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Computational Performance Study on the Alternating
Direction Method of Multipliers Algorithm for a

Demand Response Peak Shaving Application
Sebastian Schwarz , Member, IEEE, and Antonello Monti , Senior Member, IEEE

Abstract—This article quantifies and benchmarks the computa-
tional performance of the distributed alternating direction method
of multipliers (ADMM) optimization algorithm applied to a slow-
dynamics demand response peak shaving application. We propose a
hierarchical demand response architecture, in which a commercial
aggregator acts as the supplier and system-level flexibility service
provider to a portfolio of residential prosumers. The prosumers are
equipped with flexible distributed energy resources that we model
based on convex operation constraints. The optimal day-ahead
peak shaving control of the portfolio is realized in a distributed
way through an entirely parallel implementation of the distributed
ADMM optimization algorithm. In this scenario, we evaluate the
ADMM algorithm’s overall speed of convergence and conduct
multiple large-scale numerical simulation experiments on a com-
pute cluster to compare and assess the algorithmic performance of
ADMM against a centralized reference benchmark optimization.
Our simulation results show that the distributed ADMM algorithm
is superior compared to a purely centralized optimization. The
findings are of particular use to commercial demand response
aggregators that show interest in the deployment and improvement
of distributed coordination and optimal control concepts for future
slow-dynamics demand response applications and services.

Index Terms—Aggregator, alternating direction method of
multipliers, day-ahead scheduling, demand response, distributed
optimization, peak shaving, prosumer.

I. INTRODUCTION

IN THIS article, we consider slow-dynamics demand re-
sponse (DR) applications, in which residential prosumers

offer operational flexibility to a commercial DR aggregator
in the day-ahead or intraday timeframe based on supply and
flexibility purchase agreements. The DR aggregator acts as the
flexibility service provider that bundles the energy generation
and consumption flexibility offered by its local customers [1].
For instance, a virtual power plant (VPP) operator that provides
both energy balancing and grid services to other stakeholders in-
side the energy system can take on the role of the DR aggregator
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[2]. In this way, even small-scale distributed energy resources
(DERs) can contribute to the wholesale energy market or support
the provision of grid services [1], [2].

In this context, optimal dispatch and portfolio balancing appli-
cations pose a challenge, because they usually integrate a large
number of residential DERs. From a mathematical optimization
point of view, this circumstance in turn leads to a large number
of variables as well as equality and inequality constraints that
the corresponding optimization models contain. Commercial
DR aggregators, thus, show an increased interest in distributed
optimization methods.

In distributed optimization, a global optimization problem is
partitioned into smaller subproblems that are computed inde-
pendently using an iterative algorithm. The overall advantages of
distributed over centralized optimization methods, as outlined in
the review work in [3], include 1) the safeguard of end-consumer
data, measurement information, constraints, and objective func-
tions, 2) the improvement of robustness, i.e., single point of fail-
ure concerns, and 3) the ability to perform parallel, decomposed,
and computationally distributed computations. Especially the
third aspect is important for the solution of large-scale opti-
mization problems, which usually cannot be accomplished with
the pure computing capabilities of off-the-shelf mathematical
optimization solvers.

The optimal balancing use case presented in [4] from the
European H2020 research project edgeFLEX [5] is an example
showing that distributed optimization is a feasible approach to
tackle large-scale optimization problems. The authors’ objective
in [4] is to balance VPP portfolios in Germany consisting of up
to 200 DERs. Because of the complexity and large size of the
optimization problem defined in [4], in some cases a straight-
forward centralized computation provides either suboptimal or
any feasible solution within a moderate real-time execution time
limit. Considering that a failed optimal balancing process causes
the loss of revenue, this outcome is insufficient and distributed
optimization methods–albeit more difficult to realize–become
the authors’ preferred choices.

Motivated by the work in [4], our research work, therefore,
proposes a hierarchical and distributed DR architecture that can
be used as a reference to further deploy and improve distributed
optimization methods and algorithms for the intelligent coordi-
nation and optimal control of DERs in power systems.

Making use of this DR architecture, the primary goal
of this article is to evaluate the computational behavior of
the widely recognized and accepted distributed alternating
direction method of multipliers (ADMM) optimization algo-
rithm applied to portfolio balancing applications, in particular
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for large portfolios that may include hundreds of DERs. We
map the ADMM algorithm to the proposed distributed DR
architecture, in which a commercial DR aggregator acts as
the supplier and system-level flexibility service provider to a
portfolio of residential prosumers. The prosumers are equipped
with flexible DERs whose operation we model using convex
constraints and objective functions. The mapping of the ADMM
algorithm to the proposed architecture makes it possible to
formulate the optimal balancing problem as an optimal exchange
problem with a separable structure. The distributed nature of
ADMM thereby allows us to define the individual prosumers’
optimization problems as the ADMM decomposed subproblems
that we can solve independently and in parallel [6]. In this way,
the application of the ADMM algorithm becomes independent
of both the size of the portfolio and the local asset configurations
on the prosumers’ premises.

Our research specifically addresses the existing gap of the
ADMM algorithm’s scalability properties that have not been
sufficiently well evidenced for large-scale slow-dynamics DR
applications in the past. Although ADMM is known as a fast
iterative decomposition algorithm that, in its standard form,
comes with a near-zero optimality gap for convex optimization
problems [6], there is still a lack of analyses that quantify and
benchmark the ADMM’s computational performance for fully
parallel realizations of the algorithm. Given the proposed DR ar-
chitecture, our research work evaluates the best-case algorithmic
performance of ADMM for a residential DR peak shaving ap-
plication with quadratic cost functions. We conduct large-scale
simulation experiments on a compute cluster and formulate the
trend of the dependency between optimization problem size,
ADMM convergence speed, and its step size parameter. Our
findings ultimately provide commercial DR aggregators with
accurate algorithmic performance trends to decide on centralized
versus ADMM-based approaches for real-world DR applica-
tions and services.

A. State of the Art and Advancements

Distributed optimization methods and algorithms for convex
optimization problems based on Lagrangian relaxation, such as
dual decomposition and ADMM, have been studied intensively
in recent literature.

For example, Soares et al. [7] applied the distributed dual
decomposition algorithm to deploy and activate flexibility on the
residential building level from DERs. A system-level aggregator
makes use of the pooled flexibility to cope with congestions in
the distribution grid. Similar to our work, the approach in [7]
is privacy preserving while it inherently takes into account all
end-consumer constraints and objectives.

As indicated by Huang et al. [8], the dual decomposition
algorithm, nevertheless, requires a strict convex optimization
problem formulation and may be slow in convergence. The
distributed ADMM algorithm, which we focus on in this work,
overcomes these limitations by combining the effectiveness
and robustness of the augmented Lagrangian approach from
the method of multipliers with the distributed computational
abilities of dual decomposition [3], [6].

