IEEE SYSTEMS JOURNAL, VOL. 17, NO. 2, JUNE 2023

2343

Ambient Virtio: IO Virtualization for Seamless
Integration and Access of Devices in
Ambient Computing

Seongjoon Park ', Kiseok Kim

Abstract—Ambient computing creates a digital environment
where a variety of technologies, including hardware, software,
and even machine learning, are integrated into most useful and
autonomous digital device that we want to use right here right now.
The main obstacle for this computing is a barrier of vendor-specific
details, programming interfaces, and access procedure even though
all the things come to have network interfaces and interact with
each other through the Internet. However, this configuration defies
the expectation that ambient computing can reduce the demand
for human attention. In this article, we propose Ambient Virtio,
a device virtualization technology that virtualizes devices with the
virtio framework. This allows devices in close proximity to users
to be accessed without human intervention and integrated into
metadevices that users want to create and access on the fly. We
newly defined a virtio-based backend device named virtio-
ambient and also constructed an ambient device architecture for
virtual machines to read and write the remote device only with
built-in system calls. We completely implemented the system and
performed comparative evaluation with the existing application-
level data networking system.

Index Terms—Ambient computing, device virtualization,

VirtIO.
1. INTRODUCTION

VER the past few years, a lot of technology companies
O have been working to tightly incorporate many technolo-
gies and computing platforms into one digital environment. One
of their resulting goals is to assimilate devices and computers
into the environment to the point where we can use any comput-
ing power for services that we want to use immediately. This is
called ambient computing, and it is based on the proliferation of
IoT devices.
Considering that highly sophisticated IoT devices are perva-
sive in our lives today and these are connected to the world for
exchanging useful data for the convenience of users, such an

Manuscript received 27 January 2022; revised 8 June 2022; accepted 30
July 2022. Date of publication 22 August 2022; date of current version 8 June
2023. This work was supported in part by the Human Resources Program in
Energy Technology of the Korea Institute of Energy Technology Evaluation and
Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of
the Republic of Korea under Grant 20204010600220 and in part by the National
Research Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) under Grant 2020R1A2C1012389. (Seongjoon Park and Kiseok Kim
contributed equally to this work.) (Corresponding author: Hwangnam Kim.)

The authors are with Electrical Engineering, Korea University, Seoul 02841,
Republic of Korea (e-mail: psj900918 @korea.ac.kr; kisuk528 @korea.ac.kr;
hnkim @Xkorea.ac.kr).

Digital Object Identifier 10.1109/JSYST.2022.3196624

, and Hwangnam Kim ", Member, IEEE

ambient computing is likely to develop further in the future [1].
However, even though the realization of this blueprint for am-
bient computing seems imminent, there are several barriers to
building an open digital world where all computing platforms
are connected. The main cause of the barriers comes from
vendor-specific details; IoT vendors release products with their
own device drivers and protocols to promote their proprietary
systems made up of their own components. Such a strategy
is natural from an economic or security point of view, but it
makes difficult to integrate all components around the user into
a unified computing platform, which lowers the extensibility of
the ecosystem for the product. This can be approached with a
concept of connectivity network, routing-based networking by
connecting segmented devices, and/or networks using network
or networking-based system solutions, but, on the other hand,
we can also think of ways to build an integrated computing
platform for users to access and control devices over a single
interface by virtualizing heterogeneous edge devices at device
level. For example, assuming that a host machine has a locally
equipped edge device, an application that utilizes it can simply
access and manage edge devices using the application program-
ming interfaces (APIs) provided by the operating system or
third party. However, when remotely connected, the application
requires more complex considerations about the network fabric
through which data will pass. In this regard, we propose a
novel mechanism for providing “seamless ambience” for virtual
machine (VM) users by eliminating the hassle in application
layer and the network overhead experienced by VM through
unified encapsulation for both local and remote devices.

For doing so, we expanded a para-virtualization scheme called
virtio. The virtio manages requests and responses in a
ring-shaped structure called vr ing to read or write device data.
However, existing virtio has a limitation in that multiple
kinds of submodules should be provided for different types of
device. For example, publishing a new device requires users
to create a separate binary translation that implements a driver
with a new way of operation and allows it to run on a host
machine. Given that heterogeneous IoT devices residing in edge
environments are used by physically remote VM infrastruc-
tures, it means that a functional and design basis for supporting
specific edge devices must already be in place. However, it is
not easy to meet an acceptable level of structural overhead to
cope with a large number of heterogeneous devices in various

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-5118-0572
https://orcid.org/0000-0002-5307-528X
https://orcid.org/0000-0003-4322-8518
mailto:psj900918@korea.ac.kr
mailto:kisuk528@korea.ac.kr
mailto:hnkim@korea.ac.kr

2344

Ambient service
platform

Cooperative service realization to user

(a)

Fig. 1.

IEEE SYSTEMS JOURNAL, VOL. 17, NO. 2, JUNE 2023

« Device virtualization
« Interaction with physical devices

{ Ambient Hub (Ahub) 1

g Ahub Ahub ,
~\~ Virtual Machine i e]4— E
uses ambient devices as — .
e — ® local devices CE— ® 0]

Device
network

Ahub P

| A Abub o3
— b k Se T
=
Meta device creation

o &"’@/é‘c

(b)

Ambient Virtio system design concept. The left shows how the system provides ambient services to user, and the right shows the detailed diagram of the

system. (a) How the system provides ambient services to users. (b) System detailed diagram.

ambient environments. Separately, there are various approaches
for enabling users to access remote resources via the network.
Most representative solution is desktop remote control services,
such as Chrome Remote Desktop [2] or TeamViewer [3]. Those
solutions enable to exchange the input events of input devices
(mainly mouse and keyboard) and the output events of display
devices (mainly monitor). Second, wireless sensor network at-
tempts to collect the data from multiple sensor devices through
wireless communications [4]. We argue that these remote access
technologies are not ambient since each requires different data,
protocol, standards, and APIs to users. To overcome the limita-
tions of the above and provide an ambient integrated computing
platform for heterogeneous edge devices with conventional dif-
ferent interfaces and communication/control protocols, we pro-
pose device-level virtualization to establish networking between
computing platforms in addition to device sharing or in-device
resource sharing. With such device-level virtualization, users
can access any device in their proximity without human interac-
tion and even create a new metadevice that does not physically
exist but virtually exist by combining multiple remotely located
devices. Based on this motivation, we named our proposed sys-
tem to Ambient Virtio that has been designed and implemented
in the extended line of aforementioned virtio protocol. In
specific, utilizing virtio protocol, we declare a new type of
virtual device called virtio-ambient thatinteracts with the
network environment and performs read/write operation as
local device in the viewpoint of the VM guest. Here, the fact
that the virtio interface is used as a standard technology
for implementing device access in various virtual machines and
shows high I/0 performance between VM-to-host compared to
other methods suggests a strong insight for device-level virtual-
ization. Fig. 1 shows our concept briefly. In the proposed system,
VM connects to the ambient service platform and provides the
virtualized device resources to the user. As Fig. 1(a) implies,
a user utilizes the service enabled by the cooperation of the
ambient devices. The user does not need to prepare the detailed
network specification for each device since any devices are seen
as local device at the viewpoint of VM application. Each device
is locally or remotely connected to an adapter called Ambient

Hub (Ahub). Through the communication between VMs and
Ahubs, the VM can read its available device lists and request the
access via OS system call. We summarized the characteristics
of our proposed system as follows:

1) Standard OS: We used Ubuntu 20.04 LTS desktop image
for virtual machine without any modification. This image
equips Linux kernel 5.4, which has had built-in virtio
module for a long time. Thus, the proposed design is
available for any VM whose kernel supports virtio above
version 1.0 specifically. We confined the modification
within the hypervisor, which is covered in detail in Sec-
tion II-A.

