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Abstract—The capacitated arc routing problem (CARP) is a
challenging combinatorial optimization problem abstracted from
many real-world applications, such as waste collection, road grit-
ting, and mail delivery. However, few studies considered dynamic
changes during the vehicles’ service, which can cause the origi-
nal schedule infeasible or obsolete. The few existing studies are
limited by the dynamic scenarios considered, and by overly com-
plicated algorithms that are unable to benefit from the wealth of
contributions provided by the existing CARP literature. In this
article, we first provide a mathematical formulation of dynamic
CARP (DCARP) and design a simulation system that is able to
consider dynamic events while a routing solution is already par-
tially executed. We then propose a novel framework which can
benefit from the existing static CARP optimization algorithms so
that they could be used to handle DCARP instances. The frame-
work is very flexible. In response to a dynamic event, it can use
either a simple restart strategy or a sequence transfer strategy
that benefits from the past optimization experience. Empirical
studies have been conducted on a wide range of DCARP instances
to evaluate our proposed framework. The results show that the
proposed framework significantly improves over state-of-the-art
dynamic optimization algorithms.

Index Terms—Dynamic capacitated arc routing problem
(DCARP), experience-based optimization, metaheuristics, restart
strategy (RS), transfer optimization.
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I. INTRODUCTION

THE CAPACITATED arc routing problem (CARP) is
a classical combinatorial optimization problem with a

range of collection and delivery applications in the real world.
For example, in a waste collection problem [1], the capacitated
vehicles start from a depot to collect the waste distributed in
different streets. In a winter road gritting problem, which is
a kind of delivery application [2], the fully loaded vehicles
deliver the salt to spread into different required roads. Such
scenarios are the main focus in this article.

Constructive heuristic methods, such as Ulusoy’s split [3]
and Path-Scanning [4], were proposed to construct feasi-
ble executable solutions for CARP based on an optimized
sequence of tasks. Tabu search [5], memetic algorithms [6],
and others were also proposed to solve the CARP. In addition,
efficient algorithms have been proposed to tackle large-scale
CARPs [7], [8]. Many different variants of CARP have been
investigated [9], [10]. For example, multidepot CARP consid-
ers several different depots in the graph [11], and open CARP
allows the routes to be open with different starting and ending
nodes [12]. Split-delivery CARP allows the edge demand to be
served by several vehicles [13]. Periodic CARP considers the
cases where the tasks are required to be served with a certain
number of times over a given multiperiod horizon [14]. Time
CARP considers the time instead of the volume restriction of
the vehicles [15].

However, all these studies concentrate on static CARPs,
where the problem remains static during the entire time of
a solution’s execution. In real applications, dynamic changes
usually happen when vehicles are in service, i.e., when a
solution is partially executed, thus influencing the vehicles’
follow-on service. For example, a road may be closed due to an
accident or new tasks may emerge during the vehicles’ service.
When that happens, a new graph, i.e., a new problem instance,
is formed, in which vehicles would stop at different locations,
labeled as outside vehicles, with various amounts of remaining
capacities. As a result, the current schedule may become infe-
rior or even feasible. Dynamic CARP (DCARP) in our article
thus aims at rescheduling the service plan [16], [17]. For clar-
ity, the following three different concepts are used throughout
our article.

1) DCARP: A variant of CARP where the status of a graph
is changed due to dynamic events occurring during a
CARP solution’s execution.

2) DCARP Instance: The updated graph with some outside
vehicles after the dynamic events happen.
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3) DCARP Scenario: A scenario contains a series of
DCARP instances with the whole service process, start-
ing from executing an initial solution in the original
CARP map until all tasks are served.

It is worth noting that Mei et al. [18] used the term DCARP
to denote the uncertain CARP, which is different from the
meaning of DCARP in this article. Uncertain CARP focuses
on robust optimization [18], [19], where one is interested
in finding solutions that are robust to uncertainties, such as
changing degrees of congestion or level of demands. However,
there are dynamic events in the real world which cannot
be handled well by robust optimization, such as the clo-
sure of roads or addition of new tasks. As a result, dynamic
optimization, which is the focus of our article, has been an
active research topic in recent years.

DCARP, as we defined early, was first investigated in [20]
when considering the salting route optimization problem.
However, few studies in the literature have focused on
DCARP so far. Tagmouti et al. [21] solved DCARP with
time-dependent service costs motivated from winter grit-
ting applications. Liu et al. [16] defined some dynam-
ics in DCARP and proposed a benchmark generator for
DCARP [17]. Monroy-Licht et al. [22] dealt with reschedul-
ing for DCARP, which considered the failure of vehicles.
Padungwech et al. [23] considered new tasks in DCARP. A
robot path planning problem [24] and our previous work [25]
focused on the split scheme in DCARP. Split schemes con-
vert an ordered task sequence into an executable solution of
multiple explicit routes.

Even though DCARP has been investigated by different peo-
ple, there is still a lack of formal mathematical formulation of
DCARP to the best of our knowledge. The field also lacks
a system that can simulate the behavior of vehicle’s service
process in the real world. Liu et al. [17] proposed a bench-
mark generator for DCARP. However, their generator cannot
consider dynamic events during the execution of a routing
solution and, thus, is unsuitable for our DCARP scenarios,
where changes happen during the execution of the scenarios.
Finally, there is a rich literature on existing CARP optimization
algorithms that could potentially contribute toward DCARP
optimization, but they are not applicable to DCARP instances.
This is because they work under the assumption that all vehi-
cles start at the depot and have the same capacities, which is
not the case in DCARP. A framework to enable the applica-
tion of the existing CARP optimization algorithms to DCARP
problems is desirable.

Therefore, this article has the following contributions.
1) We provide the first mathematical formulation of

DCARP in the literature.
2) We design a simulator to simulate the behavior of vehi-

cles’ service processes in the real world. The simulator
is developed according to the collection or gritting
problem, where the vehicle does not have to return
to the depot for loading new different delivered items.
It offers a novel research platform to support DCARP
studies.

3) We propose a novel framework capable of generalizing
almost all existing algorithms designed for static CARP

to the DCARP context. The framework converts a
DCARP instance into a “static” CARP instance by intro-
ducing the idea of “virtual tasks” (VTs), which enables
outside vehicles (with potentially partial capacity) to be
interpreted as vehicles located at the depot (with their
full capacity). The DCARP instance can then be solved
as if it was a static CARP instance by static CARP
algorithms. After a solution is found, its corresponding
DCARP route where the vehicles start at their outside
positions is generated.

4) As a dynamic scenario is composed of a series
of DCARP instances, similarities between DCARP
instances can and should be exploited. Therefore, we
propose two strategies for generating initial solutions
in our framework, namely, a sequence transfer strat-
egy (STS) and a restart strategy (RS), to solve a
new DCARP instance. The STS generates a poten-
tially good solution based on the previous optimization
experience by transferring the sequence of remaining
unserved tasks. The RS starts from scratch without using
any information and optimizes each DCARP instance
independently of each other.

5) We perform extensive experiments with a variety of
DCARP instances, demonstrating the effectiveness of
the proposed framework. We show that valuable research
progress achieved by the static CARP literature can con-
tribute toward optimization results that significantly out-
perform the existing algorithm [16] that was specifically
designed for DCARP.

The remainder of this article is organized as follows.
Section II discussed the related work on DCARP and this
article’s motivation. After that, a general mathematical formu-
lation of DCARP and a simulation system for DCARP are
provided in Section III. Section IV introduces the main algo-
rithm of our generalized optimization framework for DCARP.
Section V presents our experimental study on the proposed
framework to evaluate its efficiency. Section VI concludes this
article.

