
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 4, AUGUST 2021 779

Region Encoding Helps Evolutionary Computation
Evolve Faster: A New Solution Encoding Scheme
in Particle Swarm for Large-Scale Optimization

Jun-Rong Jian , Student Member, IEEE, Zong-Gan Chen , Student Member, IEEE,

Zhi-Hui Zhan , Senior Member, IEEE, and Jun Zhang , Fellow, IEEE

Abstract—In the last decade, many evolutionary computa-
tion (EC) algorithms with diversity enhancement have been
proposed to solve large-scale optimization problems in big
data era. Among them, the social learning particle swarm
optimization (SLPSO) has shown good performance. However, as
SLPSO uses different guidance information for different parti-
cles to maintain the diversity, it often results in slow convergence
speed. Therefore, this article proposes a new region encoding
scheme (RES) to extend the solution representation from a single
point to a region, which can help EC algorithms evolve faster. The
RES is generic for EC algorithms and is applied to SLPSO. Based
on RES, a novel adaptive region search (ARS) is designed to on
the one hand keep the diversity of SLPSO and on the other
hand accelerate the convergence speed, forming the SLPSO with
ARS (SLPSO-ARS). In SLPSO-ARS, each particle is encoded
as a region so that some of the best (e.g., the top P) parti-
cles can carry out region search to search for better solutions
near their current positions. The ARS strategy offers the particle
a greater chance to discover the nearby optimal solutions and
helps to accelerate the convergence speed of the whole popula-
tion. Moreover, the region radius is adaptively controlled based
on the search information. Comprehensive experiments on all the
problems in both IEEE Congress on Evolutionary Computation
2010 (CEC 2010) and 2013 (CEC 2013) competitions are con-
ducted to validate the effectiveness and efficiency of SLPSO-ARS
and to investigate its important parameters and components. The
experimental results show that SLPSO-ARS can achieve generally
better performance than the compared algorithms.

Index Terms—Adaptive region search (ARS), evolutionary
computation (EC), large-scale optimization problems (LSOPs),

Manuscript received August 18, 2020; revised November 10, 2020,
January 12, 2021, and February 16, 2021; accepted March 5, 2021. Date
of publication March 12, 2021; date of current version July 30, 2021. This
work was supported in part by the National Key Research and Development
Program of China under Grant 2019YFB2102102; in part by the Outstanding
Youth Science Foundation under Grant 61822602; in part by the National
Natural Science Foundations of China (NSFC) under Grant 61772207 and
Grant 61873097; in part by the Key-Area Research and Development of
Guangdong Province under Grant 2020B010166002; in part by the Guangdong
Natural Science Foundation Research Team under Grant 2018B030312003;
and in part by the Guangdong-Hong Kong Joint Innovation Platform under
Grant 2018B050502006. (Jun-Rong Jian and Zong-Gan Chen are co-first
authors.) (Corresponding authors: Zhi-Hui Zhan; Jun Zhang.)

Jun-Rong Jian, Zong-Gan Chen, and Zhi-Hui Zhan are with the School of
Computer Science and Engineering, South China University of Technology,
Guangzhou 510006, China, and also with Pazhou Laboratory, Guangzhou
510330, China (e-mail: zhanapollo@163.com).

Jun Zhang is with the Chaoyang University of Technology, Taichung 41349,
Taiwan, and also with Victoria University, Melbourne, VIC 8001, Australia.

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TEVC.2021.3065659.

Digital Object Identifier 10.1109/TEVC.2021.3065659

region encoding scheme (RES), social learning particle swarm
optimization (SLPSO).

I. INTRODUCTION

IN RECENT years, the evolutionary computa-
tion (EC) algorithms have been successful in solving

various global optimization problems, such as the
works in particle swarm optimization (PSO) [1]–[5],
ant colony optimization (ACO) [6]–[9], genetic
algorithm (GA) [10]–[13], estimation of distribution algo-
rithm (EDA) [14], [15], differential evolution (DE) [16]–[20],
and some other algorithms [21], [22]. Among them, PSO
is a simple yet efficient algorithm, which designs a swarm
of particles and all the particles learn from the currently
searched optima to find the optimal solutions [23]. In standard
PSO, each particle i needs to maintain two vectors, one is
the position vector xi = {xi1, xi2, . . . , xiD}, and the other is
the velocity vector vi = {vi1, vi2, . . . , viD}, where D is the
dimensionality of the problem. In the initialization, each
particle randomly initializes its position vector and velocity
vector within the corresponding search ranges. In every
generation, the velocity vector and position vector of each
particle i on dimension d are updated as

vid(t + 1) = ω · vid(t) + c1 · r1d · (
pbestid − xid(t)

)
(1)

+ c2 · r2d · (
gbestd − xid(t)

)

xid(t + 1) = xid(t) + vid(t + 1) (2)

where t is the current generation index, ω is
inertia weight [24], c1 and c2 are acceleration
coefficients [23], r1d and r2d are two random numbers
generated uniformly distributed in [0, 1] for the dimension d,
and pbesti (personal best) and gbest (global best) are the best
position vectors found so far by particle i and all particles,
respectively.

Since PSO has the advantages such as easy implementa-
tion and simplicity in solving optimization problems, it has
developed rapidly in recent years to solve global optimization
problems [25]–[28]. However, as the dimensions of the
optimization problems increase in nowadays big data era, the
performance of the PSO and also other EC algorithms will
deteriorate rapidly [29]. Therefore, adopting some appropri-
ate and efficient methods to improve the ability of PSO and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1277-4516
https://orcid.org/0000-0001-7585-5212
https://orcid.org/0000-0003-0862-0514
https://orcid.org/0000-0001-7835-9871

780 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 4, AUGUST 2021

other EC algorithms in solving large-scale optimization prob-
lems (LSOPs) has become a hot research topic. More details
about these researches are presented in Section II-A.

Among the numerous large-scale optimization algorithms,
there is a representative algorithm named social learning
PSO (SLPSO) [30]. In SLPSO, each particle (except the best
particle) is updated by learning from any particle in the cur-
rent swarm that is better than itself, which can help SLPSO
become effective to solve LSOPs by keeping population diver-
sity. However, large-scale optimization not only requires the
algorithm to maintain diversity to search for the global optimal
solution in the large search space, but also requires to have
fast convergence to refine the solution accuracy. Therefore,
although SLPSO has advantages in keeping diversity, it still
has room for improvement on convergence. In the litera-
ture, a promising way is to design local search strategies to
speed up the population convergence when solving LSOPs.
Zhao et al. [31] combined the local search strategy (the
quasi-Newton method) with a PSO variant to accelerate the
convergence speed. Molina and Herrera [32], Molina et al. [33]
proposed to use multiple local search strategies iteratively to
deal with LSOPs.

In this article, to both maintain the diversity and acceler-
ate the convergence speed when solving LSOPs, we propose
a novel region encoding scheme (RES) inspired by our
previous orthogonal-predictive local search strategy [34] and
stochastic coding strategy [35] and apply the RES in the
SLPSO. The SLPSO can maintain diversity while the RES
can help evolve faster by the novel RES and by using a local
search strategy, named adaptive region search (ARS), based
on the RES to accelerate the convergence speed. In traditional
EC and PSO algorithms, a solution (e.g., a particle in PSO) is
encoded as a single point in the search space. However, such
an encoding scheme makes the particle represent only one
solution in one generation so that the algorithm needs a lot of
generations to make up more solutions. This of course results
in the slow convergence speed to search for promising solu-
tions. Differently, we propose to use RES to encode a particle
as a region rather than only a single point in this article. This
way, we can carry out additional operations (e.g., the local
search) with the help of the region information to generate
more solutions in every generation. This is helpful to speed
up the convergence. Based on the RES idea, we propose the
novel local search strategy, named ARS, to extend the SLPSO
to SLPSO-ARS. In SLPSO-ARS, some of the best (e.g., the
top P) particles are selected to carry out region search (RS)
at the end of every generation. That is, the top P best par-
ticles search the area near their current positions according
to the region radius. The ARS strategy can offer the particle
with a greater chance to find the better solutions and accel-
erate the convergence speed. Moreover, each particle has its
own region radius which is adaptively controlled during the
evolutionary process to make the region more suitable for the
search. The experimental results show that the RES and the
ARS strategy make SLPSO more efficient in solving LSOPs.
More significantly, the RES and the ARS strategy are generic
ideas that help evolve faster, leading a new way to enhance
EC algorithms in solving LSOPs.

