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Abstract—Generalization, i.e., the ability of solving problem
instances that are not available during the system design and
development phase, is a critical goal for intelligent systems. A typ-
ical way to achieve good generalization is to learn a model from
vast data. In the context of heuristic search, such a paradigm
could be implemented as configuring the parameters of a par-
allel algorithm portfolio (PAP) based on a set of “training”
problem instances, which is often referred to as PAP construction.
However, compared to the traditional machine learning, PAP con-
struction often suffers from the lack of training instances, and the
obtained PAPs may fail to generalize well. This article proposes
a novel competitive co-evolution scheme, named co-evolution of
parameterized search (CEPS), as a remedy to this challenge.
By co-evolving a configuration population and an instance pop-
ulation, CEPS is capable of obtaining generalizable PAPs with
few training instances. The advantage of CEPS in improving
generalization is analytically shown in this article. Two con-
crete algorithms, namely, CEPS-TSP and CEPS-VRPSPDTW,
are presented for the traveling salesman problem (TSP) and
the vehicle routing problem with simultaneous pickup–delivery
and time windows (VRPSPDTW), respectively. The experimen-
tal results show that CEPS has led to better generalization,
and even managed to find new best-known solutions for some
instances.

Index Terms—Algorithm configuration, automatic parameter
tuning, co-evolution, parallel algorithm portfolios (PAPs), vehicle
routing problems.
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I. INTRODUCTION

IN THE past decades, search methods have become major
approaches for tackling various computationally hard prob-

lems. Most, if not all, established search methods, from spe-
cialized heuristic algorithms tailored for a particular problem
class, e.g., the Lin–Kernighan (LK) heuristic for the traveling
salesman problem (TSP) [1], to general algorithmic frame-
works, e.g., evolutionary algorithms, share a common feature.
That is, they are parameterized algorithms, which means they
involve parameters that need to be configured by users before
the algorithm is applied to a problem.

Although theoretical analyzes for many parameterized
algorithms have offered worst or average bounds on their
performance, their actual performance, in practice, is in many
cases highly sensitive to the settings of parameters [2]–[5].
More importantly, finding the optimal configuration, i.e.,
parameter setting, requires knowledge of both the algorithm
and the problem to solve, which cannot be done manually with
ease. Hence, a lot of efforts have been made to automate this
procedure, often dubbed automatic parameter tuning [5], [6]
when the algorithms have relatively few parameters with
mostly real-valued domains, or automatic algorithm config-
uration [3], [7]–[10] when the algorithms have more types
(e.g., ordinal and categorical) of parameters. These methods
essentially involve a high-level iterative generate-and-test pro-
cess. To be specific, given a set of instances from the target
problem class, different configurations are iteratively gener-
ated and tested on the instance set. Upon termination, the
process outputs the configuration that performs the best on the
instance set. Since a configuration fully instantiates a parame-
terized algorithm, for brevity, henceforth, we will use the term
“configuration” to directly denote the resultant solver specified
by it.

Built upon automatic algorithm configuration, the automatic
construction of parallel algorithm portfolios (PAPs) [11]–[15]
seeks to identify a set of configurations to form a PAP. Each
configuration in the PAP is called a component solver. To
solve a problem instance, all the component solvers are run
independently, typically in parallel, to get multiple solutions.
Then, the best solution will be taken as the output of PAP.
Although a PAP would consume much more computational
resources than a single-configuration solver, it has two impor-
tant advantages. First, the performance of a PAP on any given
instance is the best performance achieved among its compo-
nent solvers on the instance. In other words, by exploiting the
complementarity between the component solvers, a PAP could
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achieve a much stronger overall performance than any of its
component solver. Second, considering the great development
of parallel computing architectures [16] (e.g., multicore CPUs)
over the last decade, exploiting parallelism has become very
important in designing efficient solvers for computationally
hard problems. PAPs employ parallel solution strategies, and
thus allow exploiting modern high-performance computing
facilities in an extremely simple way.

From the practical point of view, a PAP construction method
is expected to identify a PAP that generalizes well, i.e., per-
forms well not only on the instance set used during the tuning
phase but also on unseen instances of the same problem
class. The reason is that intelligent systems, which incorporate
parameterized search algorithms as a module, are seldom built
to address a few specific problem instances, but for a whole
target problem class, and it is unlikely to know in advance
the exact problem instances that a system will encounter in
practice. The need for generalization requires the instance set
used for PAP construction to be sufficiently large such that
it consists of good representatives of all instances of the tar-
get problem class. Unfortunately, in a real-world scenario, PAP
construction is very likely to face the few-shots challenge. That
is, the available instance set is not only of small size but also
may not well represent the target problem class. For example,
the widely studied TSP benchmark suites (i.e., TSPlib [17])
consist of a few hundred TSP instances, while there could
be millions of possibilities for concrete TSP instances even if
only considering a fixed number of cities. In consequence, the
more powerful of a PAP construction method, the higher risk
that the obtained PAP will overfit the instances involved in the
tuning process.

This article suggests that the pursuit of generalizable PAPs
could be modeled as a co-evolutionary system, in which
two internal populations, representing the configurations (the
PAP) and the problem instances, respectively, compete with
each other during the evolution course. The evolution of
the latter promotes exploration in the instance space of
the target problem class to generate synthetic instances that
exploit the weakness of the former. The former, on the
other hand, improves itself by identifying configurations that
could better handle the latter. In this way, the configura-
tion population (the PAP) is encouraged to evolve toward
achieving good performance on as many instances of the
target problem class as possible, i.e., toward better generaliza-
tion. Specifically, the contributions of this article include the
following.

1) A novel PAP construction framework, namely,
co-evolution of parameterized search (CEPS), is
proposed. It is also shown that CEPS approximates a
process that minimizes the upper bound, i.e., a tractable
surrogate, of the generalization performance.

2) To demonstrate the implementation details of CEPS as
well as to assess its potential, concrete instantiations are
also presented for two hard optimization problems, i.e.,
TSP and the vehicle routing problem with simultaneous
pickup–delivery and time windows (VRPSPDTWs) [18].
Computational studies confirm that CEPS is able to
obtain PAPs with better generalization performance.

3) The proposal of CEPS extends the realm of co-evolution,
for the first time, to evolving algorithm configurations
and problem instances. Since CEPS does not invoke
domain-specific knowledge, its potential applications
can go beyond optimization problems, even to planning
and learning problems.

The remainder of this article is organized as follows.
Section II introduces the challenge of seeking generalizable
PAPs, existing PAP construction methods, as well as the the-
oretical insight behind CEPS. Section III presents the CEPS
framework. Section IV presents its instantiations for TSP and
VRPSPDTW. Computational studies on these two problems
are presented in Section V. Threats to validity of this study
are discussed in Section VI. Section VII concludes the article
with discussions.

