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Parallel Black-Box Complexity With Tail Bounds
Per Kristian Lehre and Dirk Sudholt

Abstract—We propose a new black-box complexity model for
search algorithms evaluating λ search points in parallel. The par-
allel unary unbiased black-box complexity gives lower bounds
on the number of function evaluations every parallel unary unbi-
ased black-box algorithm needs to optimize a given problem. It
captures the inertia caused by offspring populations in evolu-
tionary algorithms and the total computational effort in parallel
metaheuristics.1 We present complexity results for LeadingOnes
and OneMax. Our main result is a general performance limit:
we prove that on every function every λ-parallel unary unbi-
ased algorithm needs at least a certain number of evaluations
(a function of problem size and λ) to find any desired target
set of up to exponential size, with an overwhelming probabil-
ity. This yields lower bounds for the typical optimization time
on unimodal and multimodal problems, for the time to find
any local optimum, and for the time to even get close to any
optimum. The power and versatility of this approach is shown
for a wide range of illustrative problems from combinatorial
optimization. Our performance limits can guide parameter choice
and algorithm design; we demonstrate the latter by presenting an
optimal λ-parallel algorithm for OneMax that uses parallelism
most effectively.

Index Terms—Black-box complexity, parallelization, parame-
ter control, runtime analysis, theory.

I. INTRODUCTION

BLACK-BOX optimization describes a challenging realm
of problems where no algebraic model or gradient

information is available. The problem is regarded a black
box, and knowledge about the problem in hand can only be
obtained by evaluating candidate solutions. General-purpose
metaheuristics like evolutionary algorithms (EAs), simulated
annealing, ant colony optimizers, tabu search, and particle
swarm optimizers are well suited for black-box optimization
as they generally work well without any problem-dependent
knowledge.

A lot of research has focussed on designing powerful meta-
heuristics, yet it is often unclear which search paradigm works
best for a particular problem class, and whether and how better
performance can be obtained by tailoring a search paradigm
to the problem class in hand.

Black-box complexity is a powerful tool that describes lim-
its on the efficiency of black-box algorithms. The black-box
complexity of search algorithms captures the difficulty of
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problem classes in black-box optimization. It describes the
minimum number of function evaluations that every black-
box algorithm needs to make to optimize a problem from
a given class. It provides a rigorous theoretical foundation
through capturing limits to the efficiency of all black-box
search algorithms, providing a baseline for performance com-
parisons across all known and future metaheuristics as well
as tailored black-box algorithms. Also it prevents algorithm
designers from wasting effort on trying to achieve impossible
performance.

Many different models of black-box complexities have
been developed. The first black-box complexity model by
Droste et al. [28] makes no restriction on the black-box
algorithm. This leads to some unrealistic results, such as poly-
nomial black-box complexities of NP-hard problems [28].
Subsequent research introduced refined models that restrict
the power of black-box algorithms, leading to more real-
istic results [18], [20], [21], [28], [57], where black-box
algorithms can only query for the relative order of function
values of search points [20], [57] as well as memory restric-
tions [21], [28] and restrictions on which search points are
allowed to be stored [23]–[25]. Lehre and Witt [45] introduced
the unbiased black-box model where black-box algorithms
may only use operators without a search bias (see Section II).
This model initially considered unary operators (such as muta-
tion) and was later extended to higher arity operators (such
as crossover) [16] and more general search spaces [53]. It
also led to the discovery of more efficient EA variants [11].
For further details, we refer to the comprehensive survey by
Doerr [22].

A shortcoming of the above models is that they do not cap-
ture the implicit or explicit parallelism at the heart of many
common search algorithms. EAs, such as (μ + λ) EAs or
(μ, λ) EAs generate λ offspring in parallel. Using a large off-
spring population in many cases can decrease the number of
generations needed to find an optimal solution.2 However, the
number of function evaluations may increase as evolution can
only act on information from the previous generation. A large
offspring population can lead to inertia that slows down the
optimization process. Existing black-box models are unable
to capture this inertia as they assume all search points being
created in sequence.

The same goes for parallel metaheuristics such as island
models evolving multiple populations in parallel (see [47]).
Parallelization can decrease the number of generations, or

2This does not hold for all problems; Jansen et al. [38] constructed
problems where offspring populations drastically increase the number of
generations.
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parallel time. But the overall computational effort, the num-
ber of function evaluations across all islands, may increase.
Lässig and Sudholt [44] used the following notion. Let Tλ be
the random number of generations an island model with λ

islands (each creating one offspring) needed to find a global
optimum for a given problem. If using λ islands can decrease
the parallel time by a factor of order λ, compared to just one
island, λ · E(Tλ) = O(E(T1)), this is called a linear speedup
(with regards to the parallel time, the number of generations).
In other words, a linear speedups means that the total number
of function evaluations, λ · E(Tλ), does not increase beyond a
constant factor.

Previous work [43], [44], [48] considered illustrative
problems from pseudo-Boolean optimization and combina-
torial optimization, showing sufficient conditions for linear
speedups. However, the absence of matching lower bounds
makes it impossible to determine exactly for which parame-
ters λ linear speedups are achieved.

We provide a parallel black-box model that captures and
quantifies the inertia caused by offspring populations of size
λ and parallel EAs evaluating λ search points in parallel. We
present lower bounds on the black-box complexity for the well
known LEADINGONES (LO) problem and for the general class
of functions with a unique optimum, revealing how the number
of function evaluations increases with the problem size n and
the degree of parallelism, λ. The results complement existing
upper bounds [44], allowing us to characterize the realm of
linear speedups, where parallelization is effective.

Our lower bound for functions with a unique optimum is
asymptotically tight: for the ONEMAX problem, we present a
simple (1 + λ) EA with an adaptive mutation rate that achieves
an asymptotically optimal performance amongst all parallel
unary unbiased black-box algorithms. Our adaptive mutation
rates decrease the expected running time by a factor of order
ln ln λ, compared to the (1 + λ) EA with the standard mutation
rate 1/n [17].

This article extends a previous conference paper [1] with
parts of the results. A major novelty in this manuscript is the
introduction of black-box complexity results with tail bounds.
Existing black-box complexity results only make statements
about the expected number of evaluations it takes to find a
global optimum.3 However, it is often not clear whether the
expectation is a good reflection of the performance observed in
practice. We provide black-box complexity lower bounds that
apply with an overwhelming probability. More precisely, using
the notation ln+ x := max(1, ln x) whenever the argument can
be smaller than the logarithm’s base,4 we show for every tar-
get search point x∗ we can choose that every λ-parallel unary
unbiased black-box algorithm needs at least

max

{
cλn

ln+ λ
, (1 − δ)n ln n

}
= �

(
λn

ln+ λ
+ n ln n

)
(1)

3A notable exception is the p-Monte Carlo runtime introduced by Doerr
and Lengler [23], defined as the minimum number of steps needed in order
to find an optimum with probability at least 1 − p.

4When a logarithm appears in an asymptotic formula, we may assume that
n is large enough to make ln(n) = ln+(n). The same holds for terms of ln ln n,
ln ln n, etc. We only use ln+ when the argument is a function of λ.

function evaluations to find x∗, with an overwhelming prob-
ability,5 where c is a constant with c ≥ 1/60. The leading
constant 1 − δ in the n ln n term can be chosen6 arbitrarily
close to 1. This means that it is practically impossible for
any unary unbiased black-box algorithm to find a designated
target with less than cλn/ ln+ λ or less than (1− δ)n ln n eval-
uations. The latter bound applies to parallel and nonparallel
unary unbiased algorithms.

In addition, if the probability of finding a single target x∗
in the stated time is exponentially small, the probability of
finding many target points is still exponentially small. This
simple union bound argument opens up a range of opportuni-
ties for obtaining stronger results that are much more relevant
to practice than the state-of-the-art. Our method is powerful
and versatile since we can choose any set of target search
points, up to an exponential size. This allows for different
applications.

