24.

1458 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

[10] B.-C. Chifor, I. Bica, V.-V. Patriciu, and F. Pop, “A security authorization
scheme for smart home Internet of Things devices,” Future Gener. Comput.
Syst., vol. 86, pp. 740–749, 2018.

[11] M. Weqar, S. Mehfuz, and D. Gupta, “Autonomous device discovery for
IoT: Challenges and future research directions,” in Internet of Things, 2023,
1st Ed. Chapman and Hall/CRC, 2023, pp. 257–276.

[12] I. Čilić, P. Krivić, I. Podnar Žarko, and M. Kušek, “Performance evaluation
of container orchestration tools in edge computing environments,” Sensors,
vol. 23, no. 8, 2023, Art. no. 4008.

[13] Kubernetes, “Kubernetes: Production-grade container orchestration,” Ac-
cessed: Sep., 13, 2023. [Online]. Available: https://kubernetes.io/

[14] Docker, “Docker swarm,” Accessed: Sep., 13, 2023. [Online]. Available:
https://docs.docker.com/engine/swarm/

[15] A. Ullah, H. Dagdeviren, R. C. Ariyattu, J. DesLauriers, T. Kiss, and J.
Bowden, “Micado-edge: Towards an application-level orchestrator for the
cloud-to-edge computing continuum,” J. Grid Comput., vol. 19, pp. 1–28,
2021.

[16] A. R. Madushanki, M. N. Halgamuge, W. S. Wirasagoda, and A. Syed,
“Adoption of the Internet of Things (IoT) in agriculture and smart farming
towards urban greening: A review,” Int. J. Adv. Comput. Sci. Appl., vol. 10,
no. 4, pp. 11–28, 2019.

[17] S. Basak and S. N. Srirama, “Fog computing out of the box: Dynamic
deployment of fog service containers with Tosca,” Int. J. Netw. Manage.,
2023, Art. no. e2246. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/nem.2246

[18] M. Cruz, S. Mafra, E. Teixeira, and F. Figueiredo, “Smart strawberry
farming using edge computing and IoT,” Sensors, vol. 22, no. 15, 2022,
Art. no. 5866.

[19] H. Kokkonen et al., “Autonomy and intelligence in the computing contin-
uum: Challenges, enablers, and future directions for orchestration,” 2022,
arXiv:2205.01423.

[20] C. Resende, “Dot-digital orchestration of things,” in Proc. IEEE Int. Conf.
Smart Comput., 2023, pp. 247–248.

[21] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy
conservation in wireless sensor networks: A survey,” Ad Hoc Netw., vol. 7,
no. 3, pp. 537–568, 2009.

[22] Y. Maleh, Y. Qasmaoui, K. El Gholami, Y. Sadqi, and S. Mounir, “A
comprehensive survey on SDN security: Threats, mitigations, and future
directions,” J. Reliable Intell. Environ., vol. 9, no. 2, pp. 201–239, 2023.

[23] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “A survey on software-
defined wireless sensor networks: Challenges and design requirements,”
IEEE Access, vol. 5, pp. 1872–1899, 2017.

[24] Docker, “Use containers to build, share and run your applications: Package
software into standardized units for development, shipment and deploy-
ment,” Accessed: Sep., 17, 2023. [Online]. Available: https://www.docker.
com/resources/what-container/

[25] M. Narasimhulu, D. V. Mounika, P. Varshini, K. Amarendra, and T. R.
K. Rao, “Investigating the impact of containerization on the deployment
process in devops,” in Proc. IEEE 2nd Int. Conf. Edge Comput. Appl.,
2023, pp. 679–685.

[26] M. Khan, T. Becker, P. Kuppuudaiyar, and A. C. Elster, “Container-based
virtualization for heterogeneous HPC clouds: Insights from the eu H2020
cloudlightning project,” in Proc. IEEE Int. Conf. Cloud Eng., 2018,
pp. 392–397.

[27] N. Zhou, H. Zhou, and D. Hoppe, “Containerization for high performance
computing systems: Survey and prospects,” IEEE Trans. Softw. Eng.,
vol. 49, no. 4, pp. 2722–2740, Apr. 2023.

[28] L. Urblik, E. Kajati, P. Papcun, and I. Zolotova, “A modular framework for
data processing at the edge: Design and implementation,” Sensors, vol. 23,
no. 17, 2023, Art. no. 7662.

[29] Redhat, “What is container orchestration,” Accessed: Sep., 17, 2023.
[Online]. Available: https://www.redhat.com/en/topics/containers/what-
is-container-orchestration

[30] T.-G. Kwon and K. Ro, “A study on edge computing-based microservices
architecture supporting IoT device management and artificial intelligence
inference,” in Proc. IEEE Int. Conf. Electron., Inf., Commun., 2023,
pp. 1–2.

[31] M. Pradhan and S. Mohanty, “Remote authentication of IoT devices based
upon fog computing,” in Proc. Mach. Intell. Techn. Data Anal. Signal
Process.: Proc. 4th Int. Conf. MISP, 2023, vol. 1, pp. 287–299.

[32] A. Tsagkaropoulos, Y. Verginadis, M. Compastié, D. Apostolou, and
G. Mentzas, “Extending Tosca for edge and fog deployment support,”
Electronics, vol. 10, no. 6, 2021, Art. no. 737.

[33] M. Wurster, U. Breitenbücher, K. Képes, F. Leymann, and V. Yussupov,
“Modeling and automated deployment of serverless applications using
tosca,” in Proc. IEEE 11th Conf. Serv.-Oriented Comput. Appl., 2018,
pp. 73–80.

