
THEME ARTICLE: DECENTRALIZED SYSTEMS

Dynamic Decentralization Domains for the
Internet of Things
Gianluca Aguzzi , Roberto Casadei , Danilo Pianini , and Mirko Viroli , Alma Mater Studiorum - Universit�a di
Bologna, 47521, Cesena, FC, Italy

The Internet of Things (IoT) and edge computing are fostering a future of
ecosystems hosting complex decentralized computations that are deeply
integrated with our very dynamic environments. Digitalized buildings, communities
of people, and cities will be the next-generation “hardware and platform,” counting
myriads of interconnected devices, on top of which intrinsically distributed
computational processes will run and self-organize. They will spontaneously spawn,
diffuse to pertinent logical/physical regions, cooperate and compete,
opportunistically summon required resources, collect and analyze data, compute
results, trigger distributed actions, and eventually decay. What would a
programming model for such ecosystems look like? Based on research findings on
self-adaptive/self-organizing systems, this article proposes design abstractions
based on “dynamic decentralization domains”: regions of space opportunistically
formed to support situated recognition and action. We embody the approach into a
Scala application program interface (API) enacting distributed execution and show
its applicability in a case study of environmental monitoring.

Edge computing and related scenarios like the
Internet of Things (IoT) and cyber-physical sys-
tems (CPSs) promote a vision of distributed

computational systems deeply integrated with humans
and environments. The complexity and volume in terms
of devices, communications, failures, and change, are
pushing the adoption of paradigms that can adequately
address both functional and nonfunctional concerns:

› decentralization for scalability and delegation
› autonomic computing and self-organization1 for
operational effectiveness and adaptation

› in-network processing for latency reduction and
infrastructural autonomy

› collective computing2 for coordination and
collaboration.

We envision environments (bodies, rooms, build-
ings, communities, cities) populated by myriad devices

whose ensemble will be abstracted as a single pro-
grammable CPS. These entities may or may not be
coordinated in a centralized fashion, namely, we can-
not assume a central coordinator (e.g., the cloud)
exists when designing the system. They form the
platform upon which several concurrent distributed
computational processs (DCPs) would run, carrying
on transient activities by self-organized continuous
computation and communication. The goal of a DCP
is to identify dynamic regions of the computational
environment (regions of “space”), where situations of
interest occur, monitor their evolution, and reactively
trigger distributed actions to signal events, remedy
problems, or control the phenomenon. Hence, DCPs
are generated to satisfy a request, handle an event,
or execute a collective task; they opportunistically
spread (resp. shrinks) to gather (resp. release) resour-
ces/workers or cover (resp. uncover) regions of
interest; they may perform distributed sensing and
actuation; eventually, they may vanish once the activ-
ity is done.

In this article, we address the problem of capturing
the right abstractions for modeling DCPs, abstracting
from the specific communication technologies, and
propose the concepts of concurrent collective tasks

This work is licensed under a Creative Commons Attribution
4.0 License. For more information, see https://creativecom-
mons.org/licenses/by/4.0/
Digital Object Identifier 10.1109/MIC.2022.3216753
Date of publication 25 October 2022; date of current version
23 December 2022.

IEEE Internet Computing Published by the IEEE Computer Society November/December 202216

https://orcid.org/0000-0002-1553-4561
https://orcid.org/0000-0002-1553-4561
https://orcid.org/0000-0002-1553-4561
https://orcid.org/0000-0002-1553-4561
https://orcid.org/0000-0002-1553-4561
https://orcid.org/0000-0001-9149-949X
https://orcid.org/0000-0001-9149-949X
https://orcid.org/0000-0001-9149-949X
https://orcid.org/0000-0001-9149-949X
https://orcid.org/0000-0001-9149-949X
https://orcid.org/0000-0002-8392-5409
https://orcid.org/0000-0002-8392-5409
https://orcid.org/0000-0002-8392-5409
https://orcid.org/0000-0002-8392-5409
https://orcid.org/0000-0002-8392-5409
https://orcid.org/0000-0003-2702-5702
https://orcid.org/0000-0003-2702-5702
https://orcid.org/0000-0003-2702-5702
https://orcid.org/0000-0003-2702-5702
https://orcid.org/0000-0003-2702-5702

and decentralization domains, which can be exploited
in combination to provide distributed situated recog-
nition and action.

