
From the Editors

4 Published by the IEEE Computer Society 1089-7801/14/$31.00 © 2014 IEEE IEEE INTERNET COMPUTING

Better Software, Better
Research

Carole Goble • University of Manchester, UK

We know that modern scientific research
isn’t possible without software, from
short, thrown-together temporary scripts

and the abundance of complex spread-
sheets, through to the huge software enterprises
behind international efforts such as the Large
Hadron Collidor and the Square Kilometer
Array. And it’s not just research based on
simulations and computational methods. Data-
driven science (the so-called “fourth para-
digm”1) wouldn’t be possible without software
to access and manipulate that data, and our
ability to generate insights depends on soft-
ware platforms.

My personal experience suggests little dif-
ference between the size of the research com-
munity and the size of the “research software
community.” Of 2,000 scientists Jo Hannay
and colleagues surveyed online,2 91 percent
said using scientific software is important for
their own research, 84 percent said developing
scientific software is important for their own
research, 53.5 percent claimed to spend more
time developing scientific software than they
did 10 years ago, and 38 percent spend at least
one fifth of their time developing software.
Scientists aren’t just using software; they are
its prime producers. Some disciplines, such as
biology, have spawned sub-disciplines, such as
bioinformatics, with their own journals, fund-
ing streams, and cultures.

If software is pervasive in research, why is
its vital role so often overlooked by funders,
universities, assessment committees, and even
the research community itself — even though
the majority of researchers wouldn’t be able
to conduct their work without it? Mission-
critical software is expected to be developed
and maintained for the long term by a (tempo-
rary) untrained postgraduate during his or her
coffee breaks.

Better Training, Better Production,
Better Software
If your software is incorrect, so will be your sci-
ence.3 Mistakes in software happen to the best:
Geoffrey Chang’s discovery of the bug in his
software led to his retraction of three Science
papers.4 We should admire him for his honest
stance, and he’s a better scientist for it. Many
others don’t even know they’re wrong, or if they
do, keep quiet. We can improve software quality
at two major points in the research life cycle:
while it’s being produced and when its outcomes
are subject to peer review.

Scientific software comes largely from two
groups: highly trained software developers who
work with research groups and are employed —
typically — as postdoctoral researchers or research
institute staff; and researchers self-taught in
software development. Worryingly, in Hannay’s
survey, only 47 percent of scientists had a good
understanding of testing, and just 34 percent
thought any formal training was important. This
is strange because presumably they wouldn’t use
and trust the results of a microscope or telescope
that hadn’t been built by qualified engineers or
tested. Yet software is the most prevalent of all
the instruments used in modern science.

Researcher training in software engineering
practice isn’t simply transposing curricula from
computer science (CS) departments. We shouldn’t
aim to turn researchers into computer scientists
or professional software developers, but should
rather consider the particular context in which
researchers work. Although CS often pays close
attention to performance — especially in the high-
performance computing area — research develop-
ers, even employing high-performance computing
platforms, rank maintainability and portability of
the code above performance.5 Although developing
new programming languages and environments is
a significant part of CS, research developers favor

IC-18-05-FtE.indd 4 8/1/14 5:36 PM

SEPTEMbER/OCTObER 2014 5

Better Software, Better Research

Fortran and C as programming lan-
guages, and R and Python as scripting
platforms.

Consequently, best practices must
be carefully tailored to meet scien-
tists’ needs.6 Software Carpentry trains
researchers in core software skills
(www.software-carpentry.org). Started
16 years ago by Greg Wilson, a soft-
ware engineer working with scientists,
it has grown into an international
network of instructors and contribu-
tors of course materials — all of them
volunteers. Today’s trainees become
tomorrow’s trainers. So far, Software
Carpentry has helped more than 7,000
researchers worldwide through in situ
two-day bootcamps, during which
participants learn how to automate
tasks, use the command line, use version
control, and acquire best programming
practices with, for example, Python
or R. They’re also introduced to soft-
ware testing techniques, with particular
emphasis on unit testing. In 2013, Soft-
ware Carpentry became a part of Mozilla
Science Lab (http://mozillascience.org).