The remainder of this article is structured as follows.
Section II introduces some methods for LSOPs and reviews
the SLPSO. The detail of the SLPSO-ARS is presented in
Section III. Section IV shows the experimental results of
SLPSO-ARS and the compared large-scale optimization algo-
rithms on both IEEE Congress on Evolutionary Computation
2010 (CEC 2010) and 2013 (CEC 2013) LSOPs bench-
mark test sets. Section V draws the conclusion of this
article.

II. BACKGROUND

A. LSOP

LSOP generally has a large amount of decision vari-
ables (dimensions), leading to huge search space and many
local optima, so it becomes very difficult to be solved by tra-
ditional EC algorithms. In general, there are two methods to
enhance EC algorithms to better solve LSOPs, one is the coop-
erative co-evolution (CC) method that decomposes the entire
LSOP to reduce problem difficulty, and the other is the non-CC
method, that is, to increase population diversity by introducing
some additional strategies [36].

In the CC method, the main idea is to use “divide-
and-conquer” in EC algorithms to solve LSOPs, such as
CCGA [37], CCPSO [38], [39], and DECC [40]. To divide
the large-scale variables, random grouping (RG) strategy can
be adopted, like in the DECC-G [29] and the multilevel
CC (MLCC) [41]. In addition to the RG strategy, some
grouping strategies that can detect the relationships between
decision variables are also proposed in the literatures, such
as delta grouping strategy [42], differential grouping (DG)
strategy [43], eXtended DG (XDG) strategy [44], and global
DG (GDG) strategy [45]. Moreover, some CC methods have
been proposed to allocate different computing resources
according to the contribution of the subproblems [46]–[48],
while Zhang et al. [49] proposed to use the function-
independent decomposition strategy to design the CC bare-
bones PSO (CCBBPSO).

In the non-CC method, some additional strategies are
designed to increase population diversity to improve the
performance of the algorithms in solving LSOPs. For example,
Takahama and Sakai [50] proposed to control the scaling fac-
tor F in DE by detecting landscape modality. Brest et al. [51],
Brest and Maucec [52] proposed two jDE (a DE variant)
variants to self-adapt the population size. In addition, some
researchers have designed new operators to solve LSOPs.
Yang et al. [53] proposed a two-level guidance strategy to
modify the standard PSO operators. Similarly, Cheng and
Jin [30], [54] also proposed two new PSO operators to solve
LSOPs, where each particle could learn from any better
particle. Moreover, some works adopt distributed paradigm
and multiple populations to deal with LSOPs. Wang et al.
has proposed two distributed PSO (DPSO) variants, named
dynamic group learning DPSO (DGLDPSO) [55] and adap-
tive granularity learning DPSO (AGLDPSO) [56], which can
dynamically change the structure of the subpopulations to
increase population diversity. Ge et al. [57] combined the

JIAN et al.: REGION ENCODING HELPS EC EVOLVE FASTER: NEW SOLUTION ENCODING SCHEME FOR LSOPs 781

multiple populations strategy with DE and embedded the
appropriate migration strategy to solve LSOPs.

B. SLPSO

SLPSO [30] have shown good performance in solving
LSOPs and also inherited the advantages of standard PSO. In
SLPSO, each particle except the best one learns from any
particle that is better than itself. This strategy is also known
as the social learning mechanism. That is, SLPSO allows
the particles to learn from different particles instead of just
learning from gbest and pbest like standard PSO. Therefore,
SLPSO can increase population diversity because all the parti-
cles will not be excessively affected by gbest, which can avoid
prematurely falling into the local optima.

In SLPSO, all the particles in the current swarm are sorted
based on their fitness values from the worst to the best at the
beginning of every generation. Then, all the particles (except
the best particle) will update each dimension by learning from
a better particle. For each particle, if there are multiple par-
ticles better than itself, it will randomly select one of them
to guide the update. Note that the particle may use differ-
ent particles to guide different dimensions. In other words,
each particle can learn from multiple better particles, which
increases the diversity of the population. Assuming that in the
dth dimension, particle i selects to learn from particle k, the
updating process is shown as

vid(t + 1) = r1 · vid(t) + r2 · (xkd(t) − xid(t)) (3)

+ ε · r3 · (xd(t) − xid(t))

xid(t + 1) =
{

xid(t) + vid(t + 1), if rand(0, 1) ≤ Pi

xid(t), otherwise
(4)

where t represents the current generation, x and v are the
position vector and velocity vector like the standard PSO,
respectively, r1, r2, and r3 are three random numbers that are
generated uniformly distributed in [0, 1]; ε is a parameter
named social influence factor, and xd represents the average
value of the dth dimension in the position vector of all par-
ticles. Note that the k is reselected for each dimension. Pi

is a parameter named learning probability used to control
whether the particle needs to be updated or not and it is related
to the rank of the particle. The learning probability of each
particle is different and the learning probability of better par-
ticles will be lower. As the particles have been sorted from
the worst to the best, Pi is calculated as

Pi =
(

1 − i − 1

N

)μ·log
(⌈ D

M

⌉)

(5)

where i represents the index of the particle in the sorted pop-
ulation from the worst to the best, N is the population size, μ

and M are set to 0.5 and 100 as in the original paper [30],
respectively, and D represents the problem dimensionality.
When the fitness value of the particle is worse, the rank value
of i will be lower, so that the learning probability Pi will be
larger. Therefore, the worse particles have a higher chance
to update their positions to find better solutions. In addition,
Pi is also related to the problem dimensionality D. When D
increases, the learning probability Pi will decrease to maintain

the population diversity and avoid premature convergence for
larger scale problems.

In addition to using social learning mechanism, SLPSO also
adapts the relevant parameters according to the dimensional-
ity of the problem which can alleviate the sensitivity of the
parameters, such as the values of the population size N and
the social influence factor ε. N and ε are calculated as

N = M +
⌊

D

10

⌋
(6)

ε = β · D

M
(7)

where β is set to 0.01 according to the suggestion in the orig-
inal paper [30] because the value of ε should be relatively
small to avoid premature convergence. Moreover, N and ε is
also related to the problem dimensionality D. The value of N
and ε will increase with the increase of the value of D, which
can increase the population diversity for larger scale problems.

III. SLPSO-ARS

SLPSO has been proven to have good performance in solv-
ing LSOPs. However, in every generation of the algorithm, not
all the particles in the swarm can be updated similarly because
each particle has different learning probability. Moreover,
SLPSO uses different guidance information for different par-
ticles and different dimensions to maintain the diversity. So,
SLPSO often results in slow convergence speed. Therefore,
SLPSO still has room for further improvement. In order to
accelerate the convergence speed of SLPSO, we propose to
encode the solution by the RES and to execute the novel local
search strategy named ARS to further improve the algorithm,
forming the SLPSO with ARS (SLPSO-ARS). Subsequently,
we will first present the RES and then the ARS strategy. The
complete SLPSO-ARS is given at last.

A. RES

The basic idea of RES is that each particle i is no longer
a single point as xi = {xi1, xi2, . . . , xiD}, but has a radius
ri to represent a region with xi as the region center. This way,
the region-based solution can cover a wider range of search
space. The illustration of point-based encoding scheme and
the region-based encoding scheme is compared in Fig. 1(a)
and (b).

As shown in Fig. 1, the solid black dots stand for the par-
ticles xi. For the point-based encoding scheme, each particle
can only represent one position, as shown in Fig. 1(a). For the
region-based encoding scheme, as shown in Fig. 1(b), each
particle xi has its own region with radius ri [as shown by
the dotted circle in Fig. 1(b)]. In this way, each particle can
occupy a region and find a better solution in the wide search
space. Moreover, each particle can execute local search in its
own region and quickly find the best position in the region,
which is able to greatly speed up the convergence because
the local search is sometimes more efficient than evolutionary
operations for exploitation. If the global optimum is within
the region of particle xi, it can quickly find the global optimal
solution. If the RES is not used, the particle xi may easily

782 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 4, AUGUST 2021

(a) (b) (c)

Fig. 1. Two encoding scheme and ARS strategy. (a) Point-based encoding scheme. (b) Region-based encoding scheme. (c) ARS strategy.

Algorithm 1: ARS
Begin

1: For j = 1 to T
2: n = rand_int(1, D);
3: For d = 1 to D
4: Perturb the particle according to (8);
5: End For
6: If f(x′

i) < f(xi)

7: xi = xi’;
8: End If
9: FEs = FEs + 1;

10: End For
11: Modify the region radius ri of the particle i accord-

ing to (9).

End

learn from other particles which are currently better than par-
ticle xi but are near the local optima, and then be drawn to
the position near local optima. Therefore, RES is very helpful
to accelerate the convergence speed of the algorithm.