In the “Background and Motivation” section, we
motivate the proposal, identify three essential require-
ments, and briefly summarize the state of the art. In
the “Dynamic Decentralization Domains in Practice”
section, we detail the technical solution, providing a
declarative API. In the “Evaluation” section, we func-
tionally evaluate the proposal through simulation in
an environmental monitoring case study. Our finding
and perspective, detailed in the “Conclusion and Out-
look” section, is that the programming model provides
a high-level yet expressive framework for DCPs, with
fine-grained control over decentralization.

BACKGROUND ANDMOTIVATION
Declarative Abstractions for Complex
Decentralized IoT Systems
Modern computing ecosystems such as IoT ones are
increasingly complex and resourceful, providing oppor-
tunities turning into functional and nonfunctional
goals. The recurrent approach in computer/software
engineering to harness complexity is to adopt levels of
abstractions and mechanisms encapsulating coherent
sets of problems and solutions.

This article focuses on situated distributed systems
that need to monitor and act on a dynamically chang-
ing environment, and where a central coordinator may
not be available. Typical examples include crowd track-
ing and steering, environmental (landslides, floodings,
fires) monitoring and response, resource allocation in
open systems, and coordination of robot swarms. Our
target system model is a network of computing and
communicating devices. Every device may interact
with a limited subset of other devices (its neighbors).

We target the idea of programming the overall
behavior of such systems by expressing a high-level
goal—e.g., monitoring the safety of an environment by
integrating recent data from static and mobile sen-
sors, then computing local suggestions for risk-miti-
gating actions. However, we would not fully specify
how activities should concretely be carried out, as
long as these decisions do not affect the intended
result. More specifically, we intend to declaratively
express what is to be achieved, letting lower level
components deal with issues like handling dynamicity
(e.g., due to mobility or openness), failure, heterogene-
ity, etc.

As an analogy, consider databasemanagement sys-
tems: queries express what data has to be retrieved,
and the query optimizer determines an efficient query

plan satisfying the request. Wireless Sensor Network
(WSN) macroprogramming approaches3 are another
example, where declarative queries get mapped to
data processing and transfer operations carried out
across sensor nodes and base stations. We aim to
apply the same principle to self-organizing systems, pri-
marily to realize decentralized situation recognition
and action.

Decentralized Situation Recognition
and Action: A Case Study
A self-organizing IoT system should ideally determine
autonomously what has to be done, when, where, by
whom, and how. The critical problem is setting up a
decentralized process for adaptive situation recognition
and situated action. The system should organize to
monitor the environment for situations requiring inter-
vention; then, the intervention should pursue thedesired
state of affairs. Also, we cannot assume the existence of
a centralized coordinator such as the cloud, which is
usually relied upon in classic approaches.

As an example and case study throughout the arti-
cle, consider a large-scale flood warning system, which
we call FLOODWATCH, fully developed (in simulation) in the
“Evaluation” section. We want to monitor the rain inten-
sity to prealert the public safety organizations close to
areas at a risk of floods. The tracked phenomenon is
spatially and temporally hard to predict with fine-
enough grain (data from the NOAAa has, at best, zip-
code granularity): at a single-city level, we could perform
better by promptly reacting to specialized sensors read-
ings. However, the information provided by individual
sensors is too fragile, as the risk depends on the rain
intensity in surroundings and not just on the specific
spot (e.g., coastal zones with a steep elevation profiles
could suffer floods even with light rain, if the close-by
higher altitude zone is being hit hard). Predefining areas
(using preexisting altimetric and structural knowledge)
helps, but this strategy misses out on essential informa-
tion: how the underlying phenomenon is behaving.
Indeed, areas should be formed ad hoc considering the
city structure and rain distribution, and leveraged to per-
form on-the-fly situation recognition and response.

This approach is practical whenever there are
phenomena with non-strictly-local effects, irregularly
shaped in space, and/or hard-to-predict at a fine grain.

Requirements and Abstractions
Given the high-level vision and goals discussed in the
previous sections, and with the help of FLOODWATCH,

a[Online]. Available: htt _ps://www.noaa.gov/

November/December 2022 IEEE Internet Computing 17

DECENTRALIZED SYSTEMS

we delineate some needs together with abstractions
and corresponding requirements, for a programming
model aimed at decentralized situation recognition
and action.

