
Peering
Editor: Charles Petrie • petrie@stanford.edu

november/DECEMBER 2014	 1089-7801/14/$31.00 © 2014 IEEE	 Published by the IEEE Computer Society� 85

Y our jaw will drop when you see how the
“tech surge” team fixed HealthCare.gov!

Well, okay, now that I’ve got your
click, I’ll open with the lead that HealthCare.gov
didn’t really get fixed. And it’s even worse than
it appeared. Here’s the story from my good friend
Robert Kennedy, who was part of the team that
made this critical, Web-based registration service
work well enough that the enrollment period ended
successfully, after starting from a complete debacle.

You can see Kennedy’s talk on his experience
at www.youtube.com/watch?v=GLQyj-kBRdo. He
shared some more details of the shockingly ill-
constructed system with me over drinks one
evening, but let me convey here his high-level
points and my take on them. I’ll just mention
one or two anecdotes that motivate these.

One you can see on the video, but it’s just
so good I have to repeat it here, as a teaser.
Kennedy met with an employee of one of the
site contractors who was in charge of software
“security.” When he asked her which penetration
threats she had prepared for, she responded that
she didn’t think about such things: she was in
charge of “risk assessment.”

In contractor terms, that meant the risk of
government contract nonfulfillment. Her job, as
she saw it, was to ensure that a software audit
confirmed that the software was “secure” as
defined in the contract.

If you’re a Silicon Valley engineer (or any
other good engineer), your jaw really did just
drop. To be fair, perhaps someone else was in
charge of penetration testing, but the overall
security objective seemed to be ensuring that
the contractual terms were met, rather than that
the system was actually difficult to hack.

Then, there was the firewall in the wrong place.
Oh wait, I can’t write about that because the fix
would be worse than the problem. I think I can say
that something bad probably happened because all

of the IP addresses were hard-coded and there was
no DNS. That should be enough for you. But there
were a lot of not just badly designed but guaran-
teed-to-fail subsystems, often at critical points.

Here’s a nice, top-level piece of brokenness:
until the tech surge, no monitoring was in place
for this nationwide critical distributed system.
After the tech surge, there was an operations
room for contractor representatives, each with
his or her own monitor, because there were no
common APIs so that everything could be tied
together. To run the system, you had to go to each
person and ask if everything was okay.

Kennedy has some good points about how
this happened. But I’m going to focus here on
just the cultural aspect he also addresses: no
one took, or wants to take, responsibility.

Playing It Safe
To illustrate, one day there was a critical failure,
and Kennedy asked the operations room, “Did
anyone do anything at 10:48?” Silence. “Is your
database getting any requests?” “No.” Both the
nonanswer and the answer were wrong.

At Google, where Kennedy and many others in
the tech surge happen to work when they aren’t
on unpaid leave being heroes, any engineer in this
situation would have answered the first question
with, “I reset permissions at 10:48. It looks like I
did it wrong. Can someone help me please?” And
a Google engineer who was competent but per-
haps not fully up to speed on the system would
answer the second question with, “I don’t know
how to tell whether my database is receiving any
requests, but it isn’t processing any requests. Can
someone help me please?” Both would take own-
ership, and both would get good help right away,
from which they could learn. Failure is okay in
Silicon Valley, and cooperation and help is nor-
mal. Letting a system continue to function poorly
is neither okay nor normal.

The Failure of HealthCare.gov
Exposes Silicon Valley Secrets

Charles Petrie • University of St. Gallen, Switzerland

Peering

86	 www.computer.org/internet/� IEEE INTERNET COMPUTING

In Washington, DC, as in many (but
not all) places outside the Silicon Val-
ley bubble, it’s just the opposite. You’re
fired immediately for mistakes, as was
the hapless engineer who didn’t speak
up about what he did at 10:48. The
database engineer didn’t dare ask for
help (even if he’d had the training to
ensure he knew the difference between
receiving and processing requests),
and it probably would have been a
long time coming. You don’t volunteer
to help because you don’t take any
more responsibility than you have to:
you always take the safest way out.

The safest way is often to give a
contract to a name-brand corpora-
tion for a piece of software that pur-
ports to perform the task that’s your
responsibility. “You don’t get fired for
buying IBM” was the mantra in the
mainframe era. (Actually, I know a

counterexample.) You don’t care if you
purchase a product wrong for the job if
it’s a brand name and meets software
specifications. You happily use an Ora-
cle Lightweight Directory Access Pro-
tocol, designed for internal teams with
complex permissions, for large-scale,
relatively simple external client logins.
And you certainly don’t care how it
fits with everyone else’s software.

No one had the job of making
everything work together. No one
was in charge of seeing that the sys-
tem was production quality. There
were only many people in a vast
bureaucracy, playing it safe.

Learning from Silicon Valley
Many companies come to Silicon
Valley to learn how it works. They

rarely do. It’s a unique ecoculture
that could possibly be replicated, but
almost never is. It runs counter to
the existing cultures. I had a friend
who became CEO of the Silicon Val-
ley institute of a large German auto-
motive company. They hired him to
run it like a Silicon Valley company.
Every time he implemented a new
policy, he was called back to Ger-
many to be chewed out by an execu-
tive for doing something counter to
company policy. He finally quit.

Many people in the government —
most notably, the administration’s
CIO — weren’t consulted about the
HealthCare.gov system in the first
place; they know what needs to be
done and are now taking some mea-
sures. They are fighting an estab-
lished culture. I give them poor
odds.

But if they want to succeed, they
can take some lessons from Silicon
Valley:

•	 Organize in small tiger teams
with overall objectives.

•	 Reward initiative and risk-taking.
•	 Reward cooperation.
•	 Reward information sharing.
•	 See failure as learning, and even

an opportunity.

Most important, everyone should
realize that form doesn’t matter. What
matters is whether the whole thing
actually works, and realizing what
“working” means. This might be too
much to ask. Instead, we’re getting a
kind of emergency topical antibiotic
to address the ravages of the disease.

Mikey Dickerson, who led the tech
surge in the winter of 2013, has quit
Google and has been hired by the
administration to be the deputy CIO
and leader of the US Digital Services
Team.1 This deliberately small team
will try to anticipate issues and rove
the government, fixing acute problems.
Kudos to Dickerson for taking on this
task, and to the administration for tak-
ing drastic action, just before the fall
HealthCare.gov enrollment period.

T he HealthCare.gov site was patched
together to run if carefully attended

to by the tech surge team. Perhaps the
new team can make it work again dur-
ing the next enrollment period. But the
underlying broken architecture and
supporting dysfunctional culture will
persist for a long time.�

Reference
1.	 M.D. Shear, “White House Picks Engineer

from Google to Fix Sites,” New York Times, 11

Aug. 2014; www.nytimes.com/2014/08/12/

us/politics/ex-google-engineer-to-lead-fix-

it-team-for-government-websites.html.

Charles Petrie teaches and coaches the topic

of innovation in design thinking at the

University of St. Gallen, Switzerland

(http://dthsg.com/dt-at-hsg/). He retired

as a senior research scientist from the

Stanford University Computer Science

Department. His research topics are con-

current engineering, enterprise man-

agement, and collective work. Petrie

has a PhD in computer science from the

University of Texas at Austin. He was a

founding member of technical staff at

the MCC AI Lab, the founding editor in

chief of IEEE Internet Computing, and

the founding chair of the Semantic Web

Services Challenge. He also manages the

Black Rock City Municipal Airport 88NV.

Contact him at petrie@cdr.stanford.edu.

Many companies come to Silicon Valley to
learn how it works. They rarely do. It’s a
unique ecoculture that could be replicated,
but almost never is.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