1) Considering global optimization, our lower bound (1)
applies to highly multimodal functions, even allow-
ing for up to exponentially many optima. Apart from
results tailored to specific problem classes [18], the only
generic black-box complexity lower bounds apply to
functions with one unique global optimum. Our lower
bound yields a general baseline that applies to all unary
unbiased black-box algorithms and a wide range of
problems.

2) Choosing all local optima as target search points, we
also get that for functions with up to exponentially
many local optima, every λ-parallel unary unbiased algo-
rithm needs at least the stated time (1) to find any local
optimum.

3) Since we can have exponentially many target search
points, we can even afford to consider all search points
within an almost linear Hamming distance to any local
optimum as target. Then our results imply that even
the time to get close to any local or global optimum
is bounded from below by (1).

We demonstrate the applicability and versatility of our main
result by deriving the first black-box complexity lower bounds
for a wide range of illustrative function classes, from synthetic
problems (TWOMAX, H-IFF, JUMPk, and CLIFF) that are very
popular in the evolutionary computation literature to classes
of benchmark functions [41] and important problems from
combinatorial optimization, such as VERTEX COLORING,
MINCUT, PARTITION, KNAPSACK, and MAXSAT.

In addition to providing a solid unifying theoretical foun-
dation for black-box algorithms, we believe that our results
are of immediate relevance to practice. Our black-box com-
plexity with tail bounds gives hard limits on the capabilities
of (unary unbiased) black-box algorithms. These limits can
be used to set stopping criteria appropriately, avoiding stop-
ping an algorithm before it has had a chance to come close
to local or global optima. They are useful to set parameters
such as the offspring population size λ: if we have a limited

5An overwhelming probability is defined as 1 − 2−�(nε) for some
constant ε > 0.

6The precise result contains a tradeoff between the leading constant and
the exponent of the overwhelming probability formula (see Theorem 5).
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computational budget of T evaluations, (1) implies that we
must choose λ satisfying λ/ ln+ λ ≤ T/(cn) as for larger val-
ues T is lower than (1), meaning that every λ-parallel unary
unbiased black-box algorithm fails badly with overwhelming
probability. Moreover, our lower bounds can serve as base-
line in performance comparisons across various algorithms.
And, last but not least, knowing what is impossible is vital
for guiding the search for the best possible algorithm. The
feasibility of this approach is demonstrated in this article as
we present an optimal λ-parallel algorithm for ONEMAX that
uses parallelism most effectively.

II. PARALLEL BLACK-BOX MODEL

Following Lehre and Witt [45], we only use unary unbiased
variation operators, i.e., operators creating a new search point
out of one search point. This includes local search, mutation
in EAs, but it does not include recombination.

A unary variation operator can be formally described as
a conditional probability distribution p(·|·), where for any
pairs of bitstrings x, y ∈ {0, 1}n, p(y|x) is the probability
that the variation operator produces an “offspring” y from
the “parent” x. A unary variation operator is called unbi-
ased (see [45], [53]) if for all bitstrings x, y, z ∈ {0, 1}n and
permutations σ : [n] → [n].

1) p(y|x) = p(y ⊕ z|x ⊕ z).
2) p(y|x) = p(σb(y)|σb(x)).

⊕ is the XOR operator, and the function σb(x) is the permu-
tation over the bit-positions, defined by

σb(x1x2 · · · xn) := xσ(1)xσ(2) · · · xσ(n).

Informally, unbiasedness means that there is no bias toward
particular regions of the search space; unbiased operators over
{0, 1}n must treat all bit values 0, 1 and all bit positions
1, . . . , n symmetrically. This is the case for many common
variation operators such as standard bit mutation.

Throughout this article, we only deal with unbiased algo-
rithms as the performance of biased algorithms may depend
on the particular encoding used. For example, the (1 + 1) EA
with the asymmetric mutation operator defined in [39] flips
zeros and ones with different probabilities. This leads to
improved expected times of O(n) and O(n3/2) on ONEMAX

and LO, respectively, but this advantage disappears when the
fitness function is transformed with operators ⊕ or σb [39].
Unbiased algorithms show the same performance on all pos-
sible transformations ⊕, σb of a fitness function.

Unbiased black-box algorithms query new search points
based on the past history of function values, using unbiased
variation operators. We define a λ-parallel unbiased black-box
algorithm in the same way, with the restriction that in each
round λ queries are made in parallel (see Algorithm 1). We use
the abbreviation uar for uniformly at random. These λ queries
only have access to the history of evaluations from previous
rounds; they cannot access information from queries made in
the same round. We refer to these λ search points as offspring
to indicate search points created in the same round.

This black-box model includes offspring populations in
EAs, for example (μ + λ) EAs or (μ, λ) EAs (modulo minor

Algorithm 1 λ-Parallel Unbiased Black-Box Algorithm

1: Let t := 0. Choose x1(0), . . . , xλ(0) uar, compute
f (x1(0)), . . . , f (xλ(0)), and initialize the history as
H := (f (x1(0)), . . . , f (xλ(0))).

2: repeat
3: for 1 ≤ i ≤ λ do
4: Given the history H, choose indices 1 ≤ k ≤ λ and 0 ≤

j ≤ t and an unbiased variation operator pv.
5: Sample xi(t + 1) according to pv(·|xk(j)).
6: for 1 ≤ i ≤ λ do
7: Compute f (xi(t + 1)) and append f (xi(t + 1)) to H.
8: Let t := t + 1.
9: until termination condition met

Algorithm 2 (1 + λ) EA
1: Choose x uar.
2: repeat
3: for 1 ≤ i ≤ λ do
4: Create yi by copying x and flipping each bit independently

with probability 1/n.
5: Choose z uar from arg max{f (y1), . . . , f (yλ)}.
6: if f (z) ≥ f (x) then x = z
7: until termination condition met

differences in the initialization). It can further model paral-
lel EAs, such as cellular EAs with λ cells, or island models
with λ islands, each of which generates one offspring in each
generation.

The (1 + λ) EA maintains the current best search point x
and creates λ offspring by flipping each bit in x independently
with probability p (with default p = 1/n). The best offspring
replaces its parent if it has fitness at least f (x).

A. Parallel Black-Box Complexity

The optimization time is commonly defined as the number
of function evaluations made before a global optimum is found
for the first time. The unbiased black-box complexity (uBBC)
of a function class F is the minimum worst-case optimization
time among all unbiased black-box algorithms [45] (equivalent
to Algorithm 1 with λ = 1). The unbiased λ-parallel black-box
complexity (λ-upBBC) of a function class F is defined as the
minimum worst-case number of function evaluations among
all unbiased λ-parallel algorithms satisfying the framework of
Algorithm 1.

With increasing λ access to previous queries becomes more
and more restricted. It is therefore not surprising that the black-
box complexity is nondecreasing with growing λ. For every
family of function classes Fn and all λ ∈ N

uBBC(Fn) ≤ λ-upBBC(Fn) ≤ λ · uBBC(Fn) (2)

as any unbiased algorithm can be simulated by a λ-parallel
unbiased black-box algorithm using one query in each round.
Also note that the unary uBBC can be regarded as the
1-parallel unary uBBC, uBBC(Fn) = 1-upBBC(Fn).

The following lemma shows that the parallel black-box
complexity increases with the degree of parallelism, modulo
possible rounding issues.
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Lemma 1: For any α, β ∈ N, if α ≤ β then

α-upBBC(Fn) ≤ α

β

⌈
β

α

⌉
· β-upBBC(Fn).