B. ARS

Based on the RES, the ARS strategy can offer the particle
with a greater chance to obtain more promising solutions by
the RS. Herein, the adaptation of RS means that in the evo-
lutionary process, the region radius ri of each particle will be
adaptively changed and adjusted according to the RS results.
Take Fig. 1(c) as an example to illustrate the ARS strategy. x1,
x2, . . . , x5 are five particles and the top position of the fitness
landscape is the optimal solution. In addition, the red dashed
arrows represent the finding direction of the particles in the
RS. Compared with Fig. 1(b), the particles x1 and x4 have
found better positions x1

new and x4
new in the current genera-

tion, respectively, which means that the radius are promising
for the particles and should be further enhanced. Therefore,
the ARS strategy increases their region radii r1 and r4 to
r1

new and r4
new, respectively, in order to use a larger radius

to help the particles fast move to the optimal solutions. On
the contrary, the particles x2, x3, and x5 cannot find a better
position than their original positions, which means their cur-
rent positions may be in the promising regions and too large
radius may make the particles overstep the optimal positions.
Therefore, the ARS strategy decreases their region radius r2,
r3, and r5 to r2

new, r3
new, and r5

new, respectively, in order

to make exploitation in the promising regions with smaller
radius. Moreover, the RS is carried out on some of the best
(e.g., the top P) particles at the end of every generation. The
procedure of the RS on each performed particle is described
as follows.

Every time when executing RS, every dimension of the
particle will be perturbed with a probability ρ in the region
centered at the particle with a radius ri, namely, search the
region near the particle i. Then, if a solution better than par-
ticle i is found, the particle i will be replaced by this better
solution. Therefore, RS not only can help the population to
jump out of the local optimal solutions but also can acceler-
ate the convergence speed of population, so that it can solve
LSOPs better.

When particle i is carrying out RS, the dth dimension of
the perturbed particle xi’ is generated as

x
′
id =

{
xid + N(0, 1) · ri, if d == n or rand(0, 1) < ρ

xid, otherwise
(8)

where xi’ and xi are the position vectors of the perturbed
particle i and the original particle i respectively. ρ is a param-
eter named perturbation probability, which is used to control
whether the dimension of the particle is changed when car-
rying out RS. As we generally only choose some of the best
(e.g., the top P) particles in the current swarm to carry out
RS, these particles may already have very good information
in most of the dimensions and a large perturbation may be
harmful. Therefore, a relatively small value of ρ is beneficial
to guarantee the properties of the best particles to a large extent
and most of the good dimensions will not be destroyed. That
is, if the value of ρ is set too large, more dimensions of the
best particles will be changed, resulting in poor performance
of the perturbed particles due to the more difference with the
original best particles. Therefore, the value of ρ is relatively
small in SLPSO-ARS. The n is a random integer which is gen-
erated uniformly distributed within [1, D], where D represents
the dimensionality of the problem. Here, it is to make sure that
the perturbed particle xi’ is not exactly the same as the original
particle xi. N(0, 1) represents the random number generated in
the standard Gaussian distribution, and ri represents the region
radius of particle i, which is adaptively changed according to
the evolutionary process. When the fitness value of xi’ is better
than xi, xi will be replaced with xi’. The above perturbation
process will be repeated T times, which is equivalent to gen-
erating T new particles in the search region nearby particle i.

JIAN et al.: REGION ENCODING HELPS EC EVOLVE FASTER: NEW SOLUTION ENCODING SCHEME FOR LSOPs 783

If none of the perturbed particles which is better than the orig-
inal particle i is found after T times of RS, indicating that the
original particle i may have found an approximate global or
local optimal solution, which is also an approximate optimal
solution in its own region, so the region radius ri of particle
i will be decreased. Otherwise, the region radius ri will be
increased to explore the optimal solutions in a larger region.
The update rule of region radius ri is shown as

ri =
⎧
⎨

⎩

ri·c, if none of the T particles
is better than the orginal particle i

ri/c, otherwise
(9)

where c is a parameter within [0, 1], named the scaling factor.
It should be noted that the region radius r has a maximum

value rmax. If the value of r exceeds rmax when it changes,
set r = rmax. The value of rmax is gradually reduced over the
evolutionary process. rmax is calculated as

rmax = r0 · maxFEs − FEs + 1

maxFEs
(10)

where r0 is the initial region radius, and FEs and maxFEs are
the current and maximum number of fitness evaluations (FEs),
respectively. The procedure of ARS is shown in Algorithm 1.

C. SLPSO-ARS

SLPSO-ARS is proposed on the basis of SLPSO. This
algorithm embeds the new local search strategy named ARS
introduced in Algorithm 1 to improve the ability of SLPSO in
solving LSOPs, which can accelerate the convergence speed
of the population while maintaining population diversity. In
SLPSO-ARS, the evolutionary process still adopts SLPSO,
but the main difference is the addition of the ARS strategy
after updating the particles. At the end of every generation,
all the particles in the current swarm are sorted based on their
fitness values from the worst to the best. Then, the top P
particles are selected to carry out RS. Since we only select
a small part of particles in the population to execute RS, other
particles remain unchanged, so the algorithm keeps the prop-
erties of original population to a large extent for the purpose
of maintaining the diversity. At the same time, the algorithm
will select the top P particles to carry out RS according to
the rank, which has a greater chance to search for the nearby
optima. Therefore, the ARS strategy can help the population
to converge faster.

Based on the ARS strategy in Algorithm 1, the process
of the complete SLPSO-ARS is shown in Algorithm 2. In
Algorithm 2, we only select some particles with higher rank
to execute RS, which not only can save FEs but also have
a higher chance to find the nearby optimal solutions. In addi-
tion, it should be noted that the region radius r of each particle
is initialized to r0 at the beginning of the algorithm, and the
r0 is calculated as

r0 = ubound − lbound

10
(11)

where ubound and lbound are the upper and lower bounds of
the problem space, respectively.

Algorithm 2: SLPSO-ARS
Begin

1: N = 200; ε = 0.1; P = 5; T = 5; ρ = 0.01; c = 0.5;
2: Population initialization: randomly generate N particles

and calculate the fitness value of each particle;
3: Initialize the region radius r of each particle to be r0;
4: Sort all the particles based on the fitness values from the

worst to the best; //This is required by SLPSO
5: FEs = FEs + N;
6: While FEs ≤ maxFEs
7: For i = 1 to N-1
8: If rand(0, 1) ≤ Pi

9: For d = 1 to D
10: k = randi_int(i + 1, N);
11: Update the particles according to (3) and (4);
12: End For
13: Calculate the fitness value of particle i;
14: FEs = FEs + 1;
15: End If
16: End For
17: Sort all the particles according to the fitness values and

select the top P particles;
18: //Carry out ARS
19: For i = 1 to P
20: Execute ARS using Algorithm 1;
21: End For
22: Sort all the particles based on the fitness values from

the worst to the best. //This is required by SLPSO
23: End While
End

The advantage of SLPSO-ARS over SLPSO is that it intro-
duces a novel RES and a new local search strategy ARS based
on the RES. The ARS strategy has two main advantages.

1) By selecting the particles with better fitness values
at the end of every generation to execute RS and search
the better solutions in the region near the particles,
the chance of finding the nearby optimal solutions is
increased and the convergence speed of the popula-
tion can be accelerated. Moreover, a small value of
perturbation probability ρ is used to perturb the dimen-
sions of the particles when executing RS, so most of
the excellent properties of the original particles are
maintained.

2) Each particle has its own region radius r and the region
radius r can be changed adaptively during the evolu-
tionary process. Therefore, each particle has the most
suitable region radius r, which can ease the sensitivity
of this parameter.

IV. EXPERIMENTS

In this section, we adopt two LSOPs benchmark test sets
to validate the effectiveness and efficiency of SLPSO-ARS
in solving LSOPs. First, in Section IV-A, we will show
the experimental setup and give the parameter settings of
SLPSO-ARS. Subsequently, Sections IV-B and IV-C present

784 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 4, AUGUST 2021

TABLE I
EXPERIMENTAL RESULTS OF SLPSO-ARS AND THE COMPARED ALGORITHMS ON THE CEC 2010 LARGE-SCALE BENCHMARK TEST SET

the experimental results of SLPSO-ARS and several well-
known large-scale optimization algorithms on the CEC 2010
and CEC 2013 large-scale benchmark test sets, respectively.
Then, comparison experiments between SLPSO-ARS and the
winning algorithm in CEC 2010 competition are conducted in
Section IV-D. Finally, Section IV-E investigates some impor-
tant parameters of SLPSO-ARS and the influence of its some
components.

