
174 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 1, FEBRUARY 2022

Frames-of-Reference-Based Learning: Overcoming
Perceptual Aliasing in Multistep

Decision-Making Tasks
Abubakar Siddique , Graduate Student Member, IEEE, Will N. Browne, Member, IEEE, and Gina M. Grimshaw

Abstract—Perceptual aliasing challenges reinforcement learn-
ing agents. They struggle to learn stable policies by failing to
identify and disambiguate perceptually identical states in the
environment that require different actions to reach a goal. As the
agent often has only a local frame of reference, it cannot repre-
sent the global environment. Frame-of-reference-based learning
is a feature of vertebrate intelligence that allows multiple simul-
taneous representations of an environment at different levels of
abstraction. This enables the resolution of patterns that are made
up of patterns that are made up of features. The evolutionary
computation technique of learning classifier systems has shown
promise in learning nested patterns in single-step domains. This
work uses the frame-of-reference concept within a learning clas-
sifier system to learn stable policies in non-Markov multistep
domains. Considering aliased states at a constituent level enables
the system to place them appropriately in holistic-level policies.
Instead of enumerating a huge search space, evolution computa-
tion empowers the novel system to evolve fitter rules and policies.
The experimental results show that the novel system effectively
solves complex aliasing patterns in non-Markov environments
that have been challenging to artificial agents. For example, the
novel system utilizes only 6.5, 3.71, and 3.22 steps to resolve
Maze10, Littman57, and Woods102, respectively.

Index Terms—Building blocks, cognitive neuroscience, frame of
reference, learning classifier systems (LCSs), non-Markov mazes,
perceptual aliasing.

I. INTRODUCTION

PERCEPTUAL aliasing is a long-standing problem for arti-
ficial agents in applying reinforcement learning (RL) to

many multistep tasks [1]–[7]. Here, the agent is assumed to
perceive its local environment without access to the global

Manuscript received November 12, 2020; revised March 23, 2021 and
June 4, 2021; accepted July 19, 2021. Date of publication August 4, 2021;
date of current version January 31, 2022. This work was supported by
the Science for Technological Innovation National Science Challenge, New
Zealand. (Corresponding author: Abubakar Siddique.)

Abubakar Siddique is with the Evolutionary Computation Research
Group, School of Engineering and Computer Science, Victoria
University of Wellington, Wellington 6140, New Zealand (e-mail:
absiddique@ecs.vuw.ac.nz).

Will N. Browne is with the Faculty of Engineering, School of Electrical
Engineering and Robotics, Queensland University of Technology, Brisbane,
QLD 4000, Australia.

Gina M. Grimshaw is with the Cognitive and Affective Neuroscience Lab,
School of Psychology, Victoria University of Wellington, Wellington 6140,
New Zealand.

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TEVC.2021.3102241.

Digital Object Identifier 10.1109/TEVC.2021.3102241

worldview, which it can only construct through interaction
with the environment. Aliasing occurs when the agent’s
internal representation confounds the external world states, i.e.,
when the agent’s current perception is unable to discriminate
environmental states, which appear identical but require dif-
ferent actions [1]. In such a scenario, the reinforcement for
the environment instructs the agent to take a specific action
in a given state. Unfortunately, when the agent encounters
an aliased state, it persists in taking the same action again,
which will now be reinforced differently. This inconsistency
prevents the learning of stable policies, especially for multistep
tasks [8]. Perceptual aliasing, therefore, diminishes the effec-
tiveness of RL [2] and hinders its application to real-world
problems [6].

RL agents can handle simple environments that do not have
aliased states, e.g., Markov environments; however, they strug-
gle in environments that have aliased states, e.g., non-Markov
environments. A sample non-Markov maze environment is
shown in Fig. 1. The states A and B are two aliased states. In
these states, the agent’s immediate sensation provides the same
input signal, i.e., 00100010. But the agent needs to take differ-
ent actions to optimally reach the goal state (see Section S-II
in the supplementary material). Perceptual aliasing leads to
non-Markov environments. A large number of approaches
have been investigated to handle these perceptual aliasing
problems [1], [3]–[5], [7], [9]–[20]. These techniques can
solve simple non-Markov environments but cannot optimally
resolve the majority of complex non-Markov environments.
The limitations of these alternative techniques are presented
in Section II-A.

One factor that may have hampered learning in non-
Markov environments is the reliance on only a local frame-
of-reference (FoR)-based on an agent’s immediate perception
(local viewpoint (LV)). Hence, the agent cannot apprehend
the environment at the higher (big-picture) level of abstrac-
tion, which would allow it to uniquely identify aliased states.
Consequently, aliased steps in a policy1 are stored with the
same weight as nonaliased steps. An aliased state is a small
pattern that gets repeated in an environment, which makes it
difficult to identify where it occurs locally.

These patterns can be combined with other patterns (aliased
or not) to form higher level patterns and so forth. Eventually,

1A policy, like a route, can be considered as a large pattern prescribing
transitions from a starting state to the goal state, (see Section III-B).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3253-802X

SIDDIQUE et al.: FRAMES-OF-REFERENCE-BASED LEARNING: OVERCOMING PERCEPTUAL ALIASING 175

Fig. 1. Sample non-Markov maze with two aliased states.

each pattern, either in itself or as part of a higher level pattern,
is unique. Thus, non-Markov environments entail patterns that
may form hierarchical patterns, such as multiple aliased states
at different positions in the environment. These aliased states
can be identified uniquely (i.e., turned to nonaliased states) by
considering the environment at different levels of abstraction.
Conventional RL systems struggle to capture such complex
structures.

Another problem faced by an artificial agent in multistep
environments is the huge search space to discover good poli-
cies. There are many building blocks of knowledge (BBKs)
that could be used to provide LVs. It is not feasible to enu-
merate them all. Therefore, evolutionary computation (EC) is
needed to find the best BBKs that provide the fittest rules.
These learned BBKs also need to be placed appropriately
in holistic-level policies. A large number of policies can be
created due to the possibility of nonoptimum, e.g., cyclical,
routes. Again, enumerating such a search space is not feasi-
ble: EC is needed to find the best policies (combinations of
BBKs) without doing an enumerated search.

A hypothesized solution is to develop an EC-based learning
system inspired by the biological FoRs. In biological intel-
ligence, a FoR is used to represent an environment from a
specific viewpoint, e.g., LV (from the agent’s perspective) or
world viewpoint (WV) (a “birds-eye” view of the complete
map) [21], [22] (see Section II-B). FoRs enable vertebrate (and
many invertebrate) brains to process the same information at
multiple levels of abstraction [23], [24]. Moreover, FoRs are
utilized to generate a grid map of the environment [25]. This
grid map is utilized by the brain’s coordinate mechanism for
spatial navigation. An artificial agent localizes itself by utiliz-
ing a local FoR. If it fails to uniquely identify its state (i.e.,
it is in an aliased state), it will utilize a higher level FoR.
The agent will keep expanding to its FoRs until it disam-
biguates the aliased states. This nonaliased representation is
then considered the WV.

Thus, a system is needed that can store representations of
a state at different levels of abstraction and learn how these
can be formed into a hierarchy to describe the patterns in a
problem. An evolutionary machine learning (EML) system is

capable of detailed learning of individual features, and abstract
learning of the patterns of features [26], [27]. Moreover, an
EML system has the ability to identify and reuse a learned
building block in similar parts of an environment. However,
existing EML systems do not have the ability to distinguish
these learned building blocks to uniquely identify similar parts
of an environment located at different positions. This ability
is critical for an EML system to reduce the enumeration of
the search space in a multistep environment.

We hypothesize that incorporating FoRs into an EML
system could allow it to overcome current limitations and learn
to solve problems in non-Markov environments. In contrast to
conventional systems that do not differentiate between detailed
and abstract learning, our novel EML system is anticipated to
solve problems in non-Markov environments by representing
knowledge in both constituent and holistic frames of refer-
ence. In order to create the novel EML system, the learning
agent first needs to automatically identify the level of abstrac-
tion that is required to successfully turn an aliased state into
a nonaliased state. Then, inspired by the brains’ grid map, an
adjacent states map (ASM) needs to be created for an environ-
ment. This ASM will be utilized by the agent to differentiate
aliased states based on the neighboring states.

The EML technique to be used is learning classi-
fier systems (LCSs)2 as they store learned knowledge in
if <state> then <action> rules. The states need to be stored
in a format that links them through actions, which are termed
code paths (CPs) here. CPs form BBK,3 which are useful
in themselves, but crucially can be constructed together to
form higher level (more abstract) BBKs. This enables the
system to function at appropriate levels of abstractions. The
rules can provide elementary knowledge (or LV), which is
needed to form the constituent level blocks of knowledge
(CPs). Simultaneously, abstract knowledge (or the WV) can
be formed by combining these CPs into holistic blocks of
knowledge ((sub)policies of differing length, similar to routes).
A CP will have the ability to accurately handle a nonaliased
state as in an ordinary rule. Multiple CPs, policies, and the
ASM will have the ability to provide a WV at higher levels of
abstraction, which can be used to handle an aliased state. This
process will essentially turn an aliased state at the constituent
level into a nonaliased state at the holistic level. The agent can
then create the optimal policy to reach the goal.

A schematic illustration of a conventional approach and
novel (FoRs-based) approach is shown in Fig. 2. Each state
is represented by a colored circle. The multiple instances of
the same color represent aliased versions of a state. The poli-
cies are represented by ellipses. A conventional EML approach
(left-hand side) relies only on local FoRs (LV) and considers
individual features and niches in a homogeneous manner, i.e.,
all the states are treated the same, hence, it does not generate
unique patterns. The novel approach (right-hand side) utilizes
multiple FoRs and splits a complex problem into constituent

2LCSs have been used as a preferred research tool to evolve solutions for
a wide range of maze problems for the last 30 years [3], [5], [13], [28]–[30].

3A building block of knowledge is a unit of knowledge that is transferable
and can be used or reused to solve a part of a problem or the whole problem.