In particular, if (β/α) ∈ N then α-upBBC ≤ β-upBBC.
A proof (in the context of distributed black-box complexity)

was given in [2, Lemma 4].
Lemma 1 implies the following for all function classes Fn

(we omit Fn for brevity): first, if (β/α) ∈ N then α-upBBC ≤
β-upBBC. Otherwise, α-upBBC ≤ (1 + α/β) · β-upBBC ≤
2 · β-upBBC because �β/α	 ≤ 1 + β/α and 1 + α/β ≤ 2. In
particular, this implies that for all α < β ∈ N

λ-upBBC[β] = �(λ-upBBC[α]). (3)

We conclude that the λ-parallel black-box complexity does
not asymptotically decrease with the degree of parallelism,
λ = λ(n). This implies that there is a cut-off point such that
for all λ = O(λ∗) the λ-parallel uBBC of Fn is asymptotically
equal to the regular uBBC.7

Definition 1: A value λ∗ is a cut-off point if:
1) for all λ = O(λ∗), λ-upBBC = O(uBBC);
2) for all λ = ω(λ∗), λ-upBBC = ω(uBBC).
Such a cut-off point always exists because due to (3) the

parallel black-box complexity cannot decrease asymptotically,
and values of O(uBBC) can always be attained for suitable λ∗,
e.g., for λ∗ := 1. Furthermore, the λ-parallel black-box eventu-
ally diverges for very large λ [e.g., λ = ω(uBBC)] as trivially
λ-upBBC ≥ λ.

Note that cut-off points are not unique: if λ∗ is a cut-off
point, then every λ′ = 
(λ∗) is also a cut-off point.

A cut-off point determines the realm of linear speedups [44],
where parallelization is most effective. Below the cut-off, for
an optimal parallel black-box algorithm the number of func-
tion evaluations does not increase (beyond constant factors),
but the number of rounds decreases by a factor of 
(λ). The
number of rounds corresponds to the parallel time if all λ eval-
uations are performed on parallel processors. Hence, below
the cut-off it is possible to reduce the parallel time propor-
tionally to the number of processors, without increasing the
total computational effort (by more than a constant factor).

III. PARALLEL BLACK-BOX COMPLEXITY

OF LEADINGONES

We consider the function LO(x) := ∑n
i=1

∏i
j=1 xj, counting

the number of leading ones in x. It is an example of a unimodal
function where a specific bit needs to be flipped to increase the
fitness. Similarly, LZ(x) counts the number of leading zeros
in x. We first provide a tool for estimating the progress made
by λ trials, which may or may not be independent. It is based
on moment-generating functions (mgf).

Lemma 2: Given λ random variables X1, . . . , Xλ ∈ N, not
necessarily independent, let X(λ) := maxi∈[λ] Xi. If there exist
η, D ≥ 0, such that for all i ∈ [λ], it holds E

(
eηXi

) ≤ D, then
E
(
X(λ)

) ≤ (ln(Dλ) + 1)/η.

7Strictly speaking, we should be writing λ(n) = O
(
λ∗(n)

)
as the degree of

parallelism may depend on n. We omit this parameter for ease of presentation.
Asymptotic statements always refer to n.

Proof: Note first that for any i ∈ [λ] and j ∈ N, it follows
from Markov’s inequality that Pr(Xi ≥ j) = Pr(eηXi ≥ eηj) ≤
e−ηjE

(
eηXi

) ≤ e−ηjD. Now, let k := ln(Dλ)/η. Recall that
the expectation of any non-negative, integer-valued random
variable N can be written as E(N) = ∑∞

i=1 Pr(N ≥ i). From
this and a union bound, we get

E
(
X(λ)

) =
∞∑

i=1

Pr(X(λ) ≥ i) ≤ k +
∞∑

i=1

Pr(X(λ) ≥ k + i)

≤ k +
∞∑

i=1

λ∑
j=1

Pr(Xj ≥ k + i) ≤ k +
∞∑

i=1

λD

eη(k+i)

= k + e−ηk Dλ

eη − 1
≤ k + Dλ

ηeηk
= (ln(Dλ) + 1)

η
.

We now state the λ-parallel black-box complexity of LO.
Theorem 1: Let ln+ x := max(1, ln x). The λ-parallel uBBC

of LO is

�

(
λn

ln+(λ/n)
+ n2

)
and O

(
λn + n2

)
.

The cut-off point is λ∗
LO = n. The parallel time for an optimal

algorithm is �(n/(ln+(λ/n)) + n2/λ) and O
(
n + n2/λ

)
.

This result solves an open problem from
Lässig and Sudholt [44], confirming that the analysis of the
realm of linear speedups for LO from Lässig and Sudholt [44]
is tight.

Proof: The upper bound of O
(
λn + n2

)
follows easily from

an upper bound of O
(
n + n2/λ

)
on the number of generations

for a (1 + λ) EA from Lässig and Sudholt [43, Th. 1].8 The
intuition behind this bound is that λ parallel queries can lead to
a speedup of a factor of 
(λ), compared to the expected time
of 
(n2) for the (1 + 1) EA. The upper bound also contains an
additive term of n for the number of nonoptimal fitness values.
This term limits the possible speedups that can be proven using
the cited theorem.

A lower bound �(n2) follows from the unary uBBC of
LO [45], which by (2) is a lower bound on the λ-parallel unary
uBBC. Hence, the statement holds for the case λ = O(n).
Thus, we only need to consider the case λ = ω(n) and to
prove a lower bound of �(λn/ ln+(λ/n)) = �(λn/ ln(λ/n))

for this case.
We proceed by drift analysis. Let the “potential” of a search

point x be

max
0≤j≤t,1≤i≤λ

{
LO

(
xi(j)

)
, LZ

(
xi(j)

)
, n/2

}

and define the potential of the algorithm, Pt at time t to be the
highest potential of all search points produced until time t.

Assume that the potential in generation t is Pt = k. In any
generation t, let Xi for i ∈ [λ] be the indicator variable for
the event that all of the first k + 1 bit-positions in individual
i are 1 bits (or 0 bits). Furthermore, let Yi be the number of
consecutive 1 bits (or 0 bits) from position k+2 and onwards,
i.e., the number of “free riders.”

8The cited theorem gives an upper bound for an island model with a com-
plete topology; however, the differences to a (1 + λ) EA are irrelevant in the
context of this upper bound.
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To bound the progress in potential, we now estimate a
bound on the expectation of maxi∈[λ] XiYi. We first claim
that Pr(Xi = 1) = O(1/n) by recapping arguments from
Lehre and Witt [45, proof of Th. 2]. For any previously gen-
erated search point x, the number of 0 bits (or 1 bits) s in
the first k + 1 positions satisfies 1 ≤ s ≤ k + 1. Assume that
the algorithm creates a new search point x′ by flipping r bits
uniformly at random in the selected search point x. Clearly, in
order for the offspring x′ to have only 1 bits (or 0 bits) in the
first k + 1 bit-positions, it is necessary that r ≥ s. Focusing
only on the first k + 1 bit-positions, the algorithm must flip
exactly s 0 bits in the first k + 1 positions, and no 1 bits.
Optimistically assuming that the algorithm flips exactly s bit-
positions within the first k + 1 positions, the algorithm needs
to choose s bits correctly out of k + 1 bit positions. Thus, the
probability that the first k + 1 bits in the new search point x′
are only 1 bits (or only 0 bits) is therefore no more than

1(k+1
s

) = s

k + 1
· s − 1

k
· · · 1

k − s + 1
≤ 1

k + 1
= O(1/n).

The claim now follows by a union bound, taking into account
the probability of having all 0 bits or all 1 bits in the first k+1
bit-positions.

Defining M := ∑λ
i=1 Xi, we therefore have E(M) = O(λ/n).