R1. Concurrent Collective Task Execution.
In FLOODWATCH, there is the need to coordinate a sys-
tem that spans large geographical areas, hence
leveraging DCPs for sensing, computation, and actu-
ation at a collective level.

Most complex systems involve several activities
running concurrently. Furthermore, these activities
could be collective, i.e., involve a collaboration of mul-
tiple agents with partial perception of the environ-
ment. We call these concurrent collective tasks
(CCTs), which express activities that may overlap in
the system (a device may partake in multiple CCTs
simultaneously). Notice that CCTs may have a limited
and dynamic domain: a subset of devices which may
change over time.

R2. Flexible and Adaptive Decentralization.
FLOODWATCH is centered on organizing distributed
sensing and actuation according to both the environ-
ment structure and the current rainfall. Generally
speaking, strategies that are too fine-grained or too
coarse-grained tend to be suboptimal: in the former
case, nonlocal information is not considered, possibly
resulting in a lack of coherence and global inefficiency;
in the latter case, the system may fail to adequately
recognize specific contexts that should be handled ad
hoc. In FLOODWATCH, warnings should be delivered in
the surroundings of risky areas, but not too broadly.

Many systems, indeed,4 often need abstractions
capturing an “adaptive” spatial divide-and-conquer
principle through which a problem in space is split
into parts (or regions) that opportunistically adapt
according to the context. We call each region a decen-
tralization domain (DD) since it represents a nonover-
lapping bounded subsystem of a CCT. Multiple DDs
can also compete to gather resources exclusively
within the domain defined by a CCT (at whose level
cross-domain interaction could happen, instead).

R3. Feedback-Regulated Activity Within
Decentralized Domains.
In FLOODWATCH, each region should sense the water
level and altitude, process data, and decide region-
local actions such as alerting. In a system for compu-
tational resource management, each region might col-
lect resource advertisements and requests, compute
assignments, and publish assignments while also
monitoring and handling the activity progress.

In general, DDs are expected to autonomously
carry out distributed sensing activities, followed by
processing and decision-making, which may trigger
actions affecting the environment or spawning new
CCTs (e.g., to connect with other services).

Summary of requirements.
The rationale of the above requirements is to promote
abstractions supporting concurrent, system-spanning,
and possibly overlapping activities (R1), dynamic crea-
tion and maintenance of nonoverlapping regions (R2),
and internal loops of regional situation recognition
and action (R3). Figure 1 summarizes these ideas.

FIGURE 1. Overview of the proposed approach. The projected squares represent environments, with colors denoting environ-

mental phenomena. Time flows left to right. The proposed system tracks spatial phenomena by partitioning the space in non-

overlapping regions that agree on a measure, which is then leveraged to enact (multiple) spatially bound responses that can

overlap or compete. Contextual (induced or natural) changes are tracked by evolving (reshaping, deleting, or creating) the

partitions.

18 IEEE Internet Computing November/December 2022

DECENTRALIZED SYSTEMS

Related Problems and State-of-the-Art
Approaches
The stance by which the behavior of a whole system is
expressed as a single program is shared by paradigms
like macroprogramming,3 field-based computing,5 spa-
tial computing,6 and aggregate computing.7 The pro-
gramming model that we provide is best understood
as a higher level wrapper on aggregate and field-based
computations.

These approaches providemeans for expressing col-
lective tasks and processes2,8 performed by ensembles9

of devices. From Casadei et al.2 we reuse the idea of
aggregate processes, i.e., computations that spring out,
spread, shrink, and vanish to express transient collective
operations. CCTs can be thought of as a generalization
of aggregate processes, and also differ from collective-
based tasks,8 which are based on orchestration.

The programming model covered in this article is
also related to self-organizing coordination regions
(SCR),4 a design pattern promoting divide-and-con-
quer through dynamic feedback-regulated regional
partitioning processes. More generally, the importa-
nce of structured communities in multiagent systems
is witnessed by the sheer number of organizational
paradigms.10 The abstractions presented in this article
sit at a higher level and may be seen as implementa-
tively exploiting SCR and organizational patterns to
solve the problem of decentralized situation recogni-
tion and action. Overall, the contribution of this article
lies primarily in the combination of the discussed
abstractions into a simple but effective API.