176 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 1, FEBRUARY 2022

Fig. 2. Schematic illustration of a conventional approach and novel (FoRs-
based) approach.

and holistic knowledge. The LV identifies states at the con-
stituent level; the WV places them appropriately in policies at
a holistic level to generate unique patterns.

A. Goals

This work aims to create a novel FoRs-based system,
inspired by the principles of animals’ navigation, for decision
making in state-transition learning. The system is to provide
optimal solutions for non-Markov environments by utilizing
FoRs that enable heterogeneous knowledge representations at
different levels of abstraction. To achieve this goal, we set the
following objectives.

1) Create a novel FoRs-based system that has the ability to
process a single input at different levels of abstraction
to represent an LV (constituent knowledge) and a WV
(holistic knowledge to keep parallel construction with
constituent knowledge) of the same state.

2) Create a heterogeneous representation of knowledge
using CPs and policies. This knowledge will be utilized
or reutilized at different levels of abstraction to gener-
ate constituent representation and holistic representation,
which will allow interpretation of learned policies (see
Section IV-C).

3) Integrate blocks of knowledge (CPs) at different levels of
abstraction to generate an unambiguous representation.
The resultant knowledge will be used to disambiguate
complex patterns of aliased states, which will enable the
learning of stable policies.

4) Create a strategy to activate/deactivate (sub)policies such
that the agent can reach the goal state by using the
minimum number of steps.

The remainder of this article is organized as follows.
Section II discusses the state-of-the-art techniques that have
been developed to address perceptual aliasing problems.
Moreover, it presents the required background knowledge from
cognitive neuroscience and LCSs. Section III describes how a
FoRs-based system can be created. It explains the critical com-
ponents and architecture of the novel system. Deterministic
and non-Markov environments are then used to evaluate the
developed system. The effectiveness of the novel approach
to optimally solve non-Markov environments is presented in
Section IV. Section V highlights the strength, drawbacks, and
limitations of the novel approach. Finally, the conclusion and
future work are described in Section VI.

II. BACKGROUND

The goals of this section are threefold: first, to highlight
the strengths and limitations of the relevant techniques that

have been developed to handle perceptual aliasing problems;
second, to introduce the relevant principles of biological intel-
ligence that will inform this work; and third, to present the
relevant knowledge of LCSs that provide a foundation upon
which the novel system will be developed.

A. Relevant Approaches

A stochastic environment can be considered Markov if
the agent’s immediate perception provides all the necessary
information to decide the best action in all situations/states.
Such decision processes are called Markov decision processes
(MDPs). An environment can be considered non-Markov if
the agent’s immediate perception does not provide all the
necessary information to decide the best action in all situa-
tions/states. Such hidden states can be aliased states, which are
only partially observable and the agent needs more information
to take the best action. Such decision processes are called par-
tially observable MDPs (POMDPs) [31]. The majority of RL
agents can easily learn Markov environments, but they strug-
gle to learn non-Markov environments. Many techniques have
been developed to address perceptual aliasing in non-Markov
environments. These techniques are discussed as follows.

Initial attempts to cope with perceptual aliasing by addi-
tionally learning an immediate perception could not solve the
majority of non-Markov environments because of impractical
and strict assumptions such as noiseless sensing, deterministic
actions, and incomplete perception [1], [3], [19], [20]. Further
attempts to utilize belief state methods to address perceptual
aliasing failed due to two factors: 1) difficulty in calculating
value functions and 2) updating belief states. These two fac-
tors make the belief state-based strategies intractable for large
and complex non-Markov environments [14], [15], [32].

Another way to handle perceptual aliasing is to have a
message list where states and actions are stored and passed
to future decisions but this is inconvenient because of the
storage size and contents. It is hard to determine the opti-
mum memory relevant to the decisions. For example, an
agent may store neutral messages and/or incorrect messages,
making it hard to search for only the appropriate mes-
sages. The resultant systems could not evolve optimal rules
and so were unable to solve the majority of non-Markov
environments [18], [33]–[35].

Internal memory-based systems successfully solve simple
non-Markov environments; however, they struggle to disam-
biguate aliased states in complex non-Markov environments.
This is due to the likelihood of path entrainment, i.e., becom-
ing stuck in a local optimum as once a route to the goal has
been discovered, it could be exploited such that the exploration
of potentially better routes does not occur. Moreover, multiple
versions of the same route may be stored due to a lack of
generalization. Consequently, internal memory-based systems
are neither robust nor able to achieve optimal performance
for complex problems [13]. Thus, these systems provide
only ad hoc solutions [3], [18]. Similarly, internal action-
table-based systems struggle to obtain an optimal policy for
complex non-Markov environments. Moreover, they require
extra computations to find an appropriate policy [10], [11].

SIDDIQUE et al.: FRAMES-OF-REFERENCE-BASED LEARNING: OVERCOMING PERCEPTUAL ALIASING 177

Artificial agents based on the psychological principle of
anticipatory behavioral control provide a partial solution for
non-Markov environments [4], [16]. Latent learning-based
anticipatory classifier systems (ACSs), and the more advanced
ACS2, predict the next state of the environment, but still
struggle to learn complex aliasing patterns. The methodol-
ogy adopted by ACSs fails to identify the aliased states in
the majority of cases. Consequently, the agent is unable to
take the required best action [4], [13], [16], [17]. Even ACS2,
with behavioral sequences, fails to efficiently address non-
Markov environments. For example, they struggle to address
environments with loops in states and environments that
have the same aliased states on one path [16]; see discus-
sion about solving loops of states in Section III. Recently,
Orhand et al. [28] presented a study that implemented behav-
ior sequences in ACS2. The resultant systems, BACS2 and
BACS3, performed well on the majority of mazes; however,
these systems were unable to counteract all of ACS2’s inher-
ent issues to effectively resolve complex environments, such
as Maze10, Littman57, and Woods102 (see Section IV).

Zatuchna and Bagnall applied the idea of imprinting
(adopted from psychology and ethology) to resolve non-
Markov environments. They incorporated memory mecha-
nisms and associative perception techniques in a single system
to address aliased states. Moreover, they modified the evo-
lutionary and reinforcement mechanisms of the standard
LCSs. The resultant system, named AgentP, has a com-
plex architecture that relies on tailored methods, such as
memory and imprinting. AgentP observes and stores many
states as it progresses, which eventually renders the learning
intractable. Moreover, it inherits the above-mentioned limi-
tations and drawbacks of ACS2 and memory-based systems.
Consequently, it is still unable to completely learn complex
non-Markov environments, such as Maze10 [5], [13].

Deep RL is another approach to address the perceptual
aliasing problem. Deep RL agents require high computational
resources to handle perceptual aliasing. This becomes worse
in complex non-Markov environments, e.g., Minecraft [7], in
which many states have common visual features. Interactive
machine learning (IML)-based techniques have been proposed
to improve the performance and reduce the extraneous compu-
tations utilized by the RL agents to handle perceptual aliasing
in non-Markov environments [36]. However, these techniques
could not be generalized and required a human-in-the-loop to
assist the agent. Moreover, it is hard to decide when, e.g.,
triggering based on low confidence and action advice/critique,
and how much, e.g., how often and level of expertise, human
intervention is appropriate [7], [9], [12].

Another approach to handle the perceptual aliasing problem
is the use of subgoals [6], [37], [38]. However, it is hard to
select an appropriate number of subgoals and define the com-
plexity of the subgoals. Consequently, the resultant systems
have poor learning efficiency. Recently, a genetic algorithm
(GA)-based strategy has been developed to find appropri-
ate subgoals [6]. However, this technique requires extraneous
computations and cannot find appropriate subgoals if the
system fails to achieve the task at the initial population
generation.

In sum, although methods to address perceptual aliasing do
exist, they either fail under challenging circumstances or entail
unreasonable computational overhead. What is needed is a
novel FoRs-based system that can identify aliased states at
a constituent level and place them uniquely in holistic level
policies.

B. Functional Organization in Vertebrate Brains

Vertebrate brains efficiently solve complex problems due
to functional architecture that allows them to represent sen-
sory information at different levels of abstraction. It is not
the aim of this work to simulate the specific architecture
of a specific species; rather to take inspiration from basic
principles of vertebrate intelligence. We focus here on the
functional organization in vertebrate brains, especially with
respect to navigation. The aspects of vertebrate intelligence
that are relevant to this work are explained as follows.

1) Representation and Processing: In vertebrate brains,
the same sensory information is represented and processed
by different regions at different scales, i.e., constituent level
or holistic level. For example, in animals’ navigation, an
egocentric FoR represents an LV, whereas allocentric and
route-centric FoRs represent the WV of the environment [21],
[22], [39], [40]. Information related to the animal’s head direc-
tion as well as motor and sensory actions associated with
navigation are logged via an egocentric FoR; information
related to external cues and boundaries of the environment
is logged via an allocentric FoR; information related to the
route states (spaces), distances between those states, and a
series of actions on the planned route is logged via a route-
centric FoR [39], [41]–[43]. This ability to represent the same
environmental state at different levels of abstraction will be
incorporated in this work (Obj. 1) and 2)).

2) Knowledge Integration: Most animals learn and store
a route (policy) while navigating an environment. A spe-
cific path, or route, can be described as a sequence of turns
connected by straight segments of different lengths. Animals
follow a specific route while moving from one position to
another in an environment. The knowledge of a specific route
allows animals to make correct decisions during navigation.
A route has a particular shape and different routes may have
similar/different shapes at different scales. Different cortical
and subcortical structures of the brain utilize FoRs to log
information that is used to represent these routes. For exam-
ple, the position of an animal within a route is represented by
utilizing egocentric and route-centric FoRs. This information
is logged by the posterior parietal cortex and retrosplenial cor-
tex neurons [21], [40], [44]. The specific location of a route
within an environment is represented by utilizing allocentric
FoR. This information is logged by the hippocampal place
cells [45]–[47]. Similarly, a grid map of an environment is
represented by utilizing all three FoRs, i.e., egocentric, route
centric, and allocentric. This information is logged by the
grid cells of the entorhinal cortex [25]. This map is used
by the brain’s coordinate mechanism for spatial navigation.
Different brain regions coordinate with each other to inte-
grate the learned knowledge and assist the animal to exhibit

178 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 1, FEBRUARY 2022

intelligent behavior during spatial navigation [21], [40], [44],
[47]–[49]. This integration of knowledge and the route-based
strategy for navigation will be applied in the CPs and policies
created here (Obj. 2) and 3)).