For all λ−M indices i where Xi = 0, we clearly have XiYi = 0.
For the other M indices i where Xi = 1, we have XiYi = Yi.
Since the algorithm uses unary unbiased variation operators,
Lehre and Witt [45, Lemma 1] implies that each random vari-
able Yi, i ∈ [λ], is stochastically dominated by a geometric
random variable Zi with parameter 1/2. The expected progress
in potential is therefore

E
(
�(λ)

) = E

(
max
i∈[λ]

XiYi

)
≤ E

(
max
i∈[M]

Zi

)
.

The mgf of the geometric random variable Zi is MZi(η) =
1/(2−eη). The tower property of the expectation and Lemma 2
with η := ln(3/2) and D := 2 give

E
(
�(λ)

) ≤ E

(
E

(
max
i∈[M]

Zi|M
))

≤ E((log(DM) + 1)/η)

≤ (log(E(DM)) + 1)/η = O
(
ln+(λ/n)

)
where the last inequality follows from Jensen’s inequality and
the last equality follows from log(λ/n) = �(1). With over-
whelmingly high probability, the initial potential is at least n/2.
Hence, by classical additive drift theorems [36], the expected
number of rounds to reach the optimum is �(n/ ln+(λ/n)).
Multiplying by λ gives the number of function evaluations.

IV. PARALLEL BLACK-BOX COMPLEXITY OF

FUNCTIONS WITH ONE UNIQUE OPTIMUM

Jansen et al. [38] considered the (1 + λ) EA and established
a cut-off point for λ where the running time increases from

(n log n) to ω(n log n)

λ∗
(1 + λ) EA on ONEMAX = 
((ln n)(ln ln n)/(ln ln ln n)). (4)

Doerr and Künnemann [17] presented the following tight
bounds for bounded λ.

Theorem 2 (Adapted From [17]): The expected
optimization time of the (1 + λ) EA on ONEMAX is




(
n · λ ln+ ln+ λ

ln+ λ
+ n log n

)

where the upper bound holds for λ = O(n1−ε) and the lower
bound holds for λ = O(n).

We show that the parallel black-box complexity is lower
than the bound from Theorem 2 for large λ by a factor of
order ln+ ln+ λ.

Theorem 3: For any λ ≤ e
√

n the λ-parallel unbiased unary
black-box complexity for any function with a unique optimum
is at least

�

(
λn

ln+ λ
+ n log n

)
.

The corresponding parallel time for an optimal algorithm is
�([n/ln+ λ] + [n log n/λ]).

We will show in the next section that this bound is tight for
ONEMAX. Consequently, the cut-off point for ONEMAX is

λ∗
ONEMAX = 
(log(n) · log log n).

This is higher than the cut-off point for the (1 + λ) EA with
the standard mutation rate p = 1/n from (4) and [38].

To prove Theorem 3, we consider the progress made dur-
ing a round of λ variations in terms of a potential function
defined in the following. The following definitions and argu-
ments, including several lemmas shown in the following, will
also be used in Section VI to prove lower bounds that hold
with overwhelming probability.

Without loss of generality, we assume that the search point
1n is the optimum. Following Lehre and Witt [45], we assume
a “mirrored” sampling process, where every time a bit string x
is queried (including in the initial generation), the algorithm
queries the complement bit string x for “free.” This is neces-
sary as a black-box algorithm can try to locate the complement
of the global optimum and it then just needs to flip all bits
to find the optimum. Thus, we have to consider the progress
toward the global optimum as well as the progress toward its
complement.

Definition 2: Define the 0-potential st
0 as the minimum

number of zeros in all search points queried in all steps up
to time t. For all st

0 ≤ m ≤ n − st
0 and r ∈ {0, . . . , n} we

define the random variable �0(st
0, m, r) := max{0, st

0 − |y|0}
where |y|0 is the number of zeros in a random search point
y obtained by applying unbiased variation with radius r to a
search point with m zeros. Define the 1-potential st

1 and �1
symmetrically with respect to the number of ones.

Due to mirrored sampling, we always have st
0 = st

1, hence
we simply write st or just s if we refer to the current point in
time. Then we define the progress in terms of the potential as
�(s, m, r) = max{�0(s, m, r),�1(s, m, r)}.

Note in particular that for all z ∈ N we have

Pr(�(s, m, r) ≥ z)

≤ Pr(�0(s, m, r) ≥ z) + Pr(�1(s, m, r) ≥ z). (5)

Also note that by symmetry of zeros and ones �0(s, m, r)
has the same distribution as �1(s, n − m, r), hence it suffices
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to study the distribution of �0. We also have for all s, m, r
with s ≤ m ≤ n − s

�0(s, m, r) = �0(s, n − m, n − r) (6)

as flipping all bits (in the transition from m to n−m) and then
flipping all but r bits in the variation has the same effect as
flipping r bits in the first place. Hence, it suffices to consider
�0(s, m, r) for s ≤ m ≤ n/2.

Now, consider the progress �0(s, m, r). Let Z be the number
of 0 bits that flipped to 1, then there are r − Z new 0 bits that
were originally 1. Therefore, the number of 0 bits in the new
generated search point is m − Z + (r − Z), where Z can be
described by the hypergeometric distribution with parameters
n, m, and r. We only make progress if the number of 0 bits
in the new search point is less than s. Hence, the progress
(decrease in 0-potential) is

�0(s, m, r) = max{Z − (r − Z) + (s − m), 0}
= max{2Z − r + s − m, 0}.

We show a tail inequality for hypergeometric variables and
use this to derive a progress bound for the 0-potential.

Lemma 3: Let Z be a hypergeometrically distributed ran-
dom variable with parameters n (number of balls), m (number
of red balls), and r (number of balls drawn). For all z ∈ N0

Pr(Z = z) ≤
(

r

z

)
· mz

nz
.

If z ≥ r/2, this is at most (4m/n)z.
Proof: We assume z ≤ m and z ≤ r as otherwise

Pr(Z = z) = 0. We further assume z ≥ 1 as for z = 0 the
probability bound is 1 and the statement is trivial. Now

Pr(Z = z) =
(

m

z

)(
n − m

r − z

)
/

(
n

r

)

= m!(n − m)!r!(n − r)!

z!(m − z)!(r − z)!(n − m − r + z)!n!

=
(

r

z

)
· m!(n − m)!(n − r)!

(m − z)!(n − m − r + z)!n!
. (7)

The fraction can be written as
m(m − 1) · . . . · (m − z + 1)

n(n − 1) · . . . · (n − z + 1)

× (n − m)(n − m − 1) · . . . · (n − m − r + z + 1)

(n − z)(n − z − 1) · . . . · (n − r + 1)
.

Since z ≤ m, the second fraction above is at most 1. The first
fraction is at most mz/nz as (m− i)/(n− i) ≤ m/n for all i ∈ N

and m ≤ n. Plugging this into (7) yields

Pr(Z = z) ≤
(

r

z

)
· mz

nz
.

If z ≥ r/2, this is at most (4m/n)z as
(r

z

) ≤ 2r ≤ 22z = 4z.
The next lemma shows that for any radius r the probability

of having a progress of z decreases exponentially with z.
Lemma 4: Let s denote the current 0-potential. If s ≤ m ≤

n/8, then for all z ∈ N and r ∈ {1, . . . , n}

Pr(�0(s, m, r) = z) ≤
(

1

2

)z/2

.

Proof: Applying Lemma 3 to the hypergeometric random
variable Z with parameters m and r we have, for all z ∈ N0

Pr(�0(s, m, r) = z) = Pr

(
Z = z + r + m − s

2

)

≤
(

4m

n

)(z+r+m−s)/2

≤
(

1

2

)z/2

.

The following lemma gives another tail bound that will be
used to exclude steps where a search point of potential m  s
is chosen for variation. The probability of having a positive
progress decreases rapidly with growing m − s.

