
696 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 4, AUGUST 2021

Analysis of Evolutionary Algorithms on Fitness
Function With Time-Linkage Property

Weijie Zheng , Huanhuan Chen , Senior Member, IEEE, and Xin Yao , Fellow, IEEE

Abstract—In real-world applications, many optimization prob-
lems have the time-linkage property, that is, the objective function
value relies on the current solution as well as the historical solu-
tions. Although the rigorous theoretical analysis on evolutionary
algorithms (EAs) has rapidly developed in recent two decades, it
remains an open problem to theoretically understand the behav-
iors of EAs on time-linkage problems. This article takes the first
step to rigorously analyze EAs for time-linkage functions. Based
on the basic OneMax function, we propose a time-linkage func-
tion where the first bit value of the last time step is integrated
but has a different preference from the current first bit. We
prove that with probability 1 − o(1), randomized local search
and (1 + 1) EA cannot find the optimum, and with probability
1 − o(1), (µ + 1) EA is able to reach the optimum.

Index Terms—Convergence, evolutionary algorithms (EAs),
running time analysis, time linkage.

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs), one category of
stochastic optimization algorithms that are inspired by

Darwinian principle and natural selection, have been widely
utilized in real-world applications. Although EAs are sim-
ple and efficient to use, the theoretical understandings on the
working principles and complexity of EAs are much more

Manuscript received April 29, 2020; revised August 12, 2020, November
16, 2020, and January 11, 2021; accepted February 16, 2021. Date of
publication February 23, 2021; date of current version July 30, 2021.
This work was supported in part by the Guangdong Basic and Applied
Basic Research Foundation under Grant 2019A1515110177; in part by the
Guangdong Provincial Key Laboratory under Grant 2020B121201001; in part
by the Program for Guangdong Introducing Innovative and Enterpreneurial
Teams under Grant 2017ZT07X386; in part by the Shenzhen Science and
Technology Program under Grant KQTD2016112514355531; in part by the
Program for University Key Laboratory of Guangdong Province under Grant
2017KSYS008; in part by the National Natural Science Foundation of China
under Grant 61976111; and in part by the Science and Technology Innovation
Committee Foundation of Shenzhen under Grant JCYJ20180504165652917.
(Corresponding author: Xin Yao.)

Weijie Zheng is with the Guangdong Provincial Key Laboratory of
Brain-Inspired Intelligent Computation, Research Institute of Trustworthy
Autonomous Systems, Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China,
and also with the School of Computer Science and Technology, University of
Science and Technology of China, Hefei 230052, China.

Huanhuan Chen is with the School of Computer Science and Technology,
University of Science and Technology of China, Hefei 230027, China.

Xin Yao is with the Guangdong Provincial Key Laboratory of
Brain-Inspired Intelligent Computation, Research Institute of Trustworthy
Autonomous Systems, Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China,
and also with the CERCIA, School of Computer Science, University of
Birmingham, Birmingham B15 2TT, U.K. (e-mail: xiny@sustech.edu.cn).

Digital Object Identifier 10.1109/TEVC.2021.3061442

complicated and far behind the practical usage due to the dif-
ficulty of mathematical analysis caused by their stochastic and
iterative process.

In order to fundamentally understand EAs and ultimately
design efficient algorithms in practice, researchers begin the
rigorous analysis on functions with simple and clear structure,
majorly like pseudo-Boolean function and classic combina-
torial optimization problem, like in the theory books [1]–[5].
Despite the increasing attention and insightful theoretical anal-
yses in recent decades, there remain many important open
areas that have not been considered in the evolutionary theory
community.

One important open issue is about the time-linkage problem.
Time-linkage problem, first introduced by Bosman [6] into
the evolutionary computation community, is the optimization
problem where the objective function to be optimized relies
not only on the solutions of the current time but also the histor-
ical ones. In other words, the current decisions also influence
the future. There are plenty of applications with time-linkage
property. We just list the dynamic vehicle routing with time-
varying locations to visit [6] as a slightly detailed example.
Suppose that the locations are clustered. Then the current vehi-
cle serving some locations in one cluster is more efficient to
serve other locations in the same cluster instead of serving
the currently available locations when the locations oscillate
among different clusters in future times. Besides, the efficiency
of the current vehicle routing would influence the quality of
the service, which further influences the future orders, that is,
future locations to visit. In a word, the current routing and
the impact of it in the future together determine the income of
this company. The readers could also refer to the survey in [7]
to see more than 30 real-world applications, like an optimal
watering scheduling to improve the quality of the crops along
with the weather change [8].

The time-linkage optimization problems can be tackled
offline or online according to different situations. If the
problem pursues an overall solution with sufficient time
budget and time-linkage dynamics can be integrated into a
static objective function, then the problem can be solved
offline. However, in the theoretical understanding on the
static problem [1]–[5], no static benchmark function in the
evolutionary theory community is time linkage.

Another situation that the real-world applications often
encounter is that the solution must be solved online as the time
goes by. This time-linkage online problem belongs to dynamic
optimization problem [7]. As pointed out in [7], the whole
evolutionary community, not only the evolutionary theory

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8483-0161
https://orcid.org/0000-0002-3918-384X
https://orcid.org/0000-0001-8837-4442

ZHENG et al.: ANALYSIS OF EAs ON FITNESS FUNCTION WITH TIME-LINKAGE PROPERTY 697

community, is lack of research on these real-world problems.
The dynamic problem analyzed so far in the theory com-
munity majorly includes Dynamic OneMax [9], Magnitude
and Balance [10], Maze [11], Bi-stable problem [12],
dynamic linear function [13], and dynamic BinVal func-
tion [14] for dynamic pseudo-Boolean function, and dynamic
combinatorial problems, including single-destination shortest
path problem [15], makespan scheduling [16], vertex cover
problem [17], subset selection [18], graph coloring [19],
etc. However, there is no theoretical analysis on dynamic
time-linkage fitness function, even no dynamic time-linkage
pseudo-Boolean function is proposed for the theoretical
analysis.

The main contributions of this article can be summarized as
follows. This article conducts the first step toward the under-
standing of EAs on the time-linkage function. When solving
a time-linkage problem by EAs in an offline mode, the first
thing faced by the practitioners to utilize EAs is how they
encode the solution. There are obviously two straightforward
encoding ways. Take the objective function relying on solu-
tions of two time steps as an example. One way is to merely
ignore the time-linkage dependency by solving a nontime-
linkage function with double problem size. The other way is
to consider the time-linkage dependency, encode the solution
with the original problem size, but store the solutions gen-
erated in the previous time steps for the fitness evaluation.
When solving the time-linkage problem in an online mode, the
engineers need to know before they conduct the experiments
whether the algorithm they use can solve the problem or not.
Hence, in this article, we design a time-linkage toy function
based on OneMax to shed some light on these questions. This
function, called OneMax(0,1n) where n is the dimension size, is
the sum of two components, one is OneMax fitness of the cur-
rent n-dimensional solution, the other one is the value of the
first dimension in the previous solution but multiplying minus
dimension size. The design of this function considers the situ-
ation when the current solution prefers a different value from
the previous solution, which could better show the influence
of different encodings. Also, it could be the core element of
some dynamic time-linkage functions and used in the situation
that each time step we only optimize the current state of the
online problem in a limited time, so that the analysis of this
function could also show some insights to the undiscovered
theory for the dynamic time-linkage function.

For our results, this article analyzes the theoretical behav-
iors of randomized local search (RLS) and two most com-
mon benchmark EAs, (1 + 1) EA and (μ + 1) EA, on
OneMax(0,1n). We will show that with probability 1 − o(1),
RLS and (1 + 1) EA cannot find the optimum of OneMax(0,1n)

(Theorem 1) while the not small population size in (μ + 1)

EA can help it reach the optimum with probability 1 − o(1)

(Theorem 2). We also show that conditional on an event with
probability 1 − o(1), the expected runtime for (μ + 1) EA is
O(nμ) (Theorem 3).

The remainder of this article is organized as following.
In Section II, we introduce the motivation and details about
the designed OneMax(0,1n). Section III shows the theoretical
results of RLS and (1 + 1) EA on OneMax(0,1n), and our

theoretical results of (μ + 1) EA are shown in Section IV.
Our conclusion is summarized in Section V.

II. ONEMAX(0,1n) FUNCTION

A. OneMax(0,1n) Function

For the first time-linkage problem for theoretical analysis,
we expect the function to be simple and with clear structure.
OneMax, which counts the total ones in a bit string, is consid-
ered as one of the simplest pseudo-Boolean functions, and is
a well-understood benchmark in the evolutionary theory com-
munity on static problems. Choosing it as a base function to
add the time-linkage property could facilitate the theoretical
understanding on the time-linkage property. Hence, the time-
linkage function we will discuss in this article is based on
OneMax. In OneMax function, each dimension has the same
importance and the same preference for having a dimension
value 1. We would like to show the difference, or more aggres-
sively show the difficulty that the time-linkage property will
cause, which could better help us understand the behavior
of EAs on time-linkage problems. Therefore, we will intro-
duce the solutions of the previous steps but with different
importance and preference. For simplicity of analysis, we only
introduce one dimension, let us say the first dimension, value
of the last time step into the objective function but with the
weight of −n, where n is the dimension size. Other weights
could also be interesting, but for the first time-linkage bench-
mark, we just take −n to show the possible difficulty caused
by the time-linkage property. More precisely, this function
f : {0, 1} × {0, 1}n → Z is defined by

f (xt−1, xt) =
n∑

i=1

xt
i − nxt−1

1 (1)

for two consecutive xt−1 = (xt−1
1 , . . . , xt−1

n) and xt =
(xt

1, . . . , xt
n) ∈ {0, 1}n. Clearly, (1) consists of two components,

OneMax component relying on the current individual, and the
drawing-back component determined by the first bit value of
the previous individual. If our goal is to maximize (1), it is not
difficult to see that the optimum is unique and the maximum
value n is reached if and only if (xt−1

1 , xt) = (0, 1n). Hence,
we integrate (0, 1n) and call (1) OneMax(0,1n) function.

The maximization of the proposed OneMax(0,1n) function
specializes the maximization of the more general time-linkage
pseudo-Boolean problems h : {0, 1}n × · · · × {0, 1}n → R

defined by

h
(

xt0 , . . . , xt0+�
)

=
�∑

t=0

ht

(
xt0+t; xt0 , . . . , xt0+t−1

)
(2)

for consecutive xt0 , xt0+1, . . . , xt0+�, where � ∈ N and could
be infinite. OneMax(0,1n) function could be regarded as a spe-
cialization with � = 1, h0(xt0) = −nxt0

1 , and h1(xt0+1; xt0) =∑n
i=1 xt0+1

i . We acknowledge that more complicated models
are more interesting and practical, like with � > 1, with
more than one bit value and with other weight values for
the historical solutions, etc., but current specialization facil-
itates the establishment of the first theoretical analysis for the

698 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 4, AUGUST 2021

time-linkage problems, and our future work will focus on the
analyses of more complicated models.