Rivera et al. [9] used the ADMM algorithm to schedule a fleet
of electric vehicles under different DR aggregator system-level
goals, such as cost optimization or valley filling. Zhou et al.
[10] extend the approach by also considering fast charging and
electric vehicle battery degradation. In both works, the ADMM

algorithm solves an optimal power exchange problem that is
similar to our work, but only considers operational flexibility
deployment from electric vehicle charging. Instead, we include
more diversified DERs such as electro-thermal heat pumps and
photovoltaic units in the exchange process. A system-level equi-
librium constraint thereby ensures the balance of power demand
and supply throughout the optimization horizon.

Whereas our work focuses on residential prosumers, Fad-
del et al. [11] applied the ADMM algorithm to commercial
buildings to optimize heating, ventilation, and air conditioning
(HVAC) units. The ADMM optimization successfully reduces
the commercial buildings’ HVAC energy consumption, while it
preserves the thermal comfort specifications of occupants on
the building level as well as distribution grid constraints on
the system operator level. Although the feasibility region of the
standard alternating current power flow problem is nonconvex,
convex relaxation approaches such as in [12] are considered
frequently to make ADMM to additionally incorporate grid con-
straints for optimal energy management problems. In contrast to
our work, however, Faddel et al. [11] and Manshadi et al. [12] do
not specify a holistic architecture, which makes it rather difficult
to apply and scale their proposed ADMM-based solutions.

Attarha et al. [13] further presented a robust approach based
on the ADMM algorithm for the intelligent coordination of
residential DERs. Using an affinely adjustable robust ADMM
extension, prosumers negotiate “here-and-now” decisions in the
long-term and compensate uncertainty using “wait-and-see” re-
course decisions in the short-term. Although optimization under
uncertainty is beyond the scope of our work, Attarha et al. [13]
showed that measures to cope with uncertainty can be readily
integrated into the ADMM optimization process.

We also do not consider approaches that make use of fully
decentralized variants of the ADMM algorithm. Li et al. [14], for
example, proposed a parallel and decentralized ADMM-based
application for the optimal energy management in microgrids.
In comparison to our work, such decentralized approaches do
not require a central coordinator. Instead, information, such
as in [14], is exchanged between neighboring terminals or
agents solely. In consequence, decentralized applications typ-
ically demand for specific prerequisites on the underlying grid
and communication network hierarchy such as a tree-based or
radial network topology [3], [15]. However, these preconditions
are usually not met in hierarchical DR architectures in which
a commercial DR aggregator acts as the coordinating entity for
prosumers in multiple, possibly galvanically separated, medium,
and/or low voltage grids [15].

Beyond the scope of our investigations are moreover ADMM-
based applications that include integer variables or nonconvex
modeling approaches for DERs such as in the related works in
[16], [17], and [18]. ADMM turns into a heuristic in that case
where one can ensure neither convergence nor global optimality
of the solution. Distributed algorithms other than ADMM, such
as Dantzig-Wolfe decomposition for mixed-integer problems
in [19] or the alternating direction inexact Newton (ALADIN)
algorithm for nonconvex problems in [20], may in consequence
constitute choices that are more suitable.

Furthermore and in view of the algorithmic performance
of the ADMM algorithm, the above works [9], [10], [11],
[13], [16], [17], [18] have in common that they make perfor-
mance statements based on numerical simulation experiments
in which the ADMM implementation still contains sequential or
pseudoparallel workflows. Instead, our work presents more
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absolute results based on computational performance inves-
tigations on a compute cluster of loosely-coupled machines
where all ADMM subproblems run fully in parallel on ded-
icated Central Processing Unit (CPU) cores. We, therefore,
strengthen the contributions in [9], [10], [11], [13], [16], [17],
and [18] by quantifying the computational performance of the
distributed ADMM algorithm and by putting it in relation to
a centralized computation for larger scale residential DR peak
shaving scenarios that are complex enough to be representative
for portfolio sizes of up to 200 flexible prosumers. To the best
of our knowledge, no comparable performance and scalability
analyses of such a truly parallel ADMM application have been
conducted in this research area before.

B. Contributions

From an operational point of view, this article defines and
extensively discusses a scalable ADMM-based optimization
algorithm for a slow-dynamics DR peak shaving application.
We map the ADMM algorithm to a hierarchical and distributed
DR architecture, in which residential prosumers own and oper-
ate DERs. The ADMM-based coordination strategy maintains
an optimal exchange of electric power among the prosumers.
The exchange process is fully privacy preserving according to
the mapping of the ADMM algorithm to the distributed DR
architecture.

From an algorithmic point of view, we compare the best-case
computational performance of a parallel and, hence, fully dis-
tributed ADMM algorithm implementation against a centralized
reference benchmark optimization and provide an accurate iden-
tification of the trend of the dependency between the ADMM
speed of convergence, its step size parameter and the overall op-
timization problem size. We demonstrate that in certain cases the
solution of large-scale peak shaving problems is only possible
with the proposed ADMM algorithm.

From an architectural point of view, we propose a distributed
and hierarchical reference DR architecture that supports the
needs of commercial DR aggregators. The architecture makes
it possible to integrate several hundred prosumers in a modular
fashion independent of the specific asset configurations on the
prosumers’ local premises. The proposed architecture, together
with our operational and algorithmic contributions, hence, fa-
cilitates the deployment and improvement of coordination and
optimal control concepts for slow-dynamics DR applications.

II. PROPOSED REFERENCE DR ARCHITECTURE

For the effective deployment and bundling of residential
prosumer-level flexibility, we first propose a hierarchical and
distributed DR architecture based on the flexibility deployment
approach provided by the European Smart Grids Task Force of
the European Commission [21]. The approach in [21] defines
a customer-centric energy system framework and interlinks the
providers and users of operational flexibility subject to their in-
dividual roles, needs, challenges, and requirements. Inspired by
that approach, our proposed DR architecture constitutes a valid
reference DR architecture for the DR peak shaving application
considered in this article. It is important to stress that our specific
choice on the DR architecture, however, should be understood
as a recommendation only, but it does not limit the generality of
the presented methodology, results, and findings.

Fig. 1. Schematic of the proposed reference DR architecture based on the
framework approach described in [21].