A. Parameters and Experimental Settings

In the experiments, we adopt two extensively used
LSOPs benchmark test sets (the CEC 2010 large-scale
benchmark set [58] and CEC 2013 large-scale bench-
mark set [59]) to validate the performance of SLPSO-
ARS, like many other works [47], [53], [56]. In addition,

we compare the experimental results obtained by SLPSO-
ARS with seven well-known large-scale optimization algo-
rithms, including four algorithms using the CC method
(CCPSO2 [39], DECC-G [29], MLCC [41], and DECC-
DG [43]) and three non-CC method algorithms (SLPSO [30],
CSO [54], and DMS-L-PSO [31]), to further show the supe-
riority of the new SLPSO-ARS algorithm.

In parameter settings of SLPSO-ARS, the population size
N is set to 200, the social influence factor ε is set to 0.1, the
number of particles for ARS (i.e., the P) and the times for
RS (i.e., the T) are both set to 5, perturbation probability ρ

and scaling factor c are set to 0.01 and 0.5, respectively. The
parameters tuning and effects of SLPSO-ARS will be investi-
gated in Section IV-E. In terms of the compared algorithms, all
the parameters are set based on their original papers because

JIAN et al.: REGION ENCODING HELPS EC EVOLVE FASTER: NEW SOLUTION ENCODING SCHEME FOR LSOPs 785

TABLE II
EXPERIMENTAL RESULTS OF SLPSO-ARS AND THE COMPARED ALGORITHMS ON THE CEC 2013 LARGE-SCALE BENCHMARK TEST SET

their parameters have been fine tuned for solving the related
LSOPs. For the sake of fairness, the maximum number of FEs
of all the algorithms is uniformly set to 3e6. In order to avoid
the occasionality of the results, the experimental results of all
the algorithms are obtained by running 30 times independently
and calculating the average values. Besides, SLPSO-ARS and
any of the compared algorithms are performed significance
analysis by carrying out Wilcoxon’s rank sum test with level
α = 0.05 in Sections IV-B and IV-C. We use the symbols “+,”
“−,” and “≈” to indicate SLPSO-ARS is significantly better
than, significantly worse than, and no significant difference to
the compared algorithms in Tables I and II, respectively. While
the symbols “+,” “−,” and “≈” indicate SLPSO-ARS is better
than, worse than, and the same as the compared algorithms in
Tables III, V, and VI, respectively. Moreover, the statistical
results are also given at the end of all the Tables. Note that
we also represent the optimal results (minimum mean values)
on each function in boldface.

B. Comparisons With Seven Well-Known Algorithms on the
CEC 2010 LSOPs Benchmark Test Set

The main properties of all the LSOPs in the CEC2010 large-
scale benchmark test set [58] are presented in Table S.I in

the supplementary material. There are 20 LSOPs in this
benchmark set, including three completely separable func-
tions (f 1–f 3), 15 partially separable functions (f 4–f 18), and
two completely nonseparable functions (f 19 and f 20). The
experimental results of SLPSO-ARS and the compared algo-
rithms on the CEC 2010 large-scale benchmark test set are
shown in Table I.

Since SLPSO-ARS is improved on the basis of SLPSO, we
first observe the comparison results between these two algo-
rithms. As shown in Table I, for three completely separable
functions (f 1–f 3), SLPSO-ARS achieves better performance
than SLPSO on functions f 1 and f 3, especially on func-
tion f 3. In terms of 15 partially separable functions (f 4–f 18),
SLPSO-ARS performs better than SLPSO among nine func-
tions (i.e., f 5–f 7, f 10, f 11, f 13, f 15, f 16, and f 18), while SLPSO
outperforms SLPSO-ARS only on 6 functions. Especially on
functions f 6, f 11, and f 16, the performance of SLPSO-ARS
is much better than SLPSO, which are more than nine orders
of magnitude better than SLPSO. For the last two nonsepara-
ble functions (f 19 and f 20), SLPSO-ARS also performs better
than SLPSO.

Overall, among the 20 LSOPs in the CEC 2010 bench-
mark test set, SLPSO-ARS is significantly better than SLPSO

786 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 4, AUGUST 2021

(a) (b) (c)

(d) (e) (f)

Fig. 2. Convergence curves of SLPSO-ARS and the compared algorithms on six representative functions in the CEC 2010 large-scale benchmark test set.
(a) Completely separable function f 1. (b) Completely separable function f 3. (c) Partially separable function f 6. (d) Partially separable function f 11. (e) Partially
separable function f 16. (f) Completely nonseparable function f 20.

TABLE III
EXPERIMENTAL RESULTS OF SLPSO-ARS AND MA-SW-CHAINS ON THE

CEC 2010 LARGE-SCALE BENCHMARK TEST SET

on 13 functions, while SLPSO achieves significantly better
performance than SLPSO-ARS only on seven functions.
Especially on the Ackley functions (i.e., f 3, f 6, f 11, and f 16),
the performance of SLPSO-ARS is particularly outstanding.

In addition to SLPSO, from Table I, we can see that
among the 20 LSOPs in the CEC 2010 large-scale bench-
mark test set, SLPSO-ARS performs significantly better than
CSO, DMS-L-PSO, CCPSO2, DECC-G, MLCC, and DECC-
DG on 15, 20, 14, 16, 13, and 13 functions, respectively, while
all the compared algorithms cannot perform significantly bet-
ter than SLPSO-ARS on more than six functions. Therefore,
SLPSO-ARS shows outstanding performance and generally
outperforms the compared algorithms on the CEC 2010 LSOPs
benchmark test set.

Moreover, we further conduct another two statistical tests,
i.e., t-test [60] and the Friedman test [21], to further validate
the performance of SLPSO-ARS. The results of the t-test and
Friedman test with significance level α = 0.05 on the CEC
2010 test set are shown in Tables S.II and S.III in the supple-
mentary material, respectively. The p-value in Table S.II in the
supplementary material represents whether the performance of
SLPSO-ARS is significantly better than the compared algo-
rithms. From Table S.II in the supplementary material, we
can see that SLPSO-ARS performs significantly better than the
compared algorithms on at least 12 functions among 20 func-
tions in the CEC 2010 test set, while none of the compared
algorithms can perform significantly better than SLPSO-ARS
on more than seven functions. In Table S.III in the supple-
mentary material, the values in the parentheses represent the
performance rank of the algorithms on the corresponding func-
tions by the Friedman test. The p-value represents whether the
performance of SLPSO-ARS is significantly better than the
compared algorithms. From Table S.III in the supplementary

JIAN et al.: REGION ENCODING HELPS EC EVOLVE FASTER: NEW SOLUTION ENCODING SCHEME FOR LSOPs 787

material, the p-values show that the performance of SLPSO-
ARS is significantly better than CSO, DMS-L-PSO, CCPSO2,
and DECC-DG. Although the performance of SLPSO-ARS is
not significantly different from SLPSO, MLCC, and DECC-
DG according to p-values, SLPSO-ARS has the best average
rank on the CEC 2010 test set and has the first rank on
seven functions, which is the most among all the algorithms.
Therefore, the t-test and Friedman test statistical analyses fur-
ther show that SLPSO-ARS has an overall better performance
than the compared algorithms on the CEC 2010 large-scale
test set.

Besides, in order to show the efficiency and convergence
speed of SLPSO-ARS on the CEC 2010 large-scale bench-
mark test set, we plot the evolutionary convergence curves of
SLPSO-ARS and the compared algorithms on some represen-
tative functions, including two completely separable functions
(f 1 and f 3), three partially separable functions (f 6, f 11,
and f 16), and one completely nonseparable function (f 20).
Fig. 2 displays the evolutionary convergence curves of all
the algorithms on these 6 functions. As shown in Fig. 2(a),
only MLCC, SLPSO, and SLPSO-ARS are able to converge
faster and find the better solutions on the completely separable
function f 1. Although the final solution found by SLPSO-
ARS does not outperform MLCC, the convergence speed of
these two algorithms is similar from the convergence curves in
Fig. 2(a). On the completely separable function f 3 and partially
separable functions f 6 and f 11 in Fig. 2(b)–(d), SLPSO-ARS
achieves better performance than the compared algorithms in
both the convergence speed and the accuracy of the final
solution, especially on function f 11. On partially separable
function f 16 in Fig. 2(e), most of the algorithms fall into
local optima prematurely, only CSO, DECC-DG, and SLPSO-
ARS can continuously converge and DECC-DG can find the
better solution than other algorithms. However, SLPSO-ARS
converges faster than DECC-DG in the early stage on this
function. In Fig. 2(f), in terms of completely nonseparable
function f 20, we can see that most algorithms have the sim-
ilar performance except DMS-L-PSO and DECC-DG, but
SLPSO-ARS can find the better results than the compared
algorithms.