II. PARAMETERIZED SOLVERS MADE GENERALIZABLE

A. Notations and Problem Description

Assume a PAP is to be built for a problem class (e.g., TSP),
for which an instance of the problem class is denoted as s, and
the set of all possible s is denoted as �. Given a parameterized
algorithm, each component solver of the PAP is a configuration
(full instantiation) of the algorithm. Generally speaking, the
parameterized algorithm can be any concrete computational
process, e.g., a traditional heuristic search process, such as the
LK Heuristic for TSP or even a neural network [19]–[21] that
outputs a solution for a given instance of the target problem
class. Let θ denote a configuration and let � denote a PAP that
contains K different configurations (component solvers), i.e.,
� = {θ1, . . . , θK}. The quality of a configuration θ on a given
instance s is denoted as f (s, θ), which is a performance indica-
tor of the corresponding solver on the instance. This indicator
could concern many aspects, e.g., the quality of the obtained
solution [10], the CPU time required to achieve a solution
above a given quality threshold [7], or even be stated in a
multiobjective form [22]. The performance of a PAP � on an
instance s, denoted as f (s,�), is the best performance achieved
among its component solvers θ1, . . . , θk on s [assuming the
smaller f (s, θ), the better]

f (s,�) := min{f (s, θ1), . . . , f (s, θK)}. (1)

Following the above definitions, optimizing the generaliza-
tion performance of a PAP can be stated as:

min
�

J(�) :=
∫

s∈�
f (s,�)p(s)ds (2)

where p(s) stands for the prior distribution of s. Since, in
practice, the prior distribution is usually unknown, a uni-
form distribution can be assumed without loss of generality.
Equation (2) can be then simplified to (3) by omitting a
normalization constant

min
�

J(�) :=
∫

s∈�
f (s,�)ds. (3)

The challenge with (2) and (3) is that in practice they cannot
be directly optimized since the set � is generally unavailable.
Instead, only a set of “training” instances, i.e., a subset T ⊂ �,
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is given for the purpose of constructing �. In fact, the so-
called overtuning phenomenon [23], [24], which is analogous
to the overfitting phenomenon in machine learning, has been
observed when the size of the training instance set is rather
limited (i.e., few-shots challenge). That is, the test (generaliza-
tion) performance of the obtained configurations is arbitrarily
bad even if their performance on the training set is excellent.
Even worse, given a T collected from real world, it is nontriv-
ial to know how to verify whether it is a good representative
of �. In case the training instance set is too small, or is not a
good representative of the whole problem class, the best PAP
obtained with it would fail to generalize.

B. Related Work

Currently, there exist several approaches for PAP con-
struction, namely, GLOBAL [25], PARHYDRA [25], [26],
CLUSTERING [27], and PCIT [13]. GLOBAL considers
PAP construction as an algorithm configuration problem by
treating � as a parameterized algorithm. By this means, exist-
ing automatic algorithm configuration tools could be directly
utilized to configure all the component solvers of � simulta-
neously. In comparison, PARHYDRA constructs � iteratively
by identifying a single component solver in each iteration
that maximizes marginal performance contribution to the cur-
rent PAP. CLUSTERING and PCIT are two approaches based
on instance grouping. That is, they both first split the train-
ing set into disjoint subsets, and then identify a component
solver on each subset. The former splits the training set by
clustering training instances based on their feature-vector rep-
resentations, while the latter splits the training set uniform
randomly and will adjust the instance grouping by transfer-
ring instances between subsets during the PAP construction
process.

Other than PAP, another important way of utilizing an algo-
rithm portfolio to achieve stronger overall performance is
algorithm selection (AS), which seeks to select, from a given
algorithm portfolio, the best suited solver to solve an instance.
Specifically, the algorithm selector is usually built by train-
ing machine learning models based on the feature sets of
training instances. Over the last decades, AS has been success-
fully applied to many computationally hard problems, such as
Boolean satisfiability problems [28] and TSP [29], [30]. A
comprehensive survey on AS can be found in [31].

To the best of our knowledge, the few-shots challenge has
not been investigated yet in the literature. That is, all the meth-
ods mentioned above assume that the training instances could
sufficiently represent that target problem class. However, as
aforementioned, such an assumption could not be always true
since in some cases, we might only have scarce or biased
training instances.

C. Enhancing Generalization With Synthetic Instances

A natural idea to tackle the few-shots challenge is to aug-
ment T with a set of synthetic instances, say T ′, such that the
PAP obtained with T ∪ T ′ would generalize better than that
obtained with T . This idea is generally valid because if the size
of T ′ continues to grow, T ∪ T ′ will eventually approach �.

Hence, the key question is how a generalizable PAP could
be obtained with a sufficiently small T ′. This question can be
restated as: how to generate synthetic training instances, such
that the generalization of the obtained PAP could be improved
as much as possible with a T ′ of (say predefined) small size.

Given a parameterized algorithm, suppose a PAP � has
been obtained as the best-performing PAP on T . A synthetic
instance set T ′ is to be generated, with the aim that a new
PAP �′ obtained with T ∪ T ′ would outperform � in terms
of generalization as much as possible. Ignoring the inner
optimization/tuning process with which �′ and � are obtained,
generating high quality T ′ could be more formally stated as
another optimization problem in (4) as follows:

min
T ′

{
J
(
�′

)− J(�)
}

:=
∫

s∈�
f
(
s,�′

)
ds−

∫
s∈�

f (s,�)ds

=
[∑

s∈T

f
(
s,�′

)+∑
s∈T ′

f
(
s,�′

)+
∫

s∈�\(T∪T ′)
f
(
s,�′

)
ds

]

−
[∑

s∈T

f (s,�)+
∑
s∈T ′

f (s,�)+
∫

s∈�\(T∪T ′)
f (s,�)ds

]
.

(4)

Equation (4) aims at achieving the largest improvement over
J(�), which is a constant since � has been obtained with T .
Since �′ is obtained with T∪T ′, we further assume that for any
s ∈ �, f (s,�′) ≤ f (s,�). Although this is a rather restrictive
assumption, it will be shown later that it could be fulfilled
when � is a subset of �′. Applying this assumption to the
right-hand side of (4), we have

∑
s∈T

[
f
(
s,�′

)− f (s,�)
] ≤ 0

∑
s∈T ′

[
f
(
s,�′

)− f (s,�)
] ≤ 0

∫
s∈�\(T∪T ′)

[
f
(
s,�′

)− f (s,�)
]
ds ≤ 0. (5)

Considering that in the right-hand side of (4), �\(T ∪ T ′) is
unknown, we thus discard the terms regarding �\(T ∪ T ′)
and retain the ones regarding T and T ′. By inequality (5), the
discarded terms are nonpositive, we then have

J
(
�′

)− J(�) ≤
∑

s∈T∪T ′

[
f
(
s,�′

)− f (s,�)
]
. (6)

Inequality (6) gives an upper bound of J(�′) − J(�) that
depends on the current instance set T , target instance set T ′,
current PAP �, and new PAP �′. Note the upper bound
is always nonpositive by inequality (5), which means if the
assumption holds, the new PAP �′ is guaranteed to generalize
better than the current PAP �. More importantly, considering
that neither J(�′) nor J(�) can be precisely measured in prac-
tice, the upper bound in Inequality (6) provides a measurable
surrogate for minimizing J(�′)− J(�), such that even larger
performance improvement could be achieved than only rely-
ing on the assumption. Therefore, given a training instance
set T and a PAP � obtained with T , an improved PAP �′
(in terms of generalization performance) could be obtained
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with a strategy with two steps to minimize the upper bound
in inequality (6).