Based on [21] and as visualized in Fig. 1, a DR aggregator acts
as the commercial supplier and system-level flexibility provider
in the proposed DR architecture. It terminates flexibility and
supply purchase contracts with its customers, i.e., a portfolio
of residential prosumers as indicated by the dotted box in
Fig. 1. The prosumers are the local-level flexibility providers
and may be equipped with flexible (small-scale) DERs, such as
photovoltaic (PV) units, electro-thermal HVAC systems, electric
vehicles and/or storage units. By bundling and leveraging the
operational flexibility of the local prosumers, the commercial
DR aggregator–in its role of the central coordinator and accord-
ing to its underlying business case–can, hence, offer flexibility
and energy services to system-level flexibility users such as the
balance responsible party or the distribution system operator.
The services can include but are not limited to demand shifting,
peak shaving or congestion management, and may also include
the DR aggregator’s participation in the energy trade market,
compare the upper box in Fig. 1. Moreover, it is important
to emphasize that, according to [21], the DR architecture is
customer-centric, i.e., the privacy and sensitive data of pro-
sumers must be protected at all times meanwhile prosumers
should be empowered to actively participate in the DR solution.
The latter means that prosumers must have the opportunity to
pursue toward individual local-level objectives, too. For exam-
ple, a prosumer local-level objective can be to minimize energy
costs, reduce CO2 emissions, or increase the self-consumption
rate of the local (renewable) energy generation [21], [22].
Within the requirement of satisfying the prosumer local-level
objectives, the DR aggregator hence maximizes the remaining
operational flexibility of its customers to accomplish for its own
objectives and services. However, each prosumer’s preference
between, possibly contradictory, local-level, and system-level
objectives is assumed to be an integral part of the flexibility
and supply purchase agreements and has been analyzed in more
detail in previous work [22]. In this article, we assume that
both local-level and system-level objectives are of the same
preference by all prosumers, i.e., they are equally important to
the prosumers.

The following section introduces the distributed ADMM
algorithm formulation and links it to the proposed DR
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architecture. The mapping of the ADMM algorithm to the
proposed distributed DR architecture demonstrates the advan-
tage on our architecture choice: we represent all prosumers
and their local devices as mathematical sets of constraints plus
objective functions, where the total number, physical types, and
operational constraints of local devices become irrelevant to
the DR aggregator. The proposed reference DR architecture,
thus, allows commercial DR aggregators for a modular and
scalable integration of hundreds of prosumers and assets while
it satisfies the data privacy requirement of the prosumers. Using
an approach based on a distributed optimization method such
as ADMM, operational flexibility is inherently deployed at
maximum level and can be used to fulfill both local-level and
system-level objectives at the same time.

III. DISTRIBUTED OPTIMIZATION USING ADMM

In this section, we first define the local-level mathemati-
cal optimization model for a prosumer, and second define the
system-level optimization model for the DR aggregator. The
distributed DR peak shaving application under investigation,
which couples the optimization models from all prosumers and
the DR aggregator, is referred to as the portfolio balancing opti-
mization problem. The primary goal of this portfolio balancing
optimization is in the provision of a system-level peak shaving
flexibility service to a system-level flexibility user, whilst the
power demand and supply inside the DR aggregator’s prosumer
portfolio must be balanced based on an equilibrium constraint
[23]. We reformulate this portfolio balancing optimization prob-
lem as an equivalent optimal exchange problem that has a fully
separable structure. This allows us to formulate a distributed
optimization approach based on the iterative exchange ADMM
algorithm that satisfies the preconditions of our proposed DR
architecture from Section II.

A. Definition of Variables and Domains

We define all nonbold style mathematical variables as scalars.
Vice versa, all bold style mathematical variables denote time
series vectors for an optimization horizon Th that consist of T
discrete time slots in total. One single time slot is defined as t ∈
{0, 1, 2, . . . , T} with a fixed duration of Δt = |Th| /T . Thus,
all vectors are defined over RT , where we denote one single
vector element by the superscript t. Moreover, a positive sign
for power or energy represents demand/consumption, whereas
a negative sign represents supply/generation.

B. Prosumer Local-Level Optimization Model

We assume that our proposed distributed DR architecture con-
sists of one DR aggregator and N local-level prosumers. Based
on the customer-centric precondition described in Section II,
all N prosumers have the opportunity to perform a local-level
optimization subject to their individual objectives and local
constraints. For this purpose, we assume that each prosumer
possesses a local-level optimization model. Similar to the work
in [9], this prosumer local-level optimization model is defined
as follows:

min
P el,i

fi (P el,i) (1)

s.t. P el,i ∈ Xi, i = 1, . . . , N. (2)

In (1), we define the net power contribution of the ith prosumer
as optimization variableP el,i, which is subject to a convex set of
local prosumer constraints Xi in (2). Constraint set Xi includes
all device constraints with which the prosumer i is equipped,
i.e., Xi includes the physical operation constraints for all local
storage, load and/or generation assets present. In this work, we
adopt state-of-the-art convex device optimization models. They
are specified in the Appendix section. Moreover, function fi
in (1) represents the individual objective function of the ith
prosumer. We choose a self-consumption maximization objec-
tive for the prosumer local-level optimization models based on
the underlying customer-centric DR architecture. This implies
that the prosumers intend to minimize their total grid feed-in
per time slot, i.e., the total (renewable) excess energy generation
throughout the optimization horizon Th. We, therefore, consider
the following quadratic objective function for all prosumers
i = 1, . . . , N :

fi(P el,i) =
∑
t

(
min

{
0, P t

el,i

})2
. (3)

C. DR Aggregator System-Level Optimization Model

In analogy to the prosumer local-level optimization model, the
DR aggregator system-level optimization model with reference
to the work in [9] is defined as follows:

min
P el,0

f0 (P el,0) (4)

s.t. P el,0 ∈ X0. (5)

In (4), we define the net power contribution of the DR aggre-
gator to the entire prosumer portfolio as optimization variable
P el,0, which is subject to a convex set of DR aggregator con-
straints X0 in (5). Function f0 represents the objective function
of the DR aggregator, i.e., its desired flexibility or energy service
to a system-level flexibility user. Since we investigate a DR peak
shaving application in this article, with the goal to mitigate power
consumption/generation peaks on the portfolio level, function f0
is quadratic in our case, such that

f0(P el,0) =
∑
t

(
P t
el,0

)2
. (6)

Constraint set X0, according to (5), defines the constraints on
the DR aggregator’s system-level power contributionP el,0, e.g.,
such as minimum and maximum power subscriptions. However,
in the simplest case X0 defines the empty set, i.e., X0 = ∅. This
means that no constraints apply to the power contribution P el,0

of the DR aggregator, which we also assume in this article.