B. Some Notes

Time-linkage optimization problem can be solved offline or
online due to different situations. In the following, we follow
the main terminology from [6], the first paper that used the
term “time-linkage” and introduced it into the evolutionary
computation community.

1) Offline Mode: Solving the general time-linkage problem
h defined above in an offline mode means that we could eval-
uate all possible (xt0 , xt0+1, . . . , xt0+�) before determine the
final solution for the problem h. In this case, the optimum
is defined differently when we use different representations.
Obviously, there are two straightforward kinds of represen-
tations. One is ignoring the time-linkage fact and encoding
(xt0 , xt0+1, . . . , xt0+�) into an n(�+1)-bit string as one solution,
and the optimum is a search point with n(� + 1) dimensions.
We denote this optimum as X∗. Since the problem is trans-
ferred to a traditional nontime-linkage problem, it is not of
interest of our topic.

The other kind of representation is considering the time-
linkage property and encoding (xt′ , xt′+1, . . . , xt0+�), t′ > t0,
into an m-bit string, m ∈ {n, 2n, . . . , �n}, and storing other
historical solutions for objective function evaluation. In this
case, the optimum is a search point with m dimensions taking
the same values as the last m bit values of X∗, the optimum in
the first kind of representation, condition on the stored solu-
tions taking the same values as the corresponding bit values
of X∗. For the considered OneMax(0,1n) function, we encode
an n-bit string as one solution and store the previous result for
objective function evaluation, and the optimum is the current
search point with all 1s condition on that the stored previous
first bit has value 0. This representation is more interesting
to us since now h and OneMax(0,1n) function are truly time-
linkage functions and we could figure out how EAs react to the
time-linkage property. Hence, the later sections only consider
this representation when solving the OneMax(0,1n) function in
an offline mode is analyzed.

2) Online Mode: As in [6, Sec. 2], the online mode means
that we regard it as a dynamic optimization problem, and that
the process continues only when the decision on the current
solution is made, that is, solutions cannot be evaluated for
any time t > tnow and we can only evaluate the quality of the
historical and the present solutions. More precisely, at present
time tnow, we can evaluate

h̃
(

xt0 , . . . , xtnow
)

=
tnow−t0∑

t=0

h̃t

(
xt0+t; xt0 , . . . , xt0+t−1

)

where we note that h̃t could dynamically change and could
be different from ht, t = 0, . . . , tnow in (2) when the process
ends at t = t0 + �, since the impact of the historical solu-
tions could change when time goes by. Usually, for the online
mode, the overall optimum within the whole time period as
in the offline mode cannot be reached once some nonoptimal
solution is made in one time step. Hence, our goal is to obtain
the function value as larger as possible before the end of the

time period, or more specifically, to obtain some function value
above one certain threshold. We notice the similarity to the dis-
counted total reward in the reinforcement learning [20, Ch. 3].
However, as pointed in [6, Sec. 1], the online dynamic time-
linkage problem is fundamentally different since in each time
the decisions themselves are needed to be optimized and can
only be made once, while in reinforcement learning the poli-
cies are the solutions and the decisions during the process
serve to help determine a good policy.

Back to the OneMax(0,1n), the function itself is not suit-
able to be solved in an online mode since it only contains the
previous time step and the current step. However, we could still
relate OneMax(0,1n) function to online dynamic optimization
problems, via regarding it as one piece of the objective func-
tion that considers the overall results during a given time
period and each time step we only optimize the current piece.
For example, we consider the following dynamic problem:

h(x, t) = max
x

t∑

τ=2

e−t+τ−1xτ−2
1 − nxt−1

1 +
n∑

i=1

xt
i (3)

where x = {x2, . . . , xt}, xτ = (xτ
1, . . . , xτ

n) ∈ {0, 1}n for
τ = 0, 1, . . . , t and the initial x0 and x1 are given. For (3),
our goal is to find the solution at some time step t when
its function value is greater than n − 1. Since the previous
elements in 1, . . . , t − 2 time steps can contribute at most∑t

τ=2 e−t+τ−1 ≤ 1/(e − 1) value, the goal can be transferred
to find the time step when the component of the current
and the last step, that is, OneMax(0,1n), has the value of n.
Thus, if we take the strategy for online optimization that we
optimize the present each time as discussed in [6, Sec. 3],
that is, for the current time tcur, we optimize h(x, tcur) with
knowing x0, . . . , xtcur−1, then the problem can be functionally
regarded as maximizing OneMax(0,1n) function with n-bit
string encoding as time goes by. Hence, we could reuse the
optimum of OneMax(0,1n) function in the offline mode as our
goal for solving (3) in an online mode, and call it “optimum”
for this online mode with no confusion.

In summary, considering the OneMax(0,1n) problem, we note
that for the representation encoding n-bit string in an offline
manner and for optimizing present in an online dynamic man-
ner, the algorithm used for these two situations are the same
but with different backgrounds and descriptions of the oper-
ators. The details will be discussed when they are mentioned
in Sections III and IV.

III. RLS AND (1 + 1) EA CANNOT FIND THE OPTIMUM

A. RLS and (1 + 1) Utilized for OneMax(0,1n)

(1+1) EA is the simplest EA that is frequently analyzed as
a benchmark algorithm in the evolutionary theory community,
and RLS can be regarded as the simplification of (1 + 1) EA
and thus a prestep toward the theoretical understanding of
(1 + 1) EA. Both algorithms are only with one individual
in their population. Their difference is on the mutation. In
each generation, (1 + 1) EA employs the bit-wise mutation
on the individual, that is, each bit is independently flipped
with probability 1/n, where n is the problem size, while RLS

ZHENG et al.: ANALYSIS OF EAs ON FITNESS FUNCTION WITH TIME-LINKAGE PROPERTY 699

Algorithm 1 (1 + 1) EA/RLS to Maximize Fitness Function
f Requiring Two Consecutive Time Steps

1: Generate the random initial two generations X0 = (X0
1 , . . . , X0

n) and X1 =
(X1

1 , . . . , X1
n)

2: for g = 1, 2, . . . do
%% Mutation

3: For (1 + 1) EA, generate X̃g via independently flipping each bit value
of Xg with probability 1/n;

For RLS, generate X̃g via flipping one uniformly and randomly selected
bit value of Xg

%% Selection
4: if f (Xg−1, Xg) > f (Xg, X̃g) then
5: (Xg, Xg+1) = (Xg−1, Xg)

6: else
7: (Xg, Xg+1) = (Xg, X̃g)

8: end if
9: end for

employs the one-bit mutation, that is, only one bit among n
bits is uniformly and randomly chosen to be flipped. For both
algorithms, the generated offspring will replace its parent as
long as it has at least the same fitness as its parent.

The general RLS and (1 + 1) EA are utilized for nontime-
linkage function, and they do not consider how we choose
the individual representation and do not consider the require-
ment to make a decision in a short time. We need some
small modifications on RLS and (1 + 1) EA to handle the
time-linkage OneMax(0,1n) function. The first issue, the rep-
resentation choice, only happens when the problem is solved
in an offline mode. As mentioned in Section II-B, for the two
representation options, we only consider the one that encodes
the current solution and stores the previous solution for fit-
ness evaluation. In this encoding, we set that only offspring
with better or equivalent fitness could affect the further fit-
ness, hoping the optimization process to learn or approach to
the situations which are suitable for the time-linkage property.
Algorithm 1 shows our modified (1+1) EA and RLS for solv-
ing OneMax(0,1n), and we shall still use the name (1 + 1) EA
and RLS in this article with no confusion. In this case, the
optimum of OneMax(0,1n) is the 1n as the current solution
with the stored first bit value of the last generation being 0.
Practically, some termination criterion is utilized in the algo-
rithms when the practical requirement is met. Since we aim
at theoretically analyzing the time to reach the optimum, we
do not set the termination criterion here.

The second issue, the requirement to make a decision in a
short time, happens when the problem is solved in an online
mode. Detailedly, consider the problem (3) we discussed in
Section II-B that in each time step we just optimize the present.
If the time to make the decision is not so small that (1+1) EA
or RLS can solve the n-dimension problem (OneMax func-
tion), then we could obtain Xt = (1, . . . , 1) in each time
step t. Obviously, in this case, the sequence of {X1, . . . , Xt}
we obtained will lead to a fitness less than 1 for any time step
t, and thus we cannot achieve our goal and this case is not
interesting. Hence, we assume the time to make the decision
is small so that we cannot solve n-dimensional OneMax func-
tion, and we can just expect to find some result with better
or equivalent fitness value each time step. That is, we uti-
lize (1 + 1) EA or RLS to solve OneMax(0,1n) function, and
the evolution process can go on only if some offspring with

better or equivalent fitness appears. In this case, we can reuse
Algorithm 1, but to note that the generation step g need not
to be the same as the time step t of the fitness function since
(1 + 1) EA or RLS may need more than one generation to
obtain an offspring with better or equivalent fitness for one
time step.

In a word, no matter utilizing (1 + 1) EA and RLS to solve
OneMax(0,1n) offline or online, in the theoretical analysis, we
only consider Algorithm 1 and the optimum is the current
search point with all 1s condition on that the stored previous
first bit has value 0, without mentioning the solving mode and
regardless of the explanations of the different backgrounds.

B. Convergence Analysis of RLS and (1 + 1) on
OneMax(0,1n)

This section will show that with high probability RLS
and (1 + 1) EA cannot find the optimum of OneMax(0,1n).
Obviously, OneMax(0,1n) has two goals to achieve, one is to
find all 1s in the current string, and the other is to find the
optimal pattern (0, 1) in the first bit that the current first bit
value goes to 1 when the previous first bit value is 0. The two
goals are somehow contradictory, so that only one individual
in the population of RLS and (1+1) EA will cause poor fault
tolerance. Detailedly, as we will show in Theorem 1, with
high probability, one of twos goal will be achieved before
the optimum is found, but the population cannot be further
improved.

Since this article frequently utilizes different variants of
Chernoff bounds, to make it self-contained, we put them
from [21], [22] into Lemma 1. Besides, before establishing
our main result, with the hope that it might be beneficial for
further research, we also discuss in Lemma 2 the probability
estimate of the event that the increase number of ones from
one parent individual to its offspring is 1 under the condition
that the increase number of ones is positive in one iteration of
(1 + 1) EA, given the parent individual has a zeros.

Lemma 1 ([21], [22]): Let ξ1, ξ2, . . . , ξm be independent
random variables. Let � = ∑m

i=1 ξi:
1) if ξi takes values in [0, 1], then for all δ ∈ [0, 1],

Pr [� ≤ (1 − δ)E[�]] ≤ exp(−δ2E[�]/2);
2) if ξi takes values in an interval of length ci, then for all

λ ≥ 0, Pr [� ≥ E[�] + λ] ≤ exp(−2λ2/
∑m

i=1 ci);
3) if ξi follows the geometric distribution with success

probability p for all i ∈ [1..m], then for all δ ≥ 0,
Pr [� ≥ (1 + δ)E[�]] ≤ exp(−δ2(m − 1)/(2(1 + δ)));
for all δ ∈ [0, 1], Pr [� ≤ (1 − δ)E[�]] ≤
exp(−δ2m/(2−(4/3)δ)).