Furthermore, we present the experimental results of each
algorithm in 30 independent runs by box-plots on some repre-
sentative functions (the same as those functions for evolutionary
convergence curves in Fig. 2) in Fig. S.1 in the supplementary
material. As shown in Fig. S.1 in the supplementary material,
we can see that there are some outliers (denoted by the red
“+” symbol) obtained by the compared algorithms, while the
proposed SLPSO-ARS algorithm does not obtain any outlier on
these six functions. These results show that SLPSO-ARS not
only can find better solutions than the compared algorithms, but
also can maintain stable search ability in each independent run.

In conclusion, SLPSO-ARS generally outperforms the com-
pared algorithms on the CEC 2010 LSOPs test set.

C. Comparisons With Seven Well-Known Algorithms on the
CEC 2013 LSOPs Benchmark Test Set

The main properties of all the LSOPs in the CEC2013 large-
scale benchmark test set [59] are presented in Table S.IV

in the supplementary material. The CEC 2013 benchmark
test set is the newest benchmark test set and is also used
in CEC 2020 competition. There are 15 LSOPs in this test
set, including three completely separable functions (f 1–f 3),
eight partially separable functions (f 4–f 11), three overlapping
functions (f 12–f 14), and one completely nonseparable function
(f 15). The results of SLPSO-ARS and the compared algorithms
on the CEC 2013 large-scale benchmark test set are shown in
Table II.

Similarly, we first compare SLPSO-ARS with SLPSO. As
shown in Table II, for three completely separable functions
(f 1–f 3), the experimental results between these two algorithms
are similar to the completely separable functions in the CEC
2010 benchmark test set. In terms of eight partially sepa-
rable functions (f 4–f 11), SLPSO-ARS performs better than
SLPSO among the five functions (i.e., f 5, f 6, and f 9–f 11),
while SLPSO can only surpass SLPSO-ARS on three functions
(f 4, f 7, and f 8). Especially on function f 11, the performance of
SLPSO-ARS is much better than SLPSO. For three overlap-
ping functions (f 12–f 14) and the last completely nonseparable
function (f 15), the overall performance of SLPSO-ARS is also
better than SLPSO.

Overall, among the 15 LSOPs in the CEC 2013 bench-
mark test set, SLPSO-ARS is significantly better than SLPSO
on nine functions, while SLPSO achieves significantly bet-
ter performance than SLPSO-ARS only on five functions.
Therefore, even on the more complex problems (i.e., from
the CEC 2010 to the CEC 2013 benchmark test set), the
performance of SLPSO-ARS is still better than SLPSO.

In addition to SLPSO, Table II also displays that among the
15 LSOPs in the CEC 2013 large-scale benchmark test set,
SLPSO-ARS performs significantly better than CSO, DMS-
L-PSO, CCPSO2, DECC-G, MLCC, and DECC-DG on 13,
14, 12, 13, 10, and 15 functions, respectively, while all the
compared algorithms cannot perform significantly better than
SLPSO-ARS on more than four functions. Therefore, even on
the more complex LSOPs in the CEC 2013 benchmark test
set, SLPSO-ARS still has outstanding performance.

Moreover, we also conduct t-test [60] and Friedman
test [21] to further validate the performance of
SLPSO-ARS. The results of t-test and Friedman test
with significance level α = 0.05 on the CEC 2013 test set
are shown in Tables S.V and S.VI in the supplementary
material, respectively. From Table S.V in the supplementary
material, we can see that SLPSO-ARS performs significantly
better than SLPSO, CSO, DMS-L-PSO, CCPSO2, DECC-G,
MLCC, and DECC-DG on 8, 13, 15, 12, 13, 11, and
14 functions among the 15 functions in the CEC 2013 test
set, respectively, while all the compared algorithms cannot
perform significantly better than SLPSO-ARS on more than
5 functions. From Table S.VI in the supplementary material,
the p-values show that SLPSO-ARS performs significantly
better than CSO, DMS-L-PSO, CCPSO2, DECC-G, and
DECC-DG. Although the performance of SLPSO-ARS is not
significantly different from SLPSO and MLCC according to
the p-values, SLPSO-ARS still has the best average rank on
the CEC 2013 test set and has the first rank on six functions,
which is also the most among all the algorithms. Therefore,
the t-test and Friedman test statistical analyses further show

788 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 4, AUGUST 2021

TABLE IV
PARAMETERS P AND T INVESTIGATION OF SLPSO-ARS ON THE CEC 2010 LARGE-SCALE BENCHMARK TEST SET

that SLPSO-ARS has overall better performance than the
compared algorithms on the CEC 2013 large-scale test set.

Besides, to show the efficiency and convergence speed of
SLPSO-ARS on the CEC 2013 large-scale benchmark test set,
we plot the evolutionary convergence curves of SLPSO-ARS
and the compared algorithms on some representative functions,
including one completely separable function (f 1), three par-
tially separable functions (f 5, f 9, and f 11), one overlapping
function (f 13), and one completely nonseparable function (f 15).
Fig. 3 shows the evolutionary convergence curves of all the

algorithms on these six functions. As shown in Fig. 3(a), the
convergence curves on completely separable function f 1 are
similar to those in the CEC 2010 benchmark test set. On
partially separable function f 5 and overlapping function f 13,
as shown in Fig. 3(b) and (e), only SLPSO-ARS, CSO, and
SLPSO can converge faster and get more accurate results,
but SLPSO-ARS still has better performance than CSO and
SLPSO. On partially separable function f 9 in Fig. 3(c), CSO
is able to find the best results among all algorithms, but
SLPSO-ARS converges faster than the compared algorithms

JIAN et al.: REGION ENCODING HELPS EC EVOLVE FASTER: NEW SOLUTION ENCODING SCHEME FOR LSOPs 789

(a) (b) (c)

(d) (e) (f)

Fig. 3. Convergence curves of SLPSO-ARS and the compared algorithms on six representative functions in the CEC 2013 large-scale benchmark test set.
(a) Completely separable function f 1. (b) Partially separable function f 5. (c) Partially separable function f 9. (d) Partially separable function f 11. (e) Overlapping
function f 13. (f) Completely nonseparable function f 15.

in the early stage. In Fig. 3(d), in terms of partially separable
function f 11, SLPSO-ARS performs better than the compared
algorithms in both the convergence speed and the accuracy of
the final solution. On completely nonseparable function f 15 in
Fig. 3(f), most of the algorithms have the similar performance
except DMS-L-PSO. Although CCPSO2 can find the best solu-
tion on function f 15, the convergence curve of SLPSO-ARS
is very close to CCPSO2.

Furthermore, we also present the experimental results of
each algorithm in 30 independent runs by box-plots on some
representative functions (the same as those functions for evolu-
tionary convergence curves in Fig. 3) in Fig. S.2 in the supple-
mentary material. As shown in Fig. S.2 in the supplementary
material, SLPSO-ARS also obtains some outliers (denoted by
the red “+” symbol) since CEC 2013 is a more complex and
difficult test set than CEC 2010. However, SLPSO-ARS still
obtains overall better results than the compared algorithms.

In conclusion, SLPSO-ARS still generally performs bet-
ter than the compared algorithms on the CEC 2013 LSOPs
benchmark test set.

D. Comparisons With the Winning Algorithm in the CEC
2010 Competition

Molina et al. [33] proposed a memetic algorithm with
multiple local search strategies, which was the winning algo-
rithm in the CEC 2010 competition, named MA-SW-Chains.
In order to further highlight the superiority of SLPSO-
ARS, we compare SLPSO-ARS with MA-SW-Chains algo-
rithm. The experimental results between SLPSO-ARS and

MA-SW-Chains on the CEC 2010 LSOPs benchmark test set
are shown in Table III. Note that the experimental results of
MA-SW-Chains are directly referred to the original paper [33].

As shown in Table III, among the 20 LSOPs in the
CEC 2010 large-scale benchmark test set, SLPSO-ARS
achieves better performance than MA-SW-Chains on 11 func-
tions, while MA-SW-Chains dominates SLPSO-ARS only
on nine functions. Especially on functions f 1, f 6, f 11, and
f 16, SLPSO-ARS performs much better than MA-SW-Chains,
where SLPSO-ARS is more than five orders of magnitude bet-
ter than MA-SW-Chains. Even on these nine functions, where
SLPSO-ARS has worse performance than MA-SW-Chains, the
experimental results of SLPSO-ARS on these functions are
very close to MA-SW-Chains except functions f 12 and f 17.