D. Portfolio Balancing Optimization Problem

The DR aggregator’s primary goal is to maximize the unused
operational flexibility of its prosumer customers to provide
flexibility or energy services to a system-level flexibility user.
Because of the customer-centric design of our DR architecture,
however, one must also account for the local objectives of the
prosumers at all times. For this purpose, we adopt the definition
of the customer-centric portfolio balancing optimization prob-
lem from [23], which interlinks (1)–(6) as follows:

min
P el,0 P el,i

f0 (P el,0) +
N∑

i = 1

βifi (P el,i) (7)
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s.t. P el,0 ∈ X0, P el,i ∈ Xi, i = 1, . . . , N (8)

s.t. P t
el,0 +

N∑
i = 1

P t
el,i = 0, ∀t. (9)

In (7), we optimize toward both the objective of the DR aggre-
gator and the local objectives of the prosumers at the same time,
where variable βi ≥ 0 defines an individual participating factor
per prosumer i. Each prosumer can define its local objective
function fi that is weighted against the system-level objective by
means of factor βi. We assume that both local-level and system-
level objectives are of the same importance for the prosumers
in this article (see Section II), i.e., we consider βi = 1 for all
prosumers i. In (8), we integrate the convex constraint sets Xi

and X0 from (2) and (5), respectively. Constraint (9) represents
the equilibrium constraint of the portfolio balancing problem:
the DR aggregator also acts as a supplier to its prosumers, which
means that it is responsible for the balance of the net power
demand and supply inside the portfolio, i.e., we enforce the
portfolio’s residual power load to vanish [23].

The portfolio balancing optimization problem in (7)–(9) de-
fines a centralized quadratic programming optimization prob-
lem, which one could solve using an off-the-shelf mathematical
optimization solver that supports quadratic objective functions.
We define this problem as our centralized reference benchmark
optimization problem. Solving this problem, however, requires
the commercial DR aggregator to collect all prosumer infor-
mation and parameters according to variables P el,i and sets
Xi, which is considered critical from the customer data privacy
point of view [3]. Moreover, the portfolio balancing optimization
problem becomes computationally challenging for a large num-
ber of prosumers as the problem size, in terms of optimization
variables and constraints, grows proportionally with the number
of prosumers considered.

E. Distributed ADMM Optimization Problem

The portfolio balancing problem in (7)–(9) is fully separable
in optimization variables P el,0 and P el,i if we rewrite it as
an equivalent optimal exchange problem by introducing a new
decision variable zi and the indicator function g(zi) as follows:

min
P el,0 P el,i zi

f0 (P el,0) +

N∑
i = 1

βifi (P el,i) + g (zi) (10)

s.t. P el,0 ∈ X0, P el,i ∈ Xi, i = 1, . . . , N (11)

s.t. P el,i = zi , i = 0, . . . , N (12)

s.t. g (zi) =

⎧⎨
⎩0 if

N∑
i = 0

zti = 0, ∀t
∞ otherwise

. (13)

The equivalent optimization problem in (10)–(13) takes the
so-called exchange ADMM form as defined in [6] and as further
extended by the works in [9], [23]. It allows us to decompose the
optimization problem in (10)–(13) and to solve it in a distributed
way using the distributed exchange ADMM algorithm.

It is important to mention that there are also variants of
the ADMM algorithm other than exchange ADMM, which are
comprehensively studied in [6]. Exchange ADMM, however,

fits well to the preconditions of our proposed DR architec-
ture, which is why we adopt it in this article. The rationale
for this is that exchange ADMM is known as a special case
for optimization problems with an economic interpretation [6].
In comparison to the standard ADMM, the exchange ADMM
problem formulation can be considered as the optimal exchange
between goods via a price adjustment process. This means that
a competitive market seeks solutions in the direction of a mar-
ket equilibrium [6]. This market equilibrium is the portfolio’s
residual power load in our case, as defined by the modified
equilibrium constraint in (12). The electric powers P el,0 and
P el,i in (11) represent the quantities that the DR aggregator and
the prosumers exchange subject to the objective functions fi in
(10). In other words, the power quantities can be understood
as the individual contributions of the DR aggregator and the
prosumers to the global exchange process. Through the mapping
of the exchange ADMM algorithm to our proposed distributed
DR architecture, the DR aggregator thereby actively pursues
toward this equilibrium by adjusting shared ADMM variables
that are to be integrated as penalty terms in the prosumers’ local
objective functions fi. The DR aggregator adjusts the shared
ADMM variables up or down depending on whether there is a
lack or excess of residual power on the system-level [6], but it
does never control the prosumer’s local devices directly.

Based on the ADMM theory provided in [6], [9], and [23], the
augmented Lagrangian function for the exchange optimization
problem in (10)–(13) with f(x = P el) =

∑N
i=0 fi(P el,i) is

Lρ (x, z,λ) = f (x) + g (z) + λT (x− z) +
ρ

2
‖x− z‖22

(14)
where ρ is the augmented penalty parameter and λT a vector of
Lagrangian variables. The iterative exchange ADMM process
involves the separate minimization over the primal decision
variables x and z from (14); followed by the maximization over
λT . Rivera et al. [9] further simplified this iterative process for
the optimization problem in (10)–(13), which finally yields the
equations of the iterative exchange ADMM algorithm, where
superscript k represents the kth iteration step, as follows:

P
(k+1)
el,j = argmin

P el,j

fj (P el,j) + λT (k)

P el,j

+
1

2
ρ
∥∥∥P el,j−

(
P

(k)
el,j−P̄

(k)
el

)∥∥∥2
2
, j = 0, . . . , N

(15)

P̄
(k+1)
el =

1

N + 1

[
P

(k+1)
el,0 +

N∑
i=1

(
P

(k+1)
el,i

)]
(16)

λ(k+1) = λ(k) + ρ(k)P̄
(k+1)
el . (17)

Fig. 2 illustrates the mapping of the distributed exchange
ADMM algorithm to the proposed distributed DR architecture
including an overview on the information flow of shared ADMM
variables between the prosumers and the DR aggregator. In
exchange ADMM iteration step k, the DR aggregator first sends
out the shared ADMM variables λ(k) and P̄ (k)

el to the prosumers.
ADMM variable λ(k) converges to the optimal dual variable of
the problem in (10)–(13) and we can interpret it as a virtual price
incentive. This virtual price incentive is the power exchange
incentive in our case, i.e., the quantity that incentivizes the
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Fig. 2. Mapping of the distributed ADMM algorithm to the proposed dis-
tributed DR architecture.

prosumers to pursue toward the global power equilibrium of the
portfolio based on the flexibility purchase agreements. ADMM
variable P̄ (k)

el represents the net power residual, i.e., the current
power demand versus supply imbalance inside the prosumer
portfolio during iteration stepk. It is desired to go to zero in order
to satisfy the equilibrium constraint in (12). In a second step,
all prosumers i = 1, . . . , N solve their local-level optimization
problems in parallel and obtain their individual optimal power
contributionsP (k+1)

el,i according to (15), where j = i. In (15), the
augmented Lagrangian penalty term ρ represents the ADMM
step size parameter. It is a free variable and it is sufficient to use
a predefined fixed step size for the ADMM algorithm. The DR
aggregator finally gathers all variables P (k+1)

el,i from its portfolio
customers, performs the system-level optimization in (15) where
j = 0, and computes the new net power residual P̄

(k+1)
el in

(16) as well as the new virtual price incentive λ(k+1) in (17)
as required for the next ADMM iteration step k+1 [6], [9].