Lemma 2: Suppose X ∈ {0, 1}n. Y ∈ {0, 1}n is generated
by independently flipping each bit of X with probability 1/n.
Let a ∈ [1..n] be the number of zeros in X, and let |X| denote
the number of ones in X and |Y| for the number of ones in Y .
Then

Pr [|Y| − |X| = 1 | |Y| > |X|]

=
∑a

i=1

(a
i

)(n−a
i−1

) 1
n2i−1

(
1 − 1

n

)n−2i+1

∑a
i=1

∑i−1
j=0

(a
i

)(n−a
j

) 1
ni+j

(
1 − 1

n

)n−i−j

> 1 − ea

n
.

700 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 4, AUGUST 2021

Proof: Since

Pr [|Y| > |X|] =
a∑

i=1

i−1∑

j=0

(
a

i

)(
n − a

j

)
1

ni+j

(
1 − 1

n

)n−i−j

Pr [|Y| − |X| = 1] =
a∑

i=1

(
a

i

)(
n − a

i − 1

)
1

n2i−1

(
1 − 1

n

)n−2i+1

and Pr [(|Y| − |X| = 1) ∩ (|Y| > |X|)] = Pr [|Y| − |X| = 1],
we have

Pr [|Y| − |X| = 1 | |Y| > |X|]
= Pr [(|Y| − |X| = 1) ∩ (|Y| > |X|)]

Pr [|Y| > |X|]
=

∑a
i=1

(a
i

)(n−a
i−1

) 1
n2i−1 (1 − 1

n)n−2i+1

∑a
i=1

∑i−1
j=0

(a
i

)(n−a
j

) 1
ni+j (1 − 1

n)n−i−j
.

For a = 1, it is easy to see that

Pr [|Y| − |X| = 1 | |Y| > |X|] = 1 > 1 − e

n
.

For a ≥ 2, since

a∑

i=2

i−2∑

j=0

(
a

i

)(
n − a

j

)
1

ni+j

(
1 − 1

n

)n−i−j

=
a∑

i=2

(
a

i

)
1

ni

(
1 − 1

n

)n−i i−2∑

j=0

(
n − a

j

)
1

nj

(
1 − 1

n

)−j

≤
a∑

i=2

(
a

i

)
1

ni

(
1 − 1

n

)n−i i−2∑

j=0

(n − a)j

j!

1

(n − 1)j

≤
a∑

i=2

(
a

i

)
1

ni

(
1 − 1

n

)n−i

(i − 1)

=
a∑

i=2

a!

i!(a − i)!

1

ni

(
1 − 1

n

)n−i

(i − 1)

<

a∑

i=2

a!

(i − 1)!(a − i)!

1

ni

(
1 − 1

n

)n−i

(i − 1)

=
a∑

i=2

a!

(i − 2)!(a − i)!

1

ni

(
1 − 1

n

)n−i

= a(a − 1)

n2

a∑

i=2

(
a − 2

i − 2

)
1

ni−2

(
1 − 1

n

)n−i

≤ a(a − 1)

n2

a∑

i=2

(
a − 2

i − 2

)
1

ni−2

(
1 − 1

n

)a−i

= a(a − 1)

n2

(
1

n
+ 1 − 1

n

)a−2

= a(a − 1)

n2

and

a∑

i=1

i−1∑

j=0

(
a

i

)(
n − a

j

)
1

ni+j

(
1 − 1

n

)n−i−j

≥ a

n

(
1 − 1

n

)n−1

>
a

en

Fig. 1. Relationship between Theorem 1 and Lemmas 3–6.

we have
∑a

i=2
∑i−2

j=0

(a
i

)(n−a
j

) 1
ni+j (1 − 1

n)n−i−j

∑a
i=1

∑i−1
j=0

(a
i

)(n−a
j

) 1
ni+j

(
1 − 1

n

)n−i−j <

a(a−1)

n2

a
en

<
ea

n
.

With
a∑

i=1

(
a

i

)(
n − a

i − 1

)
1

n2i−1

(
1 − 1

n

)n−2i+1

=
a∑

i=1

i−1∑

j=0

(
a

i

)(
n − a

j

)
1

ni+j

(
1 − 1

n

)n−i−j

−
a∑

i=2

i−2∑

j=0

(
a

i

)(
n − a

j

)
1

ni+j

(
1 − 1

n

)n−i−j

the lemma is proved.
Now we show the behavior for RLS and (1+1) EA optimiz-

ing OneMax(0,1n) function. The outline to establish our main
theorem (Theorem 1) is shown in Fig. 1. First, Lemma 3 shows
two cases once one of them happens before the optimum is
reached, both RLS and (1 + 1) EA cannot find the optimum
in arbitrary further generations. Then for the nontrivial behav-
iors for three different initial states, Lemmas 4–6, respectively,
show that the algorithm will get stuck in one of the two cases.
In the following, all proofs do not specifically distinguish RLS
and (1 + 1) EA due to their similarity, and discuss each algo-
rithm independently only when they have different behaviors.
We start with one definition that will be frequently used in our
proofs.

Lemma 3: Consider using (1 + 1) EA (RLS) to optimize
n-dimensional OneMax(0,1n) function. Let X0, X1, . . . , be the
solution sequence generated by the algorithm. Let:

1) Event I: there is a g0 ∈ N such that (Xg0−1
1 , Xg0

1) = (0, 1)

and Xg0
[2..n] 	= 1n−1;

2) Event II: there is a g0 ∈ N such that (Xg0−1
1 , Xg0) =

(1, 1n).
Then if at a certain generation among the solution sequence,
Event I or Event II happens, then (1 + 1) EA (RLS) cannot
find the optimum of OneMax(0,1n) in an arbitrary long runtime
afterwards.

Proof: Consider the case when Event I happens, then
(Xg0−1

1 , Xg0
1) = (0, 1). In this case, the current fitness

f (Xg0−1, Xg0) ≥ 1. For every possible X̃g0 , the mutation out-
come of Xg0 , since Xg0

1 = 1, we know f (Xg0, X̃g0) ≤ 0

ZHENG et al.: ANALYSIS OF EAs ON FITNESS FUNCTION WITH TIME-LINKAGE PROPERTY 701

regardless of the values of other bits in X̃g0 . Hence, X̃g0 can-
not enter in the (g0 + 1)th generation, that is, any progress
achieved in the OneMax component of OneMax(0,1n) func-
tion (any bit value changing from 0 to 1 from the 2nd
to the nth bit position) cannot pass on to the next gener-
ation. Besides, (Xg0

1 , Xg0+1
1) = (Xg0−1

1 , Xg0
1) = (0, 1), then

(Xg
1, Xg+1

1) = (0, 1) holds for all g ≥ g0 − 1. That is, RLS or
(1 + 1) EA gets stuck in this case.

Consider the case when Event II happens, that is,
(Xg0−1

1 , Xg0) = (1, 1n). In this case, the current fitness
f (Xg0−1, Xg0) = 0. Similar to the above case, since Xg0

1 = 1,
all possible mutation outcome X̃g0 along with Xg0 will have fit-
ness less than or equal to 0. Hence, only when f (Xg0, X̃g0) = 0
happens, X̃g0 can enter into the next generation, which means
X̃g0 = 1n. Therefore, RLS or (1 + 1) EA will get stuck in this
case.

Lemma 4: Consider using (1 + 1) EA (RLS) to optimize
n-dimensional OneMax(0,1n) function. Assume that at the first
generation, (X0

1, X1
1) = (0, 0) and

∑n
j=2 X1

j < (3/4)n. Then
with probability at least 1 − (e + 1)n−1/3, Event I will happen
at one certain generation after this initial state.

Proof: Consider the subsequent process once the number of
0-bits among {2, . . . , n} bit positions of the current individual,
becomes less than nc for any given constant c < 0.5. Note that
if the first bit value changes from 0 to 1 before the number of
0-bits decreases to nc, Event I already happens. Hence, we just
consider the case that the current first bit value is still 0 at the
first time when the number of the remaining 0-bits decreases to
nc. Let a denote the number of 0-bits of the current individual.
We conduct the proof of this lemma based on the following
two facts.

1) Among increase steps (the fitness has an absolute
increase), a single increase step increases the fitness by
1 with conditional probability at least 1−ea/n. For RLS,
due to its one-bit mutation, the amount of fitness increase
can only be 1 for a single increase step. For (1+1) EA,
Lemma 2 directly shows this fact.

2) Under the condition that one step increases the fitness
by 1, with conditional probability at least 1/a, the first
bit changes its value from 0 to 1. It is obvious for RLS.
For (1+1) EA, suppose that the number of bits changing
from 0 to 1 in this step is m ∈ [1..a], then the probability
that the first bit contributes one 0 is

(a−1
m−1

)
/
(a

m

) = m/a ≥
1/a for m ≥ 1.

Note that there are a − 1 increase steps before the remaining
n − 1 positions become all 1s if each increase step increases
the fitness by 1. Then with the above two facts, it is easy to
see that the probability that one individual with the (0, 1) first
bit pattern is generated before remaining positions all have bit
value 1 is at least

(
2∏

a=nc

(
1 − ea

n

))(
1 −

2∏

a=nc

(
1 − 1

a

))

=
(

2∏

a=nc

(
1 − ea

n

))(
1 −

2∏

a=nc

a − 1

a

)

≥
(

1 − e

n1−c

)nc(
1 − 1

nc

)
≥ 1 − e

n1−2c
− 1

nc

≥ 1 − e + 1

min{n1−2c, nc} .

We could just set c = 1/3 and obtain the probability lower
bound as 1 − (e + 1)n−1/3.

Lemma 5: Consider using (1 + 1) EA (RLS) to optimize
n-dimensional OneMax(0,1n) function. Assume that at the first
generation, (X0

1, X1
1) = (1, 0) and

∑n
j=2 X1

j < (3/4)n. Then
with probability at least 1 − (e + 1)n−1/3, Event I will happen
at one certain generation after this initial state.

Proof: Since (X0
1, X1

1) = (1, 0), we know that any offspring
will have better fitness than the current individual, and will
surely enter into the next generation. Then with probability
1/n, the first bit value in the next generation becomes 1, that is,
Event I happens. Otherwise, with probability 1 − 1/n, it turns
to the above discussed (X0

1, X1
1) = (0, 0) situation. Hence, in

this situation, the probability that eventually Event I happens
is at least

1
n +

(
1 − 1

n

)(
1 − e+1

n1/3

)
≥ 1 − e+1

n1/3 .

Lemma 6: Consider using (1 + 1) EA (RLS) to optimize
n-dimensional OneMax(0,1n) function. Assume that at the first
generation, (X0

1, X1
1) = (1, 1) and

∑n
j=2 X1

j < (3/4)n. Then
with probability at least 1−(e+1)/n1/3−(n−1) exp(−n1/3/e),
Event I or Event II will happen at one certain generation after
this initial state.

