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Decentralized Resource Allocation-Based Multiagent
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Abstract—Resource allocation (RA) has a significant impact on
vehicular network performance. With high mobility, RA is more
challenging, as the number of vehicles in close proximity changes
dynamically in the nonstationary environment. In this article, we
propose a multiagent double deep Q-networks scheme to stabi-
lize the system and maximize the sum-capacity of the vehicle-to-
infrastructure (V2I) links, while satisfying the reliability and delay
constraints for vehicle-to-vehicle (V2V) links. To avoid interference
caused by unstable V2V links, a transmission mode selection is con-
sidered in the scheme design. In addition, we introduce a binarized
weight algorithm to accelerate the deep neural network learning
process and, therefore, improve the computational complexity of
our scheme. Through extensive simulations and complexity anal-
ysis, we demonstrate that the proposed scheme yields excellent
performance in terms of the sum-rate and probability rate of V2I
and V2V communication modes. We also compare the proposed
scheme with binarized weights with other algorithms in terms of
accuracy evaluation.

Index Terms—Binarized weights, deep reinforcement learning
(DRL), Markovian decision process (MDP), multiagent scheme,
resource allocation (RA), vehicular communication.

I. INTRODUCTION

AVEHICULAR network is an enabling technology for au-
tonomous driving and smart vehicles, capable of providing

various on-board data services [1]. It is a key technology that
enhances transportation by supporting cooperation among vehi-
cles in the immediate vicinity, providing satisfactory quality of
service (QoS). The intelligent transportation systems (ITS) [2]
and the dedicated short-range communications (DSRC) [3],
both based on IEEE 802.11p standard, have been studied to
realize vehicular communications. A technique based on IEEE
802.11p intervehicle cooperation channel estimation has been
proposed in [4] to obtain the accurate channel state information
(CSI) in vehicle-to-everything (V2X) networks to improve the
safety-critical data transmission. However, defective aspects of
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IEEE 802.11p, such as mobility management, scalability, and
guaranteed QoS have been mentioned in [5] and [6]. This is
basically due to its link and physical layers being designed for
low mobility communications. This issue is addressed with the
3GPP standard that supports various QoS requirements of V2X
networks and exploits the device-to-device (D2D) communica-
tion in long term evolution (LTE) and 5G cellular networks. We,
therefore, focus on the resource allocation (RA) in vehicular
network based on 3GPP standard, which comprises vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) links sharing
frequency spectrum and using PC5 and Uu radio interfaces,
respectively.

The most common communication modes in a vehicular
network are the V2V, vehicle-to-pedestrian (V2P) and V2I
links [7]. Usually, these links have different QoS constraints.
For instance, V2I links focus primarily on the data sum-rate,
whereas V2P and V2V links are more concerned with reliability
and delay requirements. It is foreseen that in the future more
traffic-related applications and entertainment will be undertaken
by vehicles. Even currently, multiple vehicular applications are
already delivered through the V2V and V2I communication
links [8]. However, this requires frequent and unlimited Internet
access provided through high-capacity V2I links and safety-
critical messages being transmitted via V2V communications
to neighboring vehicles instantaneously and in a reliable way.

In view of the number of inherent limitation factors, such as
hostile wireless channels, a progressively congested spectrum,
rapid growth of vehicular communication devices, and espe-
cially high mobility, it is very important to use and allocate the
available resources in an extremely effective way. Conventional
RA approaches cannot be used in V2V networks for D2D
communication even with the assumption of full CSI, as it would
be difficult to monitor the variation of the channel on a small
time-scale. Rigorous mathematical methodologies for vehicu-
lar communication systems traditionally developed are mainly
based on assumptions of low mobility or static environments.
Generally, they are not modeled to deal with the different envi-
ronmental conditions effectively [9]. It is, therefore, necessary
to develop new schemes that can interact with a rapidly changing
environment, in terms of RA, and obtain optimal decisions for
high mobility vehicular systems.

Fortunately, deep reinforcement learning (DRL) models have
been introduced into V2V networks for high efficiency in com-
plex and big data problems, such as RA to handle decision-
making challenges under uncertainty. However, DRL requires
much memory and computation time to extract nonlinear feature
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vectors to predict outputs with high accuracy. Indeed, most
of the V2V services-based DRL approaches for analyzing and
processing the collected data from vehicles are performed in the
cloud with high-performance resources. There are methods that
could be applied to the training process to improve memory use
and reduce the computation time of the DRL algorithms [10].
However, this may come at a price of accuracy loss. For instance,
the BinaryConnect [11], BinaryNet [12], or XNOR-Net [13] and
many others act like regulizers that use binary values for weights
and activations instead of full precision values during training
of deep neural networks (DNN) to reduce execution times. In
this article, we address the computational complexity challenge
of RA when considering DNN training in vehicular networks.

II. RELATED WORKS

Recently, several studies have addressed the problem of smart
RA in different vehicular network environments. Overview stud-
ies on resource management for a range of vehicular networks
schemes are presented in [1], where challenges and opportu-
nities of research are examined. Existing literature on RA can
mainly be categorized into two approaches: 1) centralized and
2) decentralized schemes. To obtain general network informa-
tion, centralized algorithms would experience a large transmis-
sion overhead such that each vehicle would have to transmit
interference information and the local channel state to the central
controller [14]–[16]. However, it is challenging for these central-
ized schemes to satisfy various QoS constraints precisely with
ultralow end-to-end delay and high reliability. The high mobility
scenario in these systems also prevent accurate full CSI from
being collected at central controllers. As for the decentralized
RA schemes, every V2V communication link should make its
own decision with either little or partial knowledge of the other
V2V pairs [17], [18].

Wilhelmi et al. [19] concentrated on a completely decentral-
ized scenario for the RA where no information on neighboring
nodes was available to the learners. The reliability and latency re-
quirements, which are key metrics to the algorithm performance,
are not discussed. We, however, consider these requirements in
the design of the proposed scheme. A decentralized resource and
power allocation algorithm is proposed for a multiuser OFDMA
network in [20] and compared with centralized approaches.