DYNAMIC DECENTRALIZATION
DOMAINS IN PRACTICE
ProgrammingModel
We assume a programming model where abstractions
drive an entire system of devices. So, we aim at amac-
roprogramming model,11 where a single program
defines the behavior of the whole system by a global
perspective. In particular, we assume distributed exe-
cution protocol consisting of repeated rounds of sens-
ing, processing, and neighbor-based communication,
and let the program specify what data have to be
sensed and exchanged and what processing has to be
applied to it. We also want the API to be declarative,
characterizing the rules promoting the behavior of the
abstractions identified in the previous section, and
abstracting from low-level details like the details of
scheduling, networking, or deployment. In particular,
the program may be deployed and evaluated on all the
devices constituting the system, or may be computed

on behalf of them by a distinct managing system—fol-
lowing the approach of Casadei et al.12

From Requirements to an API
From the previous discussion, we further refine the
requirements and extrapolate the design elements of an
API supporting the decentralized computation we need:

› concerning CCTs (cf. R1)
– we use a CCT to model a collective sensing task

partitioned into multiple sensing domains
(i.e., DDs), where each sensing domain has a
center and an extension in space;

– both the extension in space and the center can
change dynamically to improve the way the
underlying phenomenon is being tracked,
through selection of an appropriate leading
node, definition of a metric (which can be
other than the spatial distance), and defini-
tion of a granularity.

› concerning partitioning into DDs (cf. R2) and
activity within a DD (cf. R3)

– sensing domains for a single measure must not
overlap, to avoid duplicate sampling and
undesired interference (overlapping can be
achieved through multiple CCTs, or by using a
mixed custom metric);

– inside a single sensing domain, a strategy is
defined to collect the sensor readings;

– the decentralized sensing will output the collec-
tively sensed result and the identifier of the
device closer to the area center;

– the set of actions/actuations to perform may
vary depending on the overall sensing results,
could require a collective plan for coordina-
tion, and may require fine-grained information
about all the results of the sensing phase.

To the best of our knowledge, no completely decen-
tralized API/framework exists in the literature that
directly satisfies the aforementioned requirements
(although, of course, it can be implemented leveraging
existing frameworks). Thus, we designed a Scala API,
presented in Figure 2(a), which serves two roles:
1) to reify the sought abstractions, and hence as a spec-
ification tool for dynamic decentralization domains;
and 2) as a basis for a prototypical implementation on
top of the SCAFI framework,2,13 which will be presented
and used in the experiments in the following section.
Specifically, class DistributedSensing denotes DDs; types
Perception, SituatedRecognition, and Action model sensing,
reasoning, and acting operations, respectively; and
decentralisedRecognitionAndResponse encapsulates the logic

November/December 2022 IEEE Internet Computing 19

DECENTRALIZED SYSTEMS

that createsmultiple CCTs andmanages their dynamic
partitioning into DDs.

Consider the FLOODWATCH case study introduced
in the “Background and Motivation” section as a refer-
ence scenario. We assume that several pluviometers,
deployed in the city, can communicate with each other.
We want to monitor the progression of a storm hitting
the city, adjusting the granularity at runtime: large areas
with similar rain intensity should get clustered together;
if, instead, the precipitation is spotty, each spot should
form a region. In other words, we want to leverage the
clustering of similarly affected areas to achieve a better
global tracking of the underlying phenomenon, under-
stand its spatial structure, and potentially exploit the
information for better counteraction.

We assume that lower parts of the city are at a
higher risk in case of floods. We assume that the rain
gauges have a GPS sensor supporting altimetry mea-
surement (we would like to consider this information
when responding to a potential emergency). Finally,
we want to consider the altimetry of an entire zone
and not of a single point, and to react promptly if any
rain gauge is moved to a different location: we thus
use the same technique for both rain intensity and
altimetry.

FIGURE 2. Scala implementation of the proposed API, showing the abstractions (a) and their exemplary use (b). DistributedSensing

represents the configuration of the collective value-reading operation, which selects a leading node, expands an area of influ-

ence, and produces an area-wide result. Action represents a collective task enacted in response to a distributed perception.

Perception links each distributed sensing process to the corresponding computed value (i.e., the result of the collective sensing

process). SituatedRecognition maps collective perceptions to actual actions. decentralizedRecognitionAndResponse is the entry point.