II. RELATED WORK AND MOTIVATION

In the literature, there are two related but different research
topics, which target the (re)scheduling of vehicles in dynamic
environments: 1) DCARP and 2) dynamic vehicle routing
problem (DVRP). DCARP focuses on serving tasks, which
are the arcs in the graph while DVRP focuses on serving ver-
tices. With respect to DCARP, few approaches were proposed.
Liu et al. [16] proposed a memetic algorithm with a new
distance-based split scheme (MASDC) for DCARP. However,
its performance is unsatisfactory since it suffers from noise in
the fitness evaluation due to the impact of random splits, as
well as the neglecting available vehicles placed in the depot.
Monroy-Licht et al. [22] considered only the broken down
vehicles and presented a heuristic to minimize the operations
and disruption cost. Padungwech et al. [23] considered only
the new tasks during the vehicles’ service. They applied the
tabu search to optimize the DCARP, in which the solution is
represented as routes with different start vertices.
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As stated above, DVRP focuses on serving vertices, instead
of tasks/arcs (i.e., arcs with demands), and its research work
mainly comprises two categories called dynamic deterministic
VRP and stochastic VRP according to if problem knowledge is
used during the optimization or not [26]. For solving DVRP, it
might be possible to transform DVRP instances into DCARP
instances or vice versa, such transformation will increase the
problem’s dimension [27]. For example, the number of ver-
tices in the capacitated VRP (CVRP) instance will increase if
transformed from a CARP instance. The number of vertices
to be served will be greater than the number of arcs to be
served. Furthermore, dynamics events in VRP and CARP are
very different. In short, it is not a suitable approach to con-
vert CARP into CVRP and then solve CVRP. It is better to
design CARP or DCARP specific algorithms as the research
community has been doing for many years.

There are two representations commonly used in
optimization algorithms for CARP in the literature. The
first type provides all explicit routes in the solution, separated
by a dummy task [6], while the other type is an ordered list
of tasks without separation. These two types of representation
can be used together in the algorithm for CARP. For example,
constructive heuristics, such as Path-Scanning [4] generates
solutions with explicit routes. This representation is friendly
to local search operator. The representation with an ordered
list of tasks is often used in metaheuristic algorithms with
crossover operators, such as memetic algorithms [1], [6].
Ulusoy’s split scheme [3] is an exact algorithm for converting
an ordered list of tasks to a solution with explicit routes by
building an auxiliary graph according to the task sequences.

For DCARP, the calculation of the cost and capacity vio-
lation of the routes corresponding to the outside vehicles
are required to be specifically considered due to the fact
that outside vehicles have different locations and remaining
capacities. It is more complicated to use an ordered list of
tasks as the solution representation during the optimization
because Ulusoy’s split [3] is not suitable anymore and spe-
cific split schemes [25] are required. Even though a new split
scheme was proposed in our previous work [25], its high com-
putational complexity limits its performance. Therefore, the
existing algorithm for static CARP [16] is adapted to solve
DCARP instance with some modification, such as the existing
work in [16].

In this article, we propose a novel general framework, which
enables the adoption of existing CARP algorithms to DCARP.
However, this does not exclude future development of new
dedicated dynamic algorithms. In the next section (Section III),
we will introduce our mathematical formulation of DCARP
and a newly designed simulation system, followed by our
general framework in Section IV.

III. PROBLEM FORMULATION AND SIMULATION SYSTEM

In this section, we provide the first mathematical formu-
lation for DCARP. The mathematical notations used in this
article are summarized in Table I. A new simulation system
is then proposed to generate benchmark instances from the
existing CARP benchmark for testing DCARP algorithms.

TABLE I
GLOSSARY OF MATHEMATICAL NOTATIONS USED IN THIS ARTICLE

A. Notations and Mathematical Formulation

For simplicity, in the present article, we consider the col-
lection or gritting application, i.e., vehicles can continue the
service paths without requiring to return to the depot when new
tasks/demands appear. Such a DCARP scenario is composed
of a series of DCARP instances: I = {I0, I1, . . . , Im, . . . , IM}.
Each DCARP instance corresponds to a problem state, which
contains all the information regarding the state of the map and
vehicles involved in the routing problem, and highly depends
on the previous instance and the solution’s execution. The
initial problem instance I0 is a conventional static CARP, in
which all vehicles are located at the depot having the same
full capacities. We can obtain an initial solution in I0 and exe-
cute this solution in the graph. During the execution, some
dynamics [16] happen at random points in time when vehi-
cles are in service, thus changing the problem instance and
potentially requiring a new better solution. Vehicles then con-
tinue to serve tasks from the positions they had stopped (stop
points). DCARP terminates when all tasks are served, and all
vehicles have returned to the depot. In a DCARP scenario, the
key objective is to achieve a schedule cost, which should be as
low as possible for each DCARP instance. Let us first focus
on the mathematical formulation for one DCARP instance.

The map for any DCARP instance Im is provided as a
graph G. Suppose the map of a DCARP instance Im is rep-
resented by G = (V, A) with a set of vertices V and arcs
(directed links) A. There is a depot v0 ∈ V in the graph, which
contains vehicles that are not yet serving any tasks. Set A is
given by

A = {
< vi, vj > |vi, vj ∈ V

}

where for each arc u, i.e., <vi, vj> ∈ A, vi is the head
vertex and vj is the tail vertex. A given arc <vi, vj> only
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exists if it is possible to traverse from vertex vi to vertex
vj without passing through other vertices. Each arc u in the
graph is associated with a deadheading (traversing) cost dc(u),
a serving cost sc(u) and a demand dm(u). The deadheading
cost of an arc means the cost that the vehicle just traverse
this arc without serving while the serving cost is the cost
when vehicles serve this arc. For simplicity, the deadheading
cost is assumed to be symmetric in this article. The dead-
heading cost has been included in the serving cost such that
the deadheading cost is not required to be calculated when
the vehicle serves an arc. A subset R ⊆ A contains all arcs
required to be served in the graph. The arc u ∈ R is named
as “task” and has a positive demand dm(u) > 0. For conve-
nience, we use t to represent a task, and use an arc ID for
identification.

The DCARP instance I0 only contains vehicles at the
depot. As for DCARP instances Im(m > 0), in addition to
vehicles that are currently at the depot, there may also be
outside vehicles with remaining capacities. These are vehi-
cles that had already started to serve tasks when a dynamic
event occurs. Suppose there are Nveh vehicles in total with
a maximum capacity Q at the depot and Nov (Nov ≤ Nveh)
outside vehicles with remaining capacities {q1, q2, . . . , qNov}.
The stop points (locations) of the outside vehicles are labeled
as OV = {v1, v2, . . . , vNov}. The optimization of DCARP
aims to reschedule the remaining tasks with the minimal cost
considering both outside and depot vehicles..

A DCARP solution S = {r1, r2, . . . , rNov , . . . , rK} contains
K routes, where the routes r1 to rNov start from locations that
outside vehicles located while routes rNov+1 to rK start from
the depot. Each route can be represented by three components:
1) starting vertex; 2) an ordered list of tasks (arc IDs); and
3) the final depot. Therefore, a given route rk can be expressed
as rk = (vk, tk,1, tk,2, . . . , tk,lk , v0), where the vehicle starts
from stop location vk and returns to the depot v0, whereas
lk denotes the number of tasks served by route rk. For route
rk, where k > Nov, vk equals v0. This representation is very
easy to be converted to an explicit route by connecting two
subsequent tasks using Dijkstra’s algorithm so that the route
cost can be calculated. In addition, a DCARP solution has to
satisfy the following three constraints which are the same as
constraints in static CARP.