1) Identify T ′ that maximizes
∑

s∈T∪T ′ f (s,�) [this
is equivalent to maximizing

∑
s∈T ′ f (s,�) since∑

s∈T f (s,�) is a constant given that T and � are fixed].
2) Identify �′ that minimizes

∑
s∈T∪T ′ f (s,�

′) [note that
once T ′ is generated, the term

∑
s∈T∪T ′ f (s,�) is a

constant and can be omitted].
The above two steps naturally serve as the core building

block of an iterative process that gradually seek PAPs with
better generalization performance. There could be many ways
to design such an iterative process. Among them competi-
tive co-evolution [32] provides a readily available framework.
That is, one can maintain an instance population (representing
the instance set) and a configuration population (representing
the PAP). In each iteration, the two populations alternately
evolve and compete with each other, i.e., the instance popu-
lation evolves to identify T ′ and the configuration population
evolves to identify �′.

Recall that the two-step improvement strategy is derived
from the assumption that f (s,�′) ≤ f (s,�) for any
s ∈ �. This assumption holds if � is a subset of �′
because by definition of PAP (1), we have: f (s,�′) =
min{f (s,�), minθ∈�′\� f (s, θ)} ≤ f (s,�). Following this, one
could further design the evolution of the PAP (the configura-
tion population) as identifying new configurations to insert
into the current PAP �, such that the new PAP �′, which is a
superset of �, minimizes

∑
s∈T∪T ′ f (s,�

′). However, in prac-
tice such a mechanism could suffer from the PAP-size issue.
That is, the number of the component solvers in the PAP will
keep increasing as the co-evolution proceeds. Recall that a
PAP runs its component solvers in parallel; thus, its size is
mandatorily limited by the available computational resources
(e.g., the number of available CPU cores) and thus cannot
grow infinitely. A natural way to avoid this issue is to first
remove some configurations from PAP �, resulting in a tem-
porary PAP �̄, and then identify new configurations to insert
into �̄, such that the final PAP �′ is of the same size as �.
However, this approach no longer guarantees the validity of
the above assumption. As a consequence, �′ may generalize
worse than �. A remedy to prevent this as much as possible is
to increase redundancy in the evolution of PAP. More specif-
ically, one could repeat the configuration-removal procedure
to � for n times, leading to n temporary PAPs, �̄1, . . . , �̄n;
then for each temporary PAP �̄, the new configurations are
identified and inserted, leading to n new PAPs, �′1, . . . , �′n,
each of which is of the same size as �; finally, the PAP among
them that performs best against T ∪ T ′ is retained.

III. CO-EVOLUTION OF PARAMETERIZED SEARCH

By incorporating the above-described procedure into the
co-evolution process, we arrive at the proposed CEPS frame-
work, as demonstrated in Algorithm 1. In general, CEPS
consists of two major phases, i.e., an initialization phase
(lines 2–7), and a co-evolution phase (lines 8–27), which could
be further subdivided into alternating between the evolution of

Algorithm 1: General Framework of CEPS
input: training set T; number of component solvers, K;

number of temporary PAPs, n; maximum number of
iterations, MaxIte

output: the final configuration population (PAP) �
1 /* -----Initialization----- */
2 Randomly sample a set C from the configuration space, and

test all the selected configurations on T;
3 �← ∅;
4 for i← 1 to K do
5 Find θi from C, with the target minimizing

1
|T|�s∈T f (s,� ∪ {θi});

6 �← � ∪ {θi};
7 end
8 for ite← 1 to MaxIte do
9 /* -----Evolution of �----- */

10 for i← 1 to n do
11 Randomly select θ ∈ �, and let �̄i ← �\{θ};
12 Use SMAC to identify θ ′, with the target minimizing

1
|T|�s∈T f

(
s, �̄i ∪ {θ ′}

)
;

13 �′i ← �̄i ∪ {θ ′};
14 end
15 �← the best-performing PAP among �′1, . . . , �′n;
16 /* -----Evolution of T----- */
17 if ite = MaxIte then break;
18 T ′ ← create a copy of T;
19 Assign the fitness of each s ∈ T ′ as f (s, �);
20 while not terminated do
21 s′ ← randomly select s ∈ T ′, and mutate s;
22 Test s′ with � and assign the fitness of s′ as f (s′, �);
23 s∗ ← randomly select one from all the instances in T ′

with lower fitness than s′;
24 T ← T\{s∗} ∪ {s′};
25 end
26 T ← T ′ ∪ T;
27 end
28 return �

the configuration population (representing the PAP) (lines 10–
15) and the evolution of the instance population (representing
the training instances) (lines 17–26) for MaxIte iterations in
total. These modules are detailed as follows.

1) Initialization: Given an initial training instance set T , a
simple greedy strategy is adopted to initialize a configuration
population (PAP) � of size K. First, a set of candidate config-
urations C is randomly sampled from the configuration space
and tested on the training set T (line 2). Then, starting from
an empty set (line 3), � is built iteratively (lines 4–7). At each
iteration, the configuration whose inclusion into � leads to the
largest performance improvement is selected from C (line 5)
and inserted into � (line 6). The process terminates when K
configurations have been selected.

2) Evolution of the Configuration Population: Given a con-
figuration population �, n temporary PAPs, �̄1, . . . , �̄n, are
first generated by repeatedly randomly removing a config-
uration from � (line 11). Then, for each �̄i, an existing
automatic algorithm configuration tool, namely, SMAC [3],
is used to search in the configuration space to find a new
configuration θ ′ with the target that the inclusion of θ ′ into
�̄i leads to the minimization of the performance of the resul-
tant PAP �′i on the training set (lines 12 and 13). Finally, the
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Algorithm 2: Instance Mutation Operator in CEPS-TSP
input: instance s
output: mutated instance s

1 Let N be the number of cities in s, which is then represented
by {(x1, y1), . . . , (xN , yN)};

2 xmin ← min{x1, . . . , xN}; xmax ← max{x1, . . . , xN};
3 ymin ← min{y1, . . . , yN}; ymax ← max{y1, . . . , yN};
4 for i← 1 to N do
5 Generate a random number r ∈ [0, 1];
6 if r ≤ 0.9 then

7 Sample � ∼ N
(

0, [0.025 · (xmax − xmin)]2
)

;

8 xi ← xi +�;

9 Sample � ∼ N
(

0, [0.025 · (ymax − ymin)]2
)

;

10 yi ← yi +�;
11 else
12 Sample x′ ∼ U(xmin, xmax);
13 xi ← x′;
14 Sample y′ ∼ U(ymin, ymax);
15 yi ← y′;
16 end
17 end
18 return s

best-performing PAP among the n new PAPs �′1, . . . , �′n will
replace � (line 15). From the perspective of evolutionary com-
putation, the above procedure could be seemed as mutation to
�, with SMAC employed as the mutation operator.