For convex problems, the ADMM algorithm guarantees con-
vergence to the optimal solution of the initial nonseparated
optimization problem in (7)–(9) [3]. Therefore, it is sufficient
to terminate the algorithm after a sufficiently large number of
iteration steps k [3]. For this purpose, we adopt the following
ADMM stopping criteria from [9] that comprise the primal
residual r(k) in (18) and the dual residual s(k) in (19) as follows:

r(k) =
∥∥∥P̄ (k)

el

∥∥∥
2

(18)

s(k) =

∥∥∥∥∥∥∥∥∥
P

(k)
el,0 − P

(k−1)
el,0 +

(
P̄

(k−1)
el − P̄

(k)
el

)
...

P
(k)
el,N − P

(k−1)
el,N +

(
P̄

(k−1)
el − P̄

(k)
el

)
∥∥∥∥∥∥∥∥∥
2

. (19)

Based on (18), (19), the DR aggregator checks the exchange
ADMM algorithm for convergence after each iteration and stops
the algorithm if the following criteria are both satisfied:

r(k) ≤ εp, ρ (N + 1) s(k) ≤ εd, (20)

where εp > 0 and εd > 0 are sufficiently small numbers and
denote the user-defined ADMM tolerances on the feasibility and
the optimality of the ADMM solution quality, respectively [9].

IV. ADMM COMPUTATIONAL PERFORMANCE STUDY FOR A

DR PEAK SHAVING APPLICATION

In this section, we investigate the algorithmic performance of
the distributed ADMM algorithm. We apply the distributed ex-
change ADMM algorithm defined in (15)–(20) to the equivalent
optimal exchange problem in (10)–(13), where we assign every
ADMM subproblem in (15), i.e., every prosumer local-level
optimization problem, to a separate computing process on a
compute cluster. Motivated by earlier work in [24], we consider
a residential DR peak shaving application that is intended to
be both a suitable and a sufficiently general test case for our
analyses. This means that nonfundamental variations in the
assumptions and asset configurations do not restrict and affect
the generality of the presented results and findings.

A. Setup of the Residential DR Peak Shaving Application

We embed the residential DR peak shaving application into
the proposed distributed DR architecture by setting the objective
functions of the N prosumers and the DR aggregator as defined
in (3) and (6), respectively.

We flexibly vary the number of prosumers N in the following
simulation experiments to evaluate the impact of the prosumer
portfolio size on the ADMM’s algorithmic performance. For a
fair computational comparison for different portfolio sizes N ,
we assume a homogeneous asset equipment over all prosumers.
The assumption of homogeneity is to avoid a situation where
some prosumers must compute the day-ahead schedule for a
large number of local assets, while others operate only very few
or even no devices. In this scenario, the overall ADMM algo-
rithmic performance would strongly depend on the prosumer
with the most complex local optimization problem formulation,
which would adversely affect the average computation time per
iteration, and slow down the ADMM optimization process.

In our simulation experiments, each prosumer thus represents
a residential single-family house (SFH). We equip each SFH
with an electro-thermal heat pump plus thermal energy storage
unit, as well as with a PV unit plus stationary battery storage. The
storage units provide a sufficient level of operational flexibility
to the DR peak shaving application.

The required SFH data in our scenarios rests on building
information and energy data provided by [25]. Based on this
data as well as historical weather data for the region of Aachen,
Germany for the year 2018 from [26], the thermal load demand
curve per SFH is calculated. A prosumer’s heat pump plus
thermal energy storage unit must cover this thermal load demand
during all time slots. We size the thermal energy storage unit,
i.e., a standard hot water tank buffer, twice the heat pump’s
thermal nominal hourly energy generation. This means that a
heat pump can be turned-off for at least two hours if the buffer
tank is fully loaded with hot water. The power generation profile
of the PV unit is calculated based on the approach provided in
[27], for which we again use the data from [25] and [26]. For the
stationary battery unit, we consider a state-of-the-art residential
PV battery of size 13.5 kWh and 4.6 kW. For the electric load
demand of a prosumer, we assume an annual electricity demand
of 3 500 kWh and refer to the standard load profiles from [28].

For the sake of exemplification, we perform our DR peak
shaving application in the day-ahead timeframe for one single
historical day. The day-ahead optimization horizon Th for our
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TABLE I
SIZE OF THE PORTFOLIO BALANCING OPTIMIZATION MODEL

DR application consists of T = 1440 time slots, i.e., Δt= 60 s.
Given the weather data from [26], we choose the 27th of March
2018, since this historical weekday comes with an average daily
temperature below 5 °C, which makes it a typical day within the
annual German heating period according to standard VDI 4655
[29]. Moreover, above-average solar radiation conditions prevail
on the historical day under consideration, i.e., we see a power
generation peak from the prosumers’ PV units during noontime.

B. Implementation and Computational Setup

For the implementation of the convex optimization models
and the exchange ADMM algorithm according to (15)–(20), we
use the open-source pycity_scheduling optimization framework
package [30]. Based on the homogeneous setup described in
Section IV-A, the initial portfolio balancing optimization model
in (7)–(9) consists of 1 442+ 23 040 N continuous variables and
1 440+ 31 380 N affine constraints, whereN is the total number
of prosumers considered inside the portfolio. Accordingly, this
means that the subproblem of one single prosumer consists of
23 040 continuous variables and 31 380 affine constraints. Table I
summarizes the overall size of the optimization problem in
(7)–(9) for N = {1, 40, 80, 120, 160, 200} prosumers.

Our distributed exchange ADMM algorithm implementation
supports parallel computations using the message passing in-
terface (MPI) standard and the MPI library openmpi [31]. We
perform all MPI computations on a homogeneous CentOS Linux
compute cluster that consists of five loosely-coupled computing
nodes with 42 exclusive Intel Xeon Platinum 8160 2.1 GHz
CPU cores and 192 GB main memory each. All MPI commu-
nication between the nodes is realized via a high bandwidth
Infiniband network. For the runtime measurements conducted
in the following subsections, we only report the pure algorithm
wall-clock execution time that does not include additional com-
putations such as the model generation from file system files,
debug outputs, and other operations. In this context, we perform
all runtime measurements multiple times and always report
the average wall-clock execution time. For the computation
of constrained optimization problems, we alternately use the
commercial Gurobi mathematical programming solver [32] as
well as the open-source COIN-OR Ipopt solver [33]. This is
because we also want to quantify and benchmark the impact
of the underlying mathematical optimization solver applied.
Open-source solvers frequently show a worse computational
performance compared to commercial solvers, but one can use
them freely and without any licensing costs. For both Gurobi
and Ipopt, we disable the console outputs and logs, and keep all
other configurable solver parameters at their default values.

Fig. 3. Comparison of the residual net power load/generation for the nonco-
ordinated versus coordinated case (N = 200).