(a) Scala API for decentralized situation recognition. (b) Example use of the API for the case study.

FIGURE 3. Subsequent simulation snapshots (left-to-right,

top-to-bottom) of FLOODWATCH. Darker shadows indicate

heavier rain. Black squares with a small red dot are unalerted

fire stations, when at least an alert reaches them, their dot

changes to a large red square. Circles represent gauges; their

colors map the DDs they are subject to when measuring rain-

fall intensity. A video of a complete simulation run is available

at https://bit.ly/3zysMOV.

20 IEEE Internet Computing November/December 2022

DECENTRALIZED SYSTEMS

https://bit.ly/3zysMOV

The application goal goes beyond sensing: when
the rain in low-altitude areas is so heavy that it might
cause floods, we want to

1) propagate an alert signal to the surroundings of
the area at risk, to be perceived, e.g., by smart
vehicles transiting by

FIGURE 4. Simulation results, showing, with time, the average rainfall intensity (dotted black line), the number of operator sta-

tions receiving alerts (left) and the breakdown by number of alerts received per station (right).

FIGURE 5. Ability to track the risk spatially. Charts show risk (the darker, the higher) as estimated in realtime by an oracle using

altitude and rainfall intensity. Stations are depicted with a red circle, and those alerted are filled in white. Solid black areas are

non-land. Alerted stations are indeed those closest to the zones of highest risk.

November/December 2022 IEEE Internet Computing 21

DECENTRALIZED SYSTEMS

2) prealert the closest fire station or civil protection
post to be prepared in case of actual issues.

The application logic, leveraging our API, is shown
in Figure 2(b). As detailed in Casadei et al.2,13 this spec-
ification is also the “script” that each device executes
repeatedly in asynchronous sense–compute–interact
rounds, progressively building the intended global
behavior.

EVALUATION
In this section, we consider the FLOODWATCH case study,
and show that our API can successfully be used in a
challenging scenario to program a system behavior
that responds as expected to the underlying environ-
mental phenomena.

Experimental Setup
We exercise the API in a challenging and realistic sce-
nario, using open data of Toronto,b featuring 50 water
gauges samples taken in 2021. To stress-test our pro-
posed approach with a denser network of devices, we
added 300 simulated gauges, randomly positioned,
whose data are interpolated from the values of the
surrounding real devices. We selected the rain event
that occurred on 2021-09-07, the heaviest in the avail-
able data. We used data from OpenStreetMapc to
position 24 fire stations.

We implemented the proposed API in the SCAFI
aggregate programming toolkit13 and simulated the
scenario using the Alchemist simulator.14 In the exper-
iment, devices compute their programs unsynchro-
nized at a frequency of 1 Hz. We define a simple metric
for the actual risk of a location as the quotient of the
local rain intensity on the local altitude (namely, the
rainier and the lower the position, the higher the risk);
we run an oracle measuring it with a fine grain across
the city at each instant. As performance measure, we
count how many alerts get generated and how many
stations they reach. Additional gauges position and
device timing drift are randomized. We ran 64 repeti-
tions of the simulation and considered the mean
results. The experiment is available and reproducible;
it has been released, open-sourced,d and permanently
archived.15 Figure 3 depicts the scenario as simulated
in Alchemist.

Results and Discussion
Figure 3 shows that, when conditions change, DDs
adapt by changing their shape and extension to track
the underlying phenomenon coherently; in response
to heavy rain, close-by stations get appropriately
alerted. The system macroscopically tracks the under-
lying phenomena: more operators get alerted when
(Figure 4) and where (Figure 5) there are peaks in the
signal. However, even in response to similarly high
peaks the system may decide to allocate less or more
resources to manage them: differences are primarily
due to the system detecting different base risks (due
to the altitude) or the event being strictly local.