3) Goal-Driven Processing: Vertebrate brains have the abil-
ity to activate the most suitable and relevant region to perform
computations required for a specific task. This activation
is controlled by the goal-driven processes that analyze the
problem and switch control to the appropriate region. For
example, egocentric and allocentric processing have been asso-
ciated with right and left posterior cortex, respectively, [50];
dorsal stream and frontal areas are active during egocentric
coding, whereas dorsal and ventral regions are involved during
allocentric coding [51], [52]; similarly, sequential organization
of consecutive choices is managed by the left hippocampus,
whereas allocentric or map-based navigation is handled by the
right hippocampus [53]. This ability to determine which com-
putational structure is the most suitable with respect to the
task is important for real-life problems. A strategy will be
developed for the activation/deactivation of the most suitable
and relevant policy with respect to the situation (Obj. 4)).

C. Learning Classifier Systems

LCSs are an EC methodology for developing rule-based
solutions to complex problems. Instead of enumerating a
search space, LCSs learn heterogeneous patterns (niches) in
the search space by applying learning components and discov-
ery algorithms. The first LCS was developed by Holland and
Reitman [54], named “Cognitive System One” to acknowledge
its foundation in cognitive neuroscience. An LCS-based arti-
ficial agent endeavors to identify innate patterns in the given
environmental data. It learns by applying an adaptive strategy
to take the best action that maximizes its current or future
rewards [55], [56].

The reward prediction p for a classifier rule in single-step
problems is updated as follows:

pi+1 ←− pi + β(ri+1 − pi) where 0 ≤ β ≤ 1 (1)

where r is a reward returned from the environment. Q-learning
has been used as a standard RL method for the propagation of
reward in multistep RL problems. It is computed as follows:

Q(st, at)← Q(st, at)

+ β
(

ri+1 + γ.max
a

Q(st+1, a)−Q(st, at)
)

(2)

where s, a, t, γ , and Q represent state, action, time, discount,
and value of an action, respectively. This equation propagates
the reward from the goal state back down the chain of classi-
fiers to the originating state. In multistep problems, the final
goal state may not be reached in the next step. Therefore, it is
necessary to include the proportion of the reward obtained on
the next iteration. Thus, the single-step reward prediction (1)
is modified for multistep problems as follows:

pi+1 ← pi + β
(

ri+1 + γ.max
a

p[A]+1 − pi

)
where 0 ≤ β ≤ 1

(3)

where [A] is an action set. This equation can be implemented
programmatically by saving the previous action set [A]−1

such that its updates are conducted by utilizing the current
prediction array as the future values. Moreover, for the goal
states, the updates occur in [A] (for details see [31], [57]).

LCSs apply GAs to generate new rules and explore unique
niches in the problem space. LCSs evolve a collection of
rules that collectively provide knowledge of the environment.
The agent applies this knowledge in a piecewise manner to
make predictions [58]. A classifier’s rule has a fitness value
based on its contribution toward the solution. As learning pro-
gresses, LCSs produce fitter rules, improve the fitness of good
rules, and remove the weak and redundant rules. A brief intro-
duction of LCSs and GA, for readers unfamiliar with these
base techniques, is presented in the supplementary material
(see Section S-I).

1) Code Fragments: A code fragment (CF) is an encod-
ing technique that has been introduced in LCSs to achieve
high-level knowledge representation. It facilitates LCSs in
creating transferable BBKs [59]. A CF is a genetic program-
ming (GP)-like tree that has operations in the internal nodes
and environmental variables or other CFs in the leaf nodes.
CF-based LCSs can solve complex problems, e.g., 135-bit
and n-bit multiplexer (Mux) problem [59]–[61]. A novel CP
(similar to CF)-based technique, for multistep rather than
single-step domains, will be developed to disambiguate aliased
states.

III. FRAMES-OF-REFERENCE-BASED SYSTEM

This work develops a FoRs-based system for decision mak-
ing to resolve non-Markov environments. We first introduce
two novel components that are used to achieve heterogeneous
knowledge representation at different levels of abstraction,
i.e., the CP (constituent knowledge), and the policy of CPs
(holistic knowledge). These techniques are assisted by a novel
ASM strategy that provides a snapshot of the environment.
Subsequently, the utilization of CPs and their policies for the
identification and disambiguation of aliased states is described.
Finally, the overall strategy adopted by the novel system to
resolve non-Markov environments is presented.

A. Code Paths

A CP is a GP-like tree (similar to a CF [59]) that encodes
state–action–state sequences. Its format is a binary tree with
depth up to two. Consequently, a CP can have a maximum
of seven nodes, i.e., four states linked by three actions (see
Fig. 3). This limit is set to keep the tree size bounded to avoid
intractable learning problems. A CP acts as a constituent level
BBK such that a single-step CP provides an egocentric (local)
viewpoint, whereas a multistep CP or multiple CPs provide an
allocentric viewpoint of the environment.

A state is an environmental input instance and a version
is its unique identity. All states have a default version of 0.
The agent disambiguates aliased states (S) by assigning them
different versions (V). For example, the states S1 and S2 are
two different egocentric states (i.e., different observations on
the local scale). S1,V0 , S2,V1 , and S2,V2 are three different allo-
centric states (i.e., different from a WV); V0 indicates a state

SIDDIQUE et al.: FRAMES-OF-REFERENCE-BASED LEARNING: OVERCOMING PERCEPTUAL ALIASING 179

Fig. 3. Sample maze (right) and the corresponding code path (left) when
an agent moves from the start state (10000000 encoded—conventionally
clockwise in a grid from the top; with 1 open, 0 blocked) to the goal
state (00001000). With LCS perceived states S2,V1 (10001000, 1) and S2,V2
(10001000, 2) are nonaliased versions of the aliased state S2,V0 (10001000).

with no known aliasing; and V1, V2, . . . , Vn indicate aliased
versions of the state Si.

Let S be a set of Ns states, S = {Si}Ns
i=1, then we use “Si,Vj ”

to refer to the jth version (Vj) of the ith state (i.e., Si). Thus,
the pool of states with their versions is represented as SV =
{Si,Vj}∀i,j. Now, let A be a set of NA actions, A = {Ak}NA

k=1.
Then, a CP can be defined as a state–action function that walks
through states using actions

CP : SV ×A −→ SV . (4)

In practice, a CP is an alternate sequence of states and
actions starting from a start state (say Sl,Vm) and ends at an
end state (say Sp,Vq). For example, the CP in Fig. 3 can be
represented by the sequence

CP = <S1,V0 , A1, S2,V1 , A2, S2,V2 , A3, S3,V0>.
Whenever an artificial agent moves from one state to another

state during training, three nodes of the corresponding CP
are created/updated. For example, when an agent currently in
the state S1,V0 executes an action A1 and moves to another
state S2,V1 , the corresponding CP will insert/update these three
entries in its nodes, respectively. A sample maze and the cor-
responding CP representing an agent that moves upward from
the start state to the goal state are shown in Fig. 3.

B. Policies

A policy, similar to a route in animals’ navigation, is a
pattern that prescribes state transitions from a start state to the
goal state. Here, a policy is comprised of multiple CPs that
are used by the agent while moving from a start position to
the goal. Moreover, a policy has two associated attributes—1)
the number of steps used to reach the goal state (or steps)
and 2) the number of times the policy successfully guided the
agent to the goal state (or experience). Fig. 4 illustrates two
policies (red and yellow dotted lines), and corresponding CPs.
The first policy Pr (red) consists of CP-1 and CP-3, which
can lead the agent to the goal state by using four steps. The
second policy Py (yellow) consists of CP-2 and CP-3, which
can lead the agent to the goal state by using five steps.

Let CP be a set of Ncp code paths, CP = {CPk}Ncp
k=1, then

the policy P can be defined as a subset of CP . For example,
in Fig. 4, there are three code paths, CP = {CP1, CP2, CP3}.
The policy Pr consists of two CPs and it is represented as

Pr = {CP1, CP2}. Similarly, the policy Py is represented as
Py = {CP2, CP3}. In general, the set of all Np possible polices

is represented as P = {Pl}Np
l=1, where the goal is to find the

optimal policy Pl̂, which has the lowest cost, i.e., cost(Pl̂) ≤
Pl ∀l = 1, . . . Np. Such a cost is computed based on two
associated attributes, i.e., the number of steps and experience.

The policy is a holistic level knowledge representation,
which provides an allocentric viewpoint (WV) of an environ-
ment. It is created during the explore mode in two situations:
1) when an agent successfully reaches the goal or 2) when
an evolutionary process is triggered. In the first scenario, the
agent logs the path that is used to reach the goal. Loops are
removed from the path before creating a policy. In order to
remove a loop, the whole path is traversed such that if the cur-
rent state (and version) already exists in the path, the horizontal
and vertical distances are computed to determine whether it is
the same state or a new aliased state (distance computation is
presented in Section III-D case-5). If the resultant horizontal
and vertical distances are zero, then it is the same state, that
is, the agent has completed a loop, and so the states visited
by the agent during this loop are removed from the path.

In the second scenario 2), an evolutionary process is trig-
gered when the average number of time steps since the last
crossover is greater than θGA. Two new policies are created by
applying a crossover technique on two existing policies such
that both policies have a common state (with the same version)
in their paths. The first policy is randomly selected from the
pool of existing policies. A second policy is randomly selected
until one with a common state with the first policy is found.
If compatible policies are found, the common state between
these policies acts as a crossover point such that the new child
policies are created by combining the opposite halves from the
parent policies, otherwise, no new policies are created.