Proof: For (X0
1, X1

1) = (1, 1), since in each iteration only
one bit can be flipped for RLS, once the first bit is flipped
from 1 to 0, the fitness of the offspring will be less than its
parent and the offspring cannot enter into the next generation.
Hence, for RLS, the individual will be eventually evolved to
(Xg0−1

1 , Xg0) = (1, 1n) for some g0 ∈ N. That is, Event II
happens.

For (1 + 1) EA, similar to the (X0
1, X1

1) = (0, 0) situa-
tion, we consider the subsequent process once the number
of 0-bits among {2, . . . , n} bit positions of the current indi-
vidual, becomes less than nc for some constant c < 0.5, and
let a denote the number of 0-bits of the current individual.
If the first bit value changes from 1 to 0 before the number
of 0-bits decreases to nc, we turn to the (X0

1, X1
1) = (1, 0)

situation. Otherwise, we will show that in the subsequent
generations, with probability at least 1 − o(1), the (1, 1)

pattern will be maintained after the remaining bits reach
the optimal 1n−1. Consider the condition that the first bit
value stays at 1s and let T̃ be the number of time that all
n − 1 bit positions have bit value 1 under this condition.
Note that under this condition, one certain 0 bit position
in [2..n] does not change to 1 in t generations is at most
(1 − (1 − 1/n)n−2(1/n))t ≤ (1 − 1/(en))t. Then a union
bound shows

Pr
[
T̃ > n1+c | the 1st value stays at 1

]

≤ (n − 1)

(
1 − 1

en

)n1+c

≤ (n − 1)e− nc
e .

702 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 4, AUGUST 2021

Noting that the probability that the offspring with the first bit
value changing from 1 to 0 can enter into next generation
is at most (1/n)(a/n) = a/n2 ≤ 1/n2−c, we can obtain the
probability that Event II happens within n1+c generations is
at least
(

1 − 1

n2−c

)n1+c(
1 − (n − 1)e− nc

e

)

≥ 1 − n1+c

n2−c
− (n − 1)e− nc

e = 1 − 1

n1−2c
− (n − 1)e− nc

e .

Further taking c = 1/3, together with the probability of Event
I when the first bit pattern changes to (1, 0) before the num-
ber of zeros decreases to nc, we have Event I or Event II
will happen with probability at least 1 − (e + 1)/n1/3 − (n −
1) exp(−n1/3/e).

Theorem 1: Let n ≥ 6. Then with probability at least
1 − (n + 1) exp (−n1/3/e) − (e + 1)/n1/3, (1 + 1) EA (RLS)
cannot find the optimum of the n-dimensional OneMax(0,1n)

function.
Proof: For the uniformly and randomly generated

1st generation, we have E[
∑n

j=2 X1
j] = (n − 1)/2.

The Chernoff inequality in Lemma 1-2) gives that
Pr [

∑n
j=2 X1

j ≥ (3/4)n] ≤ exp(−(n − 1)/8). Hence, with
probability at least 1 − exp(−(n − 1)/8),

∑n
j=2 X1

j < (3/4)n
holds, that is, [2..n] bit positions have at least (1/4)n − 1
zeros. Thus, neither Event II nor Event II happens at the first
generation. We consider this initial status in the following.

Recall that from Lemma 3, Event I and Event II are two
stagnation situations. For the first bit values X0

1 and X1
1 of

the randomly generated two individuals X0 and X1, there are
four situations, (X0

1, X1
1) = (0, 1), (0, 0), (1, 0), or (1, 1). If

(X0
1, X1

1) = (0, 1), Event I already happens. Respectively from
Lemmas 4–6, we could know that with probability at least
1−(e+1)/n1/3 −(n−1)e−n1/3/e, Event I or Event II will hap-
pen in the certain generations after the initial first bit pattern
(0, 0), (1, 0), and (1, 1).

Overall, together with the probability of
∑n

j=2 X1
j < (3/4)n,

we have the probability for getting stuck is at least
(

1 − e− n−1
8

)(
1 − e + 1

n1/3
− (n − 1)e− n1/3

e

)

≥ 1 − e− n−1
8 − e + 1

n1/3
− (n − 1)e− n1/3

e

≥ 1 − (n + 1)e− n1/3
e − e + 1

n1/3

where the last inequality uses exp (−(n − 1)/8) ≤
2 exp(−n/8) = 2 exp(−(n1/3/e)(en2/3/8)) ≤ 2 exp(−n1/3/e)
when n ≥ 6.

One key reason causing the difficulty for (1 + 1) EA and
RLS is that there is only one individual in the population. As
we can see in the proof, once the algorithm finds the (0, 1)

optimal pattern in the first bit, the progress in OneMax com-
ponent cannot pass on to the next generation, and once the
current OneMax component finds the optimum before the first
bit (0, 1) optimal pattern, the optimal first bit pattern cannot
be obtained further. In EAs, for some cases, the large popu-
lation size does not help [23], but the population could also
have many benefits for ensuring the performance [24]–[27].

Similarly, we would like to know whether introducing popu-
lation with not small size will improve the fault tolerance to
overcome the first difficulty, and help to overcome the second
difficulty since (1, 1n) individual has worse fitness so that it
is easy to be eliminated in the selection. The details will be
shown in Section IV.

The above analyses are conducted for the offline mode. For
the online mode on problem (3), as discussed in Sections II-B
and III-A, we assume the time to make the decision that could
change the fitness function value is so small that we can just
expect one solution with a better or equivalent fitness value at
each time step. Hence, when we reuse Algorithm 1, the time
t of the fitness function increases to t + 1 once the algorithm
witnesses the generation g where the generated X̃g satisfies
f (Xg, X̃g) ≥ f (Xg−1, Xg). It is not difficult to see that t and
g are usually different as Algorithm 1 may need more than
one generation to generate such X̃g. Hence, from Theorem 1,
we could also obtain that with probability at least 1 − (n +
1) exp (−n1/3/e) − (e + 1)/n1/3, (1 + 1) EA or RLS in our
discussed online mode cannot find the solution at some time
step t when the function value of problem (3) is greater than
n − 1.

IV. (μ + 1) EA CAN FIND THE OPTIMUM

A. (μ + 1) Utilized for OneMax(0,1n)

(μ + 1) EA is a commonly used benchmark algorithm for
evolutionary theory analysis, which maintains a parent popu-
lation of size μ comparing with (1+1) EA that has population
size 1. In the mutation operator, one parent is uniformly and
randomly selected from the parent population, and the bit-wise
mutation is employed on this parent individual and gener-
ates its offspring. Then the selection operator will uniformly
remove one individual with the worse fitness value from the
union individual set of the population and the offspring.

Similar to (1 + 1) EA discussed in Section III, the general
(μ+1) EA is utilized for nontime-linkage function, and some
small modifications are required for solving time-linkage prob-
lems. For solving OneMax(0,1n) function in an offline mode,
we just consider the representation that each individual in the
population just encodes the current solution and stores the
previous solution for the fitness evaluation. Similar to RLS
and (1 + 1) EA, only offspring with better or equivalent fit-
ness could affect the further fitness, hoping the optimization
process to learn the preference of the time-linkage property.
Algorithm 2 shows how (μ + 1) EA solves the time-linkage
function that relies on two consecutive time steps. With no
confusion, we shall still call this algorithm (μ + 1) EA. Also
note that we do not set the termination criterion in the algo-
rithm statement, as we aim at theoretically analyzing the time
to reach the optimum, that is, to generate X̃g = (1, . . . , 1)

condition on that its parent Xg
ĩ

has the first bit value 0 in
Algorithm 2.

We do not consider using (μ+1) EA to solve OneMax(0,1n)

function in an online mode. If the decision must be made in
a short time period as we discussed in Section III-A, since
different individuals in the parent population has their own
evolving histories and different time fronts, the better offspring

ZHENG et al.: ANALYSIS OF EAs ON FITNESS FUNCTION WITH TIME-LINKAGE PROPERTY 703

Algorithm 2 (μ + 1) EA to Maximize Fitness Function f
Requiring Two Consecutive Time Steps

1: Generate the random initial two generations P0 = {X0
1, . . . , X0

μ}
and P1 = {X1

1, . . . , X1
μ}, where Xg

i = (Xg
i,1, . . . , Xg

i,n), i =
{1, . . . , μ}, g = {0, 1}

2: for g = 1, 2, . . . do
%% Mutation

3: Uniformly and randomly select one index ĩ from [1..μ]
4: Generate X̃g via independently flipping each bit value of Xg

ĩ
with probability 1/n

%% Selection
5: if f (Xg

ĩ
, X̃g) ≥ min

i∈{1,...,μ}{f (X
g−1
i , Xg

i)} then

6: Let (P̃g−1, P̃g) = {(Pg−1, Pg), (Xg
ĩ
, X̃g)}

7: Remove the pair with the lowest fitness in (P̃g−1, P̃g)
uniformly at random

8: Pg+1 = P̃g, Pg = P̃g−1

9: else
10: Pg+1 = Pg, Pg = Pg−1

11: end if
12: end for

generated in one step cannot be regarded as the decision of
the next step for the individuals in the parent population other
than its own parent. If we have enough budget before time step
changes, similar to the discussion in Section III-A, we will have
the fitness less than 1 for any time step since Xt = (1, . . . , 1)

for each time step t. Also, it is not interesting for us. Hence, the
following analysis only considers (μ + 1) EA (Algorithm 2)
solving OneMax(0,1n) function in the offline mode.

B. Convergence Analysis of (μ + 1) on OneMax(0,1n)

In Section III, we show the two cases happening before the
optimum is reached that cause the stagnation of (1 + 1) EA
and RLS for the OneMax(0,1n). One is that the (0, 1) first bit
pattern is reached, and the other is that the current individual
has the value one in all its bits with the previous first bit value
as 1. The single individual in the population of (1 + 1) EA
or RLS results in the poor tolerance to the incorrect trial of
the algorithm. This section will show that the introduction of
population can increase the tolerance to the incorrect trial,
and thus overcome the stagnation. That is, we will show that
(μ + 1) EA can find the optimum of OneMax(0,1n) with high
probability. In order to give an intuitive feeling about the rea-
son why the population can help for solving OneMax(0,1n),
we briefly and not-so-rigorously discuss it before establishing
a rigorous analysis.

Corresponding to two stagnation cases for (1 + 1) EA or
RLS, (μ + 1) EA can get stuck when all individuals have the
first bit value as 1 no matter the previous first bit value 0 as the
first case or the previous first bit value 1 as the second case.
As discussed in Section III, we know that the individual with
previous first bit value as 1 has no fitness advantage against
the one with previous first bit value as 0. Due to the selection
operator, the one with previous first bit value 1 will be early
replaced by the offspring with good fitness. As the process
goes by, more detailedly in linear time of the population size
in expectation, all individuals with the previous first bit value 1
will die out, and the offspring with its parent first bit value 1

cannot enter into the population. That is, the second case cannot
take over the whole population to cause the stagnation.