1) Each route served by one vehicle must return to the
depot.

2) Each task has to be served once.
3) The total demand for each route served by one vehicle

cannot exceed the vehicle’s capacity Q.
Due to the different remaining capacities for outside vehi-

cles, the capacity constraint is required to be formulated for
each outside vehicle separately. As a result, the objective
function and the constraints for DCARP are given as follows:

Min TC(S) =
K∑

k=1

RCrk

s.t.
K∑

k=1

lk = Nt

tk1,i1 �= tk2,i2 , for all (k1, i1) �= (k2, i2)

lk∑

i=1

dm
(
tk,i

) ≤ qk ∀k ∈ {1, 2, . . . , Nov}
lk∑

i=1

dm
(
tk,i

) ≤ Q ∀k ∈ {Nov + 1, . . . , K} (1)

where Nt is the number of tasks and RCrk denote the total cost
of route rk and is computed according to

RCrk = mdc
(
vk, tailtk,1

) + mdc
(

headtk,lk
, v0

)

+
lk−1∑

i=1

mdc
(
headtk,i , tailtk,i+1

) +
lk∑

i=1

sc
(
tk,i

)
(2)

where headt and tailt denote the head and tail vertices of the
task, mdc(vi, vj) denotes the minimal total deadheading cost
traversing from node vi to node vj, and sc(tk,i) denotes the
serving cost of task tk,i . The first two constraints in (1) guar-
antee that all tasks are served only once and the other two
constraints are formulated to satisfy the capacity constraint.

B. Simulation System for DCARP

In order to test optimization algorithms for DCARP, a sim-
ulation system that includes some common dynamic events is
required. Even though a benchmark generator for DCARP has
been proposed by Liu et al. [17], it has shortcomings, which
prevent it to be used as the research platform. Intuitively,
a DCARP instance should be generated from the dynamic
change of a previous DCARP instance during a solution’s
execution, such as road congestion or recovering from the
congestion. However, these essential details are not consid-
ered in the existing benchmark generator [17]. Therefore, we
have designed a simulation system which includes nine com-
monly occurring events and generates DCARP instances from
the existing CARP benchmark.1 Nine events and their corre-
sponding changes in mathematical forms are listed in Table II,
and the simulation system’s architecture is presented in Fig. 1.

To make our simulator more close to realistic events, we
have added several dynamic events, which have not been con-
sidered in the literature. For example, the road can recover
from a closure or a congestion, which has been marked with
a star (*) in Table II. If a vehicle breaks down, we can
assume that this vehicle k has already served some tasks.
Consequently, the demand of arc uk, where vehicle k broke
down, increases from 0 to Q − qk to include the already
served loads in collection applications. For delivery applica-
tions, the broken down vehicle has no impact to the demand of
the arc. As we mainly considered collection or gritting prob-
lems, we assumed in our work that the tasks/demands will
not vanish until fully served, although this may be extended
and addressed in the future. However, our proposed simulator
and framework is still applicable and capable of taking these
events into account in case they would be added in future
research. Based on Table II, we can easily observe that all
dynamic events impact the cost or demand of arcs. Therefore,
we designed the cost changer and demand changer in our
simulation system to simulate these events (Fig. 1).

1https://github.com/HawkTom/Dynamic-CARP
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TABLE II
TYPES OF DYNAMIC EVENTS IN DCARP. THE EVENTS WITH

* ARE NEW EVENTS CONSIDERED IN THIS ARTICLE, WHICH

HAVE NEVER BEEN CONSIDERED IN THE LITERATURE

Fig. 1. Architecture of our simulation system.

In Fig. 1, the system starts from a provided initial graph,
which could be taken from existing benchmarks for static
CARP. Then, a CARP solver selected by the user, such as
solvers based on memetic algorithms [6], can be used to obtain
the initial solution, i.e., the first schedule for the vehicles. The
core part of the system is the service simulator in Fig. 1,
which is used to execute the CARP solution and update the
graph. The pseudocode for the service simulator is presented in
Algorithm 1. During the execution of the CARP solution, the
maximum number of vehicles in the depot (Nveh) is considered.
If the number of routes in the schedule exceeds the predefined
maximum number of vehicles, the route with the smallest cost
will be served first and the remaining routes will be served
after some vehicles return to the depot. When the solution is
executed, some dynamic events will happen according to a
series of predefined parameters listed in line 1 and influence
the graph at a uniformly random time between the service start
and completion times. After that, a new DCARP instance is
generated based on the dispatched solution. Different solutions
will result in different DCARP instances, which might not
facilitate fair comparison of different algorithms. Therefore,
we apply the best solution among all solutions obtained by

Algorithm 1: Pseudocode of the Service Simulator
Input: Executable solution S, Previous instance Im

Output: The new instance Im+1

1 Set probabilities of occurrence for all events:
[pevent, proad, pbdrr, pcrr, pcrbb, picd, padd];

2 Execute S on Im;
3 Select a uniformly random time to stop execution;
4 Remove all served tasks: make demand of all served

tasks be 0;
5 Event 1 Randomly select n vehicles to break down.
6 /**** Cost Changer ****/
7 for each arc ui ∈ A do
8 if rand() < pevent then
9 switch state(ui) do

10 case 0
11 if rand() < proad then
12 Event 2 dc(ui) = ∞, state(ui) = 2

13 else
14 Event 3 dc(ui) = dc(ui) + c,

state(ui) = 3

15 case 2
16 if rand() > pbdrr then
17 Event 4 dc(ui) = dc(ui),

state(ui) = 0

18 case 3
19 r = rand()

20 if r < pcrr then
21 Event 5 dc(ui) = dc(ui),

state(ui) = 0
22 else if r < pcrbb then
23 Event 6 dc(ui) = dc′(ui) + c
24 else
25 Event 7 dc(ui) = dc′(ui) − c

26 /**** Demand Changer ****/
27 for each arc ui ∈ A do
28 if dm(ui) > 0 and rand() < picd then
29 Event 8 dm(ui) = dm(ui) + d

30 if dm(ui) == 0 and rand() < padd then
31 Event 9 dm(ui) = 0 + d

different algorithms to the service simulator and generate one
new DCARP instance for all algorithms for a fair comparison.

Once the dynamic change happens on the DCARP instance
Im, the service simulator stops the execution of the current
solution. Then, the cost changer and demand changer will
update the DCARP instance. First, as broken down vehicles
influence only a specific arc, we simulate Event 1 separately
from other dynamic events. The algorithm randomly selects n
vehicles from all dispatched vehicles to break down, as shown
in line 5. Events 2–7 will influence the cost of several arcs
so that the cost changer mainly simulates these five events,
as shown in lines 7–25. Each arc ui has a traffic property,
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state(ui), recording whether it is currently in a changed state
compared to its original state having expected cost without
traffic events.