Overall, compared with MA-SW-Chains which is the win-
ning algorithm on the CEC 2010 test set, SLPSO-ARS is still
very competitive and slightly better than MA-SW-Chains.

E. Parameters and Components Investigation in SLPSO-ARS

1) Investigation on the Number of Particles for ARS P and
RS Times T: The ARS strategy has two important parameters,
one is the number of (i.e., the top P) particles for ARS and
the other is RS times (i.e., T) of each best particle. If P and T
are set too small, the local search of the best particles may not
be sufficient to find the better solutions. If P and T are set too
large, a large number of FEs may be consumed. Therefore,
we need to investigate the impact of these two parameters
in SLPSO-ARS. We set a series of combinations of P and
T where P and T can be 5, 10, 15, or 20. Therefore, there

790 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 4, AUGUST 2021

TABLE V
COMPARISON BETWEEN SLPSO-ARS WITH SLPSO-ARS-R ON THE CEC 2010 LARGE-SCALE BENCHMARK TEST SET

are 16 (4 × 4) SLPSO-ARS variants with different P and T
values. Note that each SLPSO-ARS variant is named SLPSO-
ARS(x, y), where x and y stand for the value of P and T ,
respectively. For example, assuming that in one of the SLPSO-
ARS variants, P and T are set to 5 and 10, respectively, then
this SLPSO-ARS variant is named SLPSO-ARS(5, 10).

We adopt the CEC 2010 LSOPs benchmark test set to test
the performance of these 16 SLPSO-ARS variants. The mean
results are shown in Table IV. Moreover, the number of func-
tions which obtain the best result for each SLPSO-ARS variant
is given at the end of the table.

From Table IV, we can see that when RS times T is
fixed, the larger the P is used, the worse the performance
of SLPSO-ARS variants is. Therefore, among the four val-
ues mentioned above, setting the parameter P to 5 is the
best choice for SLPSO-ARS. When the parameter P is fixed,
a small value of T is more effective in solving completely
separable functions (e.g., f 1–f 3) and some simple partially sep-
arable functions (e.g., f 4–f 11), while a large value of T is more
suitable for solving some complex partially separable func-
tions (e.g., f 12–f 18) and completely nonseparable functions
(e.g., f 19 and f 20). This may be due to that the population
easily falls into the local optima when solving complex func-
tions, so increasing the RS times of best particles can help
the population jump out of the local optima more effectively.
Moreover, from the last row of statistical results in Table IV,
SLPSO-ARS(5, 5) and SLPSO-ARS(5, 20) have more best-
performing functions than other SLPSO-ARS variants, with
six and seven, respectively. Although SLPSO-ARS(5, 5) per-
forms worse than SLPSO-ARS(5, 20) on some complex
partially separable functions (e.g., f 12–f 15, f 17, and f 18) and

completely nonseparable functions (e.g., f 19 and f 20), the
results of SLPSO-ARS(5, 5) on these functions are very close
to SLPSO-ARS(5, 20). However, SLPSO-ARS(5, 5) is much
better than SLPSO-ARS(5, 20) on other functions, especially
on functions f 1, f 3, f 11, and f 16. Therefore, both parameters
P and T are set to 5 in SLPSO-ARS.

2) Effect of Adaptive Region Radius r: One of the innova-
tions in the ARS strategy in SLPSO-ARS is that each particle
has its own region radius r, and the region radius r of each
particle is adaptively adjusted during the evolutionary process.
Therefore, the adaptive region radius r allows different par-
ticles to have the most suitable region radius r in different
evolutionary state or for different problems. In order to validate
the effectiveness of the adaptive region radius r, we compare
SLPSO-ARS with adaptive region radius r with some SLPSO-
ARS variants with fixed region radius r, which are denoted as
SLPSO-ARS-R. Note that the value of R represents that the
region radius r of each particle is fixed to (ubound-lbound) ×
R, where ubound and lbound are the upper and lower bounds
of the problem space, respectively. For example, if R = 1/2,
then the region radius r is set to (ubound-lbound) × 1/2, and
r remains unchanged throughout the evolutionary process.

Similarly, we adopt the CEC 2010 LSOPs benchmark test
set to test the performance of SLPSO-ARS-R. Table V shows
the experimental results and we only present the mean values.

From Table V, we can see that among the 20 LSOPs in
the CEC 2010 benchmark test set, SLPSO-ARS performs
better than SLPRO-RS-1/2, SLPSO-ARS-1/5, SLPSO-ARS-
1/10, SLPSO-ARS-1/20, SLPSO-ARS-1/50, and SLPSO-
ARS-1/100 on 15, 15, 18, 13, 16, and 13 functions,
respectively, while all the SLPSO-ARS-R variants cannot

JIAN et al.: REGION ENCODING HELPS EC EVOLVE FASTER: NEW SOLUTION ENCODING SCHEME FOR LSOPs 791

TABLE VI
COMPARISON BETWEEN SLPSO-ARS WITH

SLPSO-ARS-WITHOUT-Rmax ON THE CEC 2010
LARGE-SCALE BENCHMARK TEST SET

outperform SLPSO-ARS for more than seven functions.
Therefore, SLPSO-ARS with adaptive region radius r has
better performance than some SLPSO-ARS variants with
fixed region radius r, which validates the effectiveness of the
adaptive region radius r.

3) Effect of rmax: In the ARS strategy, we set rmax to limit
the value of the region radius r and prevent it from expand-
ing infinitely. Moreover, rmax decreases linearly during the
evolutionary process. To validate the effectiveness of rmax,
we compare SLPSO-ARS with SLPSO-ARS variant which is
without rmax, and denoted as SLPSO-ARS-without-rmax.

We also use the CEC 2010 LSOPs benchmark test set
to test the performance of SLPSO-ARS-without-rmax. The
experimental results are presented in Table VI.

From Table VI, we can see that among the 20 LSOPs,
SLPSO-ARS achieves better performance than SLPSO-ARS-
without-rmax on 13 functions, while SLPSO-ARS-without-
rmax can only surpass SLPSO-ARS on six functions. In
addition, SLPSO-ARS-without-rmax performs better in solving
some complex partially separable functions and completely
nonseparable functions, such as functions f 12, f 14–f 17, and
f 19. When solving such functions, it is easy to get trapped
in the local optimal solutions. If without the limit of rmax,
the region radius r will expand infinitely when the better
solutions can be found during the RS, making the popula-
tion more likely to jump out of the region near the local
optimal solutions. However, SLPSO-ARS has a significant
advantage in solving completely separable functions and some
simple partially separable functions, such as functions f 1–f 11,
and the overall performance of SLPSO-ARS is better than

SLPSO-ARS-without-rmax on the CEC 2010 LSOPs bench-
mark test set. Therefore, this comparison experiment further
shows the effectiveness of the rmax.

V. CONCLUSION

In this article, we proposed a novel region-based encod-
ing scheme to extend the solution from a single point to
a region, which can help the algorithm evolve faster if the
region information can be well utilized. To this aim, the new
local search strategy, named ARS, was proposed based on
the RES to improve SLPSO, forming the SLPSO-ARS. In
SLPSO-ARS, some of the best (i.e., the top P) particles
will execute RS at the end of every generation to search
the better solutions near their current positions. The ARS
strategy not only can accelerate the convergence speed of
the population but also have a greater chance to find the
nearby optimal solutions. In addition, we adopt both the CEC
2010 and CEC 2013 LSOPs benchmark test sets to compare
SLPSO-ARS with some well-known large-scale optimization
algorithms. The experimental results showed that SLPSO-
ARS achieved generally better performance than the compared
large-scale optimization algorithms in terms of the accuracy
of the final solution and the convergence speed. Moreover, we
also investigated some important parameters of SLPSO-ARS
and validated the effectiveness of its related components.

As the RES and the ARS are the generic framework and
strategy that may be used in different EC algorithms, in the
future, we hope to apply the RES framework and the ARS
strategy to other EC algorithms and use them to solve real-
world optimization problems.

REFERENCES

[1] T. Blackwell and J. Kennedy, “Impact of communication topology in
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 23, no. 4,
pp. 689–702, Aug. 2019.

[2] X. F. Liu, Z. H. Zhan, Y. Gao, J. Zhang, S. Kwong, and J. Zhang,
“Coevolutionary particle swarm optimization with bottleneck objective
learning strategy for many-objective optimization,” IEEE Trans. Evol.
Comput., vol. 23, no. 4, pp. 587–602, Aug. 2019.