As for the first case that the (0, 1) pattern individuals takes
over the population, we focus on the evolving process of the
best (0, 0) pattern individual, which is fertile, similar to the
runtime analysis of original (μ + 1) EA in [28]. The best
(0, 0) pattern individuals can be incorrectly replaced only by
the (0, 1) pattern individual with better or the same fitness
and only when all individuals with worse fitness than the best
(0, 0) pattern individual are replaced. With a sufficient large
population size, like �(n) as n the problem size, with high
probability, the better (0, 1) pattern individuals cannot take
over the whole population and the (0, 1) pattern individuals
with the same fitness as the best (0, 0) pattern individual can-
not replace all best (0, 0) individuals when the population does
not have any individual with worse fitness than the best (0, 0)

individual. That is, the first case with high probability will not
happen for (μ+1) EA. In a word, the population in (μ+1) EA
increases the tolerance to the incorrect trial.

Now we start our rigorous analysis. As we could infer from
the above description, the difficulty of the theoretical analysis
lies on the combining discussion of the intergeneration depen-
dencies (the time-linkage among two generations) and the
inner-generation dependencies (such as the selection operator).
One way to handle these complicated stochastic dependencies
could be the mean-field analysis, that is, mathematically anal-
ysis on a designed simplified algorithm that discards some
dependencies and together with an experimental verification on
the similarity between the simplified algorithm and the orig-
inal one. It has been already introduced for the evolutionary
computation theory [29]. However, the mean-field analysis is
not totally mathematically rigorous. Hence, we do not utilize it
here and analyze directly on the original algorithm. Maybe the
mean-field analysis could help in more complicated algorithm
and time-linkage problem, and we also hope our analysis could
provide some other inspiration for the future theory work on
the time-linkage problem.

For clarity, we put some calculations as lemmas in the
following.

Lemma 7: Let a, n ∈ N, and a < n. Define the functions
h1 : [0, n − a − 1] → (0, 1) and h2 : [1, n − a] → (0, 1) by

h1(d) =
(a+d−1

d

)

nd+1
, h2(d) =

(a+d−1
d−1

)

nd

then h1(d) and h2(d) are monotonically decreasing.
Proof: Since h1 > 0, and for any d1, d2 ∈ [0, n−a−1] and

d1 ≤ d2

h1(d1)

h1(d2)
=
(a+d1−1

d1

)

nd1+1

nd2+1

(a+d2−1
d2

)

= nd2−d1
(a + d1 − 1)!

(a − 1)!d1!

(a − 1)!d2!

(a + d2 − 1)!

= nd2−d1
d2 · · · (d1 + 1)

(a + d2 − 1) · · · (a + d1)

≥ nd2−d1

(
d1 + 1

a + d1

)d2−d1

≥
(

n

n − 1

)d2−d1

≥ 1

we know h1(d) is monotonically decreasing.

704 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 4, AUGUST 2021

Similarly, since h1 > 0, and for any d1, d2 ∈ [1, n − a] and
d1 ≤ d2

h2(d1)

h2(d2)
=
(a+d1−1

d1−1

)

nd1

nd2

(a+d2−1
d2−1

)

= nd2−d1
(a + d1 − 1)!

a!(d1 − 1)!

a!(d2 − 1)!

(a + d2 − 1)!

= nd2−d1
(d2 − 1) · · · d1

(a + d2 − 1) · · · (a + d1)

≥ nd2−d1

(
d1

a + d1

)d2−d1

≥ nd2−d1

(
1

n

)d2−d1

= 1

we know h2(d) is monotonically decreasing.
Lemma 8: Let n ∈ N. Define the function g : [1, n1/2] →

(0, 1) by g(a) = aa/na2
, then g(a) is monotonically

decreasing.
Proof: Consider g̃(a) = ln g(a) = a ln a − a2 ln n. For any

a1, a2 ∈ [1, n1/2] and a1 < a2, we have

g̃(a1) − g̃(a2) = a1 ln a1 − a2
1 ln n − a2 ln a2 + a2

2 ln n

≥ (a1 + a2) ln n − a2 ln a2 > 0.

Then, g̃(a), and hence g(a), are monotonically decreasing.
Lemma 9: Let n > (4e)2. Then (3/4)n1/2−1 ≤ n−1/2.
Proof: Consider s(n) = −(n1/2 −1)(1/4)+ (1/2) ln n. Then

for n > (4e)2 > 16

s′(n) = − 1
4 · 1

2 n−1/2 + 1
2 n−1 = 1

8 n−1(−n1/2 + 4) < 0.

Hence, s(n) is monotonically decreasing for n > (4e)2. Since
s((4e)2) = −(4e − 1)/4 + ln(4e) < 0, we have s(n) < 0 for
n > (4e)2. Noting that −1/4 > ln(3/4), we have (n1/2 −
1) ln(3/4) < −(1/2) ln n and hence (3/4)n1/2−1 ≤ n−1/2 for
n > (4e)2.

Now we show our results that (μ + 1) EA can find the
optimum of OneMax(0,1n) function with high probability. We
start with some definitions that will be frequently used in our
proofs.

Definition 10: Consider using (μ + 1) EA with population
size μ to optimize n-dimensional OneMax(0,1n) function. Pg

is the population at the gth generation, and Pg−1 for the (g −
1)th generation. Let l = max{f (Xg−1

i , Xg
i) | (Xg−1

i,1 , Xg
i,1) =

(0, 0), Xg−1
i ∈ Pg−1, Xg

i ∈ Pg, i ∈ [1..μ]} be the best fitness
among all individuals with the (0, 0) first bit pattern. For Xg

i ∈
Pg, i ∈ [1..μ]:

1) it is called a temporarily undefeated individual if
f (Xg−1

i , Xg
i) > l and (Xg−1

i,1 , Xg
i,1) = (0, 1);

2) it is called a current front individual if f (Xg−1
i , Xg

i) = l
and (Xg−1

i,1 , Xg
i,1) = (0, 0);

3) it is called an interior individual if it is neither a
temporarily undefeated individual nor a current front
individual.

The most difficult case is when all (1, 0) and (1, 1) are
replaced, which happens after linear time of the population
size as in the proof of Theorem 2. Lemmas 11–13 discuss
the behavior in this case. Lemma 11 will show that when
the population is large enough, with high probability, there
are at most (1/2)μ − 1 accumulative temporarily undefeated

individuals before the current front individuals have only 1
zero.

Lemma 11: Given any δ > 0. For n > (4(1+δ)e)2, consider
using (μ+1) EA with population size μ ≥ 4(1+δ)(3e+1)(n+
1) to optimize n-dimensional OneMax(0,1n) function. Assume
that:

1) the current front individuals have less than (3/4)n zeros;
2) all individuals are with the (0, 0) or (0, 1) pattern.

Then with probability at least 1 − exp(−δ2(n − 1)/(2(1+δ))),
there are at most μ/2−1 accumulative temporarily undefeated
individuals generated before the current front individuals only
have 1 zero.

Proof: Consider the case when the current front individuals
have at least 2 zeros. For the current population, let a denote
the number of zeros in one current front individual, then a ≥ 2.
Let md denote the set of the (0, 0) individuals that have a + d
number of zeros. Obviously, m0 is the set of the best (0, 0)

individuals. Let A represent the event that the best (0, 0) fitness
of the population increases in one generation, and B the event
that one (0, 1) offspring with better fitness than the current
best (0, 0) fitness is generated in one generation. Then we
have

Pr [A] ≥
∑

d≥0

|md|
μ

(a+d−1
d+1

)

nd+1

(
1 − 1

n

)n−d−1

≥
∑

d≥0

|md|
eμ

(a+d−1
d+1

)

nd+1

and

Pr [B] ≤
∑

d≥0

|md|
μ

(a+d−1
d

)

nd+1
.

First, we discuss what happens under the condition that
the parent is not from m>a individuals. Let B′ represent the
event that one of m>a individuals generates a (0, 1) offspring
with better fitness than the current best (0, 0) fitness in one
generation. Since

(a+d−1
d+1

)
(a+d−1

d

) = (a + d − 1)!

(d + 1)!(a − 2)!
· d!(a − 1)!

(a + d − 1)!
= a − 1

d + 1

we know

Pr [A]

Pr [B − B′]
≥
∑a

d=0
|md |
eμ

(a+d−1
d+1)

nd+1

∑a
d=0

|md |
μ

(a+d−1
d)

nd+1

≥ a − 1

e(a + 1)

= 1

e

(
1 − 2

a + 1

)
≥ 1

3e
(4)

where the last inequality uses a ≥ 2.
Second, we consider the case when the parent is selected

from m>a individuals, that it, event B′ happens. With
Lemma 7, we know

Pr [B′] ≤
∑

d>a

|md|
μ

(a+d−1
d

)

nd+1
≤
∑

d>a

|md|
μ

(2a−1
a

)

na+1
≤
(2a−1

a

)

na+1

= (2a − 1)!

a!(a − 1)!na+1
≤ (a + 1)a−1

na+1
= 1

n2

(
a + 1

n

)a−1

.

ZHENG et al.: ANALYSIS OF EAs ON FITNESS FUNCTION WITH TIME-LINKAGE PROPERTY 705

We discuss in two cases considering a ≥ nc and a < nc for
any given constant c ∈ (0, 1). From the assumption in this
lemma, we know a < (3/4)n. Then for a ≥ nc, we have

(
a + 1

n

)a−1

≤
(

3

4

)a−1

≤
(

3

4

)nc−1

.

For a ∈ [2, nc)

(
a + 1

n

)a−1

≤
(

nc

n

)a−1

≤ 1

n1−c
.

Hence, we have for a ∈ [2, (3/4)n), Pr [B′] ≤ nc−3 since
(3/4)nc−1 ≤ nc−1 when n is large. Together with Pr [A] ≥
1/(eμn), we know

Pr [A]

Pr [B′]
≥ n2−c

eμ
. (5)

Hence, from (4) and (5), we obtain

Pr [A]

Pr [B]
≥ 1

eμ
n2−c + 3e

.

Then if we consider the subprocess that merely consists of
event A and B, we have Pr [A | A ∪ B] ≥ 1/(eμnc−2 + 3e + 1).
Let X be the number of iterations that B happens in the subpro-
cess before A occurs n times, then E[X] ≤ (eμnc−2 +3e+1)n.
It is not difficult to see that X is stochastically dominated
by the sum of n geometric variables with success probability
1/(eμnc−2 + 3e + 1). Hence, with the Chernoff bound for the
sum of geometric variables in Lemma 1-3), we have that for
any positive constant δ

Pr
[
X ≥ (1 + δ)

(
eμ

n2−c + 3e + 1
)

n
]

≤ exp
(
− δ2(n−1)

2(1+δ)

)
.

When n > (4(1+δ)e)1/(1−c) and μ ≥ 4(1+δ)(3e+1)(n+1),
we know

(1 + δ)
(eμ

n2−c
+ 3e + 1

)
n = (1 + δ)eμ

n1−c
+ (1 + δ)(3e + 1)n

<
μ
4 + μ

4 − 1 = 1
2μ − 1.