[34] S. A. Noghabi, J. Kolb, P. Bodik, and E. Cuervo, “Steel: Simplified
development and deployment of {Edge-Cloud} applications,” in Proc.
10th USENIX Workshop Hot Topics Cloud Comput., 2018, p. 6.

[35] N. Ferry, R. Dautov, and H. Song, “Towards a model-based serverless
platform for the cloud-edge-IoT continuum,” in Proc. 22nd IEEE Int.
Symp. Cluster, Cloud Internet Comput. (CCGrid), 2022, pp. 851–858.

[36] Y. Y. F. Panduman, N. Funabiki, P. Puspitaningayu, M. Kuribayashi,
S. Sukaridhoto, and W.-C. Kao, “Design and implementation of semar
IoT server platform with applications,” Sensors, vol. 22, no. 17, 2022,
Art. no. 6436.

[37] S. Trilles, A. González-Pérez, and J. Huerta, “An IoT platform based
on microservices and serverless paradigms for smart farming purposes,”
Sensors, vol. 20, no. 8, 2020, Art. no. 2418.

[38] KubeEdge, “Kubeedge documentation,” Accessed: Sep., 18, 2023. [On-
line]. Available: https://kubeedge.io/

[39] S.-H. Kim and T. Kim, “Local scheduling in kubeedge-based edge com-
puting environment,” Sensors, vol. 23, no. 3, 2023, Art. no. 1522.

[40] V.-C. Le and M. Yoo, “Lightweight kubeedge tool for edge computing en-
vironments,” J. Korean Soc. Commun. Stud., vol. 46, no. 9, pp. 1507–1514,
2021.

[41] Akri, “Akri documentation,” Accessed: Sep., 18, 2023. [Online]. Avail-
able: https://docs.akri.sh/

[42] Flotta, “Project-flotta framework documentation,” Accessed: Sep.,
18, 2023. [Online]. Available: https://project-flotta.io/documentation/v0_
2_0/intro/overview.html

[43] M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E.-H. M. Ag-
goune, “Internet-of-Things (IoT)-based smart agriculture: Toward making
the fields talk,” IEEE Access, vol. 7, pp. 129551–129583, 2019.

[44] S. Navulur et al., “Agricultural management through wireless sensors
and Internet of Things,” Int. J. Elect. Comput. Eng., vol. 7, no. 6, 2017,
Art. no. 3492.

[45] Kepler, “Kepler documentation,” Accessed: Jan., 24, 2024. [Online].
Available: https://sustainable-computing.io/

[46] ebpf, “Ebpf documentation,” Accessed: Jan., 24, 2024. [Online]. Available:
https://ebpf.io/

[47] Kubebuilder, “Kubebuilder documentation,” Accessed: Sep. 25, 2023.
[Online]. Available: https://book.kubebuilder.io/

[48] JMeter, “Jmeter documentation,” Accessed: Sep. 25, 2023. [Online]. Avail-
able: https://jmeter.apache.org/

[49] M. Guerra, “Jmeter documentation,” Accessed: Sep. 25, 2023.
[Online]. Available: https://gist.github.com/marianoguerra/be216a581ef
7bc23673f501fdea0e15a

[50] Ö. E. Demirkol and A. Demírkol, “Energy efficiency with an appli-
cation container,” Turkish J. Elect. Eng. Comput. Sci., vol. 26, no. 2,
pp. 1129–1139, 2018.

[51] E. Christian, “How containerized applications increase speed & effi-
ciency,” Accessed: Sep., 20, 2020. [Online]. Available: https://scoutapm.
com/blog/how-containerized-applications-work

Vitumbiko Mafeni received the B.S. degree in infor-
mation & communication technology from Daeyang
University, Lilongwe, Malawi, in 2020. He is cur-
rently working toward an integrated M.Sc. and Ph.D.
degrees in information telecommunications engineer-
ing, with a focus on automation, networking, and
computers with Soongsil University, School of Elec-
tronic Engineering, Seoul, South Korea. His current
focus is on automating the deployment and manage-
ment of 5G network functions across a multi-cloud,
multi-cluster setup.

He is also a member of Distributed Cloud & Network(DCN) Laboratory at
Internet Infra System Research Center - SSU IISTRC in Seoul, South Korea.
His primary research interests include intelligent communication System, IoT,
and edge-cloud computing.

Younghan Kim (Member) received the B.S. degree in
electronics engineering from Seoul National Univer-
sity, Seoul, South Korea, in 1984, and the M.S. and
Ph.D. degrees in electrical engineering from Korea
Advanced Institute of Science and Technology, Seoul,
South Korea, in 1986 and 1990, respectively.

Since 1994, he has been with Soongsil University,
where he is currently a Professor with the school of
electronic engineering.

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2246
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2246
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://kubeedge.io/
https://docs.akri.sh/
https://project-flotta.io/documentation/v0_2_0/intro/overview.html
https://project-flotta.io/documentation/v0_2_0/intro/overview.html
https://sustainable-computing.io/
https://ebpf.io/
https://book.kubebuilder.io/
https://jmeter.apache.org/
https://gist.github.com/marianoguerra/be216a581efpenalty -@M 7bc23673f501fdea0e15a
https://gist.github.com/marianoguerra/be216a581efpenalty -@M 7bc23673f501fdea0e15a
https://scoutapm.com/blog/how-containerized-applications-work
https://scoutapm.com/blog/how-containerized-applications-work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