C. Adjacent States Map

The ASM contains information about the neighboring states
within the environment. It is a sparse, dynamic map that is
developed/updated at runtime while the agent explores the
environment. The number of rows of the ASM is equal to
the number of states visited by the agent. The columns of the
ASM are equal to the number of possible actions that can be
taken by the agent, plus the last column (ID) that is reserved
for naming each state. Each nonheading cell contains a state-
version tuple. For this work, as is common in maze navigation
tasks, an agent can execute eight actions (separated by 45◦) to
move to a neighboring state where the action is without noise.
Whenever an agent moves from one state to another, all the
corresponding entries (adjacent states) in the ASM are cre-
ated/updated. For example, an agent moves from a state S1,V1

to another state S2,V2 by executing an action A1. Two entries
in the ASM are created representing: 1) state S2,V2 at column
A1 in a row against state-id S1,V1 and 2) state S1,V1 at column
A5 in a row against state-id S2,V2 . It is important to note that
the agent can move back to the original state by executing a
flipped (opposite) action, e.g., A5 is a flipped action of A1.
A section of the ASM, corresponding to this movement, is
shown in Fig. 5.

180 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 1, FEBRUARY 2022

(a)

(b)

(c) (d)

Fig. 4. (a) Sample maze and two policies. The first policy (red dotted line)
consists of CP-1 and CP-3. The second policy (yellow dotted line) consists
of CP-2 and CP-3. (b) Three-step CP (CP-3) from S3,V0 to S5,V0 . (c) Two-
step CP (CP-2) from S1,V0 to S3,V0 . (d) Single-step CP (CP-1) from S1,V0
to S3,V0 . Ai can take any action value between 0 and 8.

Fig. 5. Example section of an ASM.

D. Aliasing Identification and Disambiguation

The most challenging step in learning a non-Markov envi-
ronment is identifying and disambiguating the aliased states,
as local knowledge provides conflicting information. Learning
is achieved by comparing and integrating different levels of
CPs. The single-step CPs represent the egocentric viewpoint,
whereas multistep CPs represent the allocentric viewpoint.
Multistep CPs and policies are used, along with the ASM, to
generate the WV (complete map) of the environment. During
this process, new CPs are created and incompatible CPs are
updated or deleted. There are five distinct cases that can lead
to the identification of an aliased state.

1) Case-1: In a specific state, the agent effects a previous
action but transitions to an unexpected state. For example, the
agent moves from state S1,V0 to state S3,V0 by executing an
action A1, but another CP already exists, moving from state
S1,V0 to state S2,V0 by executing the same action A1. Thus,
state S1,V0 is marked in the ASM as an aliased state and is
disambiguated into two states, here, termed state S1,V1 and
state S1,V2 . Consequently, the agent is only confident about
its transitions due to the actions A1 and flipped-A1 (i.e., A5).
The transitions due to all other actions now become ambiguous
because the agent cannot discern the correct nonaliased version
(S1,V1 or S1,V2).

The agent updates the unambiguous knowledge and deletes
the ambiguous knowledge. For this purpose, all the CPs

with entries “S1,V0

A1−→ S2,V0 ” are updated with “S1,V1

A1−→
S2,V0 .” Similarly, the CPs with flipped action (A5) entries

“S2,V0

A5−→ S1,V0 ” are updated with “S2,V0

A5−→ S1,V1 .”
The corresponding entries in the ASM and multistep CPs
are also updated. Moreover, all the entries in CPs from
S1,V0 that transition to another state by executing an action
other than A1 are deleted as they are no longer reliable.
Similarly, the flipped entries from another state to S1,V0

with an action other than A5 are deleted. The corresponding
information is also deleted from the ASM and multistep CPs.
Consequently, the agent updates learning and, most impor-
tantly, learns to forget. Finally, two new CPs for the move

“S1,V2

A1−→ S3,V0 ” and “S3,V0

A5−→ S1,V2 ” are created. For this
newly disambiguated aliased state S1,V2 , a new row in the
ASM is created and corresponding information is added to
that row.

2) Case-2: The agent ends in the same state from the same
action, but transitioned from an unexpected starting state.
For example, the agent moves from a state S3,V0 to another
state S2,V0 by executing an action A2 but another CP already
exists that transitions from state S1,V0 to state S2,V0 by exe-
cuting the same action A2. The state S2,V0 is marked as an
aliased state and is disambiguated into two states, here, termed
state S2,V1 and state S2,V2 . Subsequently, all the CPs with

entries “S1,V0

A2−→ S2,V0 ” are updated with “S1,V0

A2−→ S2,V1 .”

Similarly, the CPs with flipped action “S2,V0

A6−→ S1,V0 ” are

updated with “S2,V1

A6−→ S1,V0 .” The corresponding entries in
the ASM and multistep CPs are also updated. Moreover, all the
entries in CPs from any state to S2,V0 by executing an action
other than A2 are deleted as unreliable. Similarly, the flipped
entries from S2,V0 to another state with an action other than
A6 are deleted. The corresponding information is also deleted
from the ASM and multistep CPs. Consequently, the agent
updates learning and learns to forget. Finally, two new CPs

for the move “S3,V0

A2−→ S2,V2 ” and “S2,V2

A6−→ S3,V0 ” are cre-
ated. For this newly disambiguated aliased state S2,V2 , a new
row in the ASM is created and corresponding information is
added to that row.

3) Case-3: The agent does not effect the previous action,
but a new action that transitions to the same state. For exam-
ple, the agent moves from state S2,V0 to another state S1,V0

by executing an action A3 but another CP already exists from
state S2,V0 to state S1,V0 by executing a different action �=A3.
The state S1,V0 is marked as an aliased state and is disam-
biguated into two states, here, termed state S1,V1 and state

S1,V2 . Subsequently, all the CPs with entries “S2,V0

�=A3−−→ S1,V0 ”

are updated with “S2,V0

�=A3−−→ S1,V1 .” Similarly, the CPs

with flipped action “S1,V0

�=A7−−→ S2,V0 ” are updated with

“S1,V1

�=A7−−→ S2,V0 .” The corresponding entries in the ASM
and multistep CPs are also updated. Moreover, all the entries
in CPs from S1,V0 to another state by executing an action
other than �=A7 are deleted. Similarly, the flipped entries from
another state to S1,V0 with an action other than �=A3 are

SIDDIQUE et al.: FRAMES-OF-REFERENCE-BASED LEARNING: OVERCOMING PERCEPTUAL ALIASING 181

Fig. 6. Horizontal and vertical distances against actions. The action A0 is
at 0◦ and each subsequent action is separated by 45◦.

deleted. The corresponding information is also deleted from
the ASM and multistep CPs. Consequently, the agent updates
learning and learns to forget. Finally, two new CPs for the

move “S2,V0

A3−→ S1,V2 ” and “S1,V2

A7−→ S2,V0 ” are created. For
this newly disambiguated aliased state S1,V2 , a new row in the
ASM is created and corresponding information is added to
that row.

4) Case-4: The agent effects an action and transitions to a
new state; however, a CP already exists that effects a flipped
action from the new state that transitions to a different state.
For example, the agent moves from state S1,V0 to another state
S2,V0 by executing an action A4 such that no other CP already
exists from state S1,V0 to any other state by executing the same
action A4. Subsequently, two CPs for this move need to be

created, i.e., “S1,V0

A4−→ S2,V0 ” and “S2,V0

A0−→ S1,V0 .” During

the creation of CP with flipped action, i.e., “S2,V0

A0−→ S1,V0 ,”
it is found that a CP already exists from state S2,V0 to another
state S3,V0 by executing the same action A0. The state S2,V0 is
marked as an aliased state and is disambiguated into two states,
here, termed state S2,V1 and state S2,V2 . Subsequently, all the

CPs with entries “S2,V0

A0−→ S3,V0 ” are updated with “S2,V2

A0−→
S3,V0 .” Similarly, the CPs with flipped action “S3,V0

A4−→ S2,V0 ”

are updated with “S3,V0

A4−→ S2,V1 .” The corresponding entries
in the ASM and multistep CPs are also updated. Moreover, all
the entries in CPs from S2,V0 to another state by executing an
action other than A0 are deleted. Similarly, the flipped entries
from other states to S2,V0 with an action other than A4 are
deleted. The corresponding information is also deleted from
the ASM and multistep CPs. Consequently, the agent updates
learning and learns to forget. Finally, two new CPs for the

move “S1,V0

A4−→ S2,V2 ” and “S2,V2

A0−→ S1,V0 ” are created. For
this newly disambiguated aliased state S2,V2 , a new row in the
ASM is created and corresponding information is added to
that row.

5) Case-5: An aliased state already exists in a path. This
case is executed only if the agent cannot identify an aliased
state by utilizing any of the above-mentioned cases. The agent
logs its path during the navigation. If the current state (and
version) already exists in the path, the agent computes the
horizontal and vertical distance to determine whether it is in
the same state (i.e., identifies a loop) or a new aliased state.
For this work, the action A0 is at 0◦ and each subsequent
action is separated by 45◦. The distance values against all the
actions are presented in Fig. 6. To compute the distance, the
following procedure is applied. For each action executed by
the agent, it moves to a new state, a value (+1,−1 or 0) is
added to the horizontal and vertical distances. For example,
against action A0 the values 0 and 1 are added to the x-axis
and y-axis, respectively. These values are added for all the

states between the current state and the already visited state
by traversing through the path. Finally, if the agent determines
that it has traveled a nonzero horizontal or vertical distance,
it marks its state as a new aliased state and disambiguates it
by assigning a new version.

E. Predict Aliased Version

The prediction of the correct aliased version (V) of a state
(S) is an important step in resolving non-Markov environ-
ments. The agent disambiguates aliased states by assigning
them unique versions, as an aliased state with a unique version
behaves as a nonaliased state. The agent is confident about its
position in the environment if it is in a nonaliased state or an
aliased state with the correct version. Consequently, the agent
moves to the next state by executing the appropriate action that
leads to the optimal path to the goal. The techniques adopted
by the agent to predict the aliased version are explained as
follows.