2) Unified device: To drive the ease of use, we abstracted am-
bient devices into virtio-blk module. If the VM user
activates virtio-ambient module, the hypervisor ex-
poses a newly defined device basedonvirtio-blktoa
VM and adds or deletes devices during runtime as needed.
As a result, VM guest can treat any ambient devices as
a local block device and do read/write operations. This
mechanism not only helps the VM user to use the ambient
device easily but also helps the simple development of
metadevice, which is addressed in Section III-C.

3) Access control: Since the Ahub processes actual
read/write operation, access control rights for users should
be regulated and adjusted for the safety. We designed Ahub
to have an access control mechanism that defines device
accessibility for user groups and subdivides permissions
into visibility, readability, writability, and configurability.
Section III-D addresses how Ahubs configure the acces-
sibility of ambient devices in detail.

4) Total separation of network layer: One of the key con-
tributions of the proposed system is the complete sep-
aration of the network part from remote device access.
The hypervisor and host machine are responsible for the
entire networking process, allowing VM guests to use
peripherals without complex network configuration. This
comprehensive device networking also enables opportu-
nities for comprehensive network resource management,
improving the robustness of the overall system.

PARK et al.: AMBIENT VIRTIO: 10 VIRTUALIZATION FOR SEAMLESS INTEGRATION AND ACCESS OF DEVICES

The rest of this article is organized as follows. Section II
addresses the previous works in virtualization and virtio.
Section III describes the details of Ambient Virtio, and Sec-
tion IV shows the performance evaluation of the system. Finally,
Section V concludes the article.

II. PRELIMINARIES

This section introduces the researches on virtualization tech-
nology and virtio protocol which attempts to accelerate the
device operation performance of virtual machine.

A. Virtualization

Virtualization refers to a solution that creates software-based
IT services such as servers, storage, and networks by abstract-
ing the computing resource which is dependent on hardware.
Because most traditional enterprises used physical servers and
single-vendor IT stacks, legacy applications could not run
on some hardware from other vendors. Virtualization enables
legacy applications to run on separated operating systems; so
the user can increase server efficiency and reduce infrastructural
costs. Virtualization software, called a hypervisor, abstracts
physical resources into a virtual environment while running on
physical machine. When an application running in a virtual envi-
ronment requires additional resources, the hypervisor forwards
the request to the physical interface and caches the state change.
For instance, hypervisor processes a request sent from a kernel
virtual machine (KVM) [5] in the kernel context.

We briefly list virtualization technologies according to the
service target. Hardware virtualization creates a virtual machine
which runs a set of software with its own architecture, storage,
memory, and computing power. Desktop virtualization provides
a separated desktop environment to the user. Through virtual
desktop interface, user can simultaneously deploy an emulated
desktop environment to a number of physical machines and
concurrently manage the systems. Operating system virtualiza-
tion, also known as containerization, provides an isolated user
space instance while sharing the same architecture such as arm
or x86. The proposed system can be considered as hardware
virtualization, specifically virtualization and abstraction of both
remote and local devices. To emulate the physical hardware,
existing virtualization techniques defined various types of vir-
tual devices. However, vendor dependency raises again at the
peripheral devices; differences in device connection protocols,
physical ports, and bandwidth constraints pose challenges for
VM clients as well as users of physical machines. Specifically,
containerization allows the direct use of physical devices and
limits their own access to local devices. The philosophy of
virtio-ambient is the virtualization of the interface of
any devices, regardless of the method of access, even including
remote access.

B. Virtio Protocol

Software I/O virtualization is a hypervisor technique based on
the I/O device emulation. By utilizing the functionality of CPU
(e.g., event £d), VM invokes the I/O exception to hypervisor

2345

and the hypervisor progresses the proper I/O emulation. Through
this process, hypervisor converts the commands requested by the
VM into binary commands that the host machine can understand
and delivers to the corresponding device driver. After the host
device completes the task, the hypervisor transmits the result
in the opposite direction. There are two major issues with
software-based 1/O virtualization: CPU overhead and latency.
The exception emulation causes excessive CPU overhead in I/O
request notification process, incurred by frequent CPU context
switching and complicated system call stacks. Furthermore,
since the VM and the hypervisor run in the user space, the
work priority can be set to low, and request processing can
be delayed. In order to improve the performance, I/O virtual-
ization scheme virtio adopts para-virtualization technology,
where the VM-side kernel notices that the system is running
on virtual machine and provides a software interface instead
of total emulation of hardware. Fig. 2 shows the difference
of virtio comparing with exception-based system. If a user
enables virtio, hypervisor creates virtio device instead
of emulated device and attaches to the virtio-pci bus to
invoke the virtio driver initiation of VM. In this article, we
follow the traditional nomenclature of calling the hypervisor’s
virtio device as the backend and the VM’s virtio driver
as the frontend. The frontend driver generates a shared buffer
named virtqueue that used to fill out the data buffer address when
requests arrive. On each request from VM user, virtio driver
allocates a fixed-size buffer from the shared memory space,
writes the information of the request (buffer address, size, and
so on) to the virtqueue, and sends notification signal to the host.
The backend device processes the device operation by reading
the buffer, fills out the virtqueue buffer with operation results,
and sends notification signal as the same procedure of the above.
Introduction of KVM can accelerate the notification process, and
the shared memory access between the VM and the hypervisor
can highly reduce the overhead. We adopted virtio protocol
to secure the basis of high performance while operating device
virtualization.

C. Ambient Network

Ambient network refers to a research field that proposes
an integrated network framework for connection between user
devices and from peripheral devices to user devices. The prolif-
eration of IoT concepts resulted in the creation of numerous
standards and protocols against resource limitations such as
network bandwidth, power, and computing, which led users
to experience increasing structural overhead. Ambient network
technology aims to provide a unified environment to end users
and application layer developers by presenting an integrated
platform for the standards of differentiated communication and
network technologies. Akasiadis et al. [6] suggest an IoT plat-
form that supports five widely used application layer protocols,
and Harman et al. [7] suggest a cloud-based networking platform
with IoT devices for mobile actors such as robots. In addition, He
et al. [8] present a blockstream-based cloud service platform for
ambient computing, and Liang et al. [9] present a solution to the
heterogeneous multitask assignment problem that can occur in

2346 IEEE SYSTEMS JOURNAL, VOL. 17, NO. 2, JUNE 2023
Exception-based ! Virtio
VM VM : VM VM
| Device driver | | Device driver | ! | virtio driver |1 virtio driver |
T : ! Shared virt | Shared 7 virt
—— Exception } 1 :' H - -
P LT - Hypervisor : memor queue |Hypervisorl_memor “1 queue
| Event/trap handler l—'| Device emulator | : | virtio device | | virtio device |
Interpreted : e ——
: /o) : :
Host machine kernel S—— : Host machine kernel \
| Device driver | : | Device driver |
1
1
Fig. 2. Structural difference between exception-based device access and virtio.

large-scale crowd sensing. As seen in previous studies, ambient
computing technology has mainly assumed IoT situations and
presented solutions for sensitive data traffic, but essentially it has
approached device access and networking separately, leading to
various types of platform.