Note that it is important for an efficient RA scheme to
support various QoS requirements in vehicular networks, par-
ticularly when considering the V2V and V2I communication
links. Hence, Zhang et al. [21] considered the DRL method
for resource management in vehicle communication to optimize
the V2I sum-capacity, while satisfying the reliability and delay
constraints of V2V links. However, the development communi-
cation of the scheme in [21] is conducted with a small number
of vehicles. This makes the scheme not efficient enough for
the nonstationary environment. A multiagent DRL algorithm
that maximizes the delivery rate of the V2V safety message is
proposed in [22] for an in-coverage scenario, where multiple
independent deep Q Network (DQN) parameters are trained for
every V2V link. This scheme, however, does not scale com-
putationally. In this article, the scaling problem is resolved by

grouping all the vehicle’s V2V decisions into a single decision.
Moreover, only a single model is trained, then shared among
the vehicles, allowing the vehicles to learn from the other’s
experiences. The allocation of resources in vehicular networks
is also investigated in [23], where a deep deterministic policy
gradient (DDPG) approach to optimize the sum-rate of the V2I
link is used, meanwhile satisfying the delivery probability of the
V2V link. However, the scheme cannot guarantee robust perfor-
mance owing to the estimation error that results in catastrophic
agent forgetting [24]. Note that in this article, we consider the
problem with continuous state spaces and discrete action space.
We, therefore, apply the DQN-based DRL framework rather than
the DDPG algorithm and consider its extension, the DDQN, to
avoid the overestimation problem of the DQN. In addition, the
critical difference between the DDPG and DDQN algorithms
lies in their training processes. For the DDPG, both the actor
and critic networks have to be trained, while it is not the case
for the DDQN. Also, the number of parameters to deal with in
the DDPG is much higher and requires more computation than
a DDQN.

In addition, most of the abovementioned research considered
only V2V communication links to distribute the safety-critical
messages among different vehicles. Nevertheless, using the V2V
links only when considering high-dimensional spaces or large
data, causes blockage effects due to the lower reliability of
V2V links. Therefore, it results in poor performance of V2V
communications [25]. This issue is addressed in this article
by considering a mode selection technique that is a V2I-based
forwarding method. In fact, to improve the spectrum utilization
while satisfying the QoS constraints in the vehicular networks,
the RA and mode selection should be jointly optimized [21].

The computational complexity of the DNN training procedure
is not investigated in most of the above literature. However, it is
crucial to address the complexity of the DNN in vehicular net-
works, since it is mostly high. Simons and Lee [10] summarized
the study on different algorithms to reduce the computational
time of the DNN training by binarizing the weights and/or
activations in image processing, computer vision, etc. Cerutti
et al. [26] explored the binary neural networks on sound-event
detection in tight power-constrained Internet of Things devices.
In this article we introduce the same process of binarizing the
weights during DNN training to reduce the complexity of our
proposed algorithm.

A. Contributions, List of Symbols and Paper Organization

1) Main Contributions: In this article, we consider the RA
problem in high mobility vehicle communication systems,
where multiple V2V pairs attempt to share the V2I preallocated
orthogonal subbands. We present an RA scheme-based decen-
tralized DRL approach to resolve the consequent challenges.
The scheme aims at maximizing the capacity of V2I pairs, while
satisfying the strict reliability and delay constraints on the V2V
links for a periodic safety critical message sharing. The main
contributions are as follows.

1) Markovian decision process (MDP) models the RA prob-
lem, where the V2V links are the multiagents that make
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TABLE I
LIST OF SOME SYMBOLS AND NOTATIONS USED IN THE ARTICLE

adaptive decisions according to the local observations.
The framework capitalizes on the current progress of this
multiagent approach to design the DRL-based decentral-
ized algorithm that concurrently enhances V2V and V2I
pairs’ performance. The blockage effect in the commu-
nication that may occur is controlled by introducing a
mode selection technique that consists of a V2I-based
forwarding solution.

2) This article proposes an MA-DDQN scheme to avoid
the overestimation problem of the conventional DQN
approach. Moreover, the proposed scheme adopts both
distributed execution and centralized training processes to
ease the implementation and improve the stability of the
system. This approach tackles the nonstationary environ-
ment by trying different joint actions and also reinforcing
patterns of actions yielding better results.

3) Furthermore, to improve the time complexity of the pro-
posed scheme, we propose to binarize the parameter
weights during the DNN training process of the algorithm
by using binarized weight values to train the model. This
makes the model sizes of the DNN much smaller than
usual and removes ≈ 2/3 of the matrix multiplication
operations of the DNN, which consequently reduces the
computation time of the proposed MA-DDQN scheme.

2) List of Symbols: As scientific articles in this field use
different notation variables and symbols, Table I provides the
conventions applied in this article.

3) Organization: The rest of this article is organized as fol-
lows. A description of the system model is presented in Sec-
tion III. Section IV presents the MA-DDQN-based decentralized
algorithm solutions for RA with some basis on the RL method.
We present the binarized weights approach and complexity
analysis in Section V. The simulation analysis is discussed in
Section VI and Section VII concludes this article.

III. SYSTEM MODEL DESCRIPTION

A. Network Architecture

A vehicular network consisting of a base station (BS) and
several vehicles’ user equipment (VUEs) is considered. As
illustrated in Fig. 1, the BS is placed at the center of crossroads,

Fig. 1. Structure illustration of the vehicular network with V2I and V2V links.

whereas the VUEs are placed on the roads. The VUEs and the BS
are all equipped with a single antenna. V2IU and V2VU denote
the VUE communicating via V2I and V2V links, respectively.
Let us assume that there are M V2IU and K V2VU in the
network environment.

In particular, V2IU requires the V2I connection links through
Uu interface to facilitate high-capacity communications with the
BS, while V2VU pairs (that each has a V2V transmitter and a
V2V receiver) demand V2V links for sharing their information,
through PC5 interface, for efficient management of traffic safety.
It is assumed that every V2I link employs preallocated orthog-
onal cellular uplink spectrum resources. The total bandwidth is
divided into F subbands with a single subband being allocated
to each V2IU for uplink transmission. In addition, the number of
subbands is assumed to be larger than that of V2IUM . Spectrum
utilization efficiency is ensured and improved when considering
that the V2V links share the preallocated orthogonal uplink
resource spectrum of the V2I links. This is reasonable because
the interference at the BS can easily be controlled and the uplink
resources are less intensively utilized. For the sake of simplicity,
it assumed that not more than one uplink spectrum allocated to
V2I links can be multiplexed by each V2V link at a time and
that the spectrum of every V2I link is shared simultaneously
by the V2V pairs maximum number [23]. Due to the vehicles’
high mobility in the system, it is assumed that the large-scale
channels are known at the vehicles and the BS. Thus, the channel
information from the mth V2IU to the BS, that is between the
V2VU pairs k and that from the kth V2VU transmitter to the
BS are represented as hV2IU

m,B , h
V2VU
k and hV2VU

k,B , respectively. We
also describe the interference channel gains from the kth V2VU
transmitter to the BS, from the mth V2IU to kth V2VU receiver
and from the kth V2VU transmitter to the jth V2VU receiver as
gk,B , gm,k, and gk,j , respectively.