3) Evolution of the Instance Population: In this phase,
CEPS first creates a copy of T , i.e., T ′, which will serve as the
initial instance population hereafter (line 18). Since the aim of
the evolution of the instance population is to identify T ′ that
are hard for �, i.e., maximizing

∑
s∈T ′ f (s,�), each instance

in T ′ is assigned with a fitness as the performance of � on it
(line 19)—the worse the performance, the higher the fitness.
In each generation of the evolution of the instance population,
CEPS first randomly selects an instance s from T ′ as the parent
and mutates it to generate an offspring s′ (line 21), which is
then evaluated against the configuration population (line 22).
Finally, CEPS uses s′ to randomly replace an instance in T ′
that has lower fitness than s′ (lines 23 and 24). In this way,
as the number of generations increases, the average fitness
of instances in T ′ will gradually increase, meaning that the
instances in T ′ will be harder and harder for the configura-
tion population. When the evolution of the instance population
ends, the final T ′ will be merged into the training set (line 26),
which will be used for obtaining �′ in the next iteration of
the co-evolution. Note in the last iteration (i.e., the MaxIteth
iteration) of the co-evolution phase, evolution of the instance
population is skipped (line 17) because there is no need to gen-
erate more instances since the final configuration population
has been constructed completely.

IV. INSTANTIATIONS FOR TSP AND VRPSPDTW

Algorithm 1 is a rather generic framework since the rep-
resentations of both populations depend on the target param-
eterized algorithm and the target problem class, respectively.
The mutation operator for the instance population as well as
the fitness function also depend on target problem class. In

this article, two instantiations of CEPS, namely, CEPS-TSP
and CEPS-VRPSPDTW, have been developed for TSP and
VRPSPDTW problems, respectively. These two target problem
classes are chosen because, as a classic NP-hard problem, TSP
is one of the most widely investigated benchmarking problems
in academia. In comparison, VRPSPDTW is a much more
complex routing problem that takes real-world requirements
into account. The significant difference between these two
problems could provide a good context for assessing CEPS.

A. CEPS-TSP

Given a list of cities and the distances between each pair
of cities, the target of TSP is to find the shortest route that
visits each city and returns to the origin city. Specifically, the
symmetric TSP with distances in a 2-D Euclidean space is
considered here.

1) Instance Mutation Operator: Each of such TSP instance
is represented by a list of (x, y) coordinates with each coor-
dinate as a city. An operator widely used for generating TSP
instances (see [33]) is employed as the instance mutation oper-
ator of CEPS-TSP. As illustrated in Algorithm 2, the mutation
operator works as follows. Let xmin and xmax, ymin and ymax,
be the minimum and the maximum of the “x” values and
the “y” values across all coordinates of a given instance s,
respectively. When applying mutation to s, for each coordi-
nate (x, y) in s, x and y are offset with probability 0.9 by the
step sizes sampled from N (0, [0.025 · (xmax − xmin)]2) and
N (0, [0.025 · (ymax − ymin)]2), respectively, and with prob-
ability 0.1, x and y are replaced by new values sampled
from U(xmin, xmax) and U(ymin, ymax), respectively. N (μ, σ 2)

refers to normal distribution with mean μ and variance σ 2,
and U(a, b) refers to normal distribution defined on closed
interval [a, b].

2) Parameterized Algorithm: The adopted parameterized
algorithm is the Helsgaun’s LK Heuristic (LKH) [34] version
2.0.7 (with 23 parameters), one of the state-of-the-art inexact
solver for such TSP.

3) Fitness Function: For TSP, the penalized average run-
time with penalty factor 10 (PAR-10) [7] is considered as the
performance indicator. The smaller the PAR-10, the better.
More specifically, the performance of a configuration θ on
an instance s, i.e., f (s, θ), is the penalized runtime needed by
θ to solve s. In particular, when running θ on s, the run would
be terminated as soon as the optimal solution of s is found or
after a cutoff time of 10 s. In the first case, the run is con-
sidered successful and f (s, θ) is exactly the recorded runtime;
in the second case, the run is considered timeout and f (s, θ)

is the cutoff time multiplied by the penalty factor 10, i.e., 10
s × 10 = 100 s. Based on f (s, θ), the performance of a PAP
solver � on an instance s, i.e., f (s,�), as defined in (1), is
min{f (s, θ)|θ ∈ �}, which is the fitness function used in the
evolution of the instance population in CEPS-TSP (lines 19
and 22 in Algorithm 1). Finally, the performance of a solver
(a single configuration or a PAP solver) on an instance set is
the average of the penalized runtime over all instances in the
set, which is directly used for fitness evaluation in CEPS-TSP
to compare PAPs constructed with the configuration population
(line 15 of Algorithm 1).
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B. CEPS-VRPSPDTW

Given a number of customers who require both pickup
service and delivery service within a certain time window,
the target of VRPSPDTW [18] is to send out a fleet of
capacitated vehicles, which are stationed at a depot, to meet
the customer demands with the minimum total cost. More
specifically, VRPSPDTW is defined on a complete graph
G = (V, E) with V = {0, 1, 2, . . . , N} as the node set and
E as the arc set defined between each pair of nodes, i.e.,
E = {〈i, j〉|i, j ∈ V, i �= j}. For convenience, the depot is
denoted as 0 and the customers are denoted as 1, . . . , N. Each
node i ∈ V has a coordinate (xi, yi) and the distance between
i and j, denoted as ci,j, is the Euclidean distance. In addi-
tion to the coordinate, each customer is associated with five
attributes, i.e., a delivery demand di, a pickup demand pi, a
time window [ai, bi], and a service time si. di represents the
amount of goods to deliver from the depot to customer i and
pi represents the amount of goods to pick up from customer i
to be delivered to the depot. ai and bi define the start and the
end of the time window in which the customer receives ser-
vice. The time windows are treated as hard constraints. That
is, arrival of a vehicle at the customer i before ai results in a
wait before service can begin; while arrival after bi is infeasi-
ble. Finally, si is the time spent by the vehicle to load/unload
goods at customer i. A fleet of J identical vehicles, each with
a capacity of Q and dispatching cost cd, is initially located at
the depot. Each vehicle starts at the depot and then serve the
customers, and finally returns to the depot. For convenience,
the depot 0 is also associated with five attributes, in which a0
and b0 are the earliest time the vehicles can depart from the
depot and the latest time the vehicles can return to the depot,
respectively, and d0 = p0 = s0 = 0.

A solution S to VRPSPDTW could be represented by a
set of vehicle routes, i.e., S = {R1, R2, . . . , RK}, in which
each route Ri consists of a sequence of nodes that the vehicle
visits, i.e., Ri = (hi,1, hi,2, . . . , hi,Li), where hi,j is the jth node
visited in Ri, and Li is the length of Ri. Let TD(Ri) denote the
total travel distance in Ri, and let load(Ri) denote the highest
load on the vehicle that occurs in Ri. Let arr(hi,j) and dep(hi,j)

denote the time of arrival at hi,j and the time of departure from
hi,j, respectively.