In this article, we present a system that can relax the bound-
aries between local and remote for device access and provide an
ambient device access to VM users by extending the virtio
standard technology utilized by most VMs. We describe the
details of our design in the following section.

III. SYSTEM DESIGN

The core objective of the proposed system is to provide a
universal, consistent, and simple tool for ambient device access.
CPU and memory virtualization techniques such as VT-x [10],
AVIC [11], and paging [12] have been widely provided with
type-1 hypervisors such as KVM and Xen [13]. I/O virtualization
schemes such as virtio and vhost propose performance
enhancement strategies, but the recent trends focus on the per-
formance of the devices and barely cover the diversity of device
access procedures. For instance, data plane development kit [14]
and storage performance development kit [15] accelerate the
performance by userspace driver operation. However, in order
to support various types of devices, consequently, a new type
of device should be declared every time. Furthermore, since
vhost family aims to share the resources of the host with VMs,
the resulting implementations depend on the portability of the
host environment. In the case of vhost-blk, we considered to
utilize this architecture at the design level but determined not to
use due to the structural overhead and limitation of usage while
connecting to the remote block device. To raise the sustainability
and flexibility of the architecture, we devised a way to provide
an abstracted interface of device for VM following virtio.

The motivation of our design starts from the virtual file
system (VES) of Linux. VFS provides an abstract layer for
various types of file systems, including the device driver. For
each device connection, VES creates a device file that a user
can communicate with the device driver and perform desired
operation. Utilizing VFS, we attempted to design a backend
device to let the VM show up an ambient device as a form of the
device file and guest users open this file without being aware of
the difference in connection details. For doing so, we analyzed
how the device files of VM show up during operation and found

VM guest machine
virtio drivers

Ambient hub (Ahub)

Virtualized device objects

Q. Q. Q. Q.
m m m m
<. <. <. <.
[a) [a) [a) [a)
o m ™ ™
o o o o
[= c c c
HIENIENIENIE
SE <] 1
8
virtio-ambient devices "8_!’_
VM backend (hypervisor) <)
(Host kernel]
local device local device |
adapter adapter
Network
I i
[Ahub] (_Ahub_]
¥
| local dev | | local dev | | remote dev | | remote dev |

Fig. 3. Architecture of the proposed system.

that the hypervisor invokes the device file generation of VM. To
guarantee the performance and portability, we chose virtio
module and QEMU for our system design and implementation.
We comprehensively investigated the virtio implementation
in QEMU and designed anew typeof virtiodevicevirtio-
ambient as an addition to the entire virtualization process.
We built virtio-ambient by renovating virtio-blk,
which defines block data transmission in duplex. The following
subsections address each part of the system.

A. Architecture

Fig. 3 shows the architecture of our proposed system. A group
of Ahubs plays a role in communicating with the actual devices
and sustaining the list of virtualized devices by sharing the
device information. Ahub does not explicitly call the virtio
device realization but generates an ambient device object to
perform actual operation on the request. Rather, VM hypervisor
realizes a representative device called master ambient device
which establishes the connection between Ahubs and stores the
ambient devices information. By exchanging a certain sequence
of messages between the master ambient device and Ahub,
master ambient device creates or removes backend virtio
devices, tracks the changes in the status and data, and attaches or
detaches them to the VM. During the device realization process,
we devised a simple trick that defines a new type of virtio

PARK et al.: AMBIENT VIRTIO: 10 VIRTUALIZATION FOR SEAMLESS INTEGRATION AND ACCESS OF DEVICES

virtio frontend (VM)
)| /dev/vdb A R
) (_virtio bk) (.]

i virtio backend (Hy|iaervisor)
irtio-blk-pci irtio—ambient-pci
[virtio s pci | [virtio-ambient-pci]:]

L]
HDD image [- -
img, .qcow, ... | Ambient device buffer

virtio-ambient-pci attachment with virtio-blk front-end

| /dev/vda
v

[virtio blk

Fig. 4.
driver.

backend device named virtio-ambient-pci while attach-
ing the device to the type of virtio-blk. Fig. 4 describes this
process. If a VM user configures to use an hard disk drive (HDD)
with virtio interface, VM backend creates virtio-blk-
pci device and VM frontend operates virtio-blk driver. If
(s)he configures to use an ambient device provided by Ahubs,
VM backend creates virtio-ambient-pci device and VM
frontend operates virtio-blk driver.! Thus, the format of
device file name is the same as /dev/vda, /dev/vdb, and so
on.2 If a VM user enables the use of virtio-ambient in VM
initial configuration, usually by using 1ibvirt or command
line, the VM process creates a master virtio-ambient-
pci device in backend. At the backend, this master ambient
device opens a server socket and listens for the Ahub connection.
Ahub always works on the host or other machines. Ahub uses a
device-specific interface to create virtual devices with read and
write operations implemented. Meanwhile, Ahubs establish a
network and share the information of their own virtual devices.
In the background, Ahub periodically collects the data from its
local device and saves it to the device buffer. Ahub attempts
to connect to a VM and sends the device information or the
data stored in device buffer. Backend of VM accepts the Ahub
connection and receives the message through socket, made in
the master ambient device. If Ahub grants device registration
message to the VM, the master ambient device operates the
virtio-ambient-pci device generation and attachment
procedure following virtio protocol. The master ambient de-
vice then stores the meta information of the newly added device
in the buffer that the device owns and saves the buffer informa-
tion (e.g., logical address) of the new device in its own database
for future data transfer. If Ahub sends data transmission message
to the VM, the master ambient device finds a buffer to store the
received data. VM guest can obtain the available lists of ambient
devices by reading the buffer of the master ambient device.
Then, the VM guest can open and read/write the ambient
devices with Linux system calls. VM-side virtio-blk driver
allocates a shared memory space typed by iobuf, pushes the
address of buffer to the vring buffer, and sends notify signal to
the backend device. In backend-side, our virtio-ambient

!Following design convention of QEMU, virtio-ambient-pci wraps
the abstract module virtio-ambient connected to the virtio-pci bus.
We implemented the core functions such as initialization, read, and write
operation at virtio-ambient.

>The reason of device file name /dev/vdx is that the kernel generates a
virtual block device via virtio-blk module. The format of device file names
can vary according to the type of virtio submodule the system adopted.

2347

process handles the read or write operation by copying its buffer
to the shared memory or by sending data transmission message
to the Ahub, respectively. Ahub receives the message from VM
and write to its own local device or forward to the other Ahub
to let it handle this write operation. Some application-level
architectures such as HTTP REST can be of consideration, but
we determined not to specify the APIs for the flexibility of
system design. We defined the following routines of virtio-
ambient devices and Ahubs to be applied to various forms of
network, from wired wide area network to wireless personal area
network. In our implementation, we used transmission control
protocol (TCP)/internet protocol (IP) for networking.