Lemma 5: For every s ≤ m ≤ n/2 and every r ∈ {1, . . . , n}

Pr(�0(s, m, r) > 0) ≤ exp

(
− (m − s)2

2r

)
.

Proof: We use the following well-known tail bound for
the hypergeometric distribution [4]: Pr(Z ≥ E(Z) + rδ) ≤
exp(−2δ2r), where E(Z) = (rm/n). The first inequality
follows from r/(2r) − m/n = 1/2 − m/n ≥ 0:

Pr(�0(s, m, r) > 0)

= Pr

(
Z >

r + m − s

2

)

= Pr

(
Z >

rm

n
+ r ·

(
r + m − s

2r
− m

n

))

≤ Pr

(
Z ≥ rm

n
+ r ·

(
m − s

2r

))

≤ exp

(
−2r

(
m − s

2r

)2
)

= exp

(
− (m − s)2

2r

)
.

Putting all lemmas together shows that the expected
progress is at most logarithmic in λ.

Lemma 6: Let �
(λ)
0 be the maximum of λ random vari-

ables �0(s, m1, r1), . . . , �0(s, mλ, rλ) for arbitrary values
m1, . . . , mλ and r1, . . . , rλ with s ≤ mi ≤ n/2 for all
1 ≤ i ≤ λ. For s ≤ n/16, we have E

(
�

(λ)
0

)
= O

(
ln+ λ

)
.

Proof: If n/8 < mi ≤ n/2 then mi − s ≥ n/16 and by
Lemma 5 we have

Pr(�0(s, mi, ri) > 0) ≤ e−n2/(512ri) ≤ e−�(n).

This means that the probability of making any progress is
exponentially small, for any ri. Thus, in the following we
assume that mi ≤ n/8 for all i.

Under this assumption, applying Lemma 4, for all z ∈ N0

Pr(�0(s, mi, ri) = z) ≤
(

1
2

)z/2 =
(

1√
2

)z
.

Hence, for η := ln(4/3) and D := 9 + 6
√

2

E
(

e�0(s,mi,ri)
)

≤
∞∑

z=0

(
1√
2

)z

eηz =
∞∑

z=0

(
4

3
√

2

)z

= 1

1 − 4
3
√

2

= D.

Applying Lemma 2 proves E
(
�

(λ)
0

)
= O

(
ln+ λ

)
.

Now, we are in a position to prove Theorem 3.
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Proof of Theorem 3: The lower bound �(n log n) follows
from unbiased unary black-box complexity [45]. Hence, it
suffices to prove the lower bound �(λn/ ln+ λ).

Consider any λ-parallel unary unbiased black-box algo-
rithm. We grant the algorithm an advantage by revealing all
search points with Hamming distance at least n/16 to both 0n

and 1n at no cost. Hence, the potential is always s ≤ n/16. By
Chernoff bounds and a union bound over λ trials, the potential
after initialization is n/16 with overwhelming probability.

Assuming this is the case, let �
(λ)
0 be the progress due

to reduction of the 0-potential in one step, and �
(λ)
1 be the

progress due to reduction of the 1-potential. Owing to the
symmetry of �0 and �1, Lemma 6 also applies to �

(λ)
1 . Hence,

the expected change in potential per round is at most

E
(
�

(λ)
0

)
+ E

(
�

(λ)
1

)
= O

(
ln+ λ

)
.

Hence, by the additive drift theorem [36], the expected number
of rounds until one of the search points 0n or 1n is obtained
is �(n/ ln+ λ). Multiplying by λ proves the claim.

V. OPTIMAL PARALLEL BLACK-BOX

ALGORITHM FOR ONEMAX

The following theorem shows that the lower bound on the
black-box complexity from Theorem 3 is tight. We show
that the (1 + λ) EA has a better optimization time if the
mutation rate is chosen adaptively, according to the current
best fitness. This is similar to common ideas from artificial
immune systems, particularly the clonal selection algorithm.
Adaptive mutation rates for ONEMAX have been studied by
Zarges [63], however the standard parameters for the clonal
selection algorithm were too drastic to even obtain polyno-
mial running times. Better results were obtained when using
a population-based adaptation [64].

The following result reveals an optimal choice for the
mutation rate of the (1 + λ) EA, depending on n and λ.

Theorem 4: On OneMax, the expected number of function
evaluations of the (1 + λ) EA with an adaptive mutation rate
pi = max{ln(λ)/(n ln(en/i)), 1/n}, where i is the number of
zeros in the current search point, for any λ ≤ e

√
n, is at most

O

(
λn

ln+ λ
+ n log n

)
.

The parallel time (number of generations) is O(n/ ln+ λ +
(n log n)/λ).

Proof: For λ = 1 the algorithm boils down to a (1 + 1) EA
with mutation rate 1/n, hence we assume λ ≥ 2 where ln+ λ =

(ln λ). Let i be the current number of zeros and pi be the
corresponding mutation rate. The probability of decreasing the
number of zeros by any k ∈ N with k ≤ i is at least

Pr(� ≥ k) ≥
(

i

k

)
· pk

i · (1 − pi)
n−k

≥ ik

kk
· pk

i · (1 − pi)
n−k = (1 − pi)

n−k ·
(

ipi

k

)k

.

Then the probability that one of λ offspring will decrease the
number of zeros by at least k is at least, using 1− (1 − pi)

λ ≥

1 − e−piλ ≥ 1 − 1/(1 + piλ) = piλ/(1 + piλ)

Pr
(
�(λ) ≥ k

) ≥ 1 − (1 − Pr(� ≥ k))λ

≥ λ(1 − pi)
n−k · (ipi/k)k

1 + λ(1 − pi)
n−k · (ipi/k)k

.

Hence, for any k ≤ i the drift is at least

E
(
�(λ)

) ≥ k · λ(1 − pi)
n−k · (ipi/k)k

1 + λ(1 − pi)
n−k · (ipi/k)k

.

For i > en/ ln λ, which implies pin > 1, we set k := pin =
ln(λ)/ ln(en/i). We have k ≤ i since k ≤ ln(λ) ≤ √

n ≤
en/ ln λ. We use k := 1 for i ≤ en/ ln λ, the realm where
pi = 1/n. This results in the following drift function h:

h(i) :=
⎧⎨
⎩

λ(1−1/n)n−1·i/n
1+λ(1−1/n)n−1·i/n

if i ≤ en/ ln λ

pin · λ(1−pi)
n−pin·(i/n)pin

1+λ(1−pi)
n−pin·(i/n)pin

otherwise.

We estimate the number of function evaluations by multiplying
the number of generations by λ. The number of generations
is estimated using Johannsen’s [42] variable drift theorem
(see [52, Th. 1]), with the above function h. Along with
(1 − 1/n)n−1 ≥ 1/e, this gives an upper bound of

λ

h(1)
+
∫ n

1

λ

h(i)
di

= 1 + λ(1 − 1/n)n−1 · 1/n

(1 − 1/n)n−1 · 1/n
+ λ

∫ n

1

1

h(i)
di

≤ en + λ + λ

∫ en/ ln λ

1

1

h(i)
di + λ

∫ n

en/ ln λ

1

h(i)
di.

The first terms are at most

en + λ + λ

∫ en/ ln λ

1

1 + λ(1 − 1/n)n−1 · i/n

λ(1 − 1/n)n−1 · i/n
di

≤ en + λ + λ

∫ en/ ln λ

1

(
1 + 1

λ · i/(en)

)
di

≤ λen

ln λ
+ en

(
1 +

∫ en/ ln λ

1

1

i
di

)

≤ λen

ln λ
+ en · (2 + ln n).