The total cost of S consists of two parts: 1) the dispatch-
ing cost of the used vehicles, which is K · cd and 2) the
transportation cost, which is the total travel distance in S
multiplied by unit transportation cost u. The objective of the
VRPSPDTW problem is to find routes for vehicles that serve
all the customers at a minimal cost,which is presented in (7)
as follows:

min
S

TC(S) :=
K∑

i=1

[cd + TD(Ri) · u]

s.t.: K ≤ J

hi,1 = hi,L(i) = 0, 1 ≤ i ≤ K
K∑

i=1

Li−1∑
j=2

I
[
hi,j = e

] = 1, 1 ≤ e ≤ N

load(Ri) ≤ Q, 1 ≤ i ≤ K

dep
(
hi,1

) ≥ a0, 1 ≤ i ≤ K

arr
(
hi,j

) ≤ bhi,j , 1 ≤ i ≤ K, 2 ≤ j ≤ Li (7)

where the constraints are: 1) the number of used vehicles must
be smaller than the number of available ones; 2) each customer
must be served exactly once; 3) the vehicle cannot be over-
loaded during transportation; 4) the vehicles can only serve
after the start of the time window of the depot, and must
return to the depot before the end of the time window of the
depot; and 5) the service of the vehicle to each customer must
be performed within that customer’s time window.

We consider a practical application scenario from the JD
logistics company. Consider a VRPSPDTW solver that needs
to solve a VRPSPDTW instance every day. The company has
about 3000 customers in total in the city, but only about 13%
of its customers (i.e., 400) require service per day. Therefore,
for the solver, the different VRPSPDTW instances it faces have
the following connections: 1) the location and the time window
of the depot are unchanged, and the vehicle fleet is unchanged;
2) the locations of the customers will change; 3) the time
windows of the customers will change; and 4) the delivery
and pickup demands of the customers will change.

1) Instance Mutation Operator: Based on the above
observation, we design a specialized mutation operator for
VRPSPDTW, as presented in Algorithm 3. First, the coordi-
nate mutation used in CEPS-TSP is also used here. Moreover,
for the pickup demand pi and the delivery demand di of
each customer, they are replaced by new values sampled from
U(pmin, pmax) and U(dmin, dmax), respectively, where pmin and
pmax, umin and umax, are the minimum and the maximum
of the “p” value and the “d” values across all customers
of s, respectively. For the time window [ai, bi] of each cus-
tomer, ai and bi are offset by the step sizes sampled from
N (0, (0.025 · (b0 − a0)

2), where a0 and b0 are the earliest
time that the vehicles can depart from the depot and the latest
time that the vehicles can return to the depot.

2) Parameterized Algorithm: The adopted parameterized
algorithm for VRPSPDTW is a powerful co-evolutionary
genetic algorithm (Co-GA) proposed by [18] (with 12 param-
eters).

3) Fitness Function: For VRPSPDTW, the penalized aver-
age normalized cost (PANC), is considered as the performance
indicator. The smaller the PANC, the better. More specifically,
the performance of a configuration θ on an instance s, i.e.,
f (s, θ), is the penalized normalized cost of the solution found
by θ . In particular, the run of θ on s would be terminated
after a cutoff time of 150 s. Assume θ successfully finds
a feasible solution of cost c to s. Considering for different
VRPSPDTW instances, the scales of the solution costs may
vary significantly, thus the “normalized cost” is introduced to
replace c

f (s, θ) = c

mean_distance(s)
(8)

where mean_distance(s) is the average distance between all
pairs of customers in instance s. In case that θ fails to find a
feasible solution to s within the cutoff time, the correspond-
ing run is considered timeout and f (s, θ) will be set to a large
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Algorithm 3: Instance Mutation Operator in
CEPS-VRPSPDTW

input: instance s
output: mutated instance s

1 Let N be the number of customers, which are represented
by {(x0, y0, d0, p0, a0, b0, s0), . . . , (xN , yN , dN , pN , aN , bN , sN )};

2 xmin ← min{x1, . . . , xN}; xmax ← max{x1, . . . , xN};
3 ymin ← min{y1, . . . , yN}; ymax ← max{y1, . . . , yN};
4 pmin ← min{p1, . . . , pN}; pmax ← max{p1, . . . , pN};
5 umin ← min{u1, . . . , uN}; umax ← max{u1, . . . , uN};
6 for i← 1 to N do
7 /* ---Coordinate Mutation--- */
8 Generate a random number r ∈ [0, 1];
9 if r ≤ 0.9 then

10 Sample � ∼ N (
0, [0.025 · (xmax − xmin)]2

)
;

11 xi ← xi +�;
12 Sample � ∼ N (

0, [0.025 · (ymax − ymin)]2
)
;

13 yi ← yi +�;
14 else
15 Sample x′ ∼ U(xmin, xmax);
16 xi ← x′;
17 Sample y′ ∼ U(ymin, ymax);
18 yi ← y′;
19 end
20 /* ---Demand Mutation------ */
21 Sample p′ ∼ U(pmin, pmax);
22 pi ← p′;
23 Sample d′ ∼ U(dmin, dmax);
24 di ← d′;
25 /* ---Time-window Mutation--- */
26 Sample �1,�2 ∼ N (

0, (0.025 · (b0 − a0)
2
)
;

27 ai ← ai +�1;
28 bi ← bi +�2;
29 end
30 return s

penalty value, i.e., 2000. Based on f (s, θ), the further defini-
tions of the performance of a PAP solver on an instance (used
as the fitness function in the evolution of the instance popula-
tion), and the performance of a solver on an instance set (used
for fitness evaluation to compare different PAPs) are analogous
to the case of TSP.

V. COMPUTATIONAL STUDIES

To assess the potential of CEPS, computational studies have
been conducted with CEPS-TSP and CEPS-VRPSPDTW.1

The experiments mainly aim to address two questions.
1) Whether CEPS could better tackle the few-shots chal-

lenge, i.e., build generalizable PAPs with limited train-
ing instances, compared with the state-of-the-art PAP
construction methods.

2) Whether co-evolution, i.e., alternately evolving the con-
figuration population and the instance population, is

1The source code of CEPS-TSP and CEPS-VRPSPDTW, as well as the
benchmark instances generated for the experiments, have been made available
at https://github.com/senshineL/CEPS.

effective as expected at enhancing the generalization of
the resultant PAPs.

To answer these two questions, two instance sets were firstly
generated for TSP and VRPSPDTW, respectively. The TSP
instance set consists of 500 instances and the VRPSPDTW
instance set consists of 233 instances. It should be noted that
these instances are generated as our testbed. To avoid bias
toward CEPS, these instances should not be generated in the
same way that CEPS evolves the instance population. After the
benchmark sets were generated, each of them was then ran-
domly split into a training and a testing set, the size of which is
6% and 94% of the whole set, respectively. To reduce the effect
of the random splitting on the experimental results, the split
was repeated for three times, leading to three unique pairs of
training and testing sets for TSP and VRPSPDTW, denoted as
TSP_1/2/3 and VRPSPDTW_1/2/3, respectively. Throughout
the experiments, testing instances were only used to approxi-
mate the generalization performance of the PAPs obtained by
CEPS and compared methods. Only the training instances were
used for PAP construction, regardless of the methods used.
The TSP/VRPSPDTW instance set, the compared methods,
and experimental protocol are further elaborated as follows.