In the cost changer, the simulator first determines whether
or not a change from the current state occurs according to the
probability pevent for each arc. If a change occurs, a dynamic
event is triggered according to the events’ probabilities and
arc’s current changed state. If an arc keeps the original state,
i.e., state(ui) == 0, Event 2 or 3 happens in this arc depend-
ing on probability proad. If state(ui) == 2, the road has broken
down before so that it recovers with a probability pbdrr. If
state(ui) == 3, the road is in congestion. It may either com-
pletely recover with a probability pcrr or the traffic jam may
ease or get worse (by a random cost) with a probability pcrbb or
1−pcrbb, respectively. Compared to Events 2–7, Events 8 and 9
in the demand changer are much easier to implement, because
we assume that the tasks/demands do not vanish unless served
completely and the demand of tasks can only increase under
the practical scenarios considered in this article. Event 8 may
happen to a task with a probability picd, increasing the demand
by a random amount. For arcs with no demand, Event 9 will
happen with a probability padd.

Finally, we will get a new DCARP instance Im+1, and
the solver generates a new DCARP solution. The system
terminates after all tasks are served.

IV. GENERALIZED OPTIMIZATION

FRAMEWORK FOR DCARP

In this section, we propose a virtual task (VT) strategy to
change a DCARP instance to a “virtual static” instance. After
that, a generalized optimization framework based on the VT
strategy for DCARP with two different initialization strate-
gies is proposed, which can make use of algorithms for static
CARP for solving DCARP.

A. Virtual Task

As discussed in the previous section, the main challenge of
scheduling vehicles for DCARP by using algorithms designed
for static CARP is to take the outside vehicles with different
locations and remaining capacities into account. We propose a
VT strategy that forces all outside vehicles to virtually return
to the depot for optimization purposes, such that all vehicles
(some virtually) start at the depot during the optimization. As a
result, algorithms for static CARP, which assume that all vehi-
cles start at the depot, can be adopted. After the optimization,
the obtained solution with routes starting from the depot will
be converted to an executable solution according to the loca-
tions of outside vehicles. In other words, even though the
outside vehicles will virtually return to the depot for running
the optimization process, in the executable solutions them-
selves, the outside vehicles start their new routes from their
outside locations. For this strategy to work, some adjustments
need to be made so that the optimization problem with VTs is
equivalent to the actual DCARP instance being solved. Such
adjustments will be explained next.

The pseudocode of constructing the VT is presented in
Algorithm 2. Despite virtually returning to the depot, the out-
side vehicles are still required to start from the stop location

Algorithm 2: Pseudocode of Constructing VTs
Input: Task set R = {t1, t2, . . . , tNt },

Stop locations of outside vehicles: OV ,
Remaining capacity of outside vehicles: RQ.
OV = {v1, v2, . . . , vNov},
RQ = {q1, q2, . . . , qNov}

Output: The updated task set: R

1 for each outside vehicle k do
2 Construct an Arc with virtual task vtk;
3 Head: headvtk = v0, where v0 is the depot;
4 Tail: tailvtk = vk;
5 Deadheading cost: dc(vtk) = ∞;
6 Serving cost: sc(vtk) = mdc(v0, vk);
7 Demand: dm(vtk) = Q − qk, where Q is the original

capacity of vehicles;
8 Add this virtual task into task set: R = R ∪ vtk.

when executing the new schedule after a change. So, these
virtually returned vehicles have to first virtually move to their
stop location in the new schedule. Therefore, the vehicles must
serve some virtual paths in the new schedule to reach this stop
location. The graph of the CARP instance is thus modified
to include these virtual paths, which can be regarded as VTs
being optimized along with the normal tasks by a static CARP
algorithm, as shown in lines 2–4. We also need all vehicles
in the depot to have the same full capacities to be able to use
static CARP algorithms. Therefore, we assign the previous
demands that have been served by an outside vehicle to the
corresponding VT, as shown in line 7. As a result, a DCARP
instance is converted to a static CARP instance, in which all
vehicles are located at the depot with the same capacities. It
is worthy to mention that the VT idea has also been used for
large-scale CARP [7], which is totally different from our idea
here. They used the VT to represent the grouped neighboring
tasks such that the problem’s dimensionality can be reduced.

A VT can also be interpreted as a representation of an out-
side vehicle’s previous serving status, including the total cost,
served demand, and stop location before the occurrence of the
dynamic events. During the optimization, the VTs are regarded
as arcs to be assigned to routes when being rescheduled. These
arcs need to be served, so that some depot vehicles will actu-
ally correspond to the outside vehicles. Once a depot vehicle
serves a VT, its remaining capacity will become the same as
the remaining capacity of the corresponding outside vehicle,
and so will its stop location. However, vehicles that are not
serving these virtual arcs should not be able to traverse them,
because these virtual arcs are not actual physical paths that
can be used by vehicles. This is achieved by assigning a dead-
heading cost (traversing cost) of dc(vt) = ∞ to these arcs, as
shown in line 5. Note that this infinite traversing cost is not
included as part of the serving cost.

The serving cost of a VT should be 0. This is because in
reality, the outside vehicles are already in the stop locations
and have already served some tasks. They should not incur any
extra cost to stay where they were. However, in our strategy,
a VT’s serving cost is set as the minimal total deadheading
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Fig. 2. Example of constructing VTs.

cost between the depot and the vehicle stop location (line 6)
because some algorithms, such as path-scanning, use this cost
as a denominator when deciding which task to assign to the
current route [4]. To avoid this cost being counted toward the
total cost in the objective function, the additional cost will
be subtracted from the actual total cost after the optimization
using the VT strategy. Besides, the demand is set as the amount
corresponding to the demand already served by the vehicle,
i.e., Q − qk, to avoid the total demand of tasks in its new
route exceeding the vehicle’s remaining capacity qk (line 7).

In order to improve the understanding of how VTs in
DCARP instances are constructed, an example for tasks t1 and
t2 is provided in Fig. 2. One vehicle traverses from v0 (depot)
and serves task t1 (Fig. 2 left). When the dynamic change
happens, a vehicle is located at v2. This vehicle is virtually
placed into the depot and a VT vt1 is constructed between v0
and v2 (Fig. 2 right). This VT will enable the vehicle to go
back to its outside position to continue serving other tasks. The
demand of vt1, dm(vt1), equals Q − dm(t1), such that when
the vehicle virtually returns to its outside position, its remain-
ing capacity will be the same as the remaining capacity at
the rescheduling point. The deadheading cost of vt1, dc(vt1),
is set to ∞ to prevent other vehicles from traversing the vir-
tual arc. This enables the outside vehicle to serve the VT. The
serving cost of vt1, sc(vt1), equals mdc(v0, v2). This serving
cost is incurred by the vehicle when it serves the VT, but is
later on deducted from the objective function of the problem,
so that the objective value with the VT strategy remains the
same as the objective value without the VT strategy. After that,
the new DCARP instance with the remaining task t2 and the
VT vt1 will be optimized using one of the algorithms, which
are available for static CARP, in which task t1 is removed
because it was already served before the change that triggered
the rescheduling.

After applying the VT strategy, the route formulation in a
DCARP solution S = {r1, r2, . . . , rNov , . . . , rK} becomes

rk = (
v0, vtk, tk,2, tk,3, . . . , tk,lk , v0

)
, k = 1, 2, . . . , Nov.

rk = (
v0, tk,1, tk,2, . . . , tk,lk , v0

)
, k = Nov + 1, . . . , K.