The second integral is bounded using (1 − 1/x)x−1 ≥ e−1 for
x ≥ 1 and (1 − pi)

n−pin = (1 − pi)
(1/pi−1)npi ≥ e−pin

∫ n

en/ ln λ

1 + λ(1 − pi)
n−pin · (i/n)pin

pin · (1 − pi)n−pin · (i/n)pin
di

=
∫ n

en/ ln λ

(
(n/i)pin

pin · (1 − pi)n−pin
+ λ

pin

)
di

≤
∫ n

en/ ln λ

(
(en/i)pin

pin
+ λ

pin

)
di

=
∫ n

en/ ln λ

(
λ

pin
+ λ

pin

)
di

=
∫ n

en/ ln λ

2λ ln(en/i)

ln λ
di

≤ 2λ

ln λ

∫ n

0
ln(en/i) di = 4λn

ln λ
.
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This gives the upper bound (4 + e)λn/ ln(λ) + en ·
(2 + ln n).

Note that the optimal mutation rate p =
max{ln(λ)/(n ln(en/i)), 1/n}, in particular the functional
relationship between the mutation rate and the current
fitness i, is quite hard to guess through experimentation and
was only revealed through the present theoretical analysis.
After the result from Theorem 4 was first published [1],
Doerr et al. [13] presented a self-adjusting scheme for
choosing the mutation rate in the (1 + λ) EA and showed that
it is able to match the upper bound from Theorem 4 without
knowing the functional relationship between the mutation rate
and the current fitness.

VI. TAIL BOUNDS

In this section, we now show that the lower bound for all λ-
parallel unbiased unary black-box algorithms from Theorem 3
holds with high probability. In particular, it also applies to
(nonparallel) unbiased unary black-box algorithms, for which
only lower bounds on the expectation were known before [45].
Our main result is as follows.

Theorem 5: For every fitness function f : {0, 1}n → R,
every constant 0 < δ < 1 and every set S of up to
exp(o(nδ/ log n)) search points, the following holds. Every
unary unbiased λ-parallel black-box algorithm A on f , with
probability 1−exp(−�(nδ/ log n)), does not query any search
point from S within time

max

{
λn

60 ln+ λ
, (1 − δ)n ln n

}
= �

(
λn

ln+ λ
+ n ln n

)
.

The expected time also satisfies the asymptotic bound.
Theorem 5 establishes very general limits to the

performance of large classes of algorithms, including
mutation-only EAs with standard mutation operators, local
search, and simulated annealing. In particular, putting δ :=
0.01 (say), Theorem 5 shows that every unary unbiased
search algorithm needs to be run for at least n ln n evalua-
tions as the probability of finding one of few global optima
within 0.99n ln n evaluations is overwhelmingly small. The
same holds for λ-parallel unary unbiased algorithms like
mutation-only EAs with offspring populations of size λ. Here
stopping a run before λn/(60 ln+ λ) evaluations is futile as
with overwhelming probability no optimum will have been
found yet.

In addition, Theorem 5 makes a statement about a target set
of up to exponential size. This means that the lower bounds
also apply to functions with many global optima, with respect
to the optimization time, but it can also be used to bound the
time to find local optima or any set of high-fitness individuals
of size at most exp(o(nδ/ log n)). Section VII gives illustrative
applications to a broad range of well-known problems.

Theorem 5 will be shown by separately showing lower
bounds of �(λn/ ln+ λ) and �(n log n) for the time to locate
any fixed target search point x∗ that both hold with overwhelm-
ing probability. Then we use a union bound to show that even
the probability to find one of exponentially many target search
points within the stated time is still exponentially small. Again,

we will assume mirrored sampling, i.e., every queried search
point x also evaluates x for free.

A. Lower Bound �(λn/ln+λ) With Overwhelming
Probability

We start with a bound of �(λn/ ln+ λ) for the time to find
a particular target search point x∗, w.l.o.g. x∗ = 1n. Recall
from Definition 2 that due to mirrored sampling, we can define
the potential as the minimum number zeros, or equivalently
number of ones, in all search points up to time t. We will
use [46, Th. 2] for a tail bound on the runtime, which requires
the mgf of the progress

�(λ)(s) := max
m,r

{
�

(λ)
0 (s, m, r),�(λ)

1 (s, m, r)
}

where �
(λ)
0 (s, m, r) is the maximal progress in the 0-potential,

and �
(λ)
1 (s, m, r) is the maximal progress in the 1-potential,

given current potential s, where the selected search point has
m 0 bits, respectively 1 bits, and r bits are flipped.

Lemma 7: Let s denote the current potential. If s ≤ (n/8)

and γ := ln(3
√

2/4), then E
[
eγ�(λ)(s)

]
≤ 8λ.

Proof: As noted in Definition 2 and (6)

�1(s, m, r) = �0(s, n − m, r) = �0(s, m, n − r).

Hence, by a union bound

Pr(�(s, m, r) = z)

≤ Pr(�0(s, m, r) = z) + Pr(�1(s, m, r) = z)

= Pr(�0(s, m, r) = z) + Pr(�0(s, m, n − r) = z) ≤ 21− z
2

where the last inequality follows by Lemma 4. We now have

≤ 2λ

∞∑
z=0

(
1

2

)z/2(3

4

√
2

)z

= 8λ.

Theorem 6: For every unary unbiased λ-parallel black-box
algorithm A, the probability that A finds any fixed target
search point x∗ within λn/(60 ln+ λ) steps is e−�(n).

Proof: Following the proof of Theorem 3, we assume with-
out loss of generality that the search point 1n is the optimum,
and let (Xt)t∈N be the potential as defined before.

We apply the last part of [46, Th. 2 (iv)], with the parameters
g(x) := x, xmin := 1, xmax := n, a := 0, S := {0}∪ [xmin, xmax],
and βl(t) := 8λ, for all t ∈ N. We consider the number of
parallel runs T ′ until the process reaches potential a = 0.

Define c := (3/10)γ , where γ := ln(3
√

2/4). By Lemma 7

E
[
eγ (g(Xt)−g(Xt+1)) ; Xt > a|Ft

]

≤ E
[
eγ�(λ)(s)

]
≤ 8λ = β�(t).

Furthermore, by the definition of the process, if the process
reaches the set S∩{x|x ≤ a} = {0} then it never leaves this set,
i.e., the set S∩{x|x ≤ a} is absorbing. Thus, for t := cn/(ln+ λ)

Pr
(
T ′ < t | X0 > 0

) ≤
(

t−1∏
i=0

β�(i)

)
· e−γ (g(X0)−g(a))
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< (8λ)t · e−γ n

= (8λ)
cn

ln+ λ · e−γ n

= e

(
cn

ln+ λ

)
ln(8λ)−γ n

using that ln(8λ) = ln(λ) + 3 ln(2) ≤ 3 ln+ λ gives

≤ e(3c−γ )n = e−γ n/10.

The result follows by taking into account that the algorithm
makes λ fitness evaluations per iteration, i.e., T = λT ′, and
that c > 1/60.

B. Lower Bound �(n log n) With Overwhelming Probability

Now, we show a lower bound of �(n log n) with over-
whelming probability. Note that this result is independent
of λ and thus unrelated to parallel black-box complexity; it
gives limitations for general (parallel or nonparallel) unary
unbiased black-box algorithms. Recall that every λ-parallel
unary unbiased algorithm is also a unary unbiased algorithm,
hence the result applies to a strictly larger class of algorithms.
Previously only lower bounds on the expectation were known:
Lehre and Witt [45] showed an asymptotic bound of �(n log n)

and Doerr et al. [12] presented a more precise lower bound
of n ln n − O(n).

Theorem 7: For every unary unbiased black-box algorithm
A and every constant 0 < δ ≤ 1, the probability that A finds
any fixed target search point x∗ within (1 − δ)n ln n steps is
exp(−�(nδ/ log n)).

Before presenting the proof of Theorem 7, we present the
main idea behind the proof, and the challenges to overcome.