[3] J. Y. Li, Z.-H. Zhan, R. D. Liu, C. Wang, S. Kwong, and J. Zhang,
“Generation-level parallelism for evolutionary computation: A pipeline-
based parallel particle swarm optimization,” IEEE Trans. Cybern., early
access, Nov. 4, 2020, doi: 10.1109/TCYB.2020.3028070.

[4] S. Chen, A. B. Röhler, J. Montgomery, and T. Hendtlass, “An analysis
on the effect of selection on exploration in particle swarm optimization
and differential evolution,” in Proc. IEEE Congr. Evol. Comput., 2019,
pp. 3037–3044.

[5] X. Xia et al., “Triple archives particle swarm optimization,” IEEE Trans.
Cybern., vol. 50, no. 12, pp. 4862–4875, Dec. 2020.

[6] Z. G. Chen et al., “Multiobjective cloud workflow scheduling:
A multiple populations ant colony system approach,” IEEE Trans.
Cybern., vol. 49, no. 8, pp. 2912–2926, Aug. 2019.

[7] S. Z. Zhou, Z. H. Zhan, Z. G. Chen, S. Kwong, and J. Zhang, “A multi-
objective ant colony system algorithm for airline crew rostering problem
with fairness and satisfaction,” IEEE Trans. Intell. Transp. Syst., early
access, Jun. 8, 2020, doi: 10.1109/TITS.2020.2994779.

[8] M. Mavrovouniotis, F. M. Muller, and S. Yang, “Ant colony optimization
with local search for dynamic traveling salesman problems,” IEEE Trans.
Cybern., vol. 47, no. 7, pp. 1743–1756, Jul. 2017.

[9] D. Liang, Z.-H. Zhan, Y. Zhang, and J. Zhang, “An efficient ant colony
system approach for new energy vehicle dispatch problem,” IEEE Trans.
Intell. Transp. Syst., vol. 21, no. 11, pp. 4784–4797, Nov. 2020.

[10] J.-Y. Li, Z.-H. Zhan, C. Wang, H. Jin, and J. Zhang, “Boosting data-
driven evolutionary algorithm with localized data generation,” IEEE
Trans. Evol. Comput., vol. 24, no. 5, pp. 923–937, Oct. 2020.

http://dx.doi.org/10.1109/TCYB.2020.3028070
http://dx.doi.org/10.1109/TITS.2020.2994779

792 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 4, AUGUST 2021

[11] A. Mohammadi, H. Asadi, S. Mohamed, K. Nelson, and S. Nahavandi,
“Multiobjective and interactive genetic algorithms for weight tuning of
a model predictive control-based motion cueing algorithm,” IEEE Trans.
Cybern., vol. 49, no. 9, pp. 3471–3481, Sep. 2019.

[12] X.-Y. Zhang, J. Zhang, Y.-J. Gong, Z.-H. Zhan, W.-N. Chen, and Y. Li,
“Kuhn-Munkres parallel genetic algorithm for the set cover problem
and its application to large-scale wireless sensor networks,” IEEE Trans
Evol. Comput., vol. 20, no. 5, pp. 695–710, Oct. 2016.

[13] J. Y. Li, Z. H. Zhan, H. Wang, and J. Zhang, “Data-driven
evolutionary algorithm with perturbation-based ensemble sur-
rogates,” IEEE Trans. Cybern., early access, Aug. 10, 2020,
doi: 10.1109/TCYB.2020.3008280.

[14] B. Doerr and M. S. Krejca, “Significance-based estimation-of-
distribution algorithms,” IEEE Trans. Evol. Comput., vol. 24, no. 6,
pp. 1025–1034, Dec. 2020.

[15] Z. G. Chen, Y. Lin, Y. J. Gong, Z. H. Zhan, and J. Zhang, “Maximizing
lifetime of range-adjustable wireless sensor networks: A neighborhood-
based estimation of distribution algorithm,” IEEE Trans. Cybern., early
access, Apr. 1, 2020, doi: 10.1109/TCYB.2020.2977858.

[16] P. Verma, K. Sanyal, D. Srinivsan, and K. S. Swarup, “Information
exchange based clustered differential evolution for constrained
generation-transmission expansion planning,” Swarm Evol. Comput.,
vol. 44, pp. 863–875, Feb. 2019.

[17] Z.-H. Zhan, Z. J. Wang, H. Jin, and J. Zhang, “Adaptive dis-
tributed differential evolution,” IEEE Trans. Cybern., vol. 50, no. 11,
pp. 4633–4647, Nov. 2020.

[18] Z.-G. Chen, Z.-H. Zhan, H. Wang, and J. Zhang, “Distributed individu-
als for multiple peaks: A novel differential evolution for multimodal
optimization problems,” IEEE Trans. Evol. Comput., vol. 24, no. 4,
pp. 708–719, Aug. 2020.

[19] Z.-H. Zhan et al., “Cloudde: A heterogeneous differential evolu-
tion algorithm and its distributed cloud version,” IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 3, pp. 704–716, Mar. 2017.

[20] H. Zhao et al., “Local binary pattern-based adaptive differential evo-
lution for multimodal optimization problems,” IEEE Trans. Cybern.,
vol. 50, no. 7, pp. 3343–3357, Jul. 2020.

[21] A. K. Ball, S. S. Roy, D. R. Kisku, N. C. Murmu, and L. D. S. Coelho,
“Optimization of drop ejection frequency in EHD inkjet printing system
using an improved firefly algorithm,” Appl. Soft Comput., vol. 94,
Sep. 2020, Art. no. 106438.

[22] E. H. D. V. Segundo, V. C. Mariani, and L. D. S. Coelho, “Design of
heat exchangers using falcon optimization algorithm,” Appl. Thermal
Eng., vol. 156, pp. 119–144, Jun. 2019.

[23] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., 1995, pp. 1942–1948.

[24] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in
Proc. IEEE World Congr. Comput. Intell., 1998, pp. 69–73.

[25] Y. Guo, J. Y. Li, and Z. H. Zhan, “Efficient hyperparameter optimization
for convolution neural networks in deep learning: A distributed particle
swarm optimization approach,” Cybern. Syst., vol. 52, no. 1, pp. 36–57,
Oct. 2020.

[26] Y. Lin, Y. S. Jiang, Y. J. Gong, Z. H. Zhan, and J. Zhang, “A discrete
multiobjective particle swarm optimizer for automated assembly of par-
allel cognitive diagnosis tests,” IEEE Trans. Cybern., vol. 49, no. 7,
pp. 2792–2805, Jul. 2019.

[27] X. F. Liu et al., “Neural network-based information transfer for dynamic
optimization,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 5,
pp. 1557–1570, May 2020.

[28] Q. Lin et al., “Particle swarm optimization with a balanceable fit-
ness estimation for many-objective optimization problems,” IEEE Trans.
Evol. Comput., vol. 22, no. 1, pp. 32–46, Feb. 2018.

[29] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary
optimization using cooperative coevolution,” Inf. Sci., vol. 178, no. 15,
pp. 2985–2999, 2008.

[30] R. Cheng and Y. C. Jin, “A social learning particle swarm optimization
algorithm for scalable optimization,” Inf. Sci., vol. 291, pp. 43–60,
Jan. 2015.

[31] S. Z. Zhao, J. J. Liang, P. N. Suganthan, and M. F. Tasgetiren,
“Dynamic multi-swarm particle swarm optimizer with local search for
large scale global optimization,” in Proc. IEEE Congr. Evol. Comput.,
2008, pp. 3845–3852.

[32] D. Molina and F. Herrera, “Iterative hybridization of DE with
local search for the CEC’2015 special session on large scale
global optimization,” in Proc. IEEE Congr. Evol. Comput., 2015,
pp. 1974–1978.

[33] D. Molina, M. Lozano, and F. Herrera, “MA-SW-Chains: Memetic algo-
rithm based on local search chains for large scale continuous global
optimization,” in Proc. IEEE Congr. Evol. Comput., 2010, pp. 1–8.

[34] J. Zhang, J. H. Zhong, and X. M. Hu, “A novel genetic algorithm with
orthogonal prediction for global numerical optimization,” in Proc. Conf.
Simulat. Evol. Learn., 2008, pp. 31–40.

[35] J. H. Zhong and J. Zhang, “Adaptive multi-objective differential evo-
lution with stochastic coding strategy,” in Proc. Conf. Genet. Evol.
Comput., 2011, pp. 665–672.

[36] J. R. Jian, Z. H. Zhan, and J. Zhang, “Large-scale evolutionary
optimization: A survey and experimental comparative study,” Int.
J. Mach. Learn. Cybern., vol. 11, no. 3, pp. 729–745, Mar. 2020.