The new formulation of the optimization objective and the
constraints for a DCARP instance is given as follows:

Min TC(S) =
K∑

k=1

RCrk −
Nov∑

k=1

mdc(v0, vk)

s.t.
K∑

k=1

lk = Nt + Nov

tk1,i1 �= tk2,i2 , for all (k1, i1) �= (k2, i2)
lk∑

i=1

dm
(
tk,i

) ≤ Q ∀k = 1, . . . , K (3)

where for route {rk|k = 1, 2, . . . , Nov}, tk,1 = vtk. The second
term

∑Nov
k=1 mdc(v0, vk) is to balance out line 6 in Algorithm 2

so that we do not count the serving costs of VTs.
The above adjustments enable a new schedule for the con-

verted static CARP instance to be obtained by directly using
metaheuristic algorithms for static CARP. An executable solu-
tion is obtained by removing the VTs from the routes in the
new schedule and assigning it to the corresponding outside
vehicles. The VT is better to be the first task in a vehicle’s
route. If a given VT is not the first task of a service route
found by the static CARP algorithm, the tasks before this VT
will be assigned to a new vehicle starting from the depot and
the following tasks will be served by the corresponding out-
side vehicle. In such a case, we split a route that contains VTs
in the middle into multiple routes with one route served by a
vehicle from the depot and others served by the correspond-
ing outside vehicle. In this way, the total cost of the CARP
solution will not be influenced by splitting because the head
node of the VT is also the depot. An example (without rela-
tions to Fig. 2) of converting an obtained new solution to an
executable service plan is provided as follows:

(v0, vt1, t2, v0), (v0, t3, t4, vt2, t5, v0)

↓
(v0, vt1, t2, v0), (v0, t3, t4, v0), (v0, vt2, t5, v0)

↓
(v1, t2, v0), (v0, t3, t4, v0), (v2, t5, v0).

In the above example, the solution (top) contains two routes
and two outside vehicles (i.e., two VTs). In the second route,
the VT located in the middle of the task sequence. If the first
task of a route is a VT, the remaining tasks of the route are
served by the outside vehicle. Otherwise, all tasks of the route
are served by a new empty vehicle. Therefore, after conver-
sion (middle), tasks t3 and t4 are assigned to a new vehicle
starting from the depot, but task t5 should actually be served
by the outside vehicle. The final executable routes (bottom),
are obtained by removing the VTs and starting from the cor-
responding stop locations (v1 and v2 are the stop locations of
outside vehicles corresponding to vt1 and vt2).

B. Proposed Framework Based on Virtual-Task Strategy

There are generally two commonly used strategies in
dynamic optimization. One is to restart the optimization, which
can also include some additional diversity enhancing tech-
niques [28]. The other is to migrate some good solutions for
the old environment to the new environment and initialize the
starting individuals with them [29], [30].

These two strategies could also be used in our optimization
framework. The RS is straightforward to apply after a change
has occurred. However, the current strategies for reusing good
solutions for the old environment may not be suitable for our
DCARP scenarios because the dynamic events may influence
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Algorithm 3: Pseudocode of Knowledge (Sequence)
Transfer Strategy

Input: Previous best solution Sm−1
Output: A newly transferred solution Sm

1 Convert Sm−1 into an ordered list of tasks Pm−1;
2 Remove all served tasks from Pm−1;
3 Pm = Pm−1, lP = |Pm|;
4 The newly added tasks set NT = {nt1, nt2, . . . , nt|NT|};
5 for each nti ∈ NT do
6 for each position in Pm do
7 Calculate the increased cost after insertion;

8 Obtain the position p with the smallest increased cost;
9 Insertion: Pm = [t1, . . . , tp, nti, tp+1, . . . , tlP ];

10 lP = lP + 1;
11 NT = NT \ {nti}.
12 Use split scheme in Pm.

the problem’s dimension and the previous solution’s feasibility
in a DCARP scenario. For example, the served tasks and added
tasks change the total number of tasks, and the potential road
closure event makes previous solutions infeasible in the new
DCARP instance.

Therefore, we propose a new knowledge (especially,
the sequence) transfer strategy for the DCARP scenario
(Algorithm 3), which can benefit from previous DCARP
instance’s best solutions. Given an instance Im, all scheduled
routes in the best solution Sm−1 of the previous instance Im−1
are concatenated to construct an ordered list of tasks Pm−1.
All tasks that have been served are then removed from the list
in Pm−1, and the remaining tasks keep their orders. After that,
the newly added tasks are inserted into Pm−1 greedily, i.e.,
they are inserted into the positions with the smallest increased
cost. Finally, a corresponding transferred solution is gener-
ated by using the split scheme to convert an ordered list to
an explicit-route solution. The newly transferred solution is
used as one of the initial solutions when optimizing the new
DCARP instance using the population-based algorithm.

On the basis of the VT strategy and two initialization strate-
gies, i.e., the RS and the STS, we propose a generalized
optimization framework with VTs (GOFVTs) to generalize
static CARP algorithms to dynamic scenarios. Our framework
comprises the following four main steps.

1) Construct VTs.
2) Apply the RS (randomly generate initial solutions) or the

STS (generate one transferred solution for individual-
based algorithms and additionally generated random
solutions for population-based algorithms).

3) Apply the metaheuristic algorithm to optimize the con-
verted static CARP instance.

4) Convert the obtained solution with VTs to an executable
solution without VTs.

For a DCARP instance, the framework will first construct
the VTs to convert the dynamic instance to a static instance.
Then, one of the two initialization strategies explained above
can be adopted to assist the optimization for the DCARP

instance. In the computational studies in Section V, we will
compare the effectiveness of these two strategies. Then, meta-
heuristic algorithms with the initialization strategy are applied
to optimize the DCARP instance, which is a static instance
with VTs. Finally, the solution obtained for the static instance
is converted into an executable solution, in which the routes
with VTs are assigned to the corresponding outside vehicles
and the routes without VTs are assigned to vehicles located at
the depot.

V. COMPUTATIONAL STUDIES

In order to evaluate the efficiency of our proposed frame-
work (GOFVT), three sets of experimental studies have been
conducted by embedding a selection of metaheuristic algo-
rithms in the GOFVT in this section. After providing the
experimental setup (Section V-A), in the first experiment, the
VT strategy is compared with a simple rescheduling strategy
(Section V-B). After that, the VT strategy’s efficiency is inves-
tigated by comparing it with an existing algorithm for DCARP
in the second experiment (Section V-C). Finally, in the last
experiment, GOFVT is combined with several classical meta-
heuristic algorithms originally designed for static CARP, and
its performance is analyzed by running the newly generated
algorithms in DCARP scenarios (Section V-D).

A. Experimental Settings

All experiments are conducted on a series of DCARP
instances or scenarios generated by the simulation system
presented in Section III-B, based on a static CARP bench-
mark, namely, the egl set [31]. The egl set contains 24 CARP
instances. In each experiment, the DCARP instances or scenar-
ios are generated independently from static CARP instances.
For our first and second set of experiments, three DCARP
instances are generated for each static CARP instance. These
DCARP instances are not used to compose a DCARP scenario,
as the algorithms just optimize the current instance and do not
use any knowledge transfer in these two experiments. For the
third experiment, one DCARP scenario including five DCARP
instances is generated based on each CARP instance. For a fair
comparison, each DCARP instance is generated from the best
solution among all obtained solutions by all compared algo-
rithms in the previous instance. When the simulator executes
the selected solution according to the deployment policy, the
time for serving all tasks will be calculated first and the simu-
lator will uniformly randomly select a stop point (for dynamic
events) within the longest time. As we only require a set of
DCARP instances to test the effectiveness of the proposed
strategies and framework, we have arbitrarily chosen parame-
ters according to the real-world situations. For example, a road
is more likely to become congested than being closed; hence,
we set proad = 0.1. In our experiments, the parameters of the
simulator are chosen as pevent = 0.5, proad = 0.1, pbdrr = 0.5,
pcrr = 0.3, pcrbb = 0.6, pcid = 0.35, and padd = 0.35. In
the future, we will carry out a more comprehensive study
of the characteristics of simulator in relation to its parame-
ter values. Eight different types of dynamic changes (Table II)
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are simulated in our simulator excluding the case of “vehi-
cles broken down” because its formulation is the same as the
event of added tasks. As an illustrative example, we investi-
gate the influence of different scenarios on the optimization
algorithms’ performances. These examples show that the sce-
nario with newly added tasks has a significant influence on
the optimization algorithm’s performance.2