A. Benchmark Instances

For TSP, we collected ten different instance generators from
the literature, namely, portgen, ClusteredNetwork, explosion,
implosion, cluster, rotation, linearprojection, expansion, com-
pression, and gridmutation. Among them, portgen generates
a TSP instance (called rue instance) by uniformly randomly
placing the points on a Euclidean plane. It has been used
to create test beds for the 8th DIMACS Implementation
Challenge [35]. The generator ClusteredNetwork is from the
R-package netgen [36], which generates an instance by placing
points around different central points. The other eight gen-
erators are proposed by a recent study [37], which generate
a TSP instance mainly by simulating a phenomenon in the
point clouds of a rue instance. The details of these generators
could be found in Appendix A. Considering the rather differ-
ent instance-generation mechanisms underlying them, they are
expected to generate highly diverse TSP instances. We used
each of them to generate 50 instances, which finally gave us a
set of 500 TSP instances. The problem sizes (i.e., city number)
of all these instances are 800.

For VRPSPDTW, we obtained data from a real-world appli-
cation of the JD logistics company. Specifically, the data
contain customer requests that occurred during a period of
time in a city. The total number of customers is 3000, of which
400 customers require service per day. Therefore, to generate
a VRPSPDTW instance, we randomly select 400 customers
from the 3000 customers, and the pickup/delivery demands of
each customer are randomly selected from all the demands that
the customer has during this period of time. We repeated this
process for 500 times, thus obtaining a set of 500 VRPSPDTW
instances. After that, a VRPSPDTW solver [18] was used
to determine whether the generated instances have feasible
solutions and those without feasible solutions were discarded.
Finally, we obtained a set of 233 VRPSPDTW instances.
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TABLE I
SUMMARY OF THE EXPERIMENTAL SETTINGS

Fig. 1. Visual comparison in boxplots of the medians and variance of the test performance of each PAP across the testing instances. Note the mean value
is also plotted, indicated by “�.” (a) TSP-1. (b) TSP-2. (c) TSP-3. (d) VRPSPDTW-1. (e) VRPSPDTW-2. (f) VRPSPDTW-3.

B. Compared Methods

We compared CEPS with the state-of-the-art PAP con-
struction methods (see Section II-B), namely, GLOBAL [25],
PARHYDRA [25], [26], and PCIT [13]. It should be noted
that all these methods involve no instance generation mech-
anism, i.e., the given training instances are assumed to suf-
ficiently represent the target problem class. Hence, given our
experimental settings, comparison between CEPS and these
approaches aims to evaluate whether CEPS could better tackle
the few-shots challenge.

To address research question 2) raised at the beginning of
Section V, i.e., the role of co-evolution for achieving better
(if any) generalization, a baseline method, named evolution
of parameterized search (EPS), was also adopted in the com-
parison. EPS differs from CEPS in that it conducts instance
mutation and PAP construction in two isolated phases, rather
than alternately. Given the same training instance set as CEPS,
EPS first applies the instance mutation operator to generate
an augmented set of instances. The size of this augmented set
is kept the same as the number of instances generated dur-
ing the whole procedure of CEPS. Then, a PAP is evolved
with the same approach as in CEPS, but using the union
of the initial and the augmented training instance sets as

the input. Moreover, to further verify the effectiveness of
the co-evolution in CEPS, we included the initial PAPs of
CEPS (the PAPs built by the initialization phase, lines 2–7 in
Algorithm 1) in the comparison with the final PAPs obtained
by CEPS.

C. Experimental Protocol

We set the number of component solvers in PAP, i.e., K,
to 4, since 4-core machines are widely available now. The
parameters of the compared methods were set following sug-
gestions in the literature. For CEPS, the number of iterations
of the co-evolution, i.e., MaxIte, and the number of temporary
PAPs generated, i.e., n, were set to 4 and 10, respectively.
The termination condition for the evolution of the instance
population in CEPS was the predefined time budget being
exhausted. In the experiments, the total CPU time consumed
by each compared method was kept almost the same. The
detailed time settings of each compared method are presented
in Appendix B. The above-described experimental settings, as
well as the used parameterized algorithms and performance
indicators (see Section IV), are summarized in Table I.

For each pair of training and testing sets, i.e., TSP_1/2/3
and VRPSPDTW_1/2/3, we applied each considered method
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TABLE II
TESTING RESULTS OF THE PAPS CONSTRUCTED BY EACH METHOD. #TOS REFER TO THE NUMBER OF TOTAL TIMEOUTS.

PAR-10 AND PANC ARE PENALIZED AVERAGE RUNTIME-10 AND PANC, RESPECTIVELY. PERFORMANCE OF A PAP
IS HIGHLIGHTED IN GRAY IF IT ACHIEVED THE BEST TESTING PERFORMANCE

to construct a PAP on the training set and then tested the
resulting PAP on the testing set. For each testing instance,
the PAP was applied for three runs and the median of those
three runs was recorded as the performance of the solver on
the instance. The performance of a PAP on different testing
instances were then aggregated to obtain the number of total
timeouts (#TOs), PAR-10 (for TSP solver), and PANC (for
VRPSPDTW solver) on the testing set. All the experiments
were conducted on a cluster of 3 Intel Xeon machines with
128-GB RAM and 24 cores each (2.20 GHz, 30-MB Cache),
running Centos 7.5.

D. Results and Analysis

We report the #TOs, PAR-10, and PANC achieved by
the PAPs on the testing set in Table II and also visualize
their medians and variance across all the testing instances by
boxplots in Fig. 1. Note the mean value is also plotted in
Fig. 1 (indicated by “�”) to show that for a PAP how its
PAR-10/PANC is affected by the outliers (the timeout cases),
which would be hidden by boxplots. In Table II #TOs, PAR-
10/PANC of a PAP is highlighted in gray if it achieved the
best performance. One could make three important observa-
tions from these results. First, the PAPs obtained by CEPS
have the smallest number of timeouts in all the six experi-
ments, which means they have the highest success rate for
solving the testing instances among all the tested PAPs. Recall
that CEPS actively searches in the instance space to identify
the hard-to-solve instances for further improving the general-
ization of PAPs. Such a mechanism makes CEPS the method
that is least affected by the hard testing instances, which sig-
nificantly differs from the given training instances. This could
be further verified by Fig. 1, in which CEPS is the method
that has the least gap between the mean value (which takes
timeouts into account) and median value (which naturally fil-
ters out the timeouts). Moreover, thanks to the least number of
timeouts, in five out of the six experiments, the PAPs output
by CEPS achieved the best scores in terms of PAR-10 and
PANC. Typically, one could observe that in TSP-1 and TSP-3
of Fig. 1, PARHDYRA and EPS have “better” performances
than CEPS on the normal instances, but finally achieved worse
PAR-10 due to more timeouts. Furthermore, recall that in dif-
ferent experiments, the training/testing splits were different,
compared to other approaches, CEPS performed more sta-
bly over all six experiments. For instance, the #TOs of PCIT
and PARHYDRA fluctuate over different training/testing sets

on VRPSPDTW problem. In summary, CEPS is not only the
best-performing method but also is less sensitive to the training
data, i.e., could better tackle the few-shots challenge.