1) Case-1: The agent is confident about its position in the
environment, i.e., either it is in a nonaliased state or an aliased
state with the correct version. When the agent moves from
a confirmed state to an aliased state, it extracts the correct
version of the aliased state from the CPs. For this purpose, if a

CP exists that has the same initial state− version
action−−−→ state

entries, the version of the current aliased state is set from
that CP.

2) Case-2: The agent is not confident about its position
in the environment, i.e., either a random starting point is an
aliased state or there exist multiple CPs with this same state
but different versions. Consequently, the agent is in an aliased
state with a default version 0. When the agent moves from such
a state to another aliased state, it applies one of the following
techniques to predict the aliased version.

First, if the current path of the agent has more than two
states, it finds matching multistep CPs by comparing only the
states (not versions) and actions with the last three moves
(because a CP can support at most three moves; this number
could be extended at the cost of additional computations). If
such a CP exists, the agent considers the aliased state version
of that CP as a candidate version. To verify that candidate
version, the agent searches for the flipped CP, i.e., from the
current state to the previous state. Subsequently, the agent
counts all the CPs that have the same flipped action but result
in different states. If this number is equal to the total number
of aliased versions for that state, the agent flags the prediction
as correct. Otherwise, the candidate version is discarded.

If the first technique does not find the aliased version, the
agent identifies the flipped CPs from the current state to the
previous state without comparing the versions. If the candidate
CPs have multiple versions for the current aliased state, they
are discarded. Otherwise, the agent finds all the CPs that have
the same flipped action but different states. If the number of
CPs found is equal to the total number of aliased versions for
that state, the agent marks the prediction as correct. Otherwise,
it is discarded. If the agent fails to make a correct prediction,
the default version 0 is used, which means that the agent is
not yet confident about its position in the environment.

182 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 1, FEBRUARY 2022

3) Case-3: This case is executed if the agent cannot predict
an aliased state version by utilizing the above-mentioned
cases. The agent attempts to predict the aliased version by
utilizing the information from the ASM. The agent makes a
list of the current states (without comparing the versions) that
have the previous state in their neighbors at the flipped action.
These are considered candidate states. Subsequently, the agent
compares the shared neighborhood of each candidate state with
the previous state. If a state has the same neighboring states as
the shared neighborhood, then that state is flagged as a final
candidate state. At the end of this process, if there is only one
final candidate state, the version of that state is considered a
correct aliased version. Otherwise, the agent is not confident
about its position in the environment, and the default version
0 is used.

F. Overall Strategy

EC generates the constituent rules using CFs to encode
the conditions of the state and actions. Many encodable
rules are not valuable, e.g., rules where actions collide with
walls, so EC search improves efficiency and reduces stor-
age. Moreover, EC is used to utilize these constituent rules
to evolve CP-based policies in the form of state–action–state
tuples. Again this removes redundancy/irrelevant conditions
that would be kept by exhaustive search. A schematic depic-
tion of the overall strategy developed to achieve the cognitive
inspired functionality in the FoRs-based system is shown in
Fig. 7. The general state–action–reward scheme of the novel
system is similar to the standard multistep RL scheme in
LCSs [4], [18]. The learning methodology of the novel FoRs
system is developed by utilizing the framework of accuracy-
based LCSs, i.e., Wilson’s XCS [62]. CFs assist the novel
system to link the environmental features through functional
nodes. A disjunctive normal form of CFs constitute a rule,
which encapsulates how well CFs link together to provide an
egocentric viewpoint of the environment. As in the standard
LCSs, here the rules are created by three methods, i.e., cov-
ering, crossover, and mutation. These rules are combined in
a population, which enables specific niches of the problem to
be combined together to solve different parts of the problem
domain. The FoRs system departs from a conventional LCS
in the novel use of state versions within the conditions of the
classifier rules are enhanced with a state-version encoding. In
order to appear in the match set, the rules need to match the
condition, including the version, of the state.

At the start of the learning process, all the states (aliased and
nonaliased) have version 0. The agent is randomly placed in a
state in the environment. The agent obtains the version of the
current state by applying methods presented in Section III-E.
Subsequently, the agent determines whether it is an aliased
state or not. If it is an aliased state, the agent disambiguates the
aliased states by assigning them unique versions. The methods
adopted by the agent for the identification and disambiguation
of aliased states are presented in Section III-D.

The learning process of the agent is divided into explore
and exploit modes, similar to the standard LCS process. The
agent logs the path while navigating through the environment.

SiV0

Si|Ai

Popula�on [P]
Rules
ASM
CPs
CFs

Ac�on
Si, RSi+1

Environment

Steps = 0

Default VersionFoRs Version

SiVi

SiVi

Match Set [M]
Ac�on Set [A]

Rule Discovery
(Crossover, Muta�on)

Fitness Update

Mode
Explore

Random Ac�on FoRs Best Ac�on

Predict AV
Iden�fy New AS

Si+1

Si -1|Ai -1Si

New
Aliased

Disambiguate
Aliased States

Update Policies, Rules,
ASM, CPs, CFs

Goal State

Explore

Crossover Based
New Policies

Execute Ac�on

Yes
No

Yes

Yes

Yes

Yes

No

No

No

No

TimeStamp
> θGA

Current Path Based
New Policies

Next Trial

Yes No

Fig. 7. Schematic depiction of the overall strategy developed to achieve
cognitive-inspired functionality. The FoRs-based system identifies and disam-
biguates aliased states by utilizing LV (single-step CPs) and WV (multistep
CPs, policies, and the ASM). The action is obtained from rules with
state-version-action, and policies.

During the explore mode, the system attempts to create a new
policy if one does not exist for the current path. A new policy
can be created in two situations: 1) when an agent success-
fully reaches the goal or 2) when an evolutionary process is
triggered. The method to create a new policy in the first sit-
uation is presented below, whereas the conditions to trigger
the evolutionary process to subsequently create new policies
are presented in Section III-B. A new policy is created if the
agent successfully reaches the goal state before utilizing the
maximum allowed steps, which is set with domain knowl-
edge. For this purpose, the loops are removed from the path.
Subsequently, the path is virtually traversed in reverse order,
i.e., from the goal state to the start state. For each step, the
ambiguous aliased versions (i.e., 0) are updated with the cor-
rect versions. New CPs are created if they do not exist, by
applying the strategies explained in Sections III-D and III-E.
New aliased versions may be created to disambiguate the

SIDDIQUE et al.: FRAMES-OF-REFERENCE-BASED LEARNING: OVERCOMING PERCEPTUAL ALIASING 183

aliased states from the path. During this process, if no new
aliased versions are created and no ambiguous version is left
in the path, the new policy is created if it does not already
exist. Moreover, the experience attribute of the new policy is
initialized to zero and incremented by one each time the policy
assists the agent to successfully reach the goal state.

The reverse traversing of the path enables the novel system
to connect the isolated blocks of aliased states. If the agent
cannot establish a connection (by finding or creating CPs)
between the states of the path by utilizing the above-mentioned
methods, the agent attempts to find blocks of aliased states that
match the path at the point of missing connection (i.e., when
no CP exists). Utilizing the ASM, such blocks are identified
through analyzing the multistep CPs. If a block is found that
matches the current path and is isolated from other neighbor-
ing states, then it is connected with the broken state by creating
a new CP. An example of such a scenario is presented in the
supplementary material (see Section S-III).

During exploit mode, the system activates a policy that
assists the agent to take the best action. In order to select
the most appropriate policy, the system must identify the cor-
rect version of the state. Therefore, for aliased states, the
agent predicts the most likely aliased version by utilizing the
strategies explained in Section III-E. However, if the agent
is unable to predict the version, the system randomly selects
one. Subsequently, the agent tries to identify the best policy
for the selected state version. Each state may have more than
one policy. The novel system selects a valid policy that has
the smallest value for the step attribute. That policy can lead
the agent to the goal state by utilizing the minimum number
of steps. Finally, the agent activates the selected policy (cf.
roll out).

The agent determines the best action using two different
strategies: 1) the action set and 2) the active policy. If two
actions are the same, the policy is marked as true by setting a
flag (termed “cognate”), which can take value (true, false). The
agent is confident about its decision and executes the action.
However, if the actions are different, then the agent prefers
the action provided by the policy and marks the cognate flag
for the policy as false. Consequently, if the agent moves to a
different state predicted by the policy or is unable to move, the
policy is marked as malign by setting a flag (termed “malign”),
which can take value (true, false), and the agent picks another
best policy with respect to the current state. The malign poli-
cies will not be selected again for the current multistep run.
At the end of the multistep run, all the cognate and malign
flags are cleared. A walk through of this novel approach is
presented in the supplementary material (see Section S-III).

IV. EXPERIMENTAL WORK

This work seeks to demonstrate the effectiveness of the
FoRs-based approach to address the perceptual aliasing
problem in RL agents while solving multistep tasks in non-
Markov environments. Maze problems are used as a test
paradigm to investigate how agents learn state–action tran-
sitions in multistep environments. Mazes have been used in a

wide variety of navigation-based research from cognitive neu-
roscience to artificial intelligence [4], [13], [16], [21], [45],
[57], [63]–[66], as they approximately simulate real-world
navigation problems. Mazes have a structure that allows exper-
imenters to easily control and trace the behavior of an agent
during the learning process. They offer a wide range of com-
plex environments that artificial agents struggle to solve. This
includes complex non-Markov mazes that are characterized
by heterogeneity in action probability in a given state and
clusters of such aliased states. As these characteristics make
maze problems effective to evaluate the novel approach, a wide
range of mazes are used as the test domain.4 These mazes
include both deterministic and non-Markov environments, all
aliasing types (I, II, and III), and a broad range of complex-
ity (1–251) [13], [28]. The majority of these mazes and the
related woods environments have been used in state-of-the-art
studies [4], [13], [18], [28], [67].