Hence, we know that with probability at least
1− exp(−δ2(n−1)/(2(1 + δ))), there are at most
(1/2)μ − 1 possible accumulative temporarily unde-
feated individuals before A occurs n times. Now take
c = 1/2, then (4(1 + δ)e)1/(1−c) = (4(1 + δ)e)2. With
n > (4(1 + δ)e)2 > (4e)2, from Lemma 9, we know
(3/4)nc−1 ≤ nc−1 and thus (5) hold. Noting that reducing the
number of zeros in one current front individuals to 1 requires
at most n − 1 occurrence times of A, this lemma is proved.

Lemma 12 will show that with high probability, the cur-
rent front individuals will get accumulated to 	(n0.5) before
all interior individuals have the same number of zeros as the
current front individuals.

Lemma 12: Let n > (4e)2. Consider using (μ+1) EA with
population size μ to optimize n-dimensional OneMax(0,1n)

function.
1) Assume that:

a) there are at most (1/2)μ − 1 accumulative tem-
porarily undefeated individuals before the current
front individuals only have 1 zero;

b) all individuals are with the (0, 0) or (0, 1) pattern.
2) Consider the phase starting from the first time when the

current front individuals have a ∈ [1..n] zeros, and end-
ing with the first time when one (0, 0) pattern individual
with less than a zeros is generated for a ∈ [2..n], or end-
ing with the first time when one (0, 1) pattern individual
with all ones is generated for a = 1.

Then with probability at least 1−exp(−(1/20)n0.5), the current
front individuals will increase by more than (1/5)n0.5 if the
current phase does not end before all individuals have at most
a zeros.

Proof: Same as the notation in the proof of Lemma 11,
md, d ≥ 0 denotes the set of the (0, 0) individuals that have
a + d number of zeros. We now analyze the change of |m0|
until all other individuals have at most a zeros, if possible,
during the phase. Let C represent the event that one (0, 0)

pattern individual with a zeros is generated in one generation,
and D the event that one (0, 1) pattern individual with a zeros
is generated in one generation. Then, we have

Pr [C] ≥
∑

d≥0

|md|
μ

(a+d−1
d

)

nd

(
1 − 1

n

)n−d

≥
∑

d≥1

|md|
eμ

(a+d−1
d

)

nd
+ |m0|

μ

(
1 − 1

n

)n

and

Pr [D] ≤
∑

d≥1

|md|
μ

(a+d−1
d−1

)

nd
+ |m0|

μ

(a−1
1

)

n2

where we define
(0

1

) = 1 for a = 1. Assume that the parent is
not from m>a2 individuals. Let D′ represent the event that one
of m>a2 individuals generates a (0, 1) offspring with a zeros
in one generation. Due to the definition of md, when m>a2

exist, we have a + a2 ≤ n, and then a < n0.5. Since
(a+d−1

d

)
(a+d−1

d−1

) = (a + d − 1)!

d!(a − 1)!
· (d − 1)!a!

(a + d − 1)!
= a

d

we know

Pr [C]

Pr [D − D′]
≥
∑a2

d=1
|md |
eμ

(a+d−1
d)

nd + |m0|
μ

(
1 − 1

n

)n

∑a2

d=1
|md |
μ

(a+d−1
d−1)
nd + |m0|

μ

(a−1
1)

n2

≥ a

ea2
= 1

ea
>

1

en0.5
. (6)

Now we calculate Pr [D′], the probability that one of m>a2

individual generates a (0, 1) offspring with a zeros in one
generation, as

Pr [D′] ≤
∑

d>a2

|md|
μ

(a+d−1
d−1

)

nd
≤
∑

d>a2

|md|
μ

(a+a2−1
a2−1

)

na2

≤
(a+a2−1

a2−1

)

na2 = (a + a2 − 1)!

(a2 − 1)!a!na2 ≤ aa

na2 ≤ 1

n
(7)

where the second inequality follows from Lemma 7 and the
last inequality follows from Lemma 8 and a ≥ 1. With

706 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 4, AUGUST 2021

Pr [C] ≥ (1 − 1/n)n/μ ≥ 1/(2eμ) for n ≥ 2, we have

Pr [C]

Pr [D′]
≥ n

2eμ
. (8)

Hence, from (6) and (8), we obtain

Pr [C]

Pr [D]
≥ 1

2eμ
n + en0.5

.

Then if we consider the subprocess that merely consists of
event C and D, we have Pr [C | C ∪ D] ≥ 1/((2eμ/n) +
en0.5 + 1). Recalling the definition of the phase we consider,
it is not difficult to see that at the initial generation of this
phase, there is only one (0, 0) front individual with a number
of zeros, and not difficult to see that all (0, 1) individuals with
a zeros, if exist, are temporarily undefeated individuals of the
previous phase. Noting the assumption that there are at most
(1/2)μ − 1 accumulative temporarily undefeated individuals
before a = 1, we know there are at least (1/2)μ individuals
that have more than a zeros for the current phase. Hence, it
requires at least (1/2)μ number of steps of the subprocess to
replace these individuals with more than a zeros. Let Y be
the number of times that C happens in (1/2)μ steps of the
subprocess, then

E[Y] ≥
1
2μ

2eμ
n + en0.5 + 1

≥ min

{
1
2 · 4(1 + δ)(3e + 1)(n + 1)

2en0.5 + 1
,

1
2μ

2 2eμ
n + 1

}

≥ min
{

6en
3en0.5 , 1

10e n
}

≥ 2
5 n0.5

where the last inequality uses n/(10e) ≥ (4en0.5)/(10e) =
(2/5)n0.5 for n ≥ (4e)2. The Chernoff inequal-
ity in Lemma 1-1) gives that Pr [Y ≤ (1/5)n0.5] ≤
exp(−(1/20)n0.5). That is, with probability at least
exp(−(1/20)n0.5), |m0| will increase by more than (1/5)n0.5

if current phase does not end before all individuals have at
most a zeros.

Lemma 13 shows that with high probability, it cannot hap-
pen that all current front individuals are replaced by the (0, 1)

pattern individuals.
Lemma 13: Let n > (4e)2. Consider using (μ+1) EA with

population size μ to optimize n-dimensional OneMax(0,1n)

function. Considered the same assumptions and phase as in
Lemma 12. Further assume that at one generation of the cur-
rent phase, there are |m0| > (1/5)n0.5 current front individuals
with a zeros, and all interior individuals has a zeros. Then with
probability at least 1−(e/(e+1))n0.5/5, the current phase ends
before |m0| decreases to 0.

Proof: Let F denote the event that the current phase ends,
that is, a (0, 0) offspring with at most a−1 zeros when a ≥ 2
or a (0, 1) offspring with 0 zero when a = 1 is generated.
Then

Pr [F | a ≥ 2] ≥ |m0|
eμ

a−1
n ≥ |m0|

enμ

Pr [F | a = 1] ≥ |m0|
eμ

1
n = |m0|

enμ
.

Then, Pr [F] ≥ |m0|/(enμ).

Let G denote the event that a (0, 1) offspring with a zeros is
generated and one (0, 0) individual is replaced. Suppose that
the total number of the individuals with a zeros is μ′. Then

Pr [G] ≤ |m0|
μ

1

n

|m0|
μ′ + 1

≤ |m0|2
nμ(μ′ + 1)

.

Hence

Pr [F]

Pr [G]
≥ |m0|

enμ
· nμ(μ′ + 1)

|m0|2 = μ′ + 1

e|m0| ≥ 1

e

where the last inequality uses μ′ ≥ |m0|. Then

Pr [G | F ∪ G] ≤ e

e + 1
.

Then the probability that G happens |m0| > (1/5)n0.5 times
but F does not happen is at most (e/(e + 1))n0.5/5, and this
lemma is proved.

Now the main result follows.
Theorem 2: Given any δ > 0. Let n > (4(1 + δ)e)2. Then

with probability at least 1− (μ+2) exp(−n/8)−exp(−δ2(n−
1)/(2(1 + δ)))− 2n exp(−(1/20)n0.5), (μ+ 1) EA with popu-
lation size μ ≥ 4(1 + δ)(3e + 1)(n + 1) can find the optimum
of OneMax(0,1n).

Proof: Similar to two situations in Lemma 3 that could pos-
sibly result in the stagnation of (1 + 1) EA and RLS, the
only two possible cases that could result in the stagnation of
(μ + 1) EA are listed in the following.

1) Event I’: There is a g0 ∈ N such that for all i ∈ [1..μ],
(Xg−1

i,1 , Xg
i,1) = (0, 1) and Xi,[2..n] 	= 1n−1.

2) Event II’: There is a g0 ∈ N such that for all i ∈ [1..μ],
(Xg−1

i,1 , Xg
i) = (1, 1n).

For the uniformly and randomly generated P0 and P1,
we know that the expected number of the (1, 0) or (1, 1)

first bit patterns, that is, the expected cardinality of the set
{i ∈ [1..μ] | (X0

i,1, X1
i,1) = (1, 0) or (1, 1)}, is μ/2. Via the

Chernoff inequality in Lemma 1-2), we know that with prob-
ability at most 1 − exp(−μ/8), at most (3/4)μ individuals
have the pattern (1, 0) or (1, 1). Under this condition, the
expected number of the (0, 0) pattern is at least (1/8)μ in
the whole population. The Chernoff inequality in Lemma 1-
1) also gives that under the condition that at most (3/4)μ

individuals have the pattern (1, 0) or (1, 1), with probability
at least 1 − exp(−μ/64), there are at least (1/16)μ individ-
uals with the pattern (0, 0) for the initial population. Since
E[
∑n

j=1(1 − X1
i,j)] = (1/2)n for any i ∈ [1..μ], the Chernoff

inequality in Lemma 1-2) on the initial population gives that
Pr [

∑n
j=1(1 − X1

i,j) ≥ (3/4)n] ≤ exp(−(1/8)n). Via a union
bound, we know

Pr

[
∃i0 ∈ [1..μ],

∑n

j=1

(
1 − X1

i0,j

)
≥ 3

4
n

]
≤ μ exp(− 1

8 n).

Hence, noting μ/64 ≥ (12e/64)n > (1/8)n from μ ≥ 4(1 +
δ)(3e+1)(n+1), it is easy to see that with probability at least

1 − exp(−μ
8) − exp(− μ

64) − μ exp(− 1
8 n)

≥ 1 − 2 exp(− μ
64) − μ exp(− 1

8 n) ≥ 1 − (μ + 2) exp(− 1
8 n)

the initial population has at most (3/4)μ individuals with the
pattern (1, 0) or (1, 1), at least (1/16)μ individuals with the

ZHENG et al.: ANALYSIS OF EAs ON FITNESS FUNCTION WITH TIME-LINKAGE PROPERTY 707

pattern (0, 0), and a < (3/4)n at the first generation. Thus, in
the following, we just consider this kind of initial population.