Second, EPS also involves instance generation, while was
outperformed by methods that do not generate synthetic
instances in several cases, e.g., compared to PARHYDRA
on TSP_2. This observation indicates that isolating instance
generation from PAP construction may have negative effects.
On the other hand, the fact CEPS performed better than EPS
shows the effectiveness of integrating instance generation into
the co-evolving framework.

Third, compared to the initial PAPs of CEPS (indicated
by “CEPS.initial” in Table II), the final PAPs obtained by
CEPS performed better on all of the six experiments. On aver-
age, the performance improvement rate (in terms of PAR-10
and PANC) is 21.78%. These results indicate that the co-
evolution in CEPS is effective as expected at enhancing the
generalization of the PAP solvers.

E. Comparison With State-of-the-Art TSP Solvers

For CEPS-TSP, to further assess its performance, we com-
pared the PAPs constructed by it with the state-of-the-art TSP
solvers. More specifically, we considered the following.

1) The default configuration of the considered LKH algo-
rithm, denoted as LKH-default.

2) The default configuration of another powerful TSP algo-
rithm, EAX [38], denoted as EAX-default, which has
been demonstrated to outperform LKH on a broad range
of TSP instances.

3) The tuned versions of LKH and EAX, denoted as LKH-
tuned and EAX-tuned, respectively, which are obtained
by running SMAC on their configuration spaces and
the training sets for the same time budget of the PAP
construction of CEPS.

In addition, we also considered two state-of-the-art portfolio-
based AS methods for TSP [29], [30] (see Section II-B).
Since these two methods have adopted the same TSP algo-
rithm portfolio, which contains LKH, EAX, MAOS [39],
and their variants, instead of comparing each of these two
method with CEPS, we directly adopted the virtual best solver
(VBS) of their algorithm portfolio. VBS is the oracle or per-
fect selector that always chooses the best algorithm for each
instance without any selecting cost. This idealized procedure
provides an upper bound for the performance of any algo-
rithm selector; due to imperfect selection and the cost incurred
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Fig. 2. Visual comparison in boxplots of the medians and variance of the test performance of each TSP solver across the testing instances. Note the mean
value is also plotted, indicated by “�”. (a) TSP-1. (b) TSP-2. (c) TSP-3.

TABLE III
COMPARISON OF THE STATE-OF-THE-ART TSP SOLVERS WITH THE PAPS

OBTAINED BY CEPS, ON THE TESTING SET. #TOS REFER TO THE

NUMBER OF TOTAL TIMEOUTS. PAR-10 IS THE PENALIZED AVERAGE

RUNTIME-10. PERFORMANCE OF A SOLVER IS HIGHLIGHTED IN GRAY IF

IT ACHIEVED THE BEST TESTING PERFORMANCE

by selecting, VBS cannot be achieved in practice by actual
algorithm selectors.

As before, for each testing instance, we applied each solver
for three runs and the median of those three runs was recorded
as the performance of the solver on the instance. We report
the #TOs and PAR-10 achieved by these solvers on the testing
set in Table III and also visualize their medians and variance
across all the testing instances by boxplots in Fig. 2. Note
LKH-default is omitted in Fig. 2 due to its large number of
timeouts. There are two important findings from these results.
First, LKH-default and EAX-default performed badly on the
testing set, with considerable timeouts. We speculate that this
is because the default configurations of LKH and EAX are
mainly designed to handle much larger scale TSP instances
(e.g., 10 000) than the instances considered here. After being
tuned (i.e., LKH-tuned and EAX-tuned), they both achieved
significant performance improvement, though still obviously
falling behind of the PAPs obtained by CEPS. Second, the
only solver that could match the PAP’s performance level in
one of the three scenarios is the VBS of the algorithm portfolio
considered by the AS approaches [29], [30]. However, in TSP-
2 and TSP-3, the performance advantage of the PAP is still
significant.

F. Assessing Generalization on Existing VRPSPDTW
Benchmarks

To further investigate the generalization ability of CEPS, the
PAP constructed by CEPS in the VRPSPDTW_1 experiment
has been tested on existing VRPSPDTW benchmarks [18],

TABLE IV
COMPARISON BETWEEN THE SOLUTIONS FOUND BY PAP AND THE

BEST-KNOWN SOLUTIONS (BKSS) FOUND BEFORE (AS REPORTED IN

THE LITERATURE) ON EXISTING VRPSPDTW BENCHMARK INSTANCES.
#BETTER, #NOT-WORSE, AND #WORSE REFER TO THE NUMBER OF THE

INSTANCES ON WHICH PAP FOUND BETTER, NOT WORSE (I.E., EITHER

WITH BETTER OR THE SAME QUALITY), AND WORSE SOLUTIONS

COMPARED TO BKS

which is a widely used benchmark for VRPSPDTW. Note
that compared to the benchmarks, the training instances in
VRPSPDTW_1 were obtained from different sources (i.e.,
real-world application), and may have quite different problem
characteristics, e.g., customer number and node distribution.
Hence, the PAP constructed by CEPS could be said to gener-
alize well to totally unseen data if it was constructed using the
VRPSPDTW_1 training set while still performing well on the
VRPSPDTW benchmarks. Table IV presents the comparisons
between the solutions found by the PAP and the best-known
solutions reported in the literature [18], [40]–[43] (up to May
2019), regardless of what algorithm was used. Table III shows
that overall the PAP could generalize well to the existing
benchmarks. On 43 out of 65 (66%) instances, the solutions
found by the PAP are not worse than the best solutions cur-
rently known. It is notable that on ten instances, the PAP found
new best solutions. Another observation is that the PAP per-
formed not very well on the “cdp” type instances, in which
the locations of customers are clustered (see [18] for details).
We speculate that this is because the parameterized algorithm
used for tuning PAPs has an inherent deficiency when handling
this type of instances, which on the other hand indicates that
highly parameterized algorithms with flexible solving capac-
ities are important to fully exploit the power of CEPS on a
specific problem class.

VI. THREATS TO VALIDITY

There are several validity threats to the findings of this study.
The first one is the correctness of the implementation of all



TANG et al.: FEW-SHOTS PARALLEL ALGORITHM PORTFOLIO CONSTRUCTION via Co-EVOLUTION 605

the compared methods. Prior to commencing our experiments,
we have thoroughly checked the source code of these meth-
ods (obtained from online or implemented by ourselves) and
ensured that the implementations were correct.