B. Ambient Virtio Routines

This section describes how to enable ambient device opera-
tions in terms of message format and process flow. Note that the
protocol specifications, such as field sizes in bytes, are not fixed
in the current state and may change in public releases.

1) Ahub Message Format: We declared a simple 32-b mes-
sage header format for Ahub network. All network participants
including virtio-ambient exchanges data within the reg-
ulation of this header format. Fig. 5 shows the layout of the
format, and the detail explanation is in the following.

a) Message type indicates what type of the information this
message has. For instance, in the case of CODE_REG,
which refers ambient device registration, the fields in the
header message contains the information to generate the
ambient device object.

b) Device ID is the unique 4-b number of the ambient device.
During the ambient device creation phase, Ahub checks
the list obtained from the Ahub network and assigns a
unique number to the device. If a duplicate ID is issued to
the network as CODE_REG, the recipient of the message
will discard this message to avoid conflicts.

c) Size info (buffer/data size) is the size of buffer that the
ambient device should have or the size of data being sent
following this header. By setting this field to 1, ambient
device can act as a character device. If CODE_DATA
message has the larger value of data size than the Buffer
size of this device, the message receiver abandons this
message and the following data to avoid overflow.

d) Fields 1, 2, ..., 4 are modifiable spaces for the requirements
of each message type. CODE_REG fills out the basic
information of new device such as device name and access
configuration (Section III-D). Then, the rest of total 8-b
fields will be used to cache the local information of VM
or Ahub; in the case of VM, the master ambient device
stores the name of device file (/dev/vda,...).

We describe the sequences of the processes in the next section.

2) Device Registration Process: Algorithm 1 shows the flow
of ambient device registration and plug process. Basically, phys-
ical devices establish connection to a physical machine by wire
or wireless. Ahub runs at this physical machine, initiates device
operation interface, and generates a specification of the device.
Then it broadcasts CODE_REG messages to the peer Ahubs and
the connected VM backend. When the Ahub establishes a new

2348 IEEE SYSTEMS JOURNAL, VOL. 17, NO. 2, JUNE 2023
1byte 2bytes 4bytes 12byte 4bytes 4bytes 4bytes 1byte
Msg_type I Device ID	Size info I Field1	Field2 I Field3 Field4 Blank	
CODE_REG I Device ID	Buffer size I Device name	Access config.	Additional information (reserved by VM)
CODE_DATA I Device ID	Data size	Blank space	
I CODE_UNPLUG | Device ID | Blank space |
Fig. 5. 32-b message header format of Ahub.

Algorithm 1: Device registration process.

Algorithm 2: Device read process.

1: /* Ahub */
2: function Create_ Ambient_DevdevInfo
3 fd < Get_File_Descriptor(devinfo)
4: did < Get_New_DeviceId()
5: bsize < Set_Buffer_Size()
6: Adev + New_Adev(fd, did, bsize)
7 msg < Make_Header(CODE_REG, Adev)
8 Send msg to nodes
9 Start_Thread(Dev_Read, Adev)
>Algorithm 2
10: end Function
12: /* VM backend */
13: function Handle_Messagemsg
14: if msg.type == CODE_REG then

15: buf < Allocate_Buffer(msg.sizelnfo)
16:

17: /* QEMU Implementation */

18: opts <— gemu_opt_create()

19: dev < gdev_device_add(opts)
20: drain_call_rcu()

21:

22: Register_Buffer(dev,buf)
23: adev < Adev(msg, dev)

24: Copy msg. fieldl to adev.name
25: Copy msg to master.bu f

26: end if

27: _end Function

connection to a VM, it sends several CODE_ REG messages to the
VM backend for follow-up. VM backend stores this message to
its master ambient device buffer, and the VM guest can retrieve
the information of ambient devices by reading the master device
buffer. After attaching the virtio device to the VM, frontend
loads the virtio driver, and new device file /dev/vdX emerges
for the device. Note that the guest VM does not need to know
how to retrieve the data from the physical remote device, what
information is needed for connection, and where it is attached.
This is because Ahub logic faithfully follows the concept of
ambient access, but CODE_REG sometimes has to contain more
information of the devices for better utility such as data band-
width, status of device, location of physical device, and so on.
We leave the informative design of message format to future
work.

1: /* Ahub ¥/

2: function Dev_Readadev
while !adev.closed do
4 data < adev.fd.read(adev.bsize)
5 if !data then

6: continue
7.

8

9

W

end if

len < Get_ByteLength(data)

msg < Make_Header(CODE_DATA, adev,

len)
10: Send msg to nodes
11: Send data to nodes
12: end while
13: Unplug_Adev(adev)
14: end Function

>Algorithm 4

16: /* VM backend */
17: function Handle_Messagemsg
18: if msg.type ==CODE_DATA then
19: adev < Find_Adev_From_Did(msg.did)
20: if ladev then
21: return
22: end if
23: len < msg.sizelnfo
24 if len > dev.bsize then
25: return
26: end if
27: data < Get_Data(msg.socket,len)

28: Copy msg and data to adev.dev.bu f
29: end if
30: _end Function

3) Device Read Process: Algorithm 2 shows the flow of
device read operation process. Ahub periodically updates the
device data and saves to its own buffer. The content of data
could be various such as camera image, printer status, and so
on. Since the connection between the VM and the Ahub is in
the master ambient device, the master finds a proper buffer to
store the data of this device and copies the data with header
information. Read operations from VM guests follow the same
procedure as master ambient device. Frontend driver virtio-
blk performs the same process of existing virtio protocol,
which includes shared memory allocation, and vring control,
and notification signal transmission. virtio-ambient-pci
catches the signal and copies the readable data that the master

PARK et al.: AMBIENT VIRTIO: 10 VIRTUALIZATION FOR SEAMLESS INTEGRATION AND ACCESS OF DEVICES

2349

Algorithm 3: Device write process.

Algorithm 4: Device unplug process.

1: /% Ahub */

2: function Handle_Messagemsg
3 if msg.type ==CODE_DATA then
4. adev < Find_Adev_From_Did(msg.did)
5: if ladev then
6 return
7 end if
8: len < msg.sizelnfo
9: if len > dev.bsize then
10: return
11: end if
12: data < Get_Data(msg.socket,len)
13: adev. fd.write(data)
14: end if

15: end Function

17: /* VM backend */

18: function Virtio_Ambient_Writebu f

19: adev < Find_Adev_From_Buf(buf)

20: data < Copy_Data(buf)

21: len < Get_ByteLength(data)

22: msg < Make_Header(CODE_DATA, adev, len)
23: Send msg to connected Ahub

24: end Function

ambient device secured before, and sends notification signal
to the guest. Note that the processes between physical device
and Ahub, Ahub and VM backend, and VM backend and VM
frontend are asynchronous. Depending on the characteristics of
the device, the cycle of Ahub to VM message transaction could
vary. For camera devices, certain frames per second (FPS) can
be important for quality of service. In our implementation, Ahub
determines the read cycle and data transfer cycle, respectively,
while generating the ambient device object.