Where software engineers are part
of the team, training puts researchers
in developers’ shoes (and vice versa). A
common area of conflict is the trade-
off between specialist applications
and generic solutions. Computing
professionals tend toward investment
in long-term sustainable codes that
users can customize, that are widely
adopted, and that usually take longer
to develop. Researchers often tend
toward fast-return codes that specifi-
cally address them, their problem, their
data, and their analysis, so they can
quickly get out a result (before the
competition beats them out) — but a
result that might not be reproducible or
reusable by anyone else. Of course, this
varies between disciplines. Both views
have right on their side. This means
that scientific software development
practice must follow the “working
to working, jam today and more jam
tomorrow” incremental model, while
remaining cognizant of “technical
debt” — that is, the work needed as
a consequence of poor software

design before a particular job can be
completed. Unaddressed technical debt
increases so-called “software entropy”:
as a software system is modified, its
disorder, or entropy, increases.7,8

Better Access, Better
Review, Better Software
One of my favorite overlyhonest-
methods tweets (a hashtag for lab
scientists) is Ian Holmes’s “You can
download our code from the URL sup-
plied. Good luck downloading the only
postdoc who can get it to run, though”
(https://twitter.com/ianholmes/status/
288689712636493824). An increasing
number of journals now demand that
code as well as data be openly avail-
able for review and reproducibility.9
Researchers shy away from sharing
their source code for a raft of reasons,
including having to document and
support it: after all, most researchers
plan on building software not for oth-
ers but for themselves, or people like
them. Three further disincentives are
 embarrassment, scrutiny, and scooping.

Editor in Chief
Michael Rabinovich • michael.rabinovich@case.edu

Associate Editors in Chief
M. Brian Blake • m.brian.blake@miami.edu
Barry Leiba • barryleiba@computer.org
Maarten van Steen • steen@cs.vu.nl

Editorial Board
Virgilio Almeida • virgilio@dcc.ufmg.br
Elisa Bertino • bertino@cerias.purdue.edu
Fabian Bustamante • fabianb@cs.northwestern.edu
Yih-Farn Robin Chen • chen@research.att.com
Vinton G. Cerf • vint@google.com
Siobhán Clarke • siobhan.clarke@cs.tcd.ie
Fred Douglis* • f.douglis@computer.org
Schahram Dustdar • dustdar@dsg.tuwien.ac.at
Stephen Farrell • stephen.farrell@cs.tcd.ie
Robert E. Filman* • filman@computer.org
Carole Goble • cag@cs.man.ac.uk
Michael N. Huhns • huhns@sc.edu
Arun Iyengar • aruni@us.ibm.com
Anne-Marie Kermarrec • anne-marie.

kermarrec@inria.fr
Anirban Mahanti • anirban.mahanti@nicta.com.au
Cecilia Mascolo • cecilia.mascolo@cl.cam.ac.uk
Peter Mika • pmika@yahoo-inc.com
Dejan Milojicic • dejan@hpl.hp.com
George Pallis • gpallis@cs.ucy.ac.cy

Charles J. Petrie* • petrie@stanford.edu
Gustavo Rossi • gustavo@lifia.info.unlp.edu.ar
Amit Sheth • amit.sheth@wright.edu
Weisong Shi • weisong@wayne.edu
Munindar P. Singh* • singh@ncsu.edu
Craig W. Thompson • cwt@uark.edu
Doug Tygar • tygar@cs.berkeley.edu
Steve Vinoski • vinoski@ieee.org
* EIC emeritus

CS Magazine Operations Committee
Paolo Montuschi (chair), Erik R. Altman, Maria Ebling,

Miguel Encarnação, Cecilia Metra,
San Murugesan, Shari Lawrence Pfleeger,
Michael Rabinovich, Yong Rui, Forrest Shull,
George K. Thiruvathukal, Ron Vetter, David Walden,
and Daniel Zeng