C. Evaluation of the DR Peak Shaving Application

We first investigate the DR peak shaving application itself
and show that the centralized portfolio balancing optimization
problem formulation (7)–(9) satisfies the desired peak shaving
intent. The goal is to quantify how the DR peak shaving ap-
plication affects the load curve of single prosumers and of the
entire portfolio. For this purpose, we assume a portfolio size
of N = 200 prosumers and compare for that particular case the
residual net power load/generation of a noncoordinated portfolio
against a DR coordinated one. Only in the DR coordinated
case, we consider both the prosumer local-level generation
self-consumption and the aggregator system-level peak shaving
objectives as defined in (3) and (6), respectively.

Fig. 3 shows this comparison for both one single, exemplary
prosumer, and the entire portfolio. The comparison is based on
i) the homogeneous portfolio setup described in Section IV-A
and ii) a portfolio with a heterogeneous prosumer setup (i.e.,
with varying prosumer equipment) to assess the validity of our
homogeneity assumption. From Fig. 3, it becomes evident that
solely for the coordinated case (solid dark red and dark blue
curves) the residual net power curve is flattened, because of the
considered optimization objectives in line with the performed
coordination of the flexible devices on the prosumers’ local
premises. Instead, for the noncoordinated case (dotted light red
and light blue curves), consumption peaks during the morning
and evening hours as well as a severe PV generation peak
during noontime occur. This is what one would expect for a
noncoordinated portfolio of prosumers, because of the absence
of optimization goals. The schedules in light colors, hence,
represent one feasible solution that satisfies all the operational
constraints of the prosumers’ local devices, but it does not pursue
toward any optimization objective. It can also be seen from
Fig. 3 that the homogeneous and heterogeneous cases differ only
slightly and that they ultimately result in similar peak-shaved net
power schedules for the DR coordinated case.
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TABLE II
DISTRIBUTED ADMM – REQUIRED NUMBER OF ITERATIONS

Besides the peak-shaved net power schedule, also the ad-
ditional impact of the prosumer local-level objectives be-
comes apparent for the DR coordinated case: the total PV
generation self-consumption share increases from 43% to 78%
in this particular scenario. However, because the convex device
models considered in this article only allow the prosumers for
individual load shifts over time (see constraints (28) and (34) in
the Appendix section), the total energy consumption of a single
prosumer over optimization horizon Th does not change for the
DR coordinated scenario compared to the noncoordinated one.

D. Evaluation of the Distributed ADMM Convergence Rate

We now apply the distributed exchange ADMM algorithm to
the equivalent optimization problem in (10)–(13) and investigate
the convergence rate characteristics of the ADMM algorithm
subject to the choice of the augmented Lagrangian penalty
parameter ρ and the portfolio size N .

We define the ADMM tolerances as εp = 1.0 and εd = 0.1
and record the number of required ADMM iterations until the
ADMM convergence criteria in (20) are both satisfied for the
DR peak shaving application under investigation. As ADMM
is known to converge to modest accuracy within a few tens of
iterations for adequately defined ADMM step size parameters
ρ [6], we stop the algorithm at a maximum of 500 iterations.
If the algorithm would exceed 500 iterations, this implies that
the ADMM step size parameter ρ is not well determined. It
is worth mentioning that one can also determine the step size
parameter adaptively over the ADMM iterations to improve
the algorithm’s speed of convergence. For instance, one may
adopt the varying penalty parameter approaches from [6] or [34].
However, convergence of the ADMM algorithm in theory cannot
be guaranteed in all cases if the step size parameter varies by
iteration [34]. In contrast, for convex problems, the distributed
ADMM always converges to the optimal solution for k → ∞
when using a fixed augmented Lagrangian penalty parameter
ρ. For this reason, we do not further investigate into varying
penalty parameter schemes.

Table II shows the ADMM convergence rate results, i.e., the
number of required iterations, for different portfolio sizes N
and step size parameter choices ρ , respectively. It should be
noted that the number of required iterations is the same for both
mathematical optimization solvers applied in this article. For
evaluation purposes, we mark the minimum number of required
iterations per column in Table II in bold. From the number of
iterations, it becomes evident that the choice on ρ is crucial as it

Fig. 4. Primal and dual residuals over the ADMM iterations for selected
penalty parameters ρ and portfolio sizes N .

significantly affects the speed of convergence of the distributed
exchange ADMM algorithm.

Fig. 4 additionally visualizes the primal and dual residuals for
ρ = {5, 15, 25, 35} as well as N = {40, 120, 200} over the
iterations using a double-logarithmic scale. Both the primal and
dual residuals decrease exponentially with a growing number
of ADMM iterations k. Although the descent within the first
iterations is in fact very steep, a slight variation in ρ can cause a
difference of hundreds of iterations for the same scenario before
the primal and dual stopping criteria are finally satisfied or before
the maximum of 500 iterations is reached. Boyd [6] explained
this as follows: large values for ρ result in small primal residuals
r(k) but large dual residuals s(k), whereas smaller values for ρ
yield large primal residuals r(k) but small dual residuals s(k).
Thus, as both the primal and dual residuals must take small
values according to the ADMM convergence criteria in (20), a
moderate, i.e., neither a too small nor too large penalty parameter
ρ must be chosen.

In practice, though, the question of which specific value the
augmented Lagrangian penalty parameter should ideally take is a
problem-specific endeavor. For our application, we can conclude
from Table II and Fig. 4 that ρ = 15.0 is a decent choice–in
particular for large portfolio sizes N .
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Fig. 5. Final objective value of the distributed ADMM versus the centralized
reference benchmark optimization using Gurobi.

Fig. 6. Algorithmic performance of the distributed ADMM versus the cen-
tralized reference benchmark optimization.

E. Evaluation of the Distributed ADMM Optimality

Based on ADMM parameters ρ = 15.0, εp = 1.0, and εd =
0.1, we verify that these choices sufficiently satisfy the opti-
mality condition of the distributed ADMM algorithm. In other
words, we proof that, for the optimal exchange problem in
(10)–(13), the ADMM algorithm provides almost the same op-
timum compared to the centralized portfolio balancing problem
in (7)–(9). For this purpose, we compare the final objective value
of our distributed and parallel ADMM implementation with the
one of the centralized reference benchmark optimization using
the Gurobi solver.

Fig. 5 shows the numerical relative difference in magni-
tude between the two finally obtained objective values for
N = {1, 10, 20, . . . , 200} prosumers. One can see that the
relative objective value difference in magnitude is smaller than
0.4 % for all considered portfolio sizes. This indicates that
the optimization problem solution provided by the distributed
ADMM algorithm is optimal with a near-zero optimality gap
compared to the centralized reference benchmark solution. For
the Ipopt solver, we obtain a near-zero optimality gap, too.