4) Device Write Process: In the case of write operation de-
scribed in Algorithm 3, VM-side sends CODE_DATA message
to the Ahub. VM guest first notifies the backend device with
address of 1ovec-type buffer. Then, the driver reads the buffer
and sends CODE_DATA message with the data to its connected
Ahub. The Ahub checks if the operation is for the device that
the Ahub locally accesses or not. If Ahub can directly access
the device, it performs write operation with the device interface
it has. Otherwise, the Ahub forwards the message to the Ahub
that can physically access the targeting device.

5) Device Unplug Process: Algorithm 4 describes the device
unplug process. If the device is inaccessible due to physical
abnormality or request of device owner, the Ahub directly
attached to the device deletes the ambient device object and
reports CODE_UNPLUG to the other Ahubs and attached VMs.
The other Ahubs deletes the entry of the device from its device
list and alerts to their connected VMs. Each VM that receives
CODE_UNPLUG message performs an unplug process following
standard virtio implementation of backend and frontend un-
plug processes, defined at each side: standard version of QEMU
and Linux kernel. The unplug processes are also invoked on

1: /* Ahub */
2: function Unplug_Adevadev
3: adev.fd. close()
4. msg < Make_Header(CODE_UNPLUG, adev)
5: Send msg to the nodes
6: Remove adev
7: end Function
9: /* VM backend */
10: function Handle_Messagemsg
11: if msg.type ==CODE_UNPLUG then

12: adev < Find_Adev_From_Did(msg.did)
13: /¥ QEMU implementation */

14: gdev_unplug(adev.dev)

15:

16: Remove adev

17: end if

18: end Function

the disconnection between the VM and Ahub, for avoiding the
wrong process of VM applications. Reminding the collection of
message formats presented in Fig. 5, we targeted any shapes of
network desiring to provide the ambient experience to VM user
and application. Multiple Ahubs can share the information of
devices and each can provide the device data to connected VMs.
Onto this N-to-N architecture, one can adopt various methodolo-
gies to efficiently utilize the network resource. In Section IV, we
present multiple empirical scenarios with single or multiple VMs
and hosts to show the flexibility of the network structure. In-
cluding the demonstrated cases, Ahub and virtio-ambient
can hold more complex and scalable network by adjusting the
Device ID field of the message format.

We analyzed the computational overhead of data read and
write processes in terms of time complexity. As shown in Al-
gorithms 2 and 3, Ahub and virtio-ambient directly copy
the device data into the memory without nested loop. Thus, the
time complexity of each process can be normally presented as
O(MN), where M and N refer to the data size and the number
of readable/writable machines, respectively. To the best of our
knowledge, even though there is no publications addressing
the time complexity of our benchmark system robot operating
system (ROS), we argue that the complexity is equal or similar
to the proposed system due to the simplicity of the purpose.
However, the structural overhead of ROS architecture results
in the difference of the performance and the resource cost, as
shown in Section IV.

In addition, the above routines of ambient device operations
indicate the high flexibility of the shape of ambient devices.
With read/wr i teimplementation, Ahub can generate a virtual
device and publish to the network. So, in the same context,
VM can create a virtual device that performs read/write
operations with a certain action. We address the concept of
VM-side device creation in the following section.

2350

Algorithm 5: Metadevice generation process.
1: /* VM backend */

2: function Virtio_Ambient_Writebu f
3 adev <— Find_Adev_From_Buf(buf)
4 if adev == master_adev then
5: devname < Copy_Data(buf)
6: bsize + Set_Buffer_ Size()
7
8 /* QEMU implementation */
9: opts <— gemu_opt_create()
10: dev < gdev_device_add(opts)
11: drain_call_rcu()
12:
13: adev < New_Adev (devname, did, bsize, dev)
14: msg < Make_Header(CODE_REG, adev)
15: Send msg to connected Ahub
16: else
17: Do Algorithm 3
18: end if

19: end Function

21: /* Ahub */

22: function Handle_Messagesmsg
23: if msg.type ==CODE_REG then

24 did < Get_New_DeviceId()

25: adev < New_Adev(msg, did)

26: adev.meta < true

27: Forward msg to neighbor nodes

28: else if msg.type ==CODE_DATA then

29: adev <~ Find_Adev_From_Did(msg.did)
30: if adev.meta then

31: adev.buf < Get_Data(msg.socket, len)
32: else

33: Do Algorithm 3

34 end if

35: end if

36: end Function

C. Metadevice

virtio-ambient provides the ability of virtual device
creation not only to Ahub but also to VM guests. Virtually
defined device called metadevice is a novel concept in our pro-
posed system. The Ahub wraps the functionalities of devices into
read/write operations. Thus, in the context of our system,
metadevice can be any form of software or cyber—physical sys-
tem such as drone(s), simulator, or neural network. Furthermore,
a metadevice can read or write other metadevices or ambient
devices to generate higher level information.

Algorithm 5 shows the message flow of metadevice genera-
tion, starting from a VM guest. Similar to attaching a device,
the guest writes the new device name of the metadevice to
the master ambient device, and the VM backend creates the
backend ambient device. Opposite to the registration process,
VM backend sends CODE_REG message to the Ahub, and the
Ahub propagates this message to the other Ahubs and connected
VMs. The other nodes (Ahubs and VMs) notice the creation of

IEEE SYSTEMS JOURNAL, VOL. 17, NO. 2, JUNE 2023

VM a Access Access control
Access control information share of ﬁ‘h;b
Al
of kernel | Ahub | u
Guest VM network Access control
Virtio-ambient 9f kernel !
R |W|X |Physical device]

Fig. 6. Access control stages of ambient devices.

new metadevice from this message and update the device list of
themselves. One may argue that the concept of metadevice has
no difference with the previous networking tools, such as topic
pub-sub mechanism of ROS. However, there are clear novelties
of our virtio-based system as the following:

1) Lightweight VM: For ROS, designing a multinode system
requires ROS installation of all VMs. Furthermore, each
VM should initialize the ROS node, define subscribers
and publishers, and run event loop for catching the data
reception event and operating callback routine. However,
virtio-ambient requires VM guests to do a set of
simple system calls, device open, read, and write. This
difference not only simplifies the VM-side application
design but also reduces the overhead which occurs in VM
process.

2) Secured VM: VM guests do not have networking informa-
tion of ambient devices, such as their IP addresses. This
indicates that the VM backend has already buffered data;
so guests do not need any networking. From this feature,
the user can generate highly secured environment in VM
where the host machine vouches the network security
through its resource.

3) Software reusability:The main advantage of the proposed
system is that the VM guest can access the ambient device
by the same way of local device. Thus, the VM user
can utilize the software products implemented for local
devices while using ambient devices.

Note that Ahub can freely generate and issue the metade-
vices since the VMs and other Ahubs do not care about how
the devices are actually operated. However, for metadevices a
VM created, the creator can do write operations. The creator
sends CODE_DATA to the Ahub by write operation, and the
connected Ahub stores the data into the device buffer. Other
VMs can read the metadevice data through CODE_DATA
message sent from the Ahub. Broadly speaking, Ahub should
have criteria to determine whether or not to perform the ambient
device operation for each request. We address how to grant the
accessibility of ambient device in the next section.