CS Publications Board
Jean-Luc Gaudiot (chair), Alain April, Laxmi N. Bhuyan,

Angela R. Burgess, Greg Byrd, Robert Dupuis,
David S. Ebert, Frank Ferrante, Paolo Montuschi,
Linda I. Shafer, H.J. Siegel, and Per Stenström

Staff
Editorial Management: Rebecca Deuel-Gallegos
Lead Editor: Brian Kirk, bkirk@computer.org
Publications Coordinator: internet@computer.org
Contributors: Keri Schreiner and Joan Taylor
Director, Products & Services: Evan Butterfield
Senior Manager, Editorial Services: Robin Baldwin
Senior Business Development Manager: Sandy Brown
Membership Development Manager: Cecelia Huffman
Senior Advertising Supervisor: Marian Anderson,

manderson@computer.org

Technical cosponsor:

IEEE Internet Computing
IEEE Computer Society Publications Office
10662 Los Vaqueros Circle
Los Alamitos, CA 90720 USA

Editorial. Unless otherwise stated, bylined articles, as
well as product and service descriptions, reflect the
author’s or firm’s opinion. Inclusion in IEEE Internet
Computing does not necessarily constitute endorsement
by IEEE or the IEEE Computer Society. All submissions
are subject to editing for style, clarity, and length.
Submissions. For detailed instructions, see the author
guidelines (www.computer.org/internet/author.htm)
or log onto IEEE Internet Computing’s author center
at ScholarOne (https://mc.manuscriptcentral.com/
cs-ieee). Articles are peer reviewed for technical merit.
Letters to the Editors. Email lead editor Linda World,
lworld@computer.org
On the Web. www.computer.org/internet/.
Subscribe. Visit www.computer.org/subscribe/.
Subscription Change of Address. Send requests to
address.change@ieee.org.
Missing or Damaged Copies. Contact help@
computer.org.
To Order Article Reprints. Email internet@computer.
org or fax +1 714 821 4010.
IEEE prohibits discrimination, harassment, and
bullying. For more information, visit www.ieee.org/
web/aboutus/whatis/policies/p9-26.html.

IC-18-05-FtE.indd 5 8/1/14 5:36 PM

From the Editors

6 www.computer.org/internet/ IEEE INTERNET COMPUTING

Just like kids in kindergarten,
researchers can be cruel about
another researcher’s code; authors are
ashamed of their messy, poorly struc-
tured, and buggy software. Hence the
open source semi-serious Community
Research and Academic Programming
License (CRAPL), which “absolves the
authors of shame, embarrassment,
and ridicule” (http://matt.might.net/
articles/crapl/). Open software leads
to much better software by potentially
providing a community of contribu-
tors who are happy to improve it or at
least comment on it, creating a kind
of code review process. GitHub has
been intensively developing several
features specifically for the scientific
community to support effective code
sharing (https://github.com/blog/1840-
improving-github-for-science).

In a system in which careers are
based almost exclusively on publica-
tions, the fear that someone will find
a serious bug in the released soft-
ware, and all published results will
be invalidated, is a strong one. Ide-
alistically, sharing is caring; prevent-
ing research building on the top of
incorrect results is good for the many
(if not for the author). With the right
kind of training emphasizing software
testing, we should help mitigate situ-
ations in which scientific software is
just plain wrong.

The fear that potential competi-
tors will pick up the released code
and “get there first” with the scien-
tific results and a publication seems
like a reasonable threat — but it could
also be an urban legend. Wilson from
Software Carpentry has set up an
“Open Scoop Challenge,” offering a
t-shirt to anyone who can provide
a fairly detailed story of “someone
ever publishing a result you were
going to, by taking advantage of
software or data that you made
publicly available” (http://software-
carpentry.org/blog/2014/02/open-
scoop-challenge.html). So far, no
one has even submitted a story, let
alone won a t-shirt.