F. Evaluation of the Distributed ADMM Performance

In this simulation experiment, we investigate the algorithmic
performance of the distributed ADMM algorithm versus the
centralized reference benchmark optimization subject to the
portfolio size N and the optimization solver applied.

Based on ADMM parameters ρ = 15.0, εp = 1.0, and εd =
0.1, Fig. 6 visualizes the measured average wall-clock execution
time for N = {1, 40, 80, 120, 160, 200} prosumers. We can
see from this figure that the parallel implementation for the

distributed ADMM algorithm outperforms the centralized refer-
ence benchmark optimization for a large number of prosumers
N . In the case of the Gurobi solver, this leads to speedup factors
of more than eight. The breakeven point in execution time is
located around N = 40 prosumers for the Gurobi solver and
around N = 80 for the Ipopt solver. This outcome is plausible,
because the optimization problem size and, hence, the com-
plexity of the centralized computation increases significantly
for growing N , whereas the total execution time of the parallel
ADMM algorithm predominantly depends on the number of
ADMM iterations required. It is important to emphasize that
a larger portfolio size does not necessarily imply an increased
number of ADMM iterations. For example, Table II indicates
that ADMM requires 147 iterations for N = 200 prosumers,
but 159 iterations and 158 iterations for N = 120 and N = 160
prosumers, respectively. Accordingly, Fig. 6 shows that ADMM
has a slightly shorter execution time for N = 200 prosumers
compared to N = 120 and N = 140 prosumers.

Despite the pure execution times, another aspect becomes
apparent from Fig. 6: the required main memory demand by the
optimization solver becomes a challenge for large centralized
optimization problems. We can identify this issue for the Ipopt
solver for which one we are not able to perform a centralized
computation for more thanN = 102 prosumers. In this case, the
Ipopt solver runs out of memory and, hence, it fails to compute
the centralized optimization problem. In contrast, we can still
solve the distributed optimization problem with the parallel
ADMM implementation, because the main memory demand per
MPI process of approximately 120 MB remains comparatively
small. Thus, the overall main memory requirements are substan-
tially lower in the distributed case.

G. Discussion of the Results and Limitations

The feasibility and optimality properties of the distributed
ADMM algorithm for distributed DR applications that are sub-
ject to convex modeling approaches have proven satisfactory in
prior research works such as in [9], [11], and [23]. Our study
confirms this outcome, but clearly indicates that the right choice
on the ADMM step size parameter is of utmost importance to
let the algorithm converge quickly. Even for an entirely parallel
implementation of ADMM, the total number of ADMM itera-
tions required still has the most significant impact on the overall
execution time of the algorithm and, hence, on the performance
and scalability of the final DR application.

It is important to stress that our findings, however, are lim-
ited to portfolio sizes of up to N = 200 prosumers. This is
because we assign one exclusive CPU computing resource to
every ADMM subproblem, i.e., to every prosumer local-level
optimization problem. One could also integrate N > 200 pro-
sumers, but this would mean that we must run more computing
processes than physical cores available, which would make the
performed execution time measurements meaningless due to
saturation effects (“Amdahl’s law”).

Moreover, we are well aware that our assumptions on a
performant compute cluster and negligibly short communication
delays due to ideal MPI communication are not valid in a real
field application. In particular, nonideal communication over
noisy channels that causes data delays and/or packet losses is
common in practice and may lead to instability and poor con-
vergence of the ADMM algorithm. Related work such as in [35]
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has already successfully approached this issue by introducing
communication-robust modifications to the iterative process of
ADMM. In our work, however, we are particularly interested
in the general trends and limitations of the best-case compu-
tational performance scenario considering it as an ideal and
stable benchmark case for real-world DR applications. A com-
prehensive analysis of the performance of the ADMM algorithm
that considers communication-robust strategies is nevertheless
important and linked to future work.

Furthermore, one may argue that the total execution time for
a day-ahead scheduling operation using a centralized optimiza-
tion and a powerful optimization solver such as Gurobi is still
eligible. In particular, this would be the case for optimization
horizons Th with a lower resolution than in our work, e.g.,
such as for Δt = 15 min up to Δt = 1 h, which is common
in the electricity, heat and gas domain. The explicit choice on
the time slot of the optimization problem is thereby strongly
related to the tradeoff between the required level of detail and the
computational effort. However, based on the performance results
shown, one must oppose that, in the worst-case and independent
of the optimization horizonTh, a centralized optimization almost
scales nonpolynomially and, thus, may fail for portfolios that are
more complex than in our benchmark setup. For instance, a real
heterogeneous portfolio setup may become more challenging
to solve by both a centralized and distributed optimization com-
pared to the homogeneous case. This is because the optimization
problems of the local prosumers become slightly more complex
as a result of the more diversified assets. Yet, this would only
slightly affect the overall convergence rate and solution time of
the ADMM algorithm: the local optimization problems remain
convex and, hence, the fast convergence property of ADMM is
preserved. On the other hand, in the centralized case, the global
optimization problem becomes more complex in an order of
magnitude of the number of prosumers considered. Therefore,
as the number of prosumersN increases, it becomes increasingly
challenging to succeed in solving the centralized problem, even
if the overall formulation of the portfolio balancing optimiza-
tion problem remains convex. Optimization horizons with a
lower resolution would in fact reduce the complexity, but this
approach ultimately does not fully resolve the aforementioned
performance drawbacks of a purely centralized optimization for
very large prosumer portfolios.

V. CONCLUSION

For the coordination and optimal control of DERs in slow-
dynamics DR applications, distributed optimization approaches
feature several advantages over purely centralized computa-
tions. In particular, the simulation experiments conducted in
this article demonstrate that the distributed ADMM algorithm
is superior compared to a centralized computation also from the
computational performance point of view, which has not been
sufficiently well quantified before. Thus, the consideration of the
distributed ADMM algorithm can be beneficial for commercial
DR aggregators that maintain large prosumer portfolios. We
encourage such DR aggregators to make use of the distributed
and hierarchical DR architecture proposed in this article. The
architecture makes it possible to readily integrate hundreds of
distributed prosumers and flexible devices in a scalable, modular,
and privacy preserving way.

A centralized formulation of the portfolio balancing opti-
mization problem would usually become too complex to solve

by DR aggregators for large prosumer portfolios. However,
by reformulating the portfolio balancing optimization prob-
lem as an equivalent and separable optimal exchange problem,
the distributed ADMM algorithm can be employed. ADMM
overcomes the abovementioned limitation and prosumers can
even be equipped with low-cost computation hardware and a
comparatively slow mathematical optimization solver to solve
their individual local-level ADMM subproblems. Although the
ADMM algorithm guarantees convergence toward the global
optimal solution for convex optimization problem formulations,
nevertheless, our findings indicate that the right choice on the
ADMM step size parameter is key for the overall performance
of the algorithm.