D. Access Control

Including metadevice, all ambient devices contain the infor-
mation of control right. If a group of Ahub operates as a platform,
the Ahubs should manage the availability to read or write the
device data for security and extensibility. Fig. 6 shows the access
control stages of the ambient devices. Linux and other operating
systems have their own access control schemes; so the proposed
system should consider working with them. In the case of Linux
kernel, opening block device file basically requires the user to

PARK et al.: AMBIENT VIRTIO: 10 VIRTUALIZATION FOR SEAMLESS INTEGRATION AND ACCESS OF DEVICES

group 0
|:|o|o|o|1|1|o|o|1|o|o|o|...

group 1 group 2

Visible / Writable

Readable Configurable

Fig. 7. Access configuration field layout.

be at the block user group or super user authority. If the guest
user has permission to read and write all block device files, all
ambient devices can be fully exposed to the user. Thus, the Ahub
should intervene the accessibility of ambient devices. Utilizing
the Ahub routines and mechanism, Ahub mainly controls the
device data exchange by grouping VMs. We use Field 2 of
CODE_REG header, as shown in Fig. 7. Each group of VMs
indicates the level of the device accessibility, presented by 4
digits. Each digit has the following meaning in order.

1) The Visible digit indicates whether the device is present
or not to a group of VMs. In device registration process,
CODE_REG message is only sent to the group of VMs
whose Visible digit is set to 1.

2) The Readable digit indicates whether the VM group can
read the device data. Ahub sends CODE_DATA message
only to the group of VMs whose Readable digit is setto 1.

3) The Writable digit indicates whether the group of VMs
can perform the write operation. Ahub processes the write
operation of the physical device only when the operation
request is sent by the group of VMs whose Writable digit
is set to 1. In the metadevice case, Ahub updates the device
buffer if the device creator sent the write operation.

4) The Configurable digit indicates whether the VM group
can operate the specific configuration command through
the write operation (e.g., changing camera resolution).
Ahub handles the configuration operation sent from the
group of VMs whose Configurable digit is set to 1.

By using 4-b field, an ambient device can set the access right
of eight groups. The number of groups can vary by changing the
access configuration field. The hypervisor set the group number
of a VM at startup. Through this access control, Ahubs can
operate a large-scale device platform for ambient computing
service.

IV. PERFORMANCE EVALUATION

We implemented the proposed system to validate and evaluate
the system. As mentioned earlier, we modified the latest ver-
sion of QEMU written in C for declaring virtio-ambient
moduleandvirtio-ambient-pci device. Additionally, we
implemented Ahub and a simple guest-side wrapping functions
called alib by Python. We enabled kvm as a host-kernel
hypervisor and used Ubuntu 20.04 LTS image for guest VM
which runs Linux kernel 5.4. We run the hosts and the VMs at a
desktop equipped with Intel Core i5-6600 3.30 GHz and 16 GB
RAM, and alaptop equipped with Intel Core 17-4500 U 1.80 GHz
and 8 GB RAM. Each machine accessed to the Wi-Fi network
by external network interface card named TL-WN722 N made
by TPLink, and a device named KCX-017 is used for power
measurement. For image acquisition, we used USB web camera

2351

Guest 1 (VM) | |
UGV control app. |

Guest 2 (VM)
SLAM module

Stereegeamer

Host machine

Ahub

slam1 m}

‘ Host machine

Fig. 8. virtio-ambient performance evaluation experiment.
15000 w
@ —— Ambient Virtio
E] e
8, 10000
o
S
E 50007
a
)
0 1 1 1
0 20 40 60 80
time (seconds)
Fig. 9. Number of 3-D features in virtio-ambient performance evalua-

tion experiment, compared with ROS.

devices named S604HD. Finally, we adopted Robotis Turtlebot3
Burger [16] for mobility. To prove the efficiency of the system,
we compare the analytic figures of the demonstration scenario
with the ROS. The reason for adopting ROS for the comparison
study is the similarity of the role and the motivation with the
proposed system. Both virtio-ambient and ROS provide
a unified framework to the applications that require the access
to the local or remote device. To let a virtual machine access
the remote camera and obtain the stream of image, a devel-
oper should determine how to implement the application: using
ROS, virtio-ambient, or using another platform made by
others or himself. We determined to show the performance of
the proposed system with ROS implementation since ROS is
open-source and widely used for data access and sharing.

A. Comparison With ROS

As shown in Fig. 8, we designed a test bed. A test bed was
designed using an unmanned ground vehicle (UGV) and two
VMs. We equipped a stereo camera on the UGV. Then, we
virtualized the camera and the UGV controller and plugged to
VMs with the name of stereo and ugv1 so that a VM controls
the UGV and the other VM performs simultaneous localization
and mapping (SLAM) operation. stereo periodically reads
the stereo camera and transmits a concatenated stereo image
in 60 frames per second. Meanwhile, a VM running SLAM
generated a metadevice slaml to write the resulting 3-D map
to the Ahub. Furthermore, we implemented the same test bed
while using the ROS interface for comparison with the exist-
ing system. We launched roscore, turtlebot_bringup,
and uvc_camera nodes at UGV 1. UGV 2 subscribes the
stereo image published by uvc_camera node and performs
SLAM while publishing the control commands to the turtle-
bot_bringup. Inboth test beds, we launched r tabmap [17]
for SLAM operation. We moved the UGVs for 80 s in circular
trajectory and collected the number of the 3-D map points in each
case. Fig. 9 shows the results of two experiments. As shown in
the figure, the case of virtio-ambient resulted about 3000

2352

— Ambient virtio, quality=20
/|- - - Ambient virtio, quality=40
---- Ambient virtio, quality=60
Ambient virtio, quality=80
—ROS, quality=20
---ROS, quality=40
-=-ROS, quality=60
ol ROS, quality=80
0 100 200 300 400
Inter-frame delay (milliseconds)

(@) (b)

=)
T

Memory usage (MB)
i
i
i
!

>
)

200 400
time (seconds)

Fig. 10. Performance comparison of stereo image transport with respect to
interframe delay (left) and memory usage (right). (a) Interframe delay. (b)
Memory usage.