We now give some remarks to better contextualize
the contribution. Regarding applicability and generality,
we observe that CCTs and partitioning into DDs enable
addressing several kinds of applications in domains like
computing ecosystems, WSNs, IoT, and smart city,
and multirobot/multiagent systems—cf. the surveys in
Pianini et al.4,5 Details onquantitative cost/performance
considerations on this kind of paradigm, can be found in
Casadei et al.2,4: the focus of this article is on program-
ming abstractions for decentralized systems, following
a language-based software engineering approach.16

CONCLUSION ANDOUTLOOK
Mechanisms based on decentralization and self-organi-
zation are intensely researched and expected to play
crucial roles in next-generation applications involving
cyber-physical collectives. In this article, to turn decen-
tralized activities into actionable notions, we proposed
a high-level programming model for situation recogni-
tion and action that originally integrates recent develop-
ments in collective adaptive computing. The idea is to
expose a declarative API featuring 1) concurrent collec-
tive tasks, which overlap in space and 2) nonoverlapping
decentralization domains with inner information flows-
based feedback loops.We implemented the API in Scala
bymapping CCTs and DDs to SCAFI aggregate computa-
tions, then show the approach’s effectiveness through a
case study in flood monitoring and control. Results
showed that programs expressed declaratively through
the API yield DDs that can adapt to properly handle dis-
tributedmonitoring and action.

This article focused on designing and programming
decentralized systems. We believe that this level of con-
trol is instrumental for properly structuring collective
adaptive behavior to steer desired emergents. Yet, con-
tributions on patterns and programming abstractions
for this class of systems are still quite fragmented.
Further, their integration with automatic design app-
roachesmay be a fertile path for future research.

b[Online]. Available: htt_ps://bit.ly/3QciJ9i
cusing Overpass API, [Online]. Available: htt _ps://overpass-
turbo.eu/
d[Online]. Available: htt_ps://bit.ly/3vF09P6

22 IEEE Internet Computing November/December 2022

DECENTRALIZED SYSTEMS

ACKNOWLEDGMENTS
This work was supported by the Italian PRIN projects
“Fluidware” (2017KRC7KT) and “CommonWears”
(2020HCWWLP), and the EU/MUR FSE PON-R&I
2014-2020.

REFERENCES
1. J. O. Kephart and D. M. Chess, “The vision of

autonomic computing,” Computer, vol. 36, no. 1,

pp. 41–50, 2003, doi: 10.1109/MC.2003.1160055.

2. R. Casadei, M. Viroli, G. Audrito, D. Pianini, and F.

Damiani, “Engineering collective intelligence at the

edge with aggregate processes,” Eng. Appl. Artif.

Intell., vol. 97, 2021, Art. no. 104081, doi: 10.1016/j.

engappai.2020.104081.

3. L. Mottola and G. P. Picco, “Programmingwireless

sensor networks: Fundamental concepts and state of

the art,” ACMComput. Surv., vol. 43, no. 3, pp. 19:1–19:51,

2011, doi: 10.1145/1922649.1922656.

4. D. Pianini, R. Casadei, M. Viroli, and A. Natali,

“Partitioned integration and coordination via the

self-organising coordination regions pattern,” Future

Gener. Comput. Syst., vol. 114, pp. 44–68, 2021,

doi: 10.1016/j.future.2020.07.032.

5. M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei,

and D. Pianini, “From distributed coordination to field

calculus and aggregate computing,” J. Log. Algebr.

Methods Prog.., vol. 109, 2019, Art. no. 100486,

doi: 10.1016/j.jlamp.2019.100486.

6. M. Duckham, Decentralized Spatial Computing -

Foundations of Geosensor Networks. Berlin, Germany:

Springer, 2013, doi: 10.1007/978-3-642-30853-6.

7. J. Beal, D. Pianini, and M. Viroli, “Aggregate

programming for the Internet of Things,” Computer,

vol. 48, no. 9, pp. 22–30, 2015, doi: 10.1109/MC.2015.261.

8. O. Scekic et al., “A programming model for hybrid

collaborative adaptive systems,” IEEE Trans. Emerg.

Topics Comput., vol. 8, no. 1, pp. 6–19, Jan.–Mar. 2020,

doi: 10.1109/TETC.2017.2702578.

9. T. Bures, F. Plasil, M. Kit, P. Tuma, and N. Hoch,

“Software abstractions for component interaction in

the Internet of Things,” Computer, vol. 49, no. 12,

pp. 50–59, 2016, doi: 10.1109/MC.2016.377.

10. B. Horling and V. R. Lesser, “A survey ofmulti-agent

organizational paradigms,” Knowl. Eng. Rev., vol. 19, no. 4,

pp. 281–316, 2004, doi: 10.1017/S0269888905000317.