Isolated development leads indi-
viduals to overestimate the ease with
which others can use their software,
the code’s transparency, and even the
possibility of locating the right ver-
sion of the software (if it still exists).
Setting aside issues of code portabil-
ity (hard) and proprietary software
licenses (tricky), getting reviewers to
peer review papers is tough enough,
as any editor knows. Getting them to
run the codes is challenging. Getting
them to scrutinize the software as a
true representation of the algorithm is
a leap. So we put our faith in open
source, trusted (proprietary) plat-
forms, and common libraries. Some
have suggested introducing review
teams of postdocs and postgrads as
part of their accreditation, but little
progress has been made, and this is
unlikely to gain traction until we deal
with the next point: recognition.

Better Recognition,
Better Software
Anyone who works with software in
academia will know that the level of
recognition and reward for the soft-
ware and those who review or develop
it isn’t proportional to its importance.
The reward system is almost exclusively
based on research publications. To get
published, you must come up with some-
thing novel. Scientific software’s goal is
often to support the advance of research
rather than being the output of the
research itself. Unless you’re in a partic-
ular area of CS or a sub-discipline such
as bioinformatics, which has developed
its own journals for reporting software,
it’s hard to get the research software
itself published. Moreover, many
activities are software maintenance —
new functionalities or endless bug
fixing — and hardly publishable. So,
researchers must focus on creating
novel, disposable code rather than pro-
viding reliable software for future use,
or somehow subsidize their software
development time.

Sharing software provides little
merit, even if it’s really useful for other

researchers. You might well achieve
fame within the specific research com-
munities who use your software. You’ll
be rewarded with the gratitude of those
who use your software to obtain results
they publish in five-star journals, but
this contribution is rarely rewarded by
a university. The researchers you enable
will progress with their careers, and
you will be stuck with your amazing
software that’s essentially open source
(unless you wanted to commercialize
it). This state of affairs creates an incen-
tive for not sharing your code, which is
obviously detrimental to the research
community and leads to wasted effort
as researcher after researcher reinvents
basically the same code that’s been
developed and purposefully siloed at
other organizations. Mozilla Science’s
Code as a Research Object is a step
toward getting credit for your code by
archiving your GitHub code repository
to figshare and receiving a citable DOI
(http://mozillascience.github.io/code-
research-object/). F1000Research has a
similar service. Now, you just have to
get people to use your DOI and cite the
code they use.

The lack of recognition for software
also manifests as a lack of recognition for
those who develop it within academia.
Let’s turn to those highly trained soft-
ware developers who work with research
groups. A group in the UK has been
campaigning to recognize these research
software engineers (RSEs) with some
success (www.rse.ac.uk). Researchers
who rely on RSEs are more than aware
of the value of their work. Without career
paths within a university or research
institute, it can be hard for RSEs to
progress their career or gain reward or
recognition for anything they do. Enter-
prising researchers hammer the square
shaped peg of an RSE into any available
shaped hole in an institute’s employment
guidelines; we can end up with software
writers on a series of short-term con-
tracts being judged on the number of
papers they don’t write. Unsurprisingly,
retaining these talented professionals
for progressing and sustaining research

IC-18-05-FtE.indd 6 8/1/14 5:36 PM

Better Software, Better Research

SEPTEMbER/OCTObER 2014 7

becomes difficult. This leads to my final
point: funding sustainability.

Better Funding,
Better Software
Software sustainability and the funding
of software infrastructure is a recognized
struggle in a research-funding environ-
ment founded on short-term bursts of
(peer-reviewed) funds that are difficult
to plan around. Production software is
dressed in new clothes to claim novelty,
and research codes are claimed to be
production-quality to get service funds.
We must regularly remind government,
funding agencies, and investigators
that investments in flashy machines
aren’t useful if we can’t fund the means
for porting software to them, and that
data-generating instruments need soft-
ware that can analyze their outputs. We
must continually impress on funding
bodies that software used as a platform
to deliver services with a life beyond
one reporting period or one project is
a capital asset. Skilled engineers create
something to fulfill scientists’ long-term
needs. The fact that software lacks the
physical presence of a building or box
doesn’t make it any less “concrete.”