One notable limitation of our findings is in the usage of the
MPI standard for parallel ADMM computations, which does not
reflect DR architecture conditions close to the reality, where one
may need to transmit shared ADMM variables over delaying
and possibly unreliable communication links. The analysis of
the impact caused by the communication infrastructure is left to
future work. We also want to further investigate the impact of
variations in the optimization problem modeling. A centralized
computation may become even more challenging for problems
that contain binary/integer variables or nonconvex constraints. In
this context, we also intend to evaluate, compare, and assess vari-
ants of the distributed ADMM algorithm other than exchange
ADMM as well as related distributed optimization algorithms
such as ALADIN.

APPENDIX

PROSUMER LOCAL DEVICES AND CONSTRAINTS

Inspired by earlier work [24], we define the local devices and
optimization constraints with which a single prosumer i may
be equipped in this article, i.e., we specify the convex sets of
local prosumer constraints Xi defined in (2). We assume that
the residual load P el,i ∈ Xi of prosumer i consists of a finite
number of inflexible loads l ∈ L, PV units p ∈ P , stationary
battery storage units b ∈ B, and electro-thermal heat pump plus
thermal energy storage unitsh ∈ H. These devices all contribute
to the net residual electric power load P el,i of prosumer i. Thus,
the aggregated net residual power load per prosumer i over all
its local devices can be written as

P el,i =
∑

l∈L,p∈P,b∈B,h∈H
P l

el,i + P p
el,i + P b

el,i + P h
el,i (21)

where variables P l
el,i, P

p
el,i, P

b
el,i, and P h

el,i denote the power
contribution of the lth inflexible load, pth PV unit, bth stationary
battery storage unit, and hth electro-thermal heat pump plus
thermal energy storage unit, respectively.

A. Inflexible Loads

An inflexible load l ∈ L is defined by a fixed electric power
consumption profile P l

el,load,i, see constraint

P l
el,i = P l

el,load,i . (22)

B. PV Units

A PV unit p ∈ P is defined by a fixed electric power gen-
eration profile P p

el,gen,i. This means that we do not consider
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curtailment of PV generation, see constraint

P p
el,i = P p

el,gen,i . (23)

C. Stationary Battery Storage Units

A stationary battery storage unit b ∈ B is a flexible device
that can temporarily buffer electrical energy and that is capable
to provide almost continuous power charging and discharging
rates. Its physical operation constraints are as follows:

P b
el,i = P b

el,charge,i − P b
el,discharge,i (24)

0 ≤ P b,t
el,charge,i ≤ P b

el,charge,max,i, ∀t ∈ Th (25)

0 ≤ P b,t
el,discharge,i ≤ P b

el,discharge,max,i, ∀t ∈ Th (26)

0 ≤ Eb,t
el,stor,i ≤ Eb

el,stor,max,i, ∀t ∈ Th (27)

Eb,t=0
el,stor,i = Eb,t=T

el,stor,i = Eb
el,stor,ini,i (28)

Eb,t
el,stor,i=Eb,t−1

el,stor,i kbloss,i+
(
P b,t
el,charge,i−P b,t

el,discharge,i

)
Δt,∀t ∈ Th. (29)

In (24)–(26), variableP b
el,i defines the net power contribution

of the stationary battery storage unit. For all time steps t, it
is subject to a maximum charging power P b

el,charge,max,i and
maximum discharging power P b

el,discharge,max,i, respectively.

Variable Eb,t
el,stor,i in (27) represents the state of charge of the

stationary battery storage unit with maximum energy capacity
Eb

el,stor,max,i. Constraint (28) defines both the initial and final
state of charge of the battery storage unit for time steps t = 0
as well as t = T . The equality for the initial and final state of
charge enforces the “energy neutrality” of a stationary battery
storage unit over the optimization horizon Th. Constraint (29)
ensures the energy balance of the battery storage unit over Th.
The energy stored at time step t equals the energy stored in
the previous time step reduced by losses kbloss,i that model, e.g.,
self-discharging effects, plus the energy charged or discharged
during the current time step. A note of caution is due here,
because (29) does not include the battery storage unit’s charging
and discharging efficiencies. This is because the modeling of
charging/discharging efficiencies would typically result in a
nonconvex, mixed-integer based problem formulation. Thus, we
consider a stationary battery storage unit as an ideal device, i.e.,
we assume a charging and discharging efficiency of 100 % each.

D. Heat Pump Plus Thermal Energy Storage Units

An electro-thermal heat pump plus thermal energy storage
unit h ∈ H represents a state-of-the-art air-to-water heat pump
connected to a hot water tank buffer. Thermal energy storage
decouples the prosumer’s thermal demand from the heat pump’s
thermal generation and, hence, allows the heating system for
thermal load shifts in time. The physical operation constraints
for a heat pump plus thermal energy storage unit are as follows:

Ph,t
th,i = Ph,t

el,i η̃
h,t
COP,i, ∀t ∈ Th (30)

0 ≤ Ph,t
th,i ≤ Ph

th,nom,i, ∀t ∈ Th (31)

η̃h,tCOP,i = ηhCOP,nom,i

Th,t
sink,i

Th,t
sink,i − Th,t

source,i

, ∀t ∈ Th (32)

0 ≤ Eh,t
th,stor,i ≤ Eh

th,stor,max,i, ∀t ∈ Th (33)

Eh,t=0
th,stor,i = Eh,t=T

th,stor,i = Eh
th,stor,ini,i (34)

Eh,t
th,stor,i=Eh,t−1

th,stor,i khloss,i+
(
Ph,t
th,i−Ph,t

th,demand,i

)
Δt,

∀t ∈ Th. (35)

In constraint (30), variable Ph,t
th,i defines the thermal gener-

ation of the heat pump at time step t that is restricted by the
heat pump’s nominal thermal power generation Ph

th,nom,i in
(31). The ratio between thermal generation and electric con-
sumption of the heat pump is defined by the current Coefficient
of Performance (COP) η̃h,tCOP,i, which depends on the nominal
COP denoted as ηhCOP,nom,i as well as on the current difference

between sink and source temperatures Th,t
sink,i and Th,t

source,i, see

(32). Variable Eh,t
th,stor,i in (33) represents the state of charge of

the thermal energy storage unit with maximum energy capacity
Eh

th,stor,max,i. Constraint (34) defines both the initial and final
state of charge of the thermal energy storage. In constraint (35),
the thermal energy stored in the hot water tank buffer at time step
t equals the energy stored in the previous time step reduced by
losses khloss,i that model, e.g., temperature losses, plus the ther-
mal energy charged, and/or discharged during the current time
step. Thermal charging thereby corresponds to the heat pump’s
thermal generation Ph,t

th,i, whereas discharging corresponds to

the prosumer’s thermal demand Ph,t
th,demand,i.
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