11. R. Casadei, “Macroprogramming: Concepts, state of

the art, and opportunities of macroscopic behaviour

modelling,” arXiv:2201.03473.

12. R. Casadei, D. Pianini, A. Placuzzi, M. Viroli, and D.

Weyns, “Pulverization in cyber-physical systems:

Engineering the self-organizing logic separated from

deployment,” Future Internet, vol. 12, no. 11, 2020,

Art. no. 203, doi: 10.3390/fi12110203.

13. R. Casadei,M. Viroli, G. Audrito, and F. Damiani, “Fscafi :

A core calculus for collective adaptive systems

programming,” in Proc. Leveraging Appl. FormalMethods,

Verification Validation: Eng. Princ. - 9th Int. Symp.

LeveragingAppl. FormalMethods, Part II, 2020, vol. 12477,

pp. 344–360, doi: 10.1007/978-3-030-61470-6_21.

14. D. Pianini, S. Montagna, and M. Viroli, “Chemical-

oriented simulation of computational systems with

ALCHEMIST,” J. Simul., vol. 7, no. 3, pp. 202–215, Aug.

2013, doi: 10.1057/jos.2012.27.

15. G. Aguzzi and D. Pianini, “cric96/experiment-2022-

ieee-decentralised-system: 1.0.1,” 2022. [Online].

Available: https://zenodo.org/record/6477039

16. G. Gupta, “Language-based software engineering,” Sci.

Comput. Prog., vol. 97, pp. 37–40, 2015, doi: 10.1016/j.

scico.2014.02.010.

GIANLUCA AGUZZI is currently working toward the Ph.D.

degree with the Alma Mater Studiorum - Universit�a di Bologna,

47521, Cesena, Italy. His research interests include software

engineering, pervasive systems, and multi-agent reinforcement

learning. Contact him at gianluca.aguzzi@unibo.it.

ROBERTO CASADEI is a postdoctoral researcher with the Alma

Mater Studiorum - Universit�a di Bologna, 47521, Cesena, Italy. His

research interests includesoftwareengineeringanddistributedartifi-

cial intelligence. Casadei received the Ph.D. degree in computer sci-

ence and engineering from the University of Bologna with a thesis

awardedbyIEEETCSC.Contacthimatroby.casadei@unibo.it.

DANILO PIANINI is a postdoctoral researcher with the Alma

Mater Studiorum - Universit�a di Bologna, 47521, Cesena, Italy.

His research interests include simulation, (self-organizing) coor-

dination, aggregate computing, pervasive systems, software

engineering, agile techniques, and DevOps. Pianini received the

Ph.D. degree in computer science and engineering. He is amem-

ber of the IEEE. Contact him at danilo.pianini@unibo.it.

MIRKO VIROLI is a full professor in computer engineering with the

AlmaMater Studiorum - Universit�a di Bologna, 47521, Cesena, Italy.

His research interests include foundations of computer science and

programming, object-oriented programming, advanced software

development, software engineering, and self-adaptive/self-organiz-

ing pervasive computing systems. Viroli received the Ph.D. degree

fromtheUniversity ofBologna.Contacthimatmirko.viroli@unibo.it.

Open Access funding provided by ‘AlmaMater Studiorum - Universit�a di Bologna’within the CRUI CARE Agreement

November/December 2022 IEEE Internet Computing 23

DECENTRALIZED SYSTEMS

http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1016/j.engappai.2020.104081
http://dx.doi.org/10.1016/j.engappai.2020.104081
http://dx.doi.org/10.1145/1922649.1922656
http://dx.doi.org/10.1016/j.future.2020.07.032
http://dx.doi.org/10.1016/j.jlamp.2019.100486
http://dx.doi.org/10.1007/978-3-642-30853-6
http://dx.doi.org/10.1109/MC.2015.261
http://dx.doi.org/10.1109/TETC.2017.2702578
http://dx.doi.org/10.1109/MC.2016.377
http://dx.doi.org/10.1017/S0269888905000317
http://dx.doi.org/10.3390/fi12110203
http://dx.doi.org/10.1007/978-3-030-61470-6_21
http://dx.doi.org/10.1057/jos.2012.27
https://zenodo.org/record/6477039
http://dx.doi.org/10.1016/j.scico.2014.02.010
http://dx.doi.org/10.1016/j.scico.2014.02.010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