A. Experimental Setup

The novel system uses the XCS configuration settings that
have been commonly used in XCS studies [4], [18]. The
parameter values are: crossover probability χ = 0.8; GA
threshold θGA = 25; mutation probability μ = 0.04; learn-
ing rate β = 0.2; deletion fraction δ = 0.1; deletion threshold
θdel = 20; prediction error threshold ε0 = 10; fitness expo-
nent ν = 5; fitness fall-off rate α = 0.1; and fitness reduction
= 0.1; do not care probability = 0.33; subsumption thresh-
old θsub = 20; prediction reward = 1000; prediction error
reduction = 0.25. The agent is randomly placed at an empty
position within an environment at the start of a trial. The agent
is allowed to reach the goal by utilizing a maximum of 50
steps. All the results presented here are taken from the average
of 30 runs.

The experimental results of the novel system (FoRsXCS)
are compared with the experimental results of seven well-
known benchmark systems, i.e., BACS2 [28], BACS3 [28],
XCSLib [68], ACS2 [29], XCSM [18], AgentP [13], and deep
recurrent Q-network (DRQN) [69], [70]. DRQN is a well-
known deep learning-based system that applies a connectionist
strategy to solve POMDPs environments. We were able to
reproduce the experimental performance for XCSLib, ACS2,
and DRQN. The results for BACS2 and BACS3 have been
kindly shared by the authors. However, for the other systems
(XCSM and AgentP), we have used the results reported in the
respective studies.

B. Experiments

The first set of experiments was conducted for determin-
istic mazes (Maze5 and Maze6) to provide proof of concept
for the developed FoRsXCS system. For the Maze5, ACS2
and DRQN outperformed FoRsXCS by 0.18 and 0.13 steps,
respectively. But for Maze6, ACS2 outperformed FoRsXCS by
0.25 steps but the performance of FoRsXCS is better than all
other systems including DRQN. It is noted that the learning

4A brief introduction of a maze environment and the mazes that are used
in this work, for readers unfamiliar with these environments, are presented in
the supplementary material (see Section S-II).

184 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 1, FEBRUARY 2022

TABLE I
PERFORMANCE ACCURACY OF LCS AGENTS

LOWER IS BETTER (BEST PERFORMANCE IS IN BOLD)

rate of the novel system is slower than ACS2 (see Section S-IV
in the supplementary material). This is understandable because
the novel system has to create heterogeneous BBKs to create
the local and WVs of the environment. Thus, the FoRXCS may
be computationally inefficient for solving simple deterministic
mazes.

The second set of experiments was conducted for non-
Markov mazes to evaluate the effectiveness of the novel
approach. A comparison of experimental results with different
state-of-the-art studies is presented in Table I. The experi-
mental results show that the novel FoRsXCS system either
outperformed all other systems or showed similar behavior in
solving all the non-Markov mazes except Maze7. For Maze7,
AgentP and BACS3 outperformed the novel system by 0.03
and 0.01 steps, respectively.

The experimental results show that the novel FoRsXCS
system effectively solves complex aliasing patterns in mazes
that have been most challenging to artificial agents. For exam-
ple, the novel system utilizes 6.51, 3.71, and 3.22 steps to
resolve Maze10, Littman57, and Woods102, respectively. In
contrast, none of the existing systems behave effectively in all
these mazes. The minimum steps required by the best existing
systems are 7.87 (AgentP), 4.52 (BACS2), and 3.30 (AgentP)
to solve Maze10, Littman57, and Woods102, respectively. It
is important to note that the well-known DRQN successfully
solves deterministic and non-Markov mazes but the novel
FoRsXCS outperformed DRQN in all the mazes. The rea-
sons for the performance efficiency of the novel FoRsXCS
are explained in Section IV-C. The varied learning pace of
the novel system for different mazes is presented in the
supplementary material (see Section S-IV).

The Wilcoxon signed-rank test was applied to statistically
compare FoRsXCS with DRQN (see Table II). The test was
conducted on the results of the last 100 trials. The second
and third columns contain the average performance along with
standard deviation. FoRXCS statistically outperformed DRQN
on all mazes, all ps < 0.00001, which is evidence that the
performance advantage of FoRsXCS is statistically significant.

The novel FoRsXCS can utilize multiple viewpoints at dif-
ferent levels of abstraction, depending on the complexity of
aliased patterns in the environment. This functionality adds

TABLE II
WILCOXON SIGNED-RANK TEST

extra computational cost. Although it is not straightforward to
compare the computational cost for different systems due to
operating system constraints, these systems can be compared
based on the average processing time required for an agent to
take a step in an environment. The average single-step pro-
cessing times, computed by using Maze7, for FoRsXCS and
XCSLib are 326.37 and 74.56 μs, respectively. The process-
ing time for the novel FoRsXCS is 4.4 times longer than the
XCSLib. However, this cost is justified because the FoRsXCS
needs on average 4.3 steps to successfully reach the goal in
Maze7, whereas the XCSLib needs 31 steps. Thus, XCSLib
utilizes 7.2 times more steps as compared to FoRsXCS. This
shows that the overall computational cost of the XCSLib is
greater than that of the FoRsXCS. Furthermore, the FoRsXCS-
based agent successfully reached the goal in all trials, whereas
the XCSLib-based agent did not always reach the goal.

C. Interpretation of Learning

The learning process of the FoRs-based system is inter-
pretable. Close observation of CPs and the ASM reveals that
the novel system successfully identified and disambiguated
complex patterns of aliased states by evolving the relevant
BBKs at different levels of abstraction. Consequently, the
novel system translated a non-Markov environment into a
deterministic environment.

Littman57 provides a non-Markov environment with mod-
erate aliasing complexity. The maze and its aliased states
(each state has a unique color) are shown in Fig. 8. Because
FoRsXCS is a transparent technique, it is possible to walk
through the learning sequence of the algorithm to resolve
Littman57. This process demonstrates how new knowledge is
learned, existing knowledge is updated, and learned knowl-
edge is forgotten. For example, the agent was randomly

SIDDIQUE et al.: FRAMES-OF-REFERENCE-BASED LEARNING: OVERCOMING PERCEPTUAL ALIASING 185

Fig. 8. Maze Littman57, 1 empty, 0 blocked, and F food/goal.

placed in state S8. It executed action A7 to transit to state
S3. Consequently, the agent created CPs, which provide

connections between “S8,V0 & S3,V0 ,” i.e., S8,V0

A7−→ S3,V0 ,

S3,V0

A3−→ S8,V0 . Subsequently, the agent executed action A6 to
transit to state S2. Consequently, the agent created CPs, which

provide connections between “S3,V0 & S2,V0 ,” i.e., S3,V0

A6−→
S2,V0 , S2,V0

A2−→ S3,V0 . These CPs form constituent BBKs
and provide the egocentric view. Subsequently, the agent cre-
ated two holistic level CPs, which provide connections among

“S8,V0 , S3,V0 , and S2,V0 ,” i.e., S8,V0

A7−→ S3,V0

A6−→ S2,V0 and

S2,V0

A2−→ S3,V0

A3−→ S8,V0 . These CPs form holistic BBKs
and provide an abstract view. However, there are two such
blocks in the maze, represented by purple- and red-dotted
lines. The agent could not differentiate between these blocks.
The relevant information is updated in the ASM (see Fig. 9(a)).

The agent continues to traverse the maze such that new
knowledge (CPs, policies, and ASM) is created and ambigu-
ous knowledge is deleted/updated. Ultimately, the agent suc-
cessfully transformed the non-Markov environment into a
deterministic environment. The resultant map of the final
environment (without any ambiguous aliased states, i.e., a
deterministic environment) is shown in Fig. 9(b). A complete
and step-by-step walk through of the learning sequence, for the
interested readers, is presented in the supplementary material
(see Section S-III).

V. DISCUSSION

The FoRs-based system is designed to address the percep-
tual aliasing problem in non-Markov environments. The novel
system simultaneously considers the environmental instance
from an LV (single-step CPs, egocentric FoR) and WV
(multistep CPs, policies; allocentric and route-centric FoRs).
Consequently, the learning speed of the novel system is slower
than that of other state-of-the-art systems for large-scale deter-
ministic mazes. However, the ability to consider the same
problem instance at multiple viewpoints empowers the novel
system to efficiently learn the complex patterns of aliased
states that characterize non-Markov environments. As the
problem scales in size and complexity, there will be more
and more constituent-level and holistic-level BBKs, which will

(a)

(b)

Fig. 9. FoRs-based learning for maze Littman57, here, Si,Vj are colored
differently. (a) Environment after creating connections among S2, S3, and S8.
(b) Environment after creating connections among all the states.

slow down learning. Nevertheless, the novel system has the
ability to identify and disambiguate the clusters of aliased
states by utilizing the BBKs at different levels of abstraction.
Consequently, the novel system efficiently solves complex
non-Markov mazes that homogeneous systems struggle to
solve.

For this work, it is assumed that the actions always correctly
affect the environment. If not, LCSs do have an error threshold
that can be used to handle noise. This problem is beyond the
scope of this work, but is the subject of future work. Moreover,
the assumption that the agent has the freedom to explore, (e.g.,
flipped actions), may not be reasonable in practical situations,
e.g., driving on one-way roads. The FoRs-based approach may
not work well for problems, such as numerical optimization,
in which constituent knowledge cannot be used or reused to
solve higher level problem components.

Although it is expensive to learn constituent-level BBKs,
once learned, they can be used or reused to form holistic level
BBKs. The novel system applies these learned BBKs at dif-
ferent levels of abstraction to solve heterogeneous patterns in
complex problems.

VI. CONCLUSION

The novel system successfully applied FoRs to learn stable
policies for multistep tasks in non-Markov environments. The
ability to represent the same environmental instance from dif-
ferent viewpoints, i.e., LV (single-step CPs, egocentric FoR)
and WV (multistep CPs, policies; allocentric and route-centric
FoRs), empowers the novel system to successfully address per-
ceptual aliasing problems by identifying and disambiguating
aliasing patterns. Consequently, the novel system transforms a
non-Markov environment into a deterministic environment. EC
played a critical role by enabling the novel system to evolve
fitter rules at a constituent level and optimal policies at a
holistic level. Otherwise, it was not practical to enumerate the
huge search space of a complex non-Markov environment. The
experiments demonstrate that the novel system has the ability
to utilize or reutilize relevant learned BBKs at different levels
of abstraction to learn aliasing patterns that are made up of pat-
terns that are made up of features. The novel system effectively

186 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 1, FEBRUARY 2022

solves complex aliasing patterns in the environments that have
previously been challenging to artificial agents. For example,
the novel system utilizes only 6.5, 3.71, and 3.22 steps to
resolve Maze10, Littman57, and Woods102, respectively.