B. V2IU and V2VU Communication Modes

In this article, the 3GPP standard is considered for the ve-
hicular network, which provides two radio interfaces; the PC5
interface that supports the V2V communication modes and the
Uu interface for the V2I communications. Also, the mode 4
of the V2X architecture is considered, in which vehicles have
a set of radio resources from which they can select the V2V
communication autonomously.
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1) V2IUs: For the V2IU, we can only adopt the uplink V2I
mode. Hence, the signal interference noise-to-ratio (SINR) of
the mth V2IU, γV2IU

m , is expressed as [22]

γV2IU
m =

PV2IU
m hV2IU

m,B∑
k∈K

∑
f∈F

ρm,fρk,fP
V2VU
k gk,B + σ2

(1)

where PV2IU
m and PV2VU

k represent the transmission power of
the mth V2IU and kth V2VU, respectively. ρm,f ∈ {0, 1} is an
indicator function for the subband allocation to the V2IU m,
we have m = f when ρm,f = 1 and ρm,f = 0, otherwise. ρk,f
denotes the indicator of the spectrum allocation with ρk,f =
1, when the V2VU k reuses the subband f of the mth V2IU
or ρk,f = 0, otherwise. σ2 denotes the noise power. Thus, the
achievable capacity of the mth V2IU is formulated as

CV2IU
m = W log2

(
1 + γV2IU

m

)
(2)

where W represents the bandwidth. The communication links
of V2I are mainly designed to enable smooth mobile broad-
band access for high data-rate mobile services, thus a suitable
design aims at maximizing the sum capacity as

∑
m∈M CV2IU

m .
Meanwhile, the safety-critical messages are also managed by
the V2I links for reliable transmission. These messages are
generated periodically for advanced driving services at different
frequencies according to the vehicle mobility.

2) V2VUs: It is worth mentioning that for direct communi-
cation between V2VU pairs, the V2V mode is selected and for
indirect communication through the BS, the V2VU pairs select
the V2I communication mode. In the case of the V2V commu-
nication mode for the V2VU pairs, the interference occurs from
the V2IU and the V2VU sharing the same subbands. Hence, the
SINR of the kth V2VU in the V2V mode over the subband f ,
γV2VU-(V)
k , is formulated as

γV2VU-(V)
k,f =

ρk,fP
V2VU
k hV2VU

k
M∑

m=1

ρm,fP
V2IU
m gm,k +

K∑
j∈K
j �=k

ρj,fP
V2VU
j gk,j + σ2

(3)

where PV2VU
k represents the transmission power of the kth

V2VU. The first two components on the denominator in (3)
capture the interference; the first one is the interference due
to V2IU and the second due to V2VU. Thus, the achievable
capacity of the kth V2VU in the V2V mode is given as

CV2VU-(V)
k =

F∑
f=1

W log2
(
1 + γV2VU-(V)

k,f

)
. (4)

In the case of the V2I communication mode, the V2VU pairs
firstly upload the safety-critical messages to the BS, then through
a downlink, these messages are forwarded to the appropriate
V2VU receivers. Note that in the V2I mode, only the unused
subbands are assigned to the V2VU pairs and each unused
subband can be assigned to a maximum of one V2VU pair.
Here, the interference occurs from the V2V communication
pairs that share the same subbands, while operating in the V2V
communication mode. Thus, the uplink SINR of the kth V2VU
pair in the V2I mode over subband f , γV2VU-(I)

k,f , is expressed as

follows [21]:

γV2VU-(I)
k,f =

ρk,fP
V2VU
k hV2VU

k,B

K∑
j=1
j �=k

ρj,fP
V2VU
j gj,B + σ2

. (5)

According to [27], the achievable capacity of the kth V2VU in
the V2I communication mode is expressed as

CV2VU-(I)
k =

1

2

∑
f∈F

W log2

(
1 + γV2VU-(I)

kf

)
. (6)

Therefore, the SINR γV2VU
k and the capacity CV2VU

k V2V pair k
are, respectively, written as follows:

γV2VU
k =

(
1− sV2VU

k

) F∑
f=1

γV2VU-(V)
k,f + sV2VU

k

F∑
f=1

γV2VU-(I)
k,f

(7)

CV2VU
k =

(
1− sV2VU

k

)
CV2VU-(V)

k,f + sV2VU
k CV2VU-(I)

k,f (8)

where sV2VU
k ∈ {0, 1} is a mode selection indicator for the

V2VU pair with sV2VU
k = 1 when the kth V2VU pair chooses

the V2I mode and otherwise, the V2V mode is selected.

C. QoS Requirement Formulation

The QoS requirements need to be taken into account when we
want to assure efficient communication in vehicular networks.
Multiple types of vehicular system applications exist, with
various QoS criteria [1]. Since the V2IUs handle bandwidth-
demanding traffic applications, their QoS criteria are presented
as the minimum capacity constraints to satisfy a convenient
experience. Thus, the V2IUs’ capacity constraint is given as

CV2IU
m ≥ CV2IU

min ∀m ∈M (9)

where CV2IU
min represents the V2IUs minimum capacity require-

ment. It is assumed that all the V2IUs have the same capacity
for simplicity. The QoS criteria of the V2VU pairs, on the other
hand, are the delay requirements such that the V2VU pairs need
to send safety-critical messages in real time. With an RA-based
decentralized algorithm considered at the VUE side, the delay
constraints between the V2VU pairs communication will include
the transmission delay with no extra grant-based scheduling
delay in the media access control (MAC) layer. The capacity
constraint is given as

CV2VU
k ≥ Lk

Tmax
, ∀k ∈ K (10)

where Lk represents the size of the message in bits while Tmax

is the maximum tolerable delay.
Similar to [28], the reliability constraint is converted into

an outage probability metric. It is also known as the deliv-
ery probability when both delay and reliability constraints are
taken into account. However, for simplicity and the sake of
convenience, we only consider the reliability constraint as the
outage probability metric. Thus, the reliability constraint is
formulated as

Prb
{
γV2VU
k ≤ γo

} ≤ po ∀k ∈ K (11)

where γo and po are the SINR threshold for outage and the
tolerable outage probability, respectively.
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IV. PROPOSED MULTIAGENT DRL SOLUTIONS-BASED

DECENTRALIZED ALGORITHM

To address the problem of RA in V2V networks, we first
model the problem as an MDP and solve it by the proposed
decentralized algorithm based on the DRL approach, which is
a model-free technique and robust to unpredictable changes in
the nonstationary vehicular networks [29]. Then, we present this
DRL approach, which assists in finding the mapping between
local observations of each vehicle, particularly the interference
information and local CSI, as well as the RA scheme. We further
improve the scheme by introducing the MA-DDQN-based de-
centralized scheme to solve the RA problem efficiently. The aim
of this RA algorithm, given the resource management of a V2I
link, is to guarantee that the reliability and delay constraints on
V2V pairs are satisfied while the interference between V2V and
V2I links is minimized. The V2VU pairs select the transmission
power, selection indicator for the transmission mode and sub-
band according to local observations in the decentralized RA
scenario.