[37] M. A. Potter and K. A. D. Jong, “A cooperative coevolutionary approach
to function optimization,” in Proc. Int. Conf. Parallel Problem Solving
Nat., 1994, pp. 249–257.

[38] F. Van den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225–239, Jun. 2004.

[39] X. Li and X. Yao, “Cooperatively coevolving particle swarms for
large scale optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 2,
pp. 210–224, Apr. 2012.

[40] Y. Shi, H. Teng, and Z. Li, “Cooperative co-evolutionary differential
evolution for function optimization,” in Proc. Int. Conf. Nat. Comput.,
2005, pp. 1080–1088.

[41] Z. Yang, K. Tang, and X. Yao, “Multilevel cooperative coevolution for
large scale optimization,” in Proc. IEEE Congr. Evol. Comput., 2008,
pp. 1663–1670.

[42] M. N. Omidvar, X. Li, and X. Yao, “Cooperative co-evolution with
delta grouping for large scale non-separable function optimization,” in
Proc. IEEE Congr. Evol. Comput., 2010, pp. 1762–1769.

[43] M. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution with
differential grouping for large scale optimization,” IEEE Trans. Evol.
Comput., vol. 18, no. 3, pp. 378–393, Jun. 2014.

[44] Y. Sun, M. Kirley, and S. K. Halgamuge, “Extended differential group-
ing for large scale global optimization with direct and indirect variable
interactions,” in Proc. Conf. Genet. Evol. Comput., 2015, pp. 313–320.

[45] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A competitive
divide-and-conquer algorithm for unconstrained large-scale black-box
optimization,” ACM Trans. Math. Softw., vol. 42, no. 2, pp. 1–24, 2016.

[46] M. N. Omidvar, B. Kazimipour, X. Li, and X. Yao, “CBCC3—
A contribution-based cooperative co-evolutionary algorithm with
improved exploration/exploitation balance,” in Proc. IEEE Congr. Evol.
Comput., 2016, pp. 3541–3548.

[47] M. Yang et al., “Efficient resource allocation in cooperative co-evolution
for large-scale global optimization,” IEEE Trans. Evol. Comput., vol. 21,
no. 4, pp. 493–505, Aug. 2017.

[48] B. Kazimipour, M. N. Omidvar, A. K. Qin, X. Li, and X. Yao,
“Bandit-based cooperative coevolution for tackling contribution imbal-
ance in large-scale optimization problems,” Appl. Soft Comput., vol. 76,
pp. 265–281, Mar. 2019.

[49] X. Zhang, K.-J. Du, Z.-H. Zhan, S. Kwong, T.-L. Gu, and J. Zhang,
“Cooperative coevolutionary bare-bones particle swarm optimization
with function independent decomposition for large-scale supply chain
network design with uncertainties,” IEEE Trans. Cybern., vol. 50, no. 10,
pp. 4454–4468, Oct. 2020.

[50] T. Takahama and S. Sakai, “Large scale optimization by differential
evolution with landscape modality detection and a diversity archive,” in
Proc. IEEE Congr. Evol. Comput., 2012, pp. 2842–2849.

[51] J. Brest, B. Boškovic, A. Zamuda, I. Fister, and M. S. Maucec, “Self-
adaptive differential evolution algorithm with a small and varying
population size,” in Proc. IEEE Congr. Evol. Comput., 2012, pp. 1–8.

[52] J. Brest and M. S. Maucec, “Self-adaptive differential evolution algo-
rithm using population size reduction and three strategies,” Soft Comput.,
vol. 15, no. 11, pp. 2157–2174, 2011.

[53] Q. Yang, W. N. Chen, J. D. Deng, Y. Li, T. Gu, and J. Zhang, “A level-
based learning swarm optimizer for large-scale optimization,” IEEE
Trans. Evol. Comput., vol. 22, no. 4, pp. 578–594, Aug. 2018.

[54] R. Cheng and Y. C. Jin, “A competitive swarm optimizer for large
scale optimization,” IEEE Trans. Cybern., vol. 45, no. 2, pp. 191–204,
Feb. 2015.

[55] Z.-J. Wang et al., “Dynamic group learning distributed particle
swarm optimization for large-scale optimization and its application
in cloud workflow scheduling,” IEEE Trans. Cybern., vol. 50, no. 6,
pp. 2715–2729, Jun. 2020.

http://dx.doi.org/10.1109/TCYB.2020.3008280
http://dx.doi.org/10.1109/TCYB.2020.2977858

JIAN et al.: REGION ENCODING HELPS EC EVOLVE FASTER: NEW SOLUTION ENCODING SCHEME FOR LSOPs 793

[56] Z. J. Wang, Z. H. Zhan, S. Kwong, H. Jin, and J. Zhang, “Adaptive
granularity learning distributed particle swarm optimization for large-
scale optimization,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1175–1188,
Mar. 2021.

[57] Y.-F. Ge et al., “Distributed differential evolution based on adaptive
mergence and split for large-scale optimization,” IEEE Trans. Cybern.,
vol. 48, no. 7, pp. 2166–2180, Jul. 2018.

[58] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, “Benchmark
functions for the CEC’2010 special session and competition on large-
scale global optimization,” Nat. Inspired Comput. Appl. Lab., Univ.
Sci. Technol. China, Anhui, China, Rep., 2010. [Online]. Available:
https://titan.csit.rmit.edu.au e46507/publications/lsgo-cec10.pdf

[59] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin, “Benchmark
functions for the CEC’2013 special session and competition on large-
scale global optimization,” Evol. Comput. Mach. Learn. Group, RMIT
Univ., Melbourne, VIC, Australia, Rep., 2013. [Online]. Available:
https://www.tflsgo.org/assets/cec2018/cec2013-lsgo-benchmark-tech-
report.pdf

[60] J. Carrasco, S. Garcia, M. M. Rueda, S. Das, and F. Herrera, “Recent
trends in the use of statistical tests for comparing swarm and evolution-
ary computing algorithms: Practical guidelines and a critical review,”
Swarm Evol. Comput., vol. 54, May 2020, Art. no. 100665.

Jun-Rong Jian (Student Member, IEEE) received
the B.S. degree in computer science and technol-
ogy from the South China University of Technology,
Guangzhou, China, in 2019, where he is currently
pursuing the M.S. degree.

His current research interests include evolutionary
algorithms, swarm intelligence algorithms, and their
applications in large-scale real-world optimization
problems.

Zong-Gan Chen (Student Member, IEEE) received
the B.S. degree from Sun Yat-sen University,
Guangzhou, China, in 2016. He is currently pursuing
the Ph.D. degree in computer science and technol-
ogy with the South China University of Technology,
Guangzhou.

His current research interests include evolution-
ary computation algorithms, swarm intelligence
algorithms, and their applications in real-world
optimization problems.

Zhi-Hui Zhan (Senior Member, IEEE) received the
bachelor’s and Ph.D. degrees in computer science
from Sun Yat-sen University, Guangzhou, China, in
2007 and 2013, respectively.

He is currently the Changjiang Scholar Young
Professor and the Pearl River Scholar Young
Professor with the School of Computer Science and
Engineering, South China University of Technology,
Guangzhou. His current research interests include
evolutionary computation algorithms, swarm intel-
ligence algorithms, and their applications in real-

world problems, and in environments of cloud computing and big data.
Dr. Zhan was a recipient of the Outstanding Youth Science Foundation

from National Natural Science Foundations of China in 2018, the Wu Wen-
Jun Artificial Intelligence Excellent Youth from the Chinese Association for
Artificial Intelligence in 2017, and the Doctoral Dissertation was Awarded the
IEEE Computational Intelligence Society Outstanding Ph.D. Dissertation and
the China Computer Federation Outstanding Ph.D. Dissertation. He is listed
as one of the Most Cited Chinese Researchers in Computer Science. He is cur-
rently an Associate Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION and Neurocomputing.

Jun Zhang (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from the City
University of Hong Kong, Hong Kong, in 2002.

He is currently a Visiting Scholar with Chaoyang
University of Technology, Taichung, Taiwan, and
Victoria University, Melbourne, VIC, Australia. His
current research interests include computational
intelligence, cloud computing, high-performance
computing, operations research, and power elec-
tronic circuits.

Dr. Zhang was a recipient of the Changjiang Chair
Professor from the Ministry of Education, China, in 2013, the China National
Funds for Distinguished Young Scientists from the National Natural Science
Foundation of China in 2011, and the First-Grade Award in Natural Science
Research from the Ministry of Education, China, in 2009. He is cur-
rently an Associate Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION and the IEEE TRANSACTIONS ON CYBERNETICS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