We’re making progress. The EU
has funded European-wide research
infrastructures for disciplines (for
instance, ELIXIR for biology) and
across disciplines (the European Grid
Infrastructure) with emphasis on soft-
ware sustainability, as well as prom-
ising centers of excellence in scientific
software in its new Horizon 2020 pro-
gram (http://ec.europa.eu/programmes/
horizon2020/). The US has long-
running software investments in
infrastructure (IPlant Collaborative,
DataONE). The NSF-funded Software
Institutes for Sustained Innovation (S12)
program has funded groups to work on
specific codes and, more widely, to sup-
port particular disciplines such as water
sciences, earth sciences, and computa-
tional chemistry, as well as cross-cutting
concerns such as cybersecurity and
trust, and science gateways. The Sloan
Foundation supports international

initiatives such as Software Carpentry,
rOpenSci (for R), and ImpactStory
(which provides alternative metrics of
impact that include software produc-
tion). And just recently, Phil Bourne,
NIH’s Associate Director for Data Sci-
ence, has been proposing a “Science
Commons” that emphasizes data, soft-
ware, sustainability, and reproducibility.

In the UK, some funding councils
have special calls for sustaining com-
munity-recognized codes, and the UK’s
House of Lords recently recognized that

Scientific software (e.g. meteorological and
climate models, computational chemistry
codes) is required to run on many genera-
tions of hardware. Software is the infra-
structure and hardware the consumable.10

This point is fundamental: used
code is long-lived code, and long-lived
code decays. The need to continually
nurture software won’t surprise this
magazine’s readers. Open source can be
beneficial, with “many hands helping,”
but as Scott McNealy of Sun Microsys-
tems pointed out in 2005, “open source
is free like a puppy is free.” That is, it
isn’t. Someone has to look after it, and
that someone needs paying. We have to
educate grant holders that using open
source software without thinking to
support it isn’t playing the game.

Of course, not all software can or
should be sustained. We need new and
fresh software, otherwise we will stag-
nate. However, the critical mass of
expertise and development effort needed
requires a user community to consoli-
date on key codes. Clustering around
these requires international cooperation,
national funders to support software
developed elsewhere, and that grant
investigators be able to reuse third-party
codes — rather than reinvent their own —
without prejudicing their proposals.

Better Software,
Better Science
Although the problems that affect
research software seem insurmount-
able at the moment, groups across the

world are working to improve the sta-
tus — and the use — of software in
academia. An excellent example is
the Software Sustainability Institute
(www.software.ac.uk), which rep-
resents an innovative step from the
UK’s Engineering and Physical Sci-
ences Research Council. The institute
(I am an investigator) was founded in
2010 to “cultivate world class research
with software.”11 It works across dis-
ciplines to develop exemplar research
software in partnership with research-
ers, provide training to researchers
both in person and online, foster rela-
tionships between researchers and
software developers, and lobby poli-
cymakers to change software prac-
tices in research.

How can we increase the pace of
change? Here are five things you

can do: First, lobby your university to
set up a group of RSEs whose time can
be requisitioned by researchers within
the institute. Not only will the RSEs
receive recognition and reward for this
service, they will also be retained on
permanent contracts to ensure a con-
tinuity of service and retention of the
best RSEs in exactly the same way that
all other critical services are provided.
Second, every doctoral school and PhD
training program, regardless of the dis-
cipline, should incorporate basic soft-
ware development training, based on
courses such as those from Software
Carpentry; in fact, volunteer to help
this initiative. Third, lobby funding
organizations, including the universi-
ties themselves, to implement policies
to ensure that software is sustained
if it has achieved a sufficient level of
impact within the research community.
Fourth, make your publicly funded
software open source, and ensure that
its benefit is made available to the wid-
est possible community. Fifth, use oth-
ers’ software for your research and give
them credit (did you use their code DOI
in your paper?) and support (did you
offer to contribute to its development?).