Second, the results of our experiments are limited to the
data sets used, in which the TSP instances are generated by
ten different generators while the VRPSPDTW instances are
collected from real-world application. We have made these
instances available online. In the future, we will assess CEPS-
TSP and CEPS-VRPSPDTW on more instance sets obtained
from other sources (generators and applications).

Third, although we have demonstrated that CEPS could
better tackle the few-shots challenge than existing PAP con-
struction methods in two case studies, there is no guaran-
tee that CEPS could be easily applied to other problem
domains. Actually, an instantiation of CEPS to a specific
domain involves specification of instance mutation opera-
tor, the parameterized algorithm, as well as the automatic
algorithm configuration method. Hence, as demonstrated by
CEPS-TSP and CEPS-VRPSPDTW, one needs to first define
these three modules according to previous literature on the
target problem class, or from scratch. Among these three
modules, the instance generators could be adapted from one
problem to another more easily and the automatic algorithm
configuration methods are usually generic. Hence, the param-
eterized search method might be the most crucial (also the
most difficult-to-obtain) one among the three modules.

VII. CONCLUSION

In this work, a co-evolutionary approach, i.e., CEPS, is
proposed for constructing PAPs to obtain good generaliza-
tion performance. By co-evolving the training instance set
and the configurations, CEPS gradually guides the search of
configurations towards instances on which the current con-
figurations fail to perform well, and thus leads to PAPs that
could generalize better. From a theoretical point of view, the
evolution of instance set is essentially a greedy mechanism,
for instance, augmentation that guarantees the generalization
performance of the resultant solver to improve as much as
possible. As a result, CEPS is particularly effective in case
that only a limited number of problem instances is avail-
able. Such a scenario is usually true when building real-world
systems for tackling hard optimization problems. Two con-
crete instantiations, i.e., CEPS-TSP and CEPS-VRPSPDTW,
are also presented. The performance of the two instantiations
on TSP and VRPSPDTW problems support the effectiveness
of CEPS in the sense that in comparison with state-of-the-
art PAP construction approaches, the PAPs obtained by CEPS
achieve better generalization performance.

Since CEPS is a generic framework, some discussions
would help elaborate issues that are of significance in prac-
tice. First, although this work assumes CEPS takes a set of
initial training instances as the input, such training instances
are not necessarily real-world instances but could be gener-
ated randomly. In other words, CEPS could be used in a fully
cold-start setting (a.k.a. zero shot), i.e., no real-world instances
are available for the target problem class. Furthermore, CEPS
could either be run offline or online, i.e., it could accommodate
new real instances whenever available.

TABLE V
DETAILED TIME SETTINGS (IN HOURS) OF EACH

PAP CONSTRUCTION METHOD

Second, the potential of CEPS could be further explored by
taking advantage of the data generated during its run, except
for the final obtained PAP. The data contain all the sampled
configurations and instances, and the performance of the for-
mer on the latter. Considering that when using a search method
to solve a problem instance, its optimal parameter values are
usually problem-instance dependent and thus need to be tuned.
To tune parameters for a new problem instance, we can learn
from the historical data generated by CEPS to build a map-
ping from problem instances to their optimal parameter values,
i.e., a low-cost online parameter-tuning system for any sin-
gle instance. It could be seen as an extension of the common
AS systems [31], which select the best algorithm/configuration
for a given instance from a predefined algorithm set. In addi-
tion, the challenging instance sets generated by CEPS could
be further used on comprehensive analysis of the strengths
and weaknesses of the parameterized algorithms, such as for
which configurations are those instances challenging and fur-
ther improvement of the algorithm. We have made the instance
sets generated by CEPS available online to further facilitate
the investigations on them.

Finally, it is interesting to note that the emerg-
ing topic of learn to optimize, which explores utiliz-
ing machine learning techniques, e.g., reinforcement learn-
ing, to build neural networks for solving optimization
problems [19]–[21], [44], [45], could also be combined with
CEPS. In this case, the implementation of CEPS would be
able to leverage on gradient descent methods to tune/evolve
the configurations (i.e., training the weights of a network).

APPENDIX A
TSP INSTANCE GENERATORS

The adopted ten TSP generators include the portgen genera-
tor from the 8th DIMACS Implementation Challenge [35], the
ClusteredNetwork generator from the R-package netgen [36],
and eight TSP instance generators, namely, explosion, implo-
sion, cluster, rotation, linearprojection, expansion, compres-
sion, and gridmutation, from the R-package tspgen [37].

1) The portgen generator generates an instance by uni-
formly randomly placing the points. The generated
instances are called rue instances.

2) The ClusteredNetwork generator generates an instance
by placing points around different central points. The
number of the clusters was set to 4, 5, 6, 7, and 8, for
each of which ten instances were generated.
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3) The explosion generator generates an instance by tearing
holes into the city points of a rue instance, with all points
within the explosion range pushed out of the explosion
area.

4) The implosion generator generates an instance by driv-
ing the city points of a rue instance toward a randomly
sampled implosion center.

5) The cluster generator generates an instance by randomly
sampling a cluster centroid in a rue instance, and then
moving a randomly selected set of points into the cluster
region.

6) The rotation generator generates an instance by rotating
a subset of points of a rue instance with a randomly
selected angle.

7) The linearprojection generator generates an instance by
projecting a subset of points of a rue instance to a linear
function.

8) The expansion generator generates an instance by plac-
ing a tube around a linear function in the points of a rue
instance, and then orthogonally pushes all points within
that tube out of that region.

9) The compression generator generates an instance by
squeezing a set of randomly selected points of a rue
instance from within a tube (surrounding a linear func-
tion) toward the tube’s central axis.

10) The gridmutation generator generates an instance by
randomly relocating a “box” of city points of a rue
instance.

APPENDIX B
DETAILED TIME SETTINGS OF COMPARED METHODS

The most time-consuming parts of PAP construction meth-
ods are the runs of the configurations on the problem instances,
and the incurred computational costs account for the vast
majority of the total costs. For CEPS, the configurations would
be run in the initialization phase (line 5 in Algorithm 1), in the
evolution of the configuration population (lines 12 and 15 in
Algorithm 1) and in the evolution of the instance population
(line 22 in Algorithm 1). Therefore, for each of these four pro-
cedures we set the corresponding wall-clock time budget, i.e.,
tinit, tc, tv, and ti, to control the overall computational costs of
CEPS. Then, the total CPU time consumed by CEPS could be
estimated by tinit+MaxIte ·K · [n · (tc+ tv)+ ti]. In this article,
K, MaxIte, and n are set to 4, 4, and 10, respectively.

The total CPU time consumed by GLOBAL and PCIT could
be estimated by K ·n ·(tc+ tv), while for PARHYDRA it could
be estimated by �K

i=1i · n · (tc+ tv)(see [13], [25], and [26] for
how these results are derived). Note for different methods tc,
tv, and ti could be set to different values. The detailed setting
of the time budget for each PAP construction method is given
in Table V. Overall, the total CPU time consumed by each
method is kept almost the same.
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