We first show that after O(μ) generations, the individuals
with the first bit pattern (1, 0) or (1, 1) will be replaced and
will not survive in any further generation, thus Event II’ can-
not happen. Since a < (3/4)n, we know the current front
individual has fitness more than 1. Note that all (1, 0) or
(1, 1) pattern individuals have fitness at most 0. Then any
offspring copied from one (0, 0) pattern individual, which has
the (0, 0) pattern and the same fitness as its parent, will surely
enter into the generation and replace some individual with the
(1, 0) or (1, 1) pattern. Since there is at least (1/16)μ individ-
uals with the pattern (0, 0), we know that for each generation,
with probability at least 1/16, one individual with the (1, 0)

or (1, 1) pattern will be replaced. Hence, the expected time
to replace all individuals with the pattern (1, 0) or (1, 1) is at
most 16 · (3/4)μ = 12 μ since there are at most (3/4)μ indi-
viduals with the pattern (1, 0) or (1, 1). Also it is not difficult
to see any offspring with the (1, 0) or (1, 1) pattern cannot be
selected into the next generation for a population only with
the (0, 0) or (0, 1) pattern. Later, only the (0, 1) and (0, 0)

first bit pattern can survive in the further evolution.
Now we consider Event I’ after the first time when

all (1, 0) or (1, 1) pattern individuals are replaced. From
Lemma 11, we know that before a = 1, with probabil-
ity at least 1 − exp(−δ2(n − 1)/(2(1 + δ))), there are at
most (1/2)μ − 1 accumulative temporarily undefeated indi-
viduals. From Lemma 12 among all possible a ∈ [1..n], we
know that if the optimum is not found before all individuals
with at least 2 zeros are replaced, with probability at least
1 − n exp(−(n0.5 − 1)/20), there are at least (1/5)n0.5 number
of (0, 0) individuals with a = 1. Then for the case a = 1 in
Lemma 13 and considering all possible a ∈ [1..n], we know
with probability at least 1 − n(e/(e + 1))n0.5/5, the optimum
is found.

Overall, the probability that (μ + 1) EA can find the
optimum of OneMax(0,1n) is at least

(
1 − (μ + 2)e− 1

8 n
)(

1 − exp

(
− δ2

2(1 + δ)
(n − 1)

))

×
(

1 − n exp
(
− 1

20 n0.5
))
⎛

⎝1 − n

(
e

e + 1

) 1
5 n0.5

⎞

⎠

≥ 1 − (μ + 2)e− 1
8 n − exp

(
− δ2

2(1 + δ)
(n − 1)

)

−n exp
(
− 1

20 n0.5
)

− n

(
e

e + 1

) 1
5 n0.5

≥ 1 − (μ + 2)e− 1
8 n − exp

(
− δ2

2(1 + δ)
(n − 1)

)

−2n exp
(
− 1

20 n0.5
)

where the last inequality uses e−1/4 > e/(e + 1).
In Theorem 2, we require that the population size μ ≥

4(1 + δ)(3e + 1)(n + 1). One may ask about the behavior
when μ = o(n). We note in the proof of Lemma 11, the upper
bound for the expected number of accumulative temporarily

undefeated individuals is (eμnc−2 + 3e + 1)n = �(n). If
μ = o(n), we are not able to ensure that the accumulative tem-
porarily undefeated individuals do not take over the population
in our current proof, hence, we require μ = �(n).

Comparing with (1+1) EA, since (1, 1n) individual, corre-
sponding to Event II in (1 + 1) EA, has no fitness advantage
against the one with previous first bit value as 0, it is easy to
be replaced by the offspring with previous first bit value 0 in
a population. Thus, this stagnation case cannot take over the
whole population to cause the stagnation of (μ + 1) EA. The
possible stagnation case that the (0, 1) pattern individuals take
over the population, corresponding to Event I in (1 + 1) EA,
will not happen with a high probability because with a suffi-
cient large, �(n), population size as n the problem size, with
a high probability, the (0, 0) pattern can be maintained until
the optimum is reached, that is, the population in (μ + 1) EA
increases the tolerance to the incorrect (0, 1) pattern trial.

C. Runtime Analysis of (μ + 1) on OneMax(0,1n)

Theorem 2 only shows the probability that (μ + 1) EA can
reach the optimum. One further question is about its runtime.
Here, we give some comments on the runtime complexity. For
the runtime of (μ + 1) EA on the original OneMax function,
Witt [28] shows the upper bound of the expected runtime is
O(μn + n log n) based on the current best individuals’ repli-
cas and fitness increasing. Analogously, for (μ + 1) EA on
OneMax(0,1n) function, we could consider the expected time
when the number of the current front individuals with a zeros
reaches n/a, that is, |m0| ≥ n/a, and the expected time when
a (0, 0) pattern offspring with less a zeros is generated for
a > 1 or when one (0, 1) pattern individual with all ones is
generated for a = 1 conditional on that there are n/a current
front individuals with a zeros. From Lemma 11, with proba-
bility at least 1−exp(−δ2(n−1)/(2(1+δ))), there are at most
(1/2)μ−1 possible accumulative temporarily undefeated indi-
viduals before the current front individuals have only 1 zero.
Hence, in each generation before the current front individuals
have only 1 zero, it always holds that at least half of indi-
viduals of the whole population are current front individuals
and interior individuals. Hence, we could just discuss the pop-
ulation containing no temporarily undefeated individual and
twice the upper bound of the expected time to reach the opti-
mum as that for the true process. The (0, 1) pattern offspring
with a zeros will not influence the evolving process of the
current front individuals we focus on until all interior individ-
uals have a zeros. Recalling Lemma 12, we know that with
probability at least 1 − exp(−(1/20)n0.5), |m0| ≥ (1/5)n0.5 if
the current phase does not end before all individuals have at
most a zeros. Hence, we just need to focus on the case when
n/a ≥ (1/5)n0.5, that is, a ≤ 5n0.5.

We discuss the expected length of the phase defined in
Lemma 12. When |m0| < n/a, we consider the event that
one replica of an m0 individual can enter into the next
generation. When the population contains interior individ-
ual(s) with more than a zeros, the probability is |m0|/(μ(1 −
1/n)n) ≥ |m0|/(2eμ). When all interior individuals have
a zeros, we require |m0| to be less than 2n/a. Let μ′

708 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 4, AUGUST 2021

denote the total number of the individuals with a zeros,
and we know the probability of event H that one replica
of an m0 individual can enter into the next generation is
(|m0|/μ)(1−(1/n)n)((μ′+1−|m0|)/(μ′ + 1)). Note that the
probability of event G that an m0 individual generates a (0, 1)

pattern offspring with a zeros that successfully enters into the
next generation is at most (|m0|/μ)(1/n)(|m0|/(μ′ +1)). Then

Pr [H]

Pr [G]
≥

|m0|
μ

(
1 − 1

n

)n
μ′+1−|m0|

μ′+1

|m0|
μ

1
n

|m0|
μ′+1

≥ 1

2e

(
μ′

|m0| − 1

)
n

≥ 1

2e

(
2(1 + δ)(3e + 1)(n + 1)

|m0| − 1

)
n

≥ (1 + δ)(3e + 1)a − 1

2e
n ≥ 3

2
n

where the antepenultimate inequality uses μ′ ≥ 2(1 + δ)(3e +
1)(n + 1) and the penultimate inequality uses |m0| < 2n/a.
Hence, Pr [G | H ∪ G] ≤ 2/(3n + 2). Considering the
process merely consisting of H and G, let Z be the num-
ber that H happens before G happens (1/5)n0.5 times. Then
E[Z] ≥ ((3n + 2)/2 − 1)(1/5)n0.5 = (3/10)n1.5. It is not dif-
ficult to see that Z + (1/5)n0.5 stochastically dominates the
sum of (1/5)n0.5 geometric variables with success probability
2/(3n + 2). Hence, with the Chernoff bound for the sum of
geometric variables in Lemma 1-3), we have that

Pr
[
Z + 1

5 n0.5 ≤ 2n + 2
5 n0.5

]

≤ exp

⎛

⎜⎝−
(

1 − 20
3 n−0.5 − 4

3 n−1
)2

1
5 n0.5

2 − 4
3

(
1 − 20

3 n−0.5 − 4
3 n−1

)

⎞

⎟⎠

≤ exp

⎛

⎝−
(

1 − 2 · 20e+1
3e n−0.5

)
1
5 n0.5

2 − 4
3

(
1 − 20e+1

3e n−0.5
)

⎞

⎠

≤ exp

(
−
(

3

1 + 20e+1
3e n−0.5

− 3

2

)
1

5
n0.5

)

≤ exp

(
−
(

3

1 + 20e+1
3e·4e

− 3

2

)
1

5
n0.5

)
≤ exp

(
− 1

20
n0.5

)

where the second inequality uses the fact 4/(3n) ≤ 4/(3 ·
4en0.5) = 1/(3en0.5) for n > (4e)2 and the fact (1 − x)2 ≥
1−2x for x ∈ R, and the penultimate inequality uses n > (4e)2.
Since 2n + (1/5)n0.5 ≥ (2n/a) + (1/5)n0.5, we know with
probability at least 1−exp(−(1/20)n0.5), |m0| could go above
2n/a.

When |m0| goes above 2n/a, we consider the event F that
the current phase ends. Recalling the proof in Lemma 13, we
know that with probability at least 1 − (e/(e + 1))n0.5/5, F
happens once before G happens n/a ≥ n0.5/5 times, thus,
before |m0| goes below n/a.

In summary, in each phase, with probability at least
(1 − exp(−(1/20)n0.5))(1 − exp(−(1/20)n0.5))(1 − (e/(e +
1))n0.5/5) ≥ 1 − 3 exp(−(1/20)n0.5), the current front individ-
uals could increase its number to more than 2n/a, and will
remain above n/a afterwards. Hence, together with the run-
time analysis of the original (μ + 1) EA on OneMax in [28],
we have the runtime result for (μ+1) EA on OneMax(0,1n) in

the following theorem, and know that comparing with OneMax
function, the cost majorly lies on the o(1) success probabil-
ity for (μ+1) EA solving the time-linkage OneMax(0,1n), and
the asymptotic complexity remains the same for the case when
(μ + 1) EA is able to find the optimum.

Theorem 3: Given any δ > 0. Let n > (4(1 +
δ)e)2. Consider using (μ + 1) EA with population size
μ ≥ 4(1 + δ)(3e + 1)(n + 1) to solve the OneMax(0,1n) func-
tion. Consider the same phase in Lemma 12. Let M denote
the event that:

1) the first generation has at most (3/4)μ individuals with
the (1, 0) or (1, 1) first bit pattern, at least (1/4)μ indi-
viduals with the (0, 0) pattern, and has all individuals
with less than (3/4)n zeros;

2) there are at most (1/2)μ − 1 accumulative temporarily
undefeated individuals before the current front individ-
uals only have 1 zero;

3) the number of the current front individual with a zeros
can accumulate to 2n/a and stay above n/a if the current
phase does not end.

Then event M occurring with probability at least 1 −
(μ + 2) exp(−n/8) − exp(−δ2(n − 1)/(2(1 + δ))) −
3n exp(−(1/20)n0.5), and conditional on M, the expected
runtime is O(μn).