A. Markovian Decision Process Formulation

We consider an MDP that consists of sets of state spaces and
available joint actions, immediate reward and discounting factor
given as S,A = A1 × · · · × Ak, r, and γ, respectively [30].
In the environment considered, multi-V2V agents continuously
learn by making decisions after interacting with the network
environment in a time slot i. In each discrete time slot i,
V2V agents observe the actual state as si ∈ S , then execute
an action ai ∈ A, by selecting the transmit power, selection
indicator mode, and subband according to the π policy. The
policy decision, π, is defined by a Q-function, Qi(s, ai; θ), with
θ being the Q-function weight obtained by DL. Afterward, the
multi-V2V agents receive a reward ri = r(si, ai) ∈ R and end
up in the following state, si+1 ∈ S , based on the state transition
probability p(si+1|si, ai).

1) Agents: We consider an MA-DDQN technique with k
V2VU pairs being agents in the vehicular communication net-
work.

2) Action Spaces: The proposed model defines the action
space A = A1, . . . ,Ak, k ∈ K as a set of all joint actions that
can be taken by the V2V communication links. Every V2V
agent chooses an action ai ∈ A, during the time slot i, from the
action spaces under the currently observed state s. The action
includes the subband assignment ρ, the selection mode sV2VU,
and the transmission power control pV2VU. It is assumed that the
transmission power is discrete [31].

3) State Spaces: Let si denote the observed state for de-
scribing the network environment by each V2V pair agent,
which consists of six parts and can be formulated as si =
[Ii−1, Ni−1, gi, hi, Ti, Li], where Ii−1 represents the received
interference power to the V2V link at the precedent time slot
i. Ni−1 is the number of the subchannel of selected neighbors
at the precedent time slot i. gi and hi are the channel gains of
the V2I and V2V communication pairs, respectively. Ti is the
remaining time to satisfy the delay requirement, while Li is the
VUE current load for transmission. The quality of every subband

channel is demonstrated by the instant channel information
and the interference obtained. The distribution of neighbors’
selection relates the interference to the other V2IU. The rest of
the time and extent of the message to be transmitted requires
information to select the appropriate power level.

4) Reward Function: Note that flexibility in designing re-
ward functions makes the DRL suitable for solving problems that
are hard to optimize directly. The performance of the vehicular
system can easily be improved once the designed reward func-
tion and the desired objective both correlate at each step. This
reward function is defined by the V2V and V2I capacities, the
reliability and delay requirements of the corresponding V2VU
pairs. Therefore, the reward function is expressed as

ri = λ1

M∑
m=1

CV2IU
m +λ2

M∑
m=1

(
CV2IU

m − CV2IU
min

)
+λ3

K∑
k=1

CV2VU
k

+ λ4

K∑
k=1

(
γV2VU
k − γo

)
+ λ5

K∑
k=1

(
CV2VU

k − Lk

Tk,i

)

(12)

where λ2, λ2, λ3, λ4, and λ5 are positive weights that balance
the V2V and V2I objectives. The multi-V2VU agents aim at
finding the optimal strategy π∗ for the RA to maximize its
received cumulative discounted reward function. The expected
cumulative discounted reward is given as Ri =

∑∞
t=0 γ

i−tri,
with γ ∈ (0, 1] being the discounting factor.

It is worth mentioning that interaction between each V2V
agent and the unknown environment is mandatory for the agent
to gain knowledge and more experience, which are later used in
the design of its policy.

In addition, multi-V2V agents jointly investigate the unknown
network environment, and improve the power control and spec-
trum allocation methods according to their own observations of
the environmental state.

B. Deep Q-Learning

This article considers the Q-learning method to get the optimal
decision policy π∗ for the decentralized RA that maximizes the
expected cumulative reward function in the vehicular network.
In this article, the collaborative multiagents RL is considered
with local states because of its distributed characteristic and
simplicity. The multiagent refers to the decision making V2V
agents that interact in the shared environment. The V2V agents
select actions according to the stochastic policy decision π that
is mapping the set of state S to the set of action Ai. This is
formulated as a∗i = π∗i (s) ∈ Ai. It is important for each V2V
agent to get the optimal decision policy to achieve the maximum
cumulative discount reward while satisfying all the constraints.
Moreover, in the Q-learning process, V2V agents can still take
action while collecting rewards. The action selected in the fol-
lowing stage is a function of the current value learned; this is
similar to the MDP operation. Thus, the MDP can be formulated
as a Q-learning process. Using the Q-learning approach, the
optimal Q-value function Q∗(s, ai) is obtained with Bellman’s
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equation as follows [32]:

Q∗(s, ai) = ri(s, ai) + γmax
a′i∈Ai

Q∗i (s
′, ai′). (13)

With the optimal Q-value function Q∗i (s, ai) in (13), the
optimal policy decision π∗i (s) can be evaluated as π∗i (s) =
max
ai
′∈Ai

Q∗i (s, ai
′). The updated Q-value function of the Q-

learning for the Qi(s, ai) can be obtained through the iterative
process as

Qi(s, ai) = Qi(s, ai) + α[ri(s, ai)