Because a key optimization requirement when dynamic
changes happen in the real world is to obtain a new solu-
tion quickly, we limit the maximum optimization time to 60
s for the small problems (E1–E4) and 180s for larger maps
(S1–S4) in egl for all algorithms. All programs are imple-
mented in C language and run using a PC with an Intel Core
i7-8700 3.2 GHz. The source code of our experiments has
been available on github.3

B. Is It Necessary to Reschedule for DCARP?

Although many algorithms have been proposed to solve
DCARP in the literature, a simple baseline strategy, named
the return-first (RF) strategy, has been ignored. The RF strat-
egy schedules all outside vehicles back to the depot first in
order to convert a DCARP instance to a static one, and then
reschedules all vehicles for the new static instance after all
vehicles are located at the depot. If the RF strategy is effi-
cient enough, the direct optimization of a DCARP instance
would not be necessary any more. However, since this has not
been shown in the literature so far, in this section, we use the
proposed VT strategy to solve DCARP and compare it with
the RF strategy to show the importance of optimizing DCARP
instances directly instead of ignoring the outside vehicles and
assigning new vehicles to all remaining tasks.

In our experiment, the simulation system generates three
different DCARP instances for each test map (i.e., a static
instance in the egl benchmark set) with different sets of
remaining capacities. As this experiment aims to demon-
strate the necessity and efficiency of directly optimizing
DCARP instances, the setting of remaining capacities is
divided into three intervals, i.e., [0, 0.33Q], [0.34Q, 0.66Q],
and [0.67Q, Q]. Then, an optimization algorithm, memetic
algorithm with extended neighborhood search (MANES) [6],
assisted with the RF strategy and VT strategy are applied to
optimize each DCARP instance, respectively. Two algorithm
instantiations using MAENS follow the same setting during
the optimization that the RF strategy and VT strategy is the
only difference between them. The comparison results in terms
of mean and standard deviation over 25 independent runs
(mean±std), of the RF strategy and VT strategy on DCARP
instances with different remaining capacities are presented in
Table III. The bold values with the gray background for each
DCARP instance are the better results between the RF strategy
and VT strategy based on the Wilcoxon signed-rank test with
a significance level of 0.05. The second-last row of Table III
summarizes the number of win–draw–lose of the RF versus
VT strategies. We have calculated the Wilcoxon signed-rank
test with a significance level of 0.05 for the mean total cost
of RF and VT strategies on the instances with the same range

2More details are in Section IV and Table VI of the supplementary material.
3https://github.com/HawkTom/Dynamic-CARP

Fig. 3. Example of demonstrating why the RF strategy is not efficient enough
when outside vehicles have enough remaining capacities.

of remaining capacities, and the p-values are listed in the last
row of Table III.

Table III shows that the RF and VT strategies are sig-
nificantly different for the instances, where the remaining
capacities are in the range of [0.34Q, Q] (instances 2 and 3 in
Table III), with the VT strategy outperforming the RF strat-
egy on all DCARP instances. In contrast, for the scenarios
with remaining capacities in [0, 0.33Q], there are 12 out of
24 DCARP instances, where the RF strategy outperforms the
VT strategy. When comparing the results using the Wilcoxon
test across maps, we confirm that none of these strategies is
a consistent winner when analyzed across maps where the
remaining capacities are smaller than 0.33Q. This is under-
standable because when the vehicles are mostly fully loaded,
i.e., when the remaining capacities are smaller than 0.33Q,
there is limited space for serving more tasks no matter what
strategy is used.

In order to avoid the conclusion being biased by the
employed metaheuristic algorithm, we have employed another
metaheuristic algorithm, i.e., ILMA [32], to execute the same
experiment. Due to the page limitation, we put the results into
Table V of the supplementary material. The statistical anal-
ysis has confirmed the same conclusion as the experiments
employing MAENS.

Overall, we can conclude that it is necessary and much
more effective to optimize the DCARP instance directly rather
than using the RF strategy when outside vehicles have enough
remaining capacities.

The reason why the RF strategy is not always helpful when
outside vehicles have enough remaining capacities can be
explained using a simple example in Fig. 3, where an outside
vehicle stops at vertex 1. If its remaining capacity is sufficient
to serve task t23, it can directly traverse from vertex 1 to ver-
tex 2, presented as “Path 2” in Fig. 3, and the final total cost
will be dvt = d12 + d23 + d30. But if we apply the RF strat-
egy, the total cost will change to drf = d10 + d02 + d23 + d30,
presented as “Path 1” in Fig. 3. It is obvious that drf ≥ dvt

because d10 + d02 ≥ d12 according to the triangle inequality.
The RF strategy increases the final cost because vehicles take
a detour in such cases.

C. Analysis of the Effects of the Virtual-Task Strategy

MASDC [16] is the only metaheuristic algorithm for
DCARP in the literature that considers a general DCARP
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TABLE III
RESULTS OF VT STRATEGY AND RF STRATEGY ON DCARP INSTANCES WITH DIFFERENT SETTINGS OF REMAINING CAPACITIES FROM THE egl
DATASET. THE VALUE IN EACH CELL REPRESENTS “MEAN ± STD” OVER 25 INDEPENDENT RUNS AND THE BOLD ONES DENOTE THE BETTER

RESULT ON THE DCARP INSTANCE BASED ON THE WILCOXON SIGNED-RANK TEST WITH A SIGNIFICANCE LEVEL OF 0.05. THE

PENULTIMATE ROW SUMMARIES THE NUMBER OF WIN–DRAW–LOSE OF THE RF STRATEGY VERSUS VT STRATEGY AND THE

LAST ROW PROVIDES THE p-VALUES OF THE WILCOXON SIGNED-RANK TEST WITH A SIGNIFICANCE LEVEL OF 0.05 ON

INSTANCES WITH THE SAME SETTINGS OF ALL MAPS

scenario including several dynamic events, such as road clo-
sure and added tasks. It comprises a distance-based split
scheme (DSS) to assist the DCARP solution being used in
the crossover and local search. Our VT strategy can convert a
DCARP instance to a static CARP instance so that the operator
used in the static CARP can be used in the DCARP instance
directly. In this section, we analyze the effects of our VT strat-
egy by embedding it to MASDC, referred to as VT-MASDC,
and comparing it to the original MASDC. The advantage of
embedding our strategy into MASDC is that this enables us to
isolate and analyze the effect of the VTs compared to a state-
of-the-art DCARP algorithm. In particular, all components in
MASDC and VT-MASDC are the same except for the use of
VTs and the DSS. The latter needs to be replaced by Ulusoy’s
split scheme in VT-MASDC because the DSS is specifically
designed for DCARP instances with outside vehicles at dif-
ferent stop locations. When we apply the VT strategy, the
DCARP instance is converted to the static instance where all

vehicles are located at the depot. Therefore, the DSS is not
suitable anymore and Ulusoy’s split scheme is used instead.
The use of VTs is thus inherently linked to this split scheme,
and any advantages provided by the VTs are also linked to
the fact that they enable this split scheme to be adopted.