IC-18-05-FtE.indd 7 8/1/14 5:36 PM

From the Editors

8 www.computer.org/internet/ IEEE INTERNET COMPUTING

We must get software recognized as
the first-class experimental scientific
instrument that it is and get “better
software for better research.”

Acknowledgments
I’d like to acknowledge my Software Sustain-

ability Institute colleagues Simon Hettrick and

Aleksandra Pawlik for their invaluable help in

preparing this article. The author photo is cour-

tesy of Rob Whitrow (www.robwhitrow.co.uk).

References
1. T. Hey, S. Tansley, and K.M. Tolle, The

Fourth Paradigm: Data-Intensive Scientific

Discovery, Microsoft Research, 2009.

2. J.E. Hannay et al., “How Do Scientists

Develop and Use Scientific Software?” Proc.

ICSE Workshop Software Eng. for Computa-

tional Science and Eng., 2009, pp. 1–8.

3. Z. Merali, “Computational Science: ... Error …

Why Scientific Programming Does Not Com-

pute,” Nature, vol. 467, 2010, pp. 775–777.

4. G. Miller, “A Scientist’s Nightmare: Soft-

ware Problem Leads to Five Retractions,”

Science, vol. 314, no. 5807, 2006, p. 314.

5. V.R. Basili et al., “Understanding the High-

Performance-Computing Community: A

Software Engineer’s Perspective,” IEEE

Software, vol. 25, no. 4, 2008, pp. 29–36.

6. G. Wilson et al., “Best Practices for Scientific

Computing,” PLoS Biology, vol. 12, no. 1,

2014, e1001745.

7. A. Prlić and J. Procter, “Ten Simple Rules for

the Open Development of Scientific Software,”

PLoS Computational Biology, vol. 8, no. 12,

2012; doi: 10.1371/journal.pcbi.1002802.

8. D. De Roure and C. Goble, “Software Design

for Empowering Scientists,” IEEE Software,

vol. 26, no. 1, 2009, pp. 88–95.

9. V. Stodden, G. Peixuan, and M. Zhaokun,

“Toward Reproducible Computational

Research: An Empirical Analysis of Data

and Code Policy Adoption by Journals,”

PLoS One, vol. 8, no. 6, 2013, e67111.

10. “House of Lords Select Committee on Sci-

ence and Technology Consultation on

Scientific Infrastructure,” HL paper 76, 21

Nov. 2013, paragraph 34.

11. S. Crouch et al., “The Software Sustainabil-

ity Institute: Changing Research Software

Attitudes and Practices,” Computing in

Science & Engineering, vol. 15, no. 6, 2013,

pp. 74–80; doi: 10.1109/MCSE.2013.133.

Carole Goble is a full professor in the School

of Computer Science at the University of

Manchester, UK. Her research interests

include e-Science, distributed comput-

ing, scientific workflows, Semantic Web,

social computing, scholarly communica-

tion, and software engineering practices in

science. Goble works in a range of science

disciplines, notably biomedicine, systems

biology, biodiversity, and social sciences.

She’s a fellow of the Royal Academy of

Engineering and a recipient of Microsoft’s

Jim Gray award for e-Science. She is a co-

investigator and co-founder of the UK’s

Software Sustainability Institute. Contact

her at carole.goble@manchester.ac.uk.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

IEEE Software seeks practical,

readable articles that will appeal

to experts and nonexperts alike.

The magazine aims to deliver reliable

information to software developers

and managers to help them stay on

top of rapid technology change.

Author guidelines:
www.computer.org/software/author.htm
Further details: software@computer.org
www.computer.org/software

Call for Articles

IC-18-05-FtE.indd 8 8/1/14 5:36 PM