+ γ max
ai
′∈Ai

Qi(s′, ai′)−Qi(s, ai)] (14)

with α being the learning rate that determines the effect of new
information on the existing Q-value Qi(s, ai). The Q-learning
can solve the problem of RA using random variables. However,
when the high dimensional state-action spaces are addressed
in actual complex problems, the efficiency of the Q-learning
algorithm can be reduced. As a result, Q-learning might not
be sufficient to achieve the optimal strategy within the accept-
able time. To solve this problem, we, therefore, propose the
multiagent DRL-based approach that uses the DNN to estimate
the Qi(s, ai) instead of computing a large Q-values table for
every (s, ai) pair in the Q-learning process. The combination
of DNN and Q-learning results in the DQN, which is one
of the most famous methods of DL. A DNN is defined as a
neural network deep graph with many processing layers. In
the DQN, DNN approximates the Q-values and the optimal
decision policy π∗. Note that a neural network function ap-
proximator Qi(s, ai; θ) ≈ Q∗(s, ai) where the parameters θ are
used as an on-line network. In this DQN approach, a target
network with θ− is used with the on-line network to stabilize
the overall performance of the vehicular network. Thus, the
optimal decision policy π∗(s) after approximation, is presented
asπ∗(s) = arg maxai

′∈Ai
Q∗i (s,

′ ai′; θ), withQ∗i (s, ai) being the
optimal Q-value obtained through the DNN. After the DQN has
chosen the approximated action, the target Q-value QDQN(s, ai)
is expressed as

QDQN
i (s, ai) = ri(s, ai) + γ max

ai
′∈Ai

Qi(s,
′ ai′; θ−). (15)

The DNN parameter weight θ is continuously updated by mini-
mizing the loss functionLi(θ) that is described by the difference
between the two Q-functions as follows [33]:

Li(θ) = E

[(
QDQN

i −Qi(s, ai; θ)
)2

]
. (16)

The action ai is selected from the on-line network Qi(s, ai; θ)
using the greedy policy.

Although the target network QDQN is a duplication of the on-
line network, target network parameters θ− are set for a certain
number of iterations, while the parameters are updated in the
on-line network. The gradient descent technique is considered
to change the parameter θ and it is computed as follows:

∂Li(θ)

∂θ
= E

[
QDQN

i − Qi(s, ai; θ)∂Qi(s, ai; θ)

∂θ

]
. (17)

With the stochastic gradient descent applied, we can update the
θ parameter as follows:

θ −→ θ + α

(
QDQN

i −Qi(s, ai; θ)

)
∇θQi(s, ai; θ). (18)

However, the operation “max” in the Q-learning and DQN
approaches in (15) uses the same values for the selection and
evaluation of actions. This makes overestimated Q-values more
likely to be selected, resulting in overoptimistic Q-value function
estimates. To prevent this, we consider the DDQN approach in
this article [34].

C. Multiagent Double DQN Approach

In this subsection, we describe the proposed MA-DDQN-
based decentralized algorithm that uses a joint action learning
strategy. It is obvious that when considering a nonstationary
environment in vehicular networks, it is hard to collect all the
CSI over large networks immediately, resulting in an unstable
system during the learning process. Hence, the need to address
the problem with a multiagent learning system-based decentral-
ized approach. The proposed framework has two parts, namely,
the distributed execution and the centralized training part, both
illustrated in Fig. 2.

1) Centralized Training Process: The Q-network is trained
through running multiple episodes and all V2V agents explore
the state-action spaces with soft policies at every training stage.
Particularly during the learning process, the ε-greedy strategy is
employed to manage the exploration and exploitation of action
selection, whereby an action ai is selected randomly with ε
probability, otherwise, a greedy action with minimum Q-value
is taken. The experience replay allows storage of the experience
transition tuple (ski , a

k
i , r

k
i , s

k′) at time i into a replay buffer B.
Then, the DNN parameter weights θ are trained and updated with
samples of mini-batch data randomly selected from the replay
buffer using the variant of the stochastic gradient descent method
referred to in (16)–(18). This allows experience data to be used
repeatedly to improve sample effectiveness and then accelerate
the convergence of the learning algorithm. Further improvement
is achieved when the DDQN is adopted to stabilize the training
process and improve the policy decision.

Unlike the DQN, the DDQN uses the double Q-learning
process to minimize the overestimation by decomposing the op-
eration “max” in the target network into selection and evaluation
of the actions. Specifically, the selection is decoupled from the
evaluation. Thus, the target Q-value QDQN

i is replaced by the
target QDDQN

i , which is expressed as

QDDQN
i (s, ai) = ri(s, ai)

+ γQi

(
s, arg maxai

′∈Ai
Qi(s,

′ ai′; θ); θ−
)
.

(19)

In the DDQN approach, two Q-functions are learned by al-
locating every experience randomly to update one of the two
value functions, knowing that there are two sets of parameters,
θ and θ−. For each update, the on-line network weights θ is
employed to determine the greedy strategy, while the target
network weights θ− determine its value. Also, with the ex-
perience replay, the DDQN approach is leveraged to train the
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Fig. 2. Illustration of the MA-DDQN scheme with the distributed execution and centralized training processes.

V2V agents and clear out of the divergence owing to the strong
correlation between consecutive transitions in the approximation
of Q-function for efficient learning of RA.

This stage facilitates the weight-sharing method knowing that
the weights are shared with all the V2V agents. This significantly
reduces the number of weights to be trained making, the learning
process computationally favorable and scalable. Moreover, since
all the V2V agents cooperate to optimize the global objectives
with the reward designed in (12), it is necessary for each V2V
agent to benefit from all the others’ experience. However, even
when the agents share the same parameter weights during the
training process, there is still different behavior among them be-
cause the same parameter weight is executed with different local
states as input. However, another issue occurs when DDQN is
combined with Q-learning, because each V2V agent might face
a nonstationary environment, while other neighboring agents
also learn to adapt their behavior. This challenge is much more
severe when considering the experience replay since it is an
important factor in the success of DDQN. This destabilizes the
learning process. An efficient way of addressing this issue is
that while an agent’s action-value function is nonstationary with
other V2V agents that change their behavior every time; it can be
made stationary based on other agents’ policies. So every V2V
agent’s observation space can be augmented with an estimation
of other agents’ policies and, therefore, mitigate nonstationarity.

2) Distributed Execution Process: In this part, the V2V
agents need to learn the behaviour of the vehicular environment
cooperatively in a distributed manner to achieve their objectives.
During the time slot i, each V2V agent k selects the action aki
with the highest action value based on its trained Q-networks.
After that, all the V2V agents begin the transmission with the
subband, transmit power level, and selection mode determined
by their selected action.