The proof will be based on the following well-known
“coupon collector” argument that we discuss first for a sim-
ple algorithm, such as randomized local search (RLS) or the
(1 + 1) EA. For these algorithms, we can argue that with
high probability there will be cn bits in the initial search
point that differ from the optimum, for an appropriate con-
stant 0 < c < 1/2. Each such bit has a probability of 1/n of
being flipped in each step of the algorithm. For a time period
of T := (1 − δ)(n − 1) ln n steps, the probability that any fixed
bit is never being flipped is at least

(
1 − 1

n

)T

≥
(

1 − 1

n

)(1−δ)(n−1) ln n

≥ n−(1−δ)

using (1 − 1/n)n−1 ≥ 1/e. Now, the probability that there is a
bit among the cn incorrect bits that is never being flipped is
at least (

1 − n−(1−δ)
)cn ≤ exp

(−cnδ
)
.

This implies that with the above probability the optimum has
not been found in T = �(n log n) steps.

This argument works for RLS and the (1 + 1) EA for the
following reasons.

1) The algorithms evolve a single lineage from the initial
search point, which allows us to argue with “incorrect”
bits that need to be flipped at least once.

2) The same variation operator is applied at all times, which
establishes the formula (1 − 1/n)T .

3) All bits are treated independently, which is implicitly
used in the derivation of the term (1 − n−(1−δ))cn.

In order to prove Theorem 7, we have to consider all unary
unbiased black-box algorithms, for which the above properties
do not hold. In particular, algorithms may easily generate sev-
eral lineages. This makes it unclear how incorrect bits can be
defined. Also note that an algorithm might flip many incorrect
bits in one step simply by choosing a very large radius. So the
simple argument that we need to flip all incorrect bits at least
once breaks down. Algorithms may choose different variation
operators at different times, possibly depending on fitness val-
ues generated so far. This makes it difficult to argue that no
variation flips a bit over a period of time. Finally, mutations
with a fixed radius r ≥ 2 may introduce dependencies between
bits, which needs to be addressed.

We tackle these challenges as follows. Assume w.l.o.g. that
x∗ = 1n. We give away knowledge of all search points x
that have Hamming distance at least n∗ := n/(213 ln n) to
both 0n and 1n. Hence, we start with a potential of s = n∗.
Moreover, whenever the algorithm decreases the potential from
s to s′ < s, we grant the algorithm knowledge of all solutions
with Hamming distance at least s′ from both 0n and 1n. This
assumption implies that the current knowledge of the algo-
rithm can be fully described by the current potential, and the
progress of the algorithm can be bounded by considering the
transitions of the potential.

Note that all solutions with the same potential are isomor-
phic to the algorithm. Pick a set of n∗ bit positions, w.l.o.g.
the first n∗ ones. We define these bits as incorrect bits that
need to be set to 1 in order to reach the optimum. Since the
behavior of the algorithm is fully determined by the current
potential, and the bit positions are irrelevant for transitions
between potential values, we may assume w.l.o.g. that, when-
ever the algorithm performs a variation of a search point xt

with k ones, xt = 0n−k1k.
Now variations that decrease the potential by decreasing

the number of zeros will fix some of the incorrect bits
accordingly. Variations that do not decrease the potential only
create search points that are already known and thus can
be ignored as they have no effect. Hence, we require that
these incorrect bits are flipped in variations that decrease the
potential.

Having laid the foundation for arguing with incorrect bits
being fixed, we now show that with overwhelming probability,
A does not find 1n within T := (1 − δ)(n − 1) ln n steps.

Note that A can choose the radius in each step. We dis-
tinguish between single-bit variations where r = 1 (or,
symmetrically, r = n − 1) and multibit variations where
2 ≤ r ≤ n − 2. We first show that in at most T steps with
multibit variations, not too many incorrect bits are being fixed.
Then we show later that at most T single-bit variations are not
enough to fix all incorrect bits that are not being fixed by multi-
bit variations. Note that the algorithm can interleave single-bit
variations and multibit variations arbitrarily. Our arguments
work for arbitrary sequences of single-bit and multibit varia-
tions; they even hold if the algorithm is allowed to make T
single-bit variations and T multibit variations at the cost of T
queries.
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The following lemma considers multibit variations and
bounds transition probabilities of the potential.

Lemma 8: Let s ≤ n∗ for n∗ := n/(213 ln n), then for every
m ∈ [s, 2n∗] ∪ [n − 2n∗, n − s], every radius 2 ≤ r ≤ n − 2 and
every 1 ≤ z ≤ n we have

Pr(�0(s, m, r) = z) ≤
(

16n∗

n

)2

· 2−z.

If 2n∗ < m < n − 2n∗ we have

Pr(�0(s, m, r) = z) ≤ e
−�

(
n∗2/n

)
.

Proof: Recall that by (6) it suffices to consider the case
m ≤ n/2. If 2n∗ ≤ m ≤ n/2 then by Lemma 5

Pr(�0(s, m, r) > 0) ≤ exp

(
− (m − s)2

2r

)
= e

−�
(

n∗2/n
)
.

Now, assume s ≤ m ≤ 2n∗. As shown in the proof of
Lemma 4

Pr(�0(s, m, r) = z) ≤
(

4m

n

)(z+r+m−s)/2

≤
(

8n∗

n

)(z+r)/2

.

We claim that the above is bounded by (16n∗/n)2 · 2−z for all
z ≥ 1 and all r ≥ 2.

Note that Pr(�0(s, m, r) = z) = 0 if z > r or if z = 1 and
r = 2 as the progress must be an even number. For z = 1 and
r ≥ 3 we get
(

8n∗

n

)(z+r)/2

=
(

8n∗

n

)2

·
(

8n∗

n

)(r−3)/2

≤
(

16n∗

n

)2

· 2−1.

For z = 2 and all r ≥ 2 we get
(

8n∗

n

)(z+r)/2

=
(

8n∗

n

)2

·
(

8n∗

n

)(r−2)/2

≤
(

16n∗

n

)2

· 2−2.

For z = 3 and r = 3 we get, using (8n∗/n)1/2 ≤ 1/2
(

8n∗

n

)(z+r)/2

≤
(

8n∗

n

)2

·
(

8n∗

n

)(r−1)/2

≤
(

16n∗

n

)2

· 2−3.

For all r ≥ 4 we have, using (8n∗/n)1/2 ≤ 1/2
(

8n∗

n

)(z+r)/2

≤
(

8n∗

n

)2

·
(

8n∗

n

)z/2

≤
(

8n∗

n

)2

· 2−z.

Using Lemma 8 now allows us to express the progress of
any algorithm using stochastic domination and a combination
of two simple random variables.

Lemma 9: Let s ≤ n∗ for n∗ := n/(213 ln n), then for
every s ≤ m ≤ n − s and every radius 2 ≤ r ≤ n − 2
the progress �(s, m, r) is stochastically dominated by XtYt

where Xt ∈ {0, 1} is a Bernoulli random variable with
Pr(Xt = 1) = 2(16n∗/n)2 and Yt is a geometric random vari-
able with parameter 1/2, and Xt and Yt being independent of
each other and independent of other time steps t′ �= t.

Proof: By Lemma 8 and the definition of Xt, Yt

Pr(�0(s, m, r) = z) ≤
(

16n∗

n

)2

· 2−z = Pr(XtYt = z)

2

for every z ≥ 1 and all m ∈ [s, 2n∗]∪[n−2n∗, n−s]. The same
clearly also holds in case 2n∗ < m < n − 2n∗ by the second
statement of Lemma 8. This implies Pr(�0(s, m, r) ≥ z) ≤
Pr(XtYt ≥ z)/2 for all z ≥ 1.