more 3-D points than the case of ROS. The main reason of this
result is the extra overhead of the ROS module running in the
guest VM of UGV 2. ROS-based system processes image data
at the application layer of guest VMs, which may incur poor
performance despite the assistance of KVM. Furthermore, ROS
consequently uses virtio-net for image transport; so the
performance difference could be larger if another heavy traffic is
located. In contrast, virtio-ambient uses separated device
buffer for each device; so the bottleneck of data exchange could
be less than the case of ROS. This experiment showed that
the proposed system works as intended with less overhead in
VM. Since the same SLAM operation ran in both test beds, we
intensively measured the performance of image transport part
of the scenario. Fig. 10 shows the interframe delay and memory
usage of image reception and publish (for rtabmap) process
in each case. We varied the quality of compressed image from
20 to 80 and collected the interval of the arrivals of the images.
Since ROS transmits the left and the right images separately,
we measured the delay at every left image reception. As shown
in Fig. 10(a), the delays of our system are less than 100 ms
in 99% of the cases, while the delays of ROS are spread at the
range of 0—120 ms in most cases. The average delays of Ambient
Virtio and ROS are 35.58 and 79.94 ms, respectively, where our
system performs 2.24 x faster image transfer. In addition, we
observed the collective image transmission of ROS case due to
the bottleneck in the virtio-net, which decreases the quality
of experience (QoE) of the system. In the case of quality= 80,
long tail of interframe delay emerged because of the large-
sized image data. The difference of performance comes from
the difference of the structural overhead of the systems. ROS
reactively catches the image subscription event and unpacks the
data while operating ROS interface, but virtio-ambient
copies the data from the device buffer where the backend process
proactively receives and stores the image data. To clearly show
the advance in the viewpoint of memory, we plotted the memory
usage of the raw image reception process of each case, as
shown in Fig. 10(b). For compressed image transfer, regardless
of quality, our proposed system shows less memory usage than
ROS by 29.0 MB. However, at the raw image transfer of ROS, the
process instantly raises the memory usage to over 120 MB at the
interval of 14—75. Whereas, virtio-ambient shows consis-
tent usage of memory since the overhead opening the device file
is unnoticeable. In the steady state, Ambient Virtio and ROS
use 12.38 and 62.68 MB of memory, respectively, where our
system achieves 80.25% memory savings. Finally, we measured

IEEE SYSTEMS JOURNAL, VOL. 17, NO. 2, JUNE 2023

TABLE I
AVERAGE POWER CONSUMPTION COMPARISON OF STEREO IMAGE

Average power consumption
16.4 mAh
18.2 mAh

virtio—ambient
ROS

Guest 1 (!M)_* stereo2 used

Stereo camery Obstacle | [Swarm 11 ' ajternatively
; '\ avoidance control
(disconnected

Host machine Host machine

Ahub

(s stereo]]
oy tro|ler-ims ugvl M

L

Fig. 11. Device switching experiment scenario.

@bstacle?

Fig. 12. Device switching experiment setup.

the power consumption of network interface card of each case,
while sustaining the image transmission for 10 min. The result
is shown in Table I. The case of virtio-ambient consumes
about 16.4 mAh of power, while ROS consumes about 18.2 mAh.
The reduced power consumption of virtio-ambient comes
from the less structural overhead of Ahub message routines.
Through the evaluation of image transmission, we verified that
virtio-ambient makes the VM access remote device data
with much less overhead.

B. Device Switching Experiment

Utilizing virtio-ambient and Ahub functionalities, we
designed a device redundancy scenario and verified the effec-
tiveness of the system. Since the virtio-ambient based ap-
plications access remote devices the same as local ones, the VM
can simply switch which device to use by changing the device
while reusing the other parts of the software. Fig. 11 describes the
device switching experiment scenario with two UGVs and one
VM. Each Ahub running in the companion board of each UGV
virtualized the stereo camera and the controller. We plugged all
four ambient devices to VM. VM generates disparity image from
one of the ambient stereo cameras and determines the directions
of the UG Vs to avoid the obstacle collision. We previously input
the relative position between UGVs for swarm control. Fig. 12
shows the experiment environment setup. Two obstacles located
at the UGVs path, and blue solid line in the figure indicate
the expected path of UGVs. After detouring Obstacle 1, we
disconnected a stereo camera equipped in UGV 1. Then, Ahubs
removed stereol, and the VM replaced the image source to

PARK et al.: AMBIENT VIRTIO: 10 VIRTUALIZATION FOR SEAMLESS INTEGRATION AND ACCESS OF DEVICES

sl 4Obstacle-1

0

stereo0 unplugged

0 0.5 1 1.5 35 4

2 2.5
X (m)

Fig. 13. UGVs trajectories of device switching experiment.
1000
£800¢
<
>
2 600 i
2400 ——MQ-2 at Ahubf|
............................... - MQ-2 at host
200 : ‘ :
0 10 20 30 40 50
time (seconds)
(@)
30
@) —DHT-22 at Ahub
L 28 LA - DHT-22 at host
g
= 26
2
g24r
(5]
F
22 ‘ : ‘
0 500 1000 1500 2000
time (seconds)
(b)
1
0.5
g
= 0
S
<05 ——Original sound track ||
| —Microphone at Ahub
3 32 4. 3.6 3.8
Samp%e index p
x10
(©)
Fig. 14. Miscellaneous device demonstration. (a) Gas sensor experiment. (b)

Temperature sensor experiment. (¢) Audio input experiment.

stereo2. The VM can proceed the obstacle avoidance control
because we gave the relative position of UGVs. Without our
system, the VM would have to either reconnect to the other
stereo of UGV 2 via an appropriate network stack or stop
running to install a new camera on UGV 1. However, since we
spread virtio-ambient camera through Ahubs before, the
switching instantly occurs and VM can process the UGV control.

2353

Fig. 13 shows the experiment results with experiment setup.
The video of the demonstration can be found at [18].3 As
shown in the figure, the UGVs detoured the obstacles from
the distance information obtained by stereol. Then, when
UGV 1 reached near the position of (0.7 m, 1.0 m), Ahub triggers
the unplugging operation of stereol. The VM immediately
detected the removal of stereol, searched for a replacement
by device name, and switched the source of disparity image to
stereo2 whose physical device was at UGV 2. After a few
staggering, UGVs found the best direction and directly moved
forward. From this demonstration, we verified that our proposed
system is available in the circumstances where VM requires the
redundancy of data sources.

C. Miscellaneous Devices

We conducted various demonstrations with various devices to
confirm the extensibility of Ambient Virtio system. We investi-
gated multiple types of peripheral devices and implemented as
ambient devices while configuring from the hardware connec-
tions to the proper software interface of each. Considering the
page limit of the article, we chose the devices that effectively
show the usability of our system.

1) Atmospheric sensors: We defined virtual gas sensors with

a gas sensor MQ?2 and a thermometer DHT-22, respec-
tively. Ahub created ambient device objects called mg0
and dhtO and transmitted the sensor data to VM. To
validate the system, we connected another set of sensors
at host machine and concurrently collected the data while
emitting butane gas for three times and lowering the air
temperature. Note that we synced the clock with -rtc
clock=host option of QEMU and used the same code
at the host and the VM with only difference being the
device file name (/dev/ttyACMO and /dev/vdX).
Fig. 14(a) and (b) shows the sensor data with respect to
the time. In the figures, there are small differences in the
sensor values due to the difference of sensor position and
hardware calibration. However, both results show the clear
reaction of the gas emission and temperature changes.
The results imply that the VM can ambiently access the
virtualized sensors just as a physical machine accesses
physical sensors.

2) Acoustic device: We defined an audio input device as

a virtual device. With the same process of sensors and
cameras, we connected a microphone at Ahub and created
micO ambient device. Ahub stored the audio stream
data into fixed size buffer and transferred to VM with
global sample index. We played a simple sound track
nearby the device, and VM reads the sound data from
the ambient device. Fig. 14(c) compares a subset of the
samples collected at the VM to the original sound file. The
difference of waveforms comes from the performance
of the audio input device, since we verified that there is
no loss from the Ahub to VM transmission. From the
experiment, we verified that Ahub can virtualize media
device and serve the VM to access in ambient environment.

3Note that we followed double-blind policy while uploading the video. We
removed any information that leads readers to infer the authors’ information.