D. Details of the MA-DDQN Scheme

We can see in Algorithm 1, in lines 1–2, that the main
structures are defined and initialized, where the limited amount
of replay memory is reserved. The on-line Q-function and target

Q-function with their respective weights are randomly initialized
for the learning process. The learning process starts at the for
loop between lines 3 and 23 and it adjusts the weights of the
on-line Q-function and target Q-function, with the episodes
being each iteration. During every training episode, all the V2V
agents observe their current states then coordinate their actions
based on the ε-greedy policy simultaneously. During the learning
process, a mini-batch of experience is randomly selected in every
time slot from the replay buffer B where the oldest experience
is replaced by the latest experience in the queue. The replay
buffer B is a first-in–first-out (FIFO) queue with the length
being proportional to the number of multi-V2V agents. Once
the mini-batch has been selected, the parameters θ are updated
to minimize the loss function in (16), with the stochastic gradient
descent technique in (17) and (18). As soon as the parameters
converge, the training process can end.

V. BINARIZED WEIGHTS AND COMPUTATIONAL COMPLEXITY

ANALYSIS

The major concern of deep learning in general and the pro-
posed MA-DDQN scheme, in particular, is computational time
complexity. The efficiency and effectiveness of the proposed
scheme are presented in this section; we also analyze its com-
plexity and propose binarized weights as a solution to reduce
the computational time complexity of our scheme.

A. Efficiency and Effectiveness of the Algorithm

The MA-DDQN scheme faced a speed-related problem due
mainly to overdemanding of the hardware (laptop) with some
heavy computation. The RA in vehicular networks, particularly
using the DRL approach is a complex problem when it comes
to computation time. The most intensive task that causes large
computational time is the training process of the DNN model.
DNN are more difficult to train but yield better performance
compared to traditional ML methods requiring more effort on
the feature design.

This is the reason we consider a high-performance computer
to train and generate the results a little faster. The proposed
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Algorithm 1: MA-DDQN-Based Decentralized Algorithm
for RA With Joint Actions Learning.

1: Input: - Learning rate α, discounting factor γ, replay
memory B with capacity C

2: Initialization: The Q-value function Qi(s, ai; θ) with
random weight θ, target Q-value Qi(s,

′ ai′; θ−) with θ−,
where the initial parameters θ− = θ

3: for episode = 1, . . . , E do
4: for agent k = 1, . . . ,K do
5: Initializing the vehicular networks state s
6: end for
7: for: i = 1, . . . , I do
8: for agent k = 1, . . . ,K do
9: Randomly select an action ai at the state s

using ε-greedy probability strategy,
otherwise best action as
ai = arg maxai

Q(s, ai; θ)
10: Execute ai selected
11: Obtain the reward function ri and next state

s′

12: end for
13: Store the transition experience (si, ai, ri, s

′)
in B.

14: Get the random sample mini-batch of transition
from B.

15: if episode ends at step i then
16: QDDQN

i = ri(s, ai),
17: else
18: QDDQN

i (s, ai) = ri(s, ai)
+ γQi(s, arg maxai

′∈Ai
Qi(s,

′ ai′; θ); θ−)
19: end if
20: Compute the gradient descent step on Li(θ) in

respect of θ
21: Update the target QDDQN parameters θ− = θ

after every N -steps of iteration
22: end for
23: end for

scheme yields better results with slightly more computational
time when compared to other algorithms, as illustrated in Sec-
tion VI. Note that to obtain effective results, the proposed model
needs to be trained for a long time. One can also consider
using GPU in the laptop instead of using a server to run this
algorithm. However, further work is being done to improve the
computational efficiency of the proposed algorithm to obtain
slightly better results in less computational time. Therefore, we
consider the binarized weights method to solve this issue [11].

B. Training DNN With Binarized Weights

Since the main reason for the high complexity of this method
resides in the training process, solutions to reduce the trained
data through advanced training techniques may also reduce
the complexity of this algorithm. The reduction of the DNN
computational complexity has previously been studied through
several schemes. In this article, we propose to binarize the

weights during the DNN training process. This method is very
efficient in terms of memory and computation time [10]. When
considering Algorithm 1, this process fits between line 15 and
line 21.

Note that each iteration of training a neural network involves
three steps, namely, forward pass, backward pass, and the param-
eter updates in the back-propagation algorithm. Applying DNN
involves convolutions and matrix multiplications. Hence, the
computation performed during the training process of the pro-
posed MA-DDQN scheme relates to the multiplication of a real-
valued weight θR and a real-valued activation η in the forward
pass or gradient in the backward pass of the back-propagation
algorithm. Eliminating the need for these multiplication opera-
tions reduces the training time. Thus, we constrain the algorithm
to use the binary weights θBl ∈ {−1, 1}, l = 1, . . . , N during the
forward and backward pass to eliminate these multiplications.
N represents the number of DNN layers. As a result, many
multiplication operations are replaced with simple additions and
subtractions in this process. The binary values are used during
the training process instead of using these at the end of the
training. This provides a complete representation loss function to
train against. In fact, it is not a problem to compute the gradient
of the loss function L with the binary weights through back
propagation. However, the parameter updates using the gradients
descent method are very hard with the binary weights. To solve
this problem, a set of real-valued weight θR, which is generated
in the continuous interval of [−1, 1] and binarized later to obtain
binary weights θB , is kept. Later, the θR are then updated
through back propagation and the incremental updates gradient
descent. If a weight update brings the real-valued weight θR

outside the interval [−1, 1], it is clipped with the clip() function.
This is done because otherwise; the real-valued weight θR will
grow large without having any impact on the binary weight θB .
We consider the sign function sign() method to binarize the
real-valued weights as

θB(x) =

{−1, x < 0
+1, otherwise.

(20)

The gradient of this function, however, is not continuous, pre-
senting a challenge to the DNN training’s back propagation.
Hence, the straight-through estimator (STE) is adopted in the
backward pass. Sometimes, the binarized weight method for
DNN training can take more training time than the traditional
DNN because of the STE heuristic required to approximate
the gradient of the real-valued weight θR [10]. Thus, the batch
normalization layer and ADAM optimizer are used to speed up
the training process by internal covariate shifting all the bits,
updating the real-valued weights and reducing the overall effect
of the weights scale. The DNN learning process of the proposed
MA-DDQN with the binarized weights (MA-DDQN-BW) is
illustrated in Algorithm 2.

1) In the forward pass, in the training stage, with the given
DNN inputs (si, ai), the unit activations are computed
layer by layer from l = 1, . . . , N , which leads to the
last layer, the output layer. This is where the real-valued
weights θRl are binarized with the sign() function, then
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Algorithm 2: Training Process of DNN with Binarized
Weights.