The probability bounds for �0 also apply to �1 by sym-
metry of zeros and ones, and thus by the union bound
Pr(�(s, m, r) ≥ z) ≤ Pr(�0(s, m, r) ≥ z)+Pr(�1(s, m, r) ≥ z)
we get Pr(�(s, m, r) ≥ z) ≤ Pr(XtYt ≥ z) for all z ≥ 1. The
last inequality also holds trivially for z = 0 as then both sides
are 1. This completes the proof.

We use Lemma 9 to show tail bounds for the progress made
in multibit variations. The following lemma shows that at most
half of the incorrect bits are being fixed by multibit variation
steps, even when considering a time span of n ln n steps instead
of (1 − δ)n ln n.

Lemma 10: Let n∗ := n/(213 ln n). Within T := n ln n
multibit variation steps at most n∗/2 incorrect bits are being
fixed, with probability 1 − 2−�(n/ log n).

Proof: We give a tail bound for the sum of variables XtYt

defined in Lemma 9; by stochastic domination, the tail bound
then also holds for the real progress. Recall that Xt as well
as Yt are both sequences of independent and identically dis-
tributed (i.i.d.) variables and that all variables are mutually
independent.

By Chernoff bounds, with overwhelming probability the
number of Xt variables attaining value 1 is bounded by at
most twice its expectation

Pr

(
T∑

t=1

Xt ≥ 4T

(
16n∗

n

)2
)

≤ exp

(
−2T

3

(
16n∗

n

)2
)

= e−�(n/ log n).

If
∑T

t=1 Xt ≤ �4T(16n∗/n)2� =: k then there are at most k
variables Yt that contribute to

∑T
t=1 XtYt. For ease of notation,

we assume that these are variables Y1, . . . , Yk.
We apply Chernoff bounds for sums of geometric random

variables [10, Th. 3] to bound the contribution of k variables
Y1, . . . , Yk. Note that E

(∑k
t=1 Yt

)
= 2k

Pr

(
k∑

t=1

Yt ≥ 4k

)
≤ exp

(
− k−1

4

)
= e−�(n/ log n).

Hence, if both “typical” events occur

T∑
t=1

XtYt ≤ 4k ≤ 16T · 162n∗ · n∗

n2
= 16n ln(n)n∗

25n ln n
= n∗

2
.

Taking the union bound for the two probabilities 2−�(n/ log n)

that the typical events do not happen completes the proof.
Now, we are ready to give a proof for Theorem 7.
Proof of Theorem 7: As explained earlier, it suffices to

consider n∗ incorrect bits and to show that with the claimed
probability not all of these bits will be fixed within T unbiased
variations.

Lemma 10 implies that with overwhelming probability there
exist n∗/2 incorrect bits that are not being fixed by up to T
multibit variations. We now use coupon collector arguments
(similar to those sketched earlier) to show that, in up to
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T single-bit variations, with overwhelming probability these
n∗/2 incorrect bits will not all be fixed.

The probability that any fixed bit i will not be flipped in a
single-bit variation amongst the first T steps is at least, using
(1 − 1/x)x−1 ≥ 1/e for x > 1(

1 − 1

n

)T

=
(

1 − 1

n

)(1−δ)(n−1) ln n

≥ n−(1−δ).

Hence, the probability that a fixed bit i will be flipped in up
to T single-bit variations is at least 1 − n−(1−δ). Hence, the
probability that all of the n∗/2 incorrect bits are being flipped
in T steps is at most

(
1 − n−(1−δ)

)n∗/2 ≤ exp
(−�

(
nδ/ log n

))
.

Theorems 6 and 7 imply our main result (Theorem 5).
Proof of Theorem 5: Fix a target search point x∗ from the

target set. By Theorem 6 the probability of finding x∗ within
(λn)/(60 ln+ λ) steps is exp(−�(n)). Applying Theorem 7
with parameter δ yields that the probability of finding x∗ within
(1−δ)n ln n steps is exp(−�(nδ/ log n)). By the union bound,
the probability that one of these lower bounds does not apply
is exp(−�(n))+exp(−�(nδ/ log n)) ≤ 2 exp(−�(nδ/ log n)).
Repeating the above arguments for all target search points and
using a union bound over at most exp(o(nδ/ log n)) search
points yields an overall probability bound of

exp
(
o
(
nδ/ log n

)) · 2 exp
(−�

(
nδ/ log n

))
= exp

(−�
(
nδ/ log n

)+ o
(
nδ/ log n

)+ ln 2
)

= exp
(−�

(
nδ/ log n

))
.

Finally, the claimed equality

max

{
λn

60 ln+ λ
, (1 − δ)n ln n

}
= �

(
λn

ln+ λ
+ n ln n

)

follows from max{x, y} ≥ (x + y)/2 and 1 − δ = �(1).

VII. BLACK-BOX COMPLEXITY RESULTS FOR

ILLUSTRATIVE FUNCTION CLASSES

In this section, we give a number of examples of how to
exploit the fact that our lower bounds apply to the time for
finding an arbitrary target set of up to exponentially many
search points. This leads to novel results for functions with
many global optima, but can also be used to bound the time
for reaching local optima or search points within a certain
distance from any local or global optimum.

A. Black-Box Complexity Lower Bounds for Functions With
Many Optima

Previous black-box complexity results like Theorem 3 or
results on (nonparallel) uBBC [45] were limited to functions
with a unique optimum. These results apply to popular test
functions like ONEMAX and LO and function classes like
linear functions or monotone functions [14]. However, they
do not apply when considering functions with more than one
optimum. Apart from tailored analyses for specific problems
classes (e.g., problems from combinatorial optimization [18]),

we are not aware of any generic black-box complexity results
that apply to functions with multiple optima.

Theorem 5 overcomes this limitation, yielding novel black-
box complexity results for the unary uBBC and its λ-parallel
variant across a range of problems with several global optima,
including some widely studied problem classes. These black-
box complexity results give general limitations that can serve
as baselines for performance comparisons and guide the search
for the most efficient algorithms, including those using par-
allelism most effectively (as demonstrated successfully for
ONEMAX in Section V).

There are many examples of relevant problem classes to
which Theorem 5 applies. The most obvious class is that of
all functions with exp(o(nδ/ log n)) optima. Note that when
choosing, say, δ := 0.995 then exp(n0.99) ≤ exp(o(nδ/ log n));
the reader may choose to think of the latter expression as
exp(n0.99) as this may be easier to digest.

Following Witt [62], the mentioned function class includes
problems where all optima have at most nδ/ log3 n ones or
at most nδ/ log3 n zeros. This is because the number of such
search points is bounded by

2
nδ/ log3 n∑

i=0

(
n

i

)
= O

(
nnδ/ log3 n

)
= exp

(
o
(
nδ/ log n

))
(8)

where the last step used nnδ/ log3 n = exp(
(nδ/ log2 n)) =
exp(o(nδ/ log n)).

In the following we survey a number of illustrative prob-
lems that have been studied previously and for which we give
the first black-box complexity results. In terms of combinato-
rial problems, there are a lot of well-studied problems with a
property called bit-flip symmetry: flipping all bits gives a solu-
tion of the same fitness. This means that there are always at
least two global optima. Such problems have been popular as
search algorithms need to break the symmetry between good
solutions [32].

Well-known examples include the function TWOMAX :=
max{∑n

i=1 xi,
∑n

i=1(1 − xi)} [32], which has been used as
a challenging test bed in theoretical studies of diversity-
preserving mechanisms [6], [7], [50]. The function hierarchical
if and only if (H-IFF) [59] consists of hierarchical building
blocks that need to attain equal values in order to contribute
to the fitness. It was studied theoretically [9], [35] and is
frequently used in empirical studies (see [33], [58]).

In terms of classical combinatorial problems, the VERTEX

COLORING problem asks for an assignment of colors to ver-
tices such that no two adjacent vertices share the same color.
For two colors, a natural setting is to use a binary encoding