In our experiment, we generate three independent DCARP
instances for each map in the egl benchmark set, ensuring
that outside vehicles has enough remaining capacities, i.e.,
q ≥ 0.5Q, in all generated instances. However, we need to gen-
erate DCARP instances rather than DCARP scenarios because
the aim of DCARP is to minimize the total cost for each
DCARP instance separately (2). The optimization results are
presented in Table IV, in which the values in each cell repre-
sent the mean and standard deviation over 25 independent runs
(mean±std). For each DCARP instance, the better result, based
on the Wilcoxon signed-rank test with a significance level of
0.05, is highlighted using a bold font and gray background in
Table IV. The summary of win–draw–lose of MASDC versus



1496 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

TABLE IV
RESULTS OF MASDC AND VT-MASDC ON DCARP INSTANCES FROM

THE egl DATASET. THE VALUE IN EACH CELL REPRESENTS MEAN ± STD

OVER 25 INDEPENDENT RUNS AND THE BOLD ONES DENOTE THE

BETTER RESULT ON THE DCARP INSTANCE BASED ON THE

WILCOXON SIGNED-RANK TEST WITH A SIGNIFICANCE LEVEL

OF 0.05. THE LAST ROW SUMMARIES THE NUMBER OF

WIN–DRAW–LOSE OF MASDC VERSUS VT-MASDC

Fig. 4. Example of demonstrating the advantages of considering new vehicles.

VT-MASDC, which is presented in the last row, shows that
VT-MASDC outperforms MASDC on all generated DCARP
instances. The Wilcoxon signed-rank test with a significance
level of 0.05 was conducted for the average total cost of
VT-MASDC and MASDC in all instances, and the p-value was
1.67e-13. Overall, we can conclude that VT-MASDC performs
much better than the original MASDC.

MASDC uses a DSS to evaluate DCARP solution’s fitness
because the split scheme designed for static CARP is not suit-
able for DCARP [25]. The DSS operator randomly splits the
sequence of tasks to an executable CARP solution with explicit
routes, and the random splitting process is repeated three times
to obtain a better schedule. After embedding with the VT strat-
egy, the DSS operator is replaced by Ulusoy’s split [3] as
explained in the beginning of this section, and the evaluation
of a sequence of tasks only requires to apply Ulusoy’s split
once. As a result, the randomness brought by the DSS’s split
scheme is removed.

Moreover, the DSS operator never considers new vehicles
starting from the depot during the optimization, whereas our
VT strategy enables both outside and new vehicles to be used.
We provide an example in Fig. 4 to show the advantages of

considering new vehicles during the optimization of DCARP.
An outside vehicle is located at vertex 1, and its remaining
capacity can only serve task t23. We assume that dd10 + dd02 ≈
dd12 and dd30 + dd04 
 dd34 and the total cost of Path 1 and
Path 2 can be calculated as

TC1 = dd10 + dd02 + sc23 + dd34 + sc45 + dd50

TC2 = dd12 + sc23 + dd30 + dd04 + sc45 + dd50.

For a sequence of tasks [0, t23, t45, 0], if applied with the DSS
operator, the only obtained path will be Path 2 as shown in
Fig. 4. In contrast, if we use the VT strategy, a better path,
i.e., Path 1 in Fig. 4, can be obtained, which avoids traversing
the longer returning path.

D. Analysis of GOFVT

The proposed optimization framework GOFVT is capa-
ble of generalizing almost all algorithms for static CARPs
to optimize DCARP. To demonstrate its effectiveness and
efficiency, we have selected three classical metaheuristic algo-
rithms for static CARPs, namely, RTS [33], ILMA [32], and
MAENS [6], and embedded them into the GOFVT in our
experiments to evaluate whether it is advantageous to make
use of the existing static CARP algorithms within the GOFVT
framework.

A brief description of each algorithm is presented as
follows.

1) RTS [33]: A global repair operator which is embedded
in a tabu search algorithm (TSA [5]). The source code
is available online.4

2) ILMA [32]: An improved version of Lacomme’s
memetic algorithm (LMA) [1]. For our experiments, we
implemented ILMA5 ourselves according to the details
given in [32].

3) MAENS [6]: A memetic algorithm with a merge-split
operator. The source code is available online.6

The newly generated algorithms for optimizing DCARP
are denoted as VT-RTS, VT-ILMA, and VT-MAENS. We use
these acronyms to denote GOFVT with the RS. When using
the STS, they are denoted as VTtr-RTS, VTtr-ILMA, and
VTtr-MAENS.

To demonstrate the efficiency and robustness of our
proposed framework, we use parameters as given in their orig-
inal papers [6], [32], [33]. In order to compare the restart and
sequence transfer strategies, a DCARP scenario consisting of
five DCARP instances has been generated for each static map
in the egl benchmark set in our experiments. A new DCARP
instance is generated by executing the obtained best solution
of the previous DCARP instance in our simulation system.

We have also embedded MASDC into GOFVT and gen-
erated two algorithms as VT-MASDC and VTtr-MASDC,
respectively. The results of above eight algorithms are
presented in Table V. The values in each cell represent the
mean±std and the average ranking (in the brackets) among
eight algorithms in terms of the average total cost over 25

4https://meiyi1986.github.io/publication/mei-2009-global/code.zip
5https://github.com/HawkTom/Dynamic-CARP
6https://meiyi1986.github.io/publication/tang-2009-memetic/code.zip
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TABLE V
RESULTS OF VT-RTS, VTTR-RTS, VT-ILMA, VTTR-ILMA, VT-MAENS, VTTR-MAENS, VT-MASDC, AND VTTR-MASDC ON THE egl DATASET.

THE VALUES IN EACH CELL REPRESENT THE MEAN±STD WITH THE AVERAGE RANKING (IN THE BRACKETS) W.R.T THE AVERAGE TOTAL COST

OVER 25 INDEPENDENT RUNS. THE BOLD VALUES ARE THE BETTER RESULTS UNDER THE WILCOXON SIGNED-RANK TEST WITH A SIGNIFICANCE

LEVEL OF 0.05 BETWEEN RESTART AND INHERITING STRATEGIES IN AN ALGORITHM FOR A DCARP INSTANCE. THE LAST THREE

ROWS SUMMARIZE THE NUMBER OF WIN–DRAW–LOSE OF RS VERSUS INHERITING STRATEGY IN EACH ALGORITHM AND

THE p-VALUES OF THE WILCOXON SIGNED-RANK TEST WITH A SIGNIFICANCE LEVEL OF 0.05 ON ALL INSTANCES

independent runs. The bold values represent the better result
between the RS and the STS for each algorithm on a DCARP
instance under the Wilcoxon signed-rank test with a signif-
icance level of 0.05. Rows where both the RS and STS
are in bold imply that these two strategies are not signif-
icantly different under the hypothesis test. The summaries
of win–draw–lose of the RS versus the STS on all DCARP
instances are listed in the penultimate row. We have also con-
ducted the Wilcoxon signed-rank test with a significance level
of 0.05 for the average total cost of the RS and STS of each
metaheuristic algorithm on all instances, and the p-values asso-
ciated with each metaheuristic algorithm are listed in the last
row of Table V.