The novel system is robust against aliasing states because
of its focus on the appropriate parts of the reward signal
to achieve a necessary level of abstraction. Aliasing chal-
lenges existing evolutionary computing systems across a wide
range of problem domains. How this approach functions with
dynamic states, especially in domains with little information
to start forming code paths, can now be investigated.

In further work, the novel approach will be applied to sim-
ilar problem domains, such as multiclass visual classification,
to prevent adversarial attacks causing misclassification. Here,
constituent information, such as nose, mouth, and so forth,
could be combined to holistically classify objects. The ability
to consider an object at different levels of abstraction should
invoke classification robustness.

ACKNOWLEDGMENT

The authors wish to acknowledge the use of New Zealand
eScience Infrastructure (NeSI) high performance computing
facilities to run our experimental work.

REFERENCES

[1] S. D. Whitehead and D. H. Ballard, “Learning to perceive and act by
trial and error,” Mach. Learn., vol. 7, no. 1, pp. 45–83, 1991.

[2] L. Chrisman, “Reinforcement learning with perceptual aliasing: The
perceptual distinctions approach,” in Proc. AAAI, vol. 1992, 1992,
pp. 183–188.

[3] P. L. Lanzi, “Adaptive agents with reinforcement learning and internal
memory,” in Proc. 6th Int. Conf. Simulat. Adapt. Behav. (SAB), 2000,
pp. 333–342.

[4] M. V. Butz, Anticipatory Learning Classifier Systems, vol. 4. New York,
NY, USA: Springer, 2002,

[5] Z. V. Zatuchna and A. J. Bagnall, “AgentP classifier system: Self-
adjusting vs. gradual approach,” in Proc. IEEE Congr. Evol. Comput.,
vol. 2. 2005, pp. 1196–1203.

[6] K. Suzuki and S. Kato, “Hierarchical reinforcement learning introducing
genetic algorithm for POMDPs environments,” in Proc. ICAART, 2019,
pp. 318–327.

[7] S. Frazier and M. Riedl, “Improving deep reinforcement learning in
minecraft with action advice,” in Proc. AAAI Conf. Art. Intell. Interact.
Digit. Entertain., vol. 15, 2019, pp. 146–152.

[8] P. Crook and G. Hayes, “Learning in a state of confusion: Perceptual
aliasing in grid world navigation,” in Proc. Towards Intell. Mobile
Robots, vol. 4, 2003.

[9] S. Krening and K. M. Feigh, “Newtonian action advice: Integrating
human verbal instruction with reinforcement learning,” in Proc. 18th
Int. Conf. Auton. Agents Multi Agent Sys. Syst.. 2019, pp. 720–727.

[10] T. Hayashida, I. Nishizaki, S. Sekizaki, and H. Takeuchi, “Improved
anticipatory classifier system with internal memory for POMDPs
with aliased states,” Procedia Comput. Sci., vol. 112, pp. 215–224,
Dec. 2017.

[11] T. Hayashida, I. Nishizaki, and K. Moriwake, “XCS with an internal
action table for non-Markov environments,” Int. J. Adv. Comput. Sci.
Appl., vol. 5, no. 6, pp. 162–172, 2014.

[12] S. Griffith, K. Subramanian, J. Scholz, C. L. Isbell, and A. L. Thomaz,
“Policy shaping: Integrating human feedback with reinforcement learn-
ing,” in Advances in Neural Information Processing Systems. Red Hook,
NY, USA: Curran Assoc., 2013, pp. 2625–2633.

[13] Z. V. Zatuchna and A. Bagnall, “Learning mazes with aliasing states:
An LCS algorithm with associative perception,” Adapt. Behav., vol. 17,
no. 1, pp. 28–57, 2009.

[14] N. Roy, G. Gordon, and S. Thrun, “Finding approximate POMDP solu-
tions through belief compression,” J. Artif. Intell. Res., vol. 23, no. 1,
pp. 1–40, 2005.

[15] M. W. Mitchell, “Using Markov-k memory for problems with hidden-
state,” in Proc. Mach. Learn. Models Technol. Appl., 2003, pp. 242–248.

[16] M. Métivier and C. Lattaud, “Anticipatory classifier system using behav-
ioral sequences in non-Markov environments,” in Proc. Int. Workshop
Learn. Classifier Syst., 2002, pp. 143–162.

[17] W. Stolzmann, “Latent learning in Khepera robots with anticipatory
classifier systems,” in Proc. 2nd Int. Workshop Learn. Classifier Syst.,
Orlando, FL, USA, 1999, pp. 290–297.

[18] P. L. Lanzi, “An analysis of the memory mechanism of XCSM,” in Proc.
Genet. Program., vol. 98, 1998, pp. 643–651.

[19] L. Chrisman, R. Caruana, and W. Carriker, “Intelligent agent design
issues: Internal agent state and incomplete perception,” in Proc. AAAI
Fall Symp. Sens. Aspects Robot. Intell.. 1991, pp. 18–25.

[20] M. Tan, “Cost-sensitive reinforcement learning for adaptive classification
and control,” in Proc. AAAI, 1991, pp. 774–780.

[21] A. S. Alexander and D. A. Nitz, “Retrosplenial cortex maps the con-
junction of internal and external spaces,” Nat. Neurosci., vol. 18, no. 8,
pp. 1143–1151, 2015.

[22] D. A. Nitz, “Spaces within spaces: Rat parietal cortex neurons register
position across three reference frames,” Nat. Neurosci., vol. 15, no. 10,
pp. 1365–1367, 2012.

[23] M. C. Corballis, “The evolution of lateralized brain circuits,” Front.
Psychol., vol. 8, p. 1021, Jun. 2017.

[24] J. L. Krichmar, “The neuromodulatory system: A framework for survival
and adaptive behavior in a challenging world,” Adapt. Behav., vol. 16,
no. 6, pp. 385–399, 2008.

[25] T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, and E. I. Moser,
“Microstructure of a spatial map in the entorhinal cortex,” Nature,
vol. 436, no. 7052, pp. 801–806, 2005.

[26] A. Siddique, W. N. Browne, and G. M. Grimshaw, “Learning classifier
systems: Appreciating the lateralized approach,” in Proc. Genet. Evol.
Comput. Conf. Compan., 2020, pp. 1807–1815.

[27] A. Siddique, W. N. Browne, and G. M. Grimshaw, “Lateralized learn-
ing for robustness against adversarial attacks in a visual classification
system,” in Proc. Genet. Evol. Comput. Conf., 2020, pp. 395–403.

[28] R. Orhand, A. Jeannin-Girardon, P. Parrend, and P. Collet, “BACS: A
thorough study of using behavioral sequences in ACS2,” in Proc. Int.
Conf. Parall. Problem Solving Nat., 2020, pp. 524–538.

[29] M. V. Butz and W. Stolzmann, “An algorithmic description of ACS2,”
in Proc. Int. Workshop Learn. Classifier Syst., 2001, pp. 211–229.

[30] W. Stolzmann, “An introduction to anticipatory classifier systems,” in
Proc. Int. Workshop Learn. Classifier Syst., 1999, pp. 175–194.

[31] R. J. Urbanowicz and W. N. Browne, Introduction to Learning Classifier
Systems. Heidelberg, Germany: Springer, 2017.

[32] W. S. Lovejoy, “A survey of algorithmic methods for partially observed
Markov decision processes,” Ann. Oper. Res., vol. 28, no. 1, pp. 47–65,
1991.

[33] S. W. Wilson, “ZCS: A zeroth level classifier system,” Evol. Comput.,
vol. 2, no. 1, pp. 1–18, 1994.

[34] G. G. Robertson and R. L. Riolo, “A tale of two classifier systems,”
Mach. Learn., vol. 3, nos. 2–3, pp. 139–159, 1988.

[35] R. E. Smith, “Memory exploitation in learning classifier systems,” Evol.
Comput., vol. 2, no. 3, pp. 199–220, 1994.

[36] J. A. Fails and D. R. Olsen, Jr., “Interactive machine learning,” in Proc.
8th Int. Conf. Intell. User Interfaces, 2003, pp. 39–45.

[37] M. Wiering and J. Schmidhuber, “HQ-learning,” Adapt. Behav., vol. 6,
no. 2, pp. 219–246, 1997.

[38] K. Suzuki and S. Kato, “Hybrid learning using profit sharing and genetic
algorithm for partially observable Markov decision processes,” in Proc.
Int. Conf. Network-Based Inf. Syst., 2017, pp. 463–475.

[39] M. V. Chafee, B. B. Averbeck, and D. A. Crowe, “Representing spatial
relationships in posterior parietal cortex: Single neurons code object-
referenced position,” Cerebral Cortex, vol. 17, no. 12, pp. 2914–2932,
2007.

[40] D. A. Nitz, “Parietal cortex, navigation, and the construction of arbitrary
reference frames for spatial information,” Neurobiol. Learn. Memory,
vol. 91, no. 2, pp. 179–185, 2009.

[41] C. R. Olson and S. N. Gettner, “Object-centered direction selectivity
in the macaque supplementary eye field,” Science, vol. 269, no. 5226,
pp. 985–988, 1995.

[42] R. G. M. Morris, P. Garrud, J. N. P. Rawlins, and J. O’Keefe, “Place
navigation impaired in rats with hippocampal lesions,” Nature, vol. 297,
no. 5868, pp. 681–683, 1982.

[43] J. O’Keefe and L. Nadel, The Hippocampus as a Cognitive Map. Oxford,
U.K.: Clarendon Press, 1978.