2354

In
tion

V. CONCLUSION

this article, we proposed a novel device virtualiza-
scheme called Ambient Virtio for ambient computing

environment. Existing virtualization enables ambient access to
the core resource of computing platform rather than peripheral
devices. By augmenting the commonly used virtualization tech-

niqu

e, we enabled for VMs to interact with the ambient devices,

as the same way of local devices. We summarized the contents
of this article as follows:

1)

2)

3)

4)

We implemented virtio-ambient device following
virtio protocol and Ahub that virtualizes the physical
device and enables ambient access of VMs. We specified
the routines for the system that cover the lifespan of
ambient device with sample message format.

We devised a novel concept of virtually defined device
named metadevice. Any components including VMs and
Ahubs can define a metadevice and publish to the ambient
use. We indicated the possibility of the evolution of device
system through metadevice design.

We constructed an access control scheme for ambient
device platform. We designed four-staged control rights
reflecting the features of the ambient device system.

We demonstrated our proposed system with empirical
devices. From demonstration, we verified the performance
improvements in VM-side process and the broad availabil-
ity of the system.

To improve the proposed system, we set the following future
research plans and continue our in-depth research.

a)

b)

c)

Data traffic optimization: Due to the diversity of the role
of device, the network traffic in terms of bandwidth and the
required round trip time (RTT) also varies. We can further
deepen the ambient device management process to elevate
the quality of ambient computing platform.

Ambient device data encryption: In addition to the access
control, Ahub or VM can encrypt the device data for
confidentiality. Then, the access control logic will include
the key generation and distribution process.

Portability: The current design requires virtio mod-
ule to VM. By investigating the other structures used in
popular, we plan to support as many VMs as possible.

The ultimate goal of our research is to advance the ambient
computing concepts in which users can access and utilize all the

capa

bilities of ambient devices while securing minimal equip-

ment such as communication modules and low-cost computing

mod

ules. We believe that our proposed system is a feasible

solution for engaging smart things in the ambient computing
ecosystem.

(1]
[2]

[3]
(4]

REFERENCES

S. K. Lee, M. Bae, and H. Kim, “Future of iot networks: A survey,” Appl.
Sci., vol. 7, no. 10, 2017, Art. no. 1072.

M. Aghaei, F. Grimaccia, C. A. Gonano, and S. Leva, “Innovative auto-
mated control system for PV fields inspection and remote control,” IEEE
Trans. Ind. Electron., vol. 62, no. 11, pp. 7287-7296, Nov. 2015.

A. Rostami, “Introduction of team viewer software,” Interdiscipl. J. Virtual
Learn. Med. Sci., vol. 3, no. 1, pp. 70-70, 2020.

D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras, “Applications of
wireless sensor networks: An up-to-date survey,” Appl. Syst. Innov., vol. 3,
no. 1, pp. 14-14, 2020.

(3]

(6]

(71

(8]

(91

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

IEEE SYSTEMS JOURNAL, VOL. 17, NO. 2, JUNE 2023

M. Chae, H. Lee, and K. Lee, “A performance comparison of Linux
containers and virtual machines using docker and KVM,” Cluster Comput.,
vol. 22, no. 1, pp. 1765-1775, 2019.

C. Akasiadis, V. Pitsilis, and C. D. Spyropoulos, “A multi-protocol IoT
platform based on open-source frameworks,” Sensors, vol. 19, no. 19,
pp. 42174217, 2019.

H. Harman, K. Chintamani, and P. Simoens, “Robot assistance in dynamic
smart environments-a hierarchical continual planning in the now frame-
work,” Sensors, vol. 19, no. 22, 2019, Art. no. 4856.

J. He, Y. Zhang, J. Lu, M. Wu, and F. Huang, “Block-stream as a ser-
vice: A more secure, nimble, and dynamically balanced cloud service
model for ambient computing,” IEEE Netw., vol. 32, no. 1, pp. 126-132,
Jan./Feb. 2018.

L. Wang, Z. Yu, D. Zhang, B. Guo, and C. H. Liu, “Heterogeneous multi-
task assignment in mobile crowdsensing using spatiotemporal correlation,”
IEEE Trans. Mobile Comput., vol. 18, no. 1, pp. 84-97, Jan. 2019.

R. D. Pietro and F. Lombardi, “Virtualization technologies and cloud
security: Advantages, issues, and perspectives,” in From Database to
Cyber Security. Berlin, Germany: Springer, 2018, pp. 166—185.

W. Huang, “Introduction of AMD advanced virtual interrupt controller,”
in XenSummit. AMD, San Diego, CA, USA, 2012.

J. Gandhi, M. D. Hill, and M. M. Swift, “Agile paging for efficient memory
virtualization,” IEEE Micro, vol. 37, no. 3, pp. 80-86, Jun. 14, 2017.

L. Abeni and D. Faggioli, “Using Xen and KVM as real-time hypervisors,”
J. Syst. Architecture, vol. 106, 2020, Art. no. 101709.

B. Guo et al., “Timeslot switching-based optical bypass in data center
for intrarack elephant flow with an ultrafast DPDK-enabled timeslot
allocator,” J. Lightw. Technol., vol. 37, no. 10, pp. 2253-2260, May 2019.
Z. Yang et al., “SPDK: A development kit to build high performance
storage applications,” in Proc. IEEE Int. Conf. Cloud Comput. Technol.
Sci. (CloudCom), 2017, pp. 154-161.

R. Amsters and P. Slaets, “Turtlebot 3 as a robotics education platform,”
in Proc. Int. Conf. Robot. Educ. (RiE), Springer, 2019, pp. 170-181.

M. Labbé and F. Michaud, “RTAB-map as an open-source lidar and visual
simultaneous localization and mapping library for large-scale and long-
term online operation,” J. Field Robot., vol. 36, no. 2, pp. 416446, 2019.
“A video of IEEE systems journal,” [Video]. Accessed: Aug. 2022. [On-
line]. Available: https://youtu.be/COiO_ZGzLOE

Seongjoon Park received the BSE degree in elec-
trical engineering from Korea University, Seoul, Ko-
rea, in 2015, and the Ph.D. degree in electrical and

> computer engineering from Korea University, Seoul,
3 Korea, in 2022.
— His current research interests include community

wireless networks, network modeling and simula-
tions, and virtualization techniques.

Kiseok Kim received the BSE degree in electronics
engineering from Inha University, Incheon, Korea,
in 2020. He is currently working toward the Ph.D.
degree in electrical and computer engineering, Korea
University, Seoul, Korea.

His current research interests include embedded
Linux computing and Android platform.

Hwangnam Kim (Member, IEEE) received the BSE
degree in computer engineering from the Pusan Na-
tional University, Busan, Korea, in 1992, the MSE
degree in computer engineering from Seoul National
University, Seoul, Korea, in 1994, and the Ph.D.
degree in computer science from the University of
Illinois at Urbana-Champaign, Champaign, IL, USA,
in 2004.

He is currently a Professor with the School of Elec-
trical Engineering, Korea University, Seoul, Korea.
His research interests include wireless networks, un-

manned aerial systems (UAS), UAS traffic management, counter UAS systems,
and Internet of Things.

https://youtu.be/COiO_ZGzLOE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