1: Input: - A minibacth of (inputs, targets), loss function
L, previous weight θRl−1, learning rate α.

2: Forward pass:
3: for l = 1, . . . , N do
4: if in the training stage then
5: Use the sign() to obtain θBl = sign(θRl )
6: Calculate the activation ηl knowing ηl−1, θBl
7: end if
8: end for
9: Backward pass:

10: Initialize the output layer’s activation gradient ∂L
∂ηN

11: for l = N to 2 do
12: Compute ∂L

∂ηl−1
knowing ∂L

∂ηl

13: end for
14: Parameter update:
15: for l = 1, . . . , N do
16: Compute ∂L

∂θB
l

knowing ∂L
∂ηl

and al−1
17: Update the weight θRl ← clip(θRl−1 − α ∂L

∂θB
l

)

18: end for
19: Output: Updated weight parameters θRl

the activations are computed knowing the binary values
θBl and the previous activation ηl−1.

2) In the backward pass, we consider the DNN targets that are
the expected return ri, the training of the objective gradient
for every layer’s activation, starting from the output layer
and going down layer by layer to the first hidden layer. We
compute ∂L

∂ηl−1
knowing ∂L

∂ηl
.

3) In the parameter updates, the gradient descent is computed
for each layer’s parameter weight. Then, the parameter
weight is updated using their computed gradients and their
previous values.

C. Complexity Analysis of the Algorithms

For the simulation, we use a server to run the MA-DDQN
scheme. The computational complexity at each V2V agent is
dominated by the training of the DNN with and without the
binarized weights method. The complexity analysis of all the
algorithms is as follows:

1) With the MA-DDQN, we need to consider the matrix
multiplications. Assuming that the number of neurons in
the lth layer is n, note that the number of multiplications
required to compute the activation of all neurons in the lth

layer, such that we have five layers (including input and
output layers), is n(l) ∗ n(l − 1). The output neurons are
simple to compute; thus, for the vehicular network with
n neurons, the output step is in O(n). The computational
complexity of training the DNN of the proposed scheme
is O(n2).

2) When calculating the time complexity for training the
DNN back propagation for the MA-DDQN-BW approach,
we need to consider the different factors contained in the

TABLE II
SIMULATION PARAMETERS

DNN training, such as the number of layers, iterations,
training episodes, number of neurons in each layer, etc.
Note that when using the binarized weight method, the ma-
trix multiplication operations have been reduced. There-
fore, after calculations, the complexity of this method is
O(nt ∗ (N1 +N2 +N3 +N4 +N5)), with t being the
training episodes.

3) The complexity of the random algorithm for RA usually
increases linearly with the increase in the number of V2V
agents, which is O(K), with K being the number of the
V2V agent [35].

4) The complexity of the DRL algorithm with mode selection
(DRL-MS) proposed in [21] is similar to the MA-DDQN
without binarized weight approach. It is O(n2).

5) The DRL algorithm needs to satisfy the constraint while
training the DNN, which makes the algorithm have a high
complexity of O(n2) [17].

We notice that the complexity of both the MA-DDQN and
the DRL algorithms, has at least the same high computational
complexity. However the proposed MA-DDQN-BW scheme has
lower complexity when compared to the precedents. The random
algorithm, on the other hand, has the lowest complexity but it is
an unstable algorithm for the RA in the vehicular networks.

VI. SIMULATION RESULTS

The simulations that were conducted are presented to evaluate
the performance of the proposed schemes-based decentralized
algorithm to allocate resources effectively in the vehicular com-
munication network. The performance metrics are evaluated in
terms of the sum-rate and delivery probabilities of the V2I and
V2V communication links, respectively. We also evaluate the
accuracy and error rate when training the MA-DDQN, MA-
DDQN-BW, DRL-MS, and DRL algorithms.

A. Simulation Setting

A scenario considering a cellular communication network
with a BS placed at the center of the network configuration is
presented in the simulation. The following setup is similar to
the Manhattan case detailed in 3GPP TR 36.885 [36], where
vehicles are randomly placed according to the spatial Poisson
process with a mobility speed of 36 Km/h. This ensures that
all subbands are entirely reused by the V2V communication
link and also verifies the algorithm’s robustness. The simulation
parameters are summarized in Table II. The DQN contains five
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TABLE III
DDQN PARAMETERS

Fig. 3. Sum-Rate of the V2I communication links versus the number of
vehicles.

NN layers that are fully connected with three hidden layers. The
ReLU and tanh activation functions are adopted and expressed as
f(b) = max(0, b) and tanh = 2

1+exp(−2b) − 1, respectively. The
learning rate has an initial value that decreases exponentially.
We use the ε-greedy strategy to manage the exploration and
exploitation with the ε value. Table III shows the details of all
the DDQN parameters.

B. Evaluation Results and Analysis

Three other algorithms are selected and simulated to demon-
strate the effectiveness of the MA-DDQN algorithm.

1) The DRL algorithm [17] considered the latency and relia-
bility requirements. However, the V2V pairs adopted only
the V2V communication (selection) mode and every V2V
pair independently selects its subband and its transmission
power according to the local DRL framework.

2) The DRL-MS algorithm in [21] also used the mode se-
lection approach for the V2I and V2V communications as
considered in the proposed scheme. However, the DRL
framework and DNN training process of the DRL-MS
algorithm is similar to [17].

3) The random RA scheme, a subband for transmission with
the lower interference, is randomly selected by the V2V
agent from a pool of candidate subbands consisting of
5 RB. The transmission power is fixed to a maximum
transmission power. Note that the V2V mode is the only
communication mode adopted.

Fig. 3 illustrates the sum-rate performance of the V2I links
versus the number of vehicles. It is observed that as the number
of vehicles increases, the sum-rate performance of the V2I links
decrease for all the algorithms. This is because when increasing
the number of vehicles, the use of V2V communication links

Fig. 4. Probability of satisfied V2V communication links versus the number
of vehicles.

increases as well, which results in the growth of interference
coming from the V2V to V2I links and, therefore, causes a
drop of summation-rate of the V2I links. Nevertheless, the
MA-DDQN scheme performs better with the highest sum-rate
of V2I links to mitigate the interference. This is because when
the number of vehicles increases and causes more interference to
nearby vehicles, the MA-DDQN can select the best transmission
mode at the time, according to the local observations, while
others fail to do so. This is the purpose of the mode selection
technique considered in our scheme. However, the DRL-MS
scheme also uses the mode selection approach, but, even while
using this method, the proposed scheme performs better. This
is due to the DDQN framework considered in our scheme. The
performance of the DRL-MS algorithm seems to decrease more
when a larger number of vehicles is considered compared to
the proposed scheme. The random algorithm, contrarily, has the
worst sum-rate performance due to the random allocation of sub-
bands and transmit power, resulting in catastrophic interference
between the V2I and V2V links. As for the DRL algorithm, the
performance is somewhat better than the random scheme but
not as good as the MA-DDQN scheme so no selection mode is
considered.