SIDDIQUE et al.: FRAMES-OF-REFERENCE-BASED LEARNING: OVERCOMING PERCEPTUAL ALIASING 187

[44] J. Cho and P. E. Sharp, “Head direction, place, and movement correlates
for cells in the rat retrosplenial cortex,” Behav. Neurosci., vol. 115, no. 1,
p. 3, 2001.

[45] J. O’Keefe and J. Dostrovsky, “The hippocampus as a spatial map.
Preliminary evidence from unit activity in the freely-moving rat,” Brain
Res., vol. 34, no. 1, pp. 171–175, 1971.

[46] J. O’Keefe and N. Burgess, “Geometric determinants of the place fields
of hippocampal neurons,” Nature, vol. 381, no. 6581, p. 425, 1996.

[47] E. R. Wood, P. A. Dudchenko, R. J. Robitsek, and H. Eichenbaum,
“Hippocampal neurons encode information about different types of
memory episodes occurring in the same location,” Neuron, vol. 27, no. 3,
pp. 623–633, 2000.

[48] L. M. Frank, E. N. Brown, and M. Wilson, “Trajectory encoding
in the hippocampus and entorhinal cortex,” Neuron, vol. 27, no. 1,
pp. 169–178, 2000.

[49] D. A. Nitz, “Tracking route progression in the posterior parietal cortex,”
Neuron, vol. 49, no. 5, pp. 747–756, 2006.

[50] T. Iachini, G. Ruggiero, M. Conson, and L. Trojano, “Lateralization of
egocentric and allocentric spatial processing after parietal brain lesions,”
Brain Cogn., vol. 69, no. 3, pp. 514–520, 2009.

[51] G. Committeri, G. Galati, A.-L. Paradis, L. Pizzamiglio, A. Berthoz,
and D. LeBihan, “Reference frames for spatial cognition: Different brain
areas are involved in viewer-, object-, and landmark-centered judgments
about object location,” J. Cogn. Neurosci., vol. 16, no. 9, pp. 1517–1535,
2004.

[52] T. Zaehle, K. Jordan, T. Wüstenberg, J. Baudewig, P. Dechent, and F. W.
Mast, “The neural basis of the egocentric and allocentric spatial frame
of reference,” Brain Res., vol. 1137, pp. 92–103, Mar. 2007.

[53] K. Iglói, C. F. Doeller, A. Berthoz, L. Rondi-Reig, and N. Burgess,
“Lateralized human hippocampal activity predicts navigation based on
sequence or place memory,” Proc. Nat. Acad. Sci., vol. 107, no. 32,
pp. 14466–14471, 2010.

[54] J. Holland and J. Reitman, “Cognitive systems based on adaptive algo-
rithms,” in Evolutionary Computation: The Fossil Record. New York,
NY, USA: IEEE Press, 1998.

[55] L. Bull and T. Kovacs, “Foundations of learning classifier systems:
An introduction,” in Foundations of Learning Classifier Systems.
Heidelberg, Germany: Springer, 2005, p. 913.

[56] J. H. Holland et al., “What is a learning classifier system?” in Proc.
Int. Workshop Learn. Classifier Syst., 1999, pp. 3–32.

[57] M. V. Butz, Rule-Based Evolutionary Online Learning Systems.
Heidelberg, Germany: Springer, 2006.

[58] R. J. Urbanowicz and J. H. Moore, “Learning classifier systems: A com-
plete introduction, review, and roadmap,” J. Artif. Evol. Appl., vol. 2009,
p. 1, Sep. 2009.

[59] M. Iqbal, W. N. Browne, and M. Zhang, “Reusing building blocks of
extracted knowledge to solve complex, large-scale boolean problems,”
IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 465–480, Aug. 2014.

[60] I. M. Alvarez, W. N. Browne, and M. Zhang, “Human-inspired scaling in
learning classifier systems: Case study on the n-bit multiplexer problem
set,” in Proc. Genet. Evol. Comput. Conf., 2016, pp. 429–436.

[61] M. Iqbal, W. N. Browne, and M. Zhang, “Extracting and using building
blocks of knowledge in learning classifier systems,” in Proc. Annu. Conf.
Genet. Evol. Comput., 2012, pp. 863–870.

[62] S. W. Wilson, “Classifier fitness based on accuracy,” Evol. Comput.,
vol. 3, no. 2, pp. 149–175, 1995.

[63] A. S. Alexander and D. A. Nitz, “Spatially periodic activation patterns
of retrosplenial cortex encode route sub-spaces and distance traveled,”
Current Biol., vol. 27, no. 11, pp. 1551–1560, 2017.

[64] D. A. Nitz, “Path shape impacts the extent of CA1 pattern recurrence
both within and across environments,” J. Neurophysiol., vol. 105, no. 4,
pp. 1815–1824, 2011.

[65] T. Oess, J. L. Krichmar, and F. Röhrbein, “A computational model for
spatial navigation based on reference frames in the hippocampus, retros-
plenial cortex, and posterior parietal cortex,” Front. Neurorobot., vol. 11,
p. 4, Feb. 2017.

[66] P. L. Lanzi and S. W. Wilson, “Toward optimal classifier system
performance in non-Markov environments,” Evol. Comput., vol. 8, no. 4,
pp. 393–418, 2000.

[67] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning poli-
cies for partially observable environments: Scaling up,” in Proc. Mach.
Learn., 1995, pp. 362–370.

[68] C++ Library for XCS. Accessed: Mar. 26, 2020. [Online]. Available:
http://xcslib.sourceforge.net/

[69] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for partially
observable MDPS,” 2015. [Online]. Available: arXiv:1507.06527.

[70] G. Lample and D. S. Chaplot, “Playing FPS games with deep rein-
forcement learning,” in Proc. AAAI Conf. Art. Intell., vol. 31, 2017,
pp. 2140–2146.

Abubakar Siddique (Graduate Student Member,
IEEE) received the B.Sc. degree in computer science
from Quaid-i-Azam University, Islamabad, Pakistan,
in 2003, and the M.Eng. degree in computer engi-
neering from the University of Engineering and
Technology, Taxila, Pakistan, in 2008. He is cur-
rently pursuing the Ph.D. degree with the School
of Engineering and Computer Science, Victoria
University of Wellington, Wellington, New Zealand.

His undergraduate senior project was conducted
in an internship with Ultimus Pakistan, Rawalpindi,

Pakistan, where his work was deployed at the company’s Workflow product.
He spent nine years at Elixir, Islamabad, Pakistan, a California-based soft-
ware company. His last designation was a Principal Software Engineer where
he led a team of software developers. He developed enterprise-level software
for customers such as Xerox, IBM, and Finis. Mr. Siddique’s main research
lies in lateralized systems based on artificially intelligent techniques, particu-
larly evolutionary computation, to provide efficient solutions for challenging
and complex problems in different domains, such as Boolean, computer
vision, and navigation. Lateralization, inspired by the principles of biological
intelligence, is an advanced form of transfer learning which utilizes feature
detection, feature extraction, and feature construction. The decision-making
process of a novel lateralized system is interpretable which is a step toward
explainable/trustworthy AI. He is also interested in evolutionary deep learn-
ing, reinforcement, supervised, and unsupervised learning, image analysis,
programming models, algorithms, runtime systems, and applications.

Mr. Siddique was a recipient of the VUWSA Gold Award and the Student
Of The Session Award during his Ph.D. and bachelor’s studies, respectively.

Will N. Browne (Member, IEEE) received the
B.Eng. degree (Hons.) in mechanical engineering
from the University of Bath, Bath, U.K., in 1993,
and the M.Sc. degree in energy and the Eng.D.
degree (Engineering Doctorate Scheme) from the
University of Wales, Cardiff, U.K., in 1994 and
1999, respectively.

After lecturing for eight years with the
Department of Cybernetics, University of Reading,
Reading, U.K. He became a Professor with the
Evolutionary Computation Research Group, School

of Engineering and Computer Science, Victoria University of Wellington,
Wellington, New Zealand, prior moving to Queensland University of
Technology, Brisbane, QLD, Australia, in 2021. He has published over 120
academic papers in books, refereed international journals, and conferences.
His research interests are in developing artificial cognitive systems.

Prof. Browne received the two best paper awards at the ACM Genetic
and Evolutionary Computation Conference, where he has also served as the
track chair on four occasions in the EML Track (or equivalent). He serves
on the Editorial Board of Applied Soft Computing Journal. Together with
Dr. Ryan Urbanowicz, he has authored the textbook Introduction to Learning
Classifier Systems, Springer, 2017. He was the Co-Local Chair for the IEEE
Congress Evolutionary Computation, Wellington, 2019.

Gina M. Grimshaw received the B.Sc. degree
in biochemistry from the University of Toronto,
Toronto, ON, Canada, in 1987, and the Ph.D. degree
in cognitive psychology from the University of
Waterloo, Waterloo, ON, Canada, in 1996.

She was a Postdoctoral Fellow with the
Department of Cognitive Science, University of
California San Diego, La Jolla, CA, USA, from
1996 to 1997, before taking up an academic position
with California State University San Marcos, San
Marcos, CA, USA. Since 2007, she has been with

the Victoria University of Wellington, Wellington, New Zealand, where she is
an Associate Professor of Psychology and the Director of the Cognitive and
Affective Neuroscience Lab. Her research has been funded by the National
Institute of Mental Health (U.S.) and the Royal Society of New Zealand
Marsden Fund. She has authored over 50 refereed journal publications, and
is an Editor of Laterality: Asymmetries of Brain, Cognition, and Behavior
(2016 present). Her research explores the cognitive and neural mechanisms
that support cognition and emotion, with a particular focus on hemispheric
specialization and interaction.

Dr. Grimshaw has won the university awards for Teaching Excellence,
Research Excellence, and Contributions to Equity and Diversity. She has
supervised over 20 postgraduate students in Psychology, Cognitive and
Behavioral Neuroscience, and Engineering. She is the Secretary of the
Australasian Society for Experimental Psychology, and chaired the Societys
Experimental Psychology Conference (EPC) in 2011 and 2019.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