Recalling that the expected runtime of (μ + 1) EA on
OneMax is O(μn + n log n) [28], which is O(n log n) for
μ = O(log n). Since μ = �(n) is required for the conver-
gence on OneMax(0,1n) in Section IV-B, Theorem 3 shows
the expected runtime for OneMax(0,1n) is O(n2) if we choose
μ = 	(n), which is the same complexity as for OneMax with
μ = 	(n). To this degree, comparing (μ + 1) EA solving the
time-linkage OneMax(0,1n) with the original OneMax func-
tion, we may say the cost majorly lies on o(1) convergence
probability, not the asymptotic complexity.

V. CONCLUSION AND FUTURE WORK

In recent decades, rigorous theoretical analyses on EAs
has progressed significantly. However, despite that many real-
world applications have the time-linkage property, that is, the
objective function relies on more than one time-step solu-
tions, the theoretical analysis on the fitness function with
time-linkage property remains an open problem.

This article took the first step into this open area. We
designed the time-linkage problem OneMax(0,1n), which con-
siders an opposite preference of the first bit value of the
previous time step into the basic OneMax function. Via this
problem, we showed that EAs with a population can prevent
some stagnation in some deceptive situations caused by the
time-linkage property. More specifically, we proved that the
simple RLS and (1 + 1) EA cannot reach the optimum of
OneMax(0,1n) with 1 − o(1) probability but (μ + 1) EA can
find the optimum with 1 − o(1) probability.

The time-linkage OneMax(0,1n) problem is simple. Only the
immediate previous generation and the first bit value of the
historical solutions matter for the fitness function. Our future
work should consider more complicated algorithms, e.g.,
with crossover, on more general time-linkage pseudo-Boolean
functions, e.g., with more than one bit value and other weight

ZHENG et al.: ANALYSIS OF EAs ON FITNESS FUNCTION WITH TIME-LINKAGE PROPERTY 709

values for the historical solutions, and problems with practical
backgrounds.

ACKNOWLEDGMENT

The authors thank Liyao Gao for his participation and
discussion on the (1 + 1) EA part during his summer intern.

REFERENCES

[1] F. Neumann and C. Witt, Bioinspired Computation in Combinatorial
Optimization–Algorithms and Their Computational Complexity. Berlin,
Germany: Springer, 2010.

[2] A. Auger and B. Doerr, Theory of Randomized Search Heuristics:
Foundations and Recent Developments. Singapore: World Sci., 2011.

[3] T. Jansen, Analyzing Evolutionary Algorithms: The Computer Science
Perspective. Berlin, Germany: Springer, 2013.

[4] Z.-H. Zhou, Y. Yu, and C. Qian, Evolutionary Learning: Advances in
Theories and Algorithms. Singapore: Springer, 2019.

[5] B. Doerr and F. Neumann, Theory of Evolutionary Computation: Recent
Developments in Discrete Optimization. Cham, Switzerland: Springer,
2020.

[6] P. A. N. Bosman, “Learning, anticipation and time-deception in evo-
lutionary online dynamic optimization,” in Proc. Genet. Evol. Comput.
Conf. GECCO Workshop, 2005, pp. 39–47.

[7] T. T. Nguyen, “Continuous dynamic optimisation using evolutionary
algorithms,” Ph.D. dissertation, Sch. Comput. Sci., Univ. Birmingham,
Birmingham, U.K., 2011.

[8] T. Morimoto, Y. Ouchi, M. Shimizu, and M. Baloch, “Dynamic
optimization of watering satsuma mandarin using neural networks and
genetic algorithms,” Agr. Water Manag., vol. 93, nos. 1–2, pp. 1–10,
2007.

[9] S. Droste, “Analysis of the (1 + 1) EA for a dynamically changing
ONEMAX-variant,” in Proc. Congr. Evol. Comput. (CEC), vol. 1, 2002,
pp. 55–60.

[10] P. Rohlfshagen, P. K. Lehre, and X. Yao, “Dynamic evolutionary opti-
misation: An analysis of frequency and magnitude of change,” in Proc.
Genet. Evol. Comput. Conf. (GECCO), 2009, pp. 1713–1720.

[11] T. Kötzing and H. Molter, “ACO beats EA on a dynamic pseudo-Boolean
function,” in Proc. Int. Conf. Parallel Problem Solving Nat. (PPSN),
2012, pp. 113–122.

[12] T. Jansen and C. Zarges, “Analysis of randomised search heuristics
for dynamic optimisation,” Evol. Comput., vol. 23, no. 4, pp. 513–541,
2015.

[13] J. Lengler and U. Schaller, “The (1 + 1)-EA on noisy linear functions
with random positive weights,” in Proc. IEEE Symp. Series Comput.
Intell. (SSCI), 2018, pp. 712–719.

[14] J. Lengler and J. Meier, “Large population sizes and crossover help in
dynamic environments,” 2020. [Online]. Available: arXiv:2004.09949.

[15] A. Lissovoi and C. Witt, “Runtime analysis of ant colony optimization
on dynamic shortest path problems,” Theor. Comput. Sci., vol. 561,
pp. 73–85, Jan. 2015.

[16] F. Neumann and C. Witt, “On the runtime of randomized local search
and simple evolutionary algorithms for dynamic makespan scheduling,”
in Proc. Int. Joint Conf. Artif. Intell. (IJCAI), 2015, pp. 3742–3748.

[17] M. Pourhassan, W. Gao, and F. Neumann, “Maintaining
2-approximations for the dynamic vertex cover problem using evolu-
tionary algorithms,” in Proc. Genet. Evol. Comput. Conf. (GECCO),
2015, pp. 903–910.

[18] V. Roostapour, A. Neumann, F. Neumann, and T. Friedrich, “Pareto
optimization for subset selection with dynamic cost constraints,” in Proc.
AAAI Conf. Artif. Intell. (AAAI), 2019, pp. 2354–2361.

[19] J. Bossek, F. Neumann, P. Peng, and D. Sudholt, “Runtime analysis
of randomized search heuristics for dynamic graph coloring,” in Proc.
Genet. Evol. Comput. Conf. (GECCO), 2019, pp. 1443–1451.

[20] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2018.

[21] B. Doerr, “Analyzing randomized search heuristics: Tools from proba-
bility theory,” in Theory of Randomized Search Heuristics: Foundations
and Recent Developments. Singapore: World Sci., 2011, pp. 1–20.

[22] B. Doerr, “Probabilistic tools for the analysis of randomized
optimization heuristics,” in Theory of Evolutionary Computation: Recent
Developments in Discrete Optimization, B. Doerr and F. Neumann, Eds.
Cham, Switzerland: Springer, 2020, pp. 1–87.

[23] T. Chen, K. Tang, G. Chen, and X. Yao, “A large population size can
be unhelpful in evolutionary algorithms,” Theor. Comput. Sci., vol. 436,
pp. 54–70, Jun. 2012.

[24] J. He and X. Yao, “From an individual to a population: An analysis of
the first hitting time of population-based evolutionary algorithms,” IEEE
Trans. Evol. Comput., vol. 6, no. 5, pp. 495–511, Oct. 2002.

[25] D.-C. Dang, T. Jansen, and P. K. Lehre, “Populations can be essential
in tracking dynamic optima,” Algorithmica, vol. 78, no. 2, pp. 660–680,
2017.

[26] D. Corus and P. S. Oliveto, “On the benefits of populations for the
exploitation speed of standard steady-state genetic algorithms,” in Proc.
Genet. Evol. Comput. Conf. (GECCO), 2019, pp. 1452–1460.

[27] D. Sudholt, “The benefits of population diversity in evolution-
ary algorithms: A survey of rigorous runtime analyses,” in Theory
of Evolutionary Computation: Recent Developments in Discrete
Optimization, B. Doerr and F. Neumann, Eds. Cham, Switzerland:
Springer, 2020, pp. 359–404.

[28] C. Witt, “Runtime analysis of the (μ+1) EA on simple pseudo-Boolean
functions,” Evol. Comput., vol. 14, no. 1, pp. 65–86, 2006.

[29] B. Doerr and W. Zheng, “Working principles of binary differential
evolution,” Theor. Comput. Sci., vol. 801, pp. 110–142, Jan. 2020.

Weijie Zheng received the bachelor’s degree in
mathematics and applied mathematics from the
Harbin Institute of Technology, Harbin, China, in
July 2013, and the Doctoral degree in computer
science and technology from Tsinghua University,
Beijing, China, in October 2018.

He is currently a Postdoctoral Researcher with the
Department of Computer Science and Engineering,
Southern University of Science and Technology,
Shenzhen, China, and the School of Computer
Science and Technology, University of Science and

Technology of China, Hefei, China. His current research majorly focuses
on the theoretical analysis and design of evolutionary algorithms, especially
binary differential evolution, and estimation-of-distribution algorithms.

Huanhuan Chen (Senior Member, IEEE) received
the B.Sc. degree from the University of Science and
Technology of China (USTC), Hefei, China, in 2004,
and the Ph.D. degree in computer science from the
University of Birmingham, Birmingham, U.K., in
2008.

He is currently a Full Professor with the
School of Computer Science and Technology,
USTC. His current research interests include neu-
ral networks, Bayesian inference, and evolutionary
computation.

Prof. Chen was a recipient of the 2015 International Neural Network
Society Young Investigator Award, the 2012 IEEE Computational Intelligence
Society Outstanding Ph.D. Dissertation Award, the IEEE TRANSACTIONS

ON NEURAL NETWORKS Outstanding Paper Award, and the 2009 British
Computer Society Distinguished Dissertations Award. He is an Associate
Editor of the IEEE TRANSACTIONS ON NEURAL NETWORKS AND

LEARNING SYSTEMS and the IEEE TRANSACTIONS ON EMERGING TOPICS

IN COMPUTATIONAL INTELLIGENCE.

Xin Yao (Fellow, IEEE) received the B.Sc. degree
from the University of Science and Technology of
China (USTC), Hefei, China, in 1982, the M.Sc.
degree from the North China Institute of Computing
Technologies, Langfang, China, in 1985, and the
Ph.D. degree from USTC in 1990.

He is a Chair Professor of Computer Science
with the Southern University of Science and
Technology, Shenzhen, China, and a part-time
Professor of Computer Science with the University
of Birmingham, Birmingham, U.K. His major

research interests include evolutionary computation, ensemble learning, and
their applications to software engineering.

Dr. Yao received the prestigious Royal Society Wolfson Research Merit
Award in 2012, the IEEE CIS Evolutionary Computation Pioneer Award
in 2013, and the 2020 IEEE Frank Rosenblatt Award. His work won the
2001 IEEE Donald G. Fink Prize Paper Award, the 2010, 2016, and 2017
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION Outstanding
Paper Awards, the 2011 IEEE TRANSACTIONS ON NEURAL NETWORKS

Outstanding Paper Award, and many other best paper awards at conferences.
He was a Distinguished Lecturer of the IEEE Computational Intelligence
Society. He was the President of IEEE CIS from 2014 to 2015 and the Editor-
in-Chief of IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION from
2003 to 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