Fig. 4 presents the performance of probability of satisfied V2V
links in terms of delay and reliability requirements versus the
number of vehicles. Similar to Fig. 3, it is observed that when the
number of vehicles increases, the average probability of satisfied
V2V links decreases for all the algorithms. However, the MA-
DDQN scheme still gives better performance to satisfy the delay
and reliability constraints compared to the other algorithms. It
guarantees the probability of satisfied V2V links at between
0.99% and 0.95% even in the worst case of 100 vehicles being
deployed. Furthermore, in the proposed scheme, when the V2V
links in the crossroads choose the V2I communication mode,
lower transmission power is required to satisfy the reliability
requirement when the number of V2V links is very large, while
other algorithms fail.

Fig. 5 presents the MA-DDQN effectiveness by illustrating
the learning process of the cumulative reward with the number of
vehicles set to 20. We can observe that at the start of the training
process, the average cumulative reward is lower and increases
as the episodes increase, demonstrating the effectiveness of the
MA-DDQN learning scheme. The average cumulative reward,
however, becomes stable when it reaches stable values. In our
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Fig. 5. Cumulative reward versus the training episodes.

Fig. 6. Training process of the sum-rate of the V2I communication links with
the number of vehicles being 20.

case, despite some variations due to mobility-induced channel
fading in the environment, it is when the training episodes
approximate 1200 episodes that the performance of the average
reward progressively converges. According to this observation,
we, therefore, trained V2V agents for 2500 episodes when
evaluating the V2V and V2I links performances in Figs. 3 and
4 to guarantee safe convergences.

Fig. 6 illustrates the optimization comparison of the sum-rate
training process of the V2V communication links between the
MA-DDQN, DRL-MS, and the DRL schemes, respectively. For
this simulation, the number of vehicles is set to 20. Although
the MA-DDQN is initially unstable when compared to the DRL
scheme, it is obvious that the MA-DDQN generally outperforms
the DRL-MS and DRL schemes. However, before 500 episodes
the DRL algorithm performs a little better than our proposed
scheme. However, after 500 episodes, the MA-DDQN scheme
begins to outperform the DRL algorithm owing to the imple-
mentation of the distributed execution and centralized training
methods proposed in our scheme. The sum-rate learning process
of the DRL-MS scheme also starts low and increases as the train-
ing episodes increase. It becomes stable around 1000 episodes
but still the proposed scheme outperforms the convergence of the
DRL-MS. The higher the increase in the training episodes, the
stable the performance of the MA-DDQN scheme becomes. It
can be observed that after approximately 1100 episodes, the per-
formance of the proposed scheme becomes more stable, while
the DRL scheme stabilizes after approximately 1500 episodes.
This shows that the convergence of the MA-DDQN scheme is
achieved faster compared to the DRL scheme.

TABLE IV
ACCURACY AND EXECUTION TIME

Fig. 7. Accuracy evaluation versus the training episode.

C. Performance Evaluation for Training With Binarized
Weights

In this subsection, we present the performance evaluation for
the DNN training when considering the binarized weights. This
method reduces the computational time cost of the MA-DDQN
by binarizing the weights during training, allowing faster com-
putation results. We can see from Table IV, that the training
time of the proposed MA-DDQN scheme is ≈ 6× improved
when training the DNN using the binarized weight compared
to the other schemes. However, this affects the accuracy of the
proposed scheme, which is 94.3%. We can notice it in form
of ≈ 12% accuracy degradation, which becomes 82.1%. Even
if; the accuracy of the MA-DDQN scheme is still acceptable,
we observe that the DRL-MS and DRL algorithms have better
accuracy than the MA-DDQN-BW scheme.

We also notice that the speed training of the DRL and DRL-
MS algorithms may be acceptable (2.4× 10−4 and2.9× 10−4 s,
respectively), because the constraints considered in the network
are not very stringent. The training time of the MA-DDQN is,
however, the highest among the other algorithms at 3.72× 10−4

s owing to all the operations required when training the DNN.
Interestingly, the MA-DDQN-BW scheme used to train the
DNN; gives a much better training time (5.21× 10−5 s); it
removes almost 2/3 of multiplication operations in the network.
It is also worth noting that the agent’s computational capacity
in a practical network is stronger than that of a computer used
in a simulation. As a result, in a practical network, the average
time required to train a DNN to achieve efficient RA in V2V
networks can be reduced even further.

Fig. 7 illustrates the accuracy performance with a mini-batch
size of 2000. It can be seen that the accuracies of all the
schemes increase as the training episodes increase. For the MA-
DDQN-BW and DRL, we observe that the accuracy increase
more quickly with the training of episodes when compared
to the MA-DDQN. However, the accuracy performance of the
MA-DDQN-BW is lower than that of the other schemes. This is
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due to the binarization of the weights, which lowers the accuracy
but achieves a stable accuracy value faster than the proposed
scheme (MA-DDQN).

VII. CONCLUSION

In this article, we proposed a decentralized MA-DDQN
scheme consisting of centralized learning and distributed im-
plementation processes to allocate resources for the V2V com-
munication networks efficiently. A selection transmission mode
for the V2V has been considered to avoid interference caused to
nearby vehicles. The simulation results demonstrated that the
MA-DDQN algorithm maximized the sum-rate of V2I com-
munications, while guaranteeing the delay and reliability for
the V2V communications. To improve the complexity of the
proposed scheme further, we proposed to binarize the weights
during the DNN training process, where weights became bi-
nary values. The architecture of this type of vehicular network
makes use of memory computational time more effectively with
an execution time of 5.21× 10−5 s. However, reducing the
computational time of our DNN training process affected the
accuracy of the proposed scheme, yielding≈ 12% less accurate
performance. Future works will consist of developing other tech-
niques to maintain accuracy, while reducing computational time.
In addition, we will investigate both discrete and continuous
actions spaces and consider an extension to the DDPG algorithm.
This will include the in-depth analysis and comparison of the
robustness of this proposed scheme and the extended DDPG
scheme.
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