We conclude that the RS is significantly different from the
STS when embedded in RTS (0.01 < 0.05), but both strategies
obtain a similar performance when embedded in ILMA (0.15
> 0.05), MAENS (0.93 > 0.05), and MASDC (0.95 > 0.05).
This is mainly because RTS is an individual-based meta-
heuristic algorithm while ILMA, MAENS, and MASDC are
population-based algorithms. An individual-based algorithm
only uses one solution during optimization. The solution gen-
erated by the STS will be the only initial solution in the
individual-based algorithm and therefore significantly influ-
ences the optimization result. In contrast, the population-
based algorithm contains a population during the optimization
so that it depends much less on a single transferred
solution.

From the statistical test result and the number of
“win–draw–lose” of all DCARP instances for the individual-
based algorithm, i.e., RTS, we can conclude that the
performance of the STS is better than the RS. The efficiency
depends on how much information is transferred from the
previous best solution. For a CARP solution, the most critical
information is the sequence of tasks of each route. Therefore,
if each route has many tasks left, and these remaining tasks
can also maintain the tasks’ sequence of the best solution in
the previous instance, the transferred solution will be of high
quality. The STS fixes the remaining tasks’ position to main-
tain the sequence information. Then, new tasks are inserted
into the sequence to construct a new initial solution. If an out-
side vehicle has only a few remaining tasks, most tasks in the
new schedule will be the new tasks so that the new schedule
is unlikely to benefit much from the previous best schedule.

In contrast, if there are many remaining tasks for an outside
vehicle, the order of remaining tasks will be maintained in the
new sequence of tasks, and Ulusoy’s split will still assign them
to an outside vehicle. Consider the following two remaining
task sequences as an example:

S1 : (v0, vt1, t1, v0, vt2, t2, vt3, t3, v0)

S2 : (v0, vt1, t1, t2, t3, t4, t5, v0, vt2, t6, t7, t8, t9, t10, t11, v0).

S1 has three outside vehicles with one remaining task for
each vehicle, and S2 has two outside vehicles with five and
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Fig. 5. Number of instances for the RS wins over (�), draws against (≈),
and loses to (≺) the STS for different ranges of average remaining tasks.

Fig. 6. Critical difference diagram for the comparison of eight algorithms
against each other on egl with Friedman test and Nemenyi test. Groups
of algorithms which are not significantly different at the level of 0.05 are
connected.

six remaining tasks, respectively. The task sequences in both
remaining task sequences are the same as those of the previous
instance’s best schedule. After greedy insertion of a set of new
tasks, the final task sequence served by outside vehicles in S2
will be more similar to the schedule in the previous instance’s
best solution. As a result, the second scenario is more likely
to obtain a high-quality transferred solution.

We have calculated the average remaining tasks for out-
side vehicles on all DCARP instances in our experiment in
Fig. 5. We can conclude that as the average remaining tasks
for each outside vehicle increases, the STS benefits more
from the optimization experience in the previous instance and
outperforms the RS with a higher probability.

We also compared the rankings of each algorithm over 25
independent runs on each DCARP instance, which is presented
in each cell’s bracket in Table V. The overall average rank-
ings of each algorithm instance over 120 DCARP instances
are summarized in the row of “Avr. Ranking” in Table V. The
Friedman test with a significance level of 0.05 was carried out
to compare the ranking of eight algorithms across problem
instances, leading to a p-value of 8.69e-159. This indicates
that at least one pair of algorithms are not equivalent to each
other. We then perform the Nemenyi posthoc tests to identify
which algorithms perform significantly different. The critical
difference diagram is presented in Fig. 6, where the value of
critical difference is 0.96 [34]. We can conclude from these
results that the restart and sequence transfer strategies obtained
almost the same performance for population-based algorithms
(MAENS and ILMA) while the STS slightly outperformed

the RS in the individual-based algorithm (RTS) in our
experiments.

Furthermore, MAENS obtains the best overall result, and
RTS is the worst among the three metaheuristic algo-
rithms, which are originally designed for static CARP.
However, all of them significantly outperform the state-of-the-
art dynamic algorithm, i.e., VT-MASDC and VTtr-MASDC.
Recall that VT-MASDC was shown to outperform MASDC
in Section V-C. Therefore, we can conclude that not only the
proposed framework generalizes the existing algorithms for
static CARPs to solve DCARPs but also that the constructed
algorithm maintains its superior performance when optimizing
a DCARP instance.

To evaluate the impact of parameter configuration of
algorithms on our final conclusion, we have used SMAC [35]
to obtain the best parameters for MAENS and MASDC, and
then compared metaheuristic algorithms with tuned parameters
on additional 72 DCARP instances. The results are presented
in Table VII of the supplementary material. They show clearly
that MASDC with tuned parameters still performed worse than
MAENS with the default or tuned parameters. MAENS with
tuned parameters preformed similar to MAENS with default
parameters in our experiments. In short, different parameter
settings for the metaheuristic algorithms do not change our
conclusions.

VI. CONCLUSION AND FUTURE WORK

In this article, we studied the DCARP, in which dynamic
events, such as road closure, added tasks, etc., occur dur-
ing the vehicles’ service. First, a mathematical formulation
of DCARP was provided for the first time in the literature.
Then, we designed a simulation system as the research plat-
form for DCARP. Unlike the existing benchmark generator,
our simulation system generates DCARP instances from a
given map in a way that is more realistic and closer to the
real world. Our simulator also facilitates the use of existing
algorithms for static CARP to be used for DCARP. The events
simulated in our system enable the existing benchmark maps
from static CARP to be adopted in dynamic scenarios much
closer to the real world, where dynamic events happen while
a solution is being deployed, i.e., while vehicles are serving
in the map. Given the mathematical model and the simulation
system, we have proposed a generalized optimization frame-
work, which can generalist algorithms for static CARPs to
optimize DCARPs. In our framework, we proposed a VT strat-
egy that constructs a VT between the stop location and the
depot, to make all outside vehicles virtually return to the depot,
which tremendously simplified the optimization for DCARP.
As a result, the DCARP instance was converted into a vir-
tual static instance so that algorithms for static CARP can
solve it.

Two initialization strategies were adopted in our general-
ized optimization framework: 1) the restart and 2) sequence
transfer strategies. The RS completely restarts the optimization
algorithm at random when there is a new DCARP instance.
The STS maintains the sequence of remaining tasks to the
new DCARP instance and greedily inserts the new tasks into
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the remaining sequence, to transfer the information of task
sequence from the previous optimization experience.

In our computational study, the necessity of directly
optimizing DCARP together with outside vehicles was first
demonstrated by comparing the VT strategy with an RF strat-
egy. The results indicated that it would be more efficient
to optimism the DCARP instance by using the VT strategy
when the outside vehicles’ remaining capacities were suffi-
ciently large to serve more tasks. Then, the efficiency of the
VT strategy was demonstrated by embedding it into an exist-
ing algorithm and comparing it to the original version of
the existing algorithm. Finally, our generalized optimization
framework’s efficiency was analyzed by integrating a set of
optimization algorithms that were designed for static CARPs,
and the constructed algorithms performed significantly better
than state-of-the-art algorithms for DCARP.

In this article, we have demonstrated that it is effective
to solve DCARP instances by transforming them into static
instances using the VT strategy and using our proposed
GOFVT framework. The influence of the type and degree
of dynamic events on individual optimization algorithms was
not investigated. We will further investigate the influence
of different dynamic events on optimization algorithms and
design a benchmark including DCARP instances with differ-
ent dynamic characteristics. Furthermore, the current STS only
uses the optimization experience belonging to the instance
of the previous optimization. It would be valuable to utilize
all previous search experience taken from the whole DCARP
scenario. Finally, it is desirable to test our proposed frame-
work further with large-scale CARP instances and real world
applications in the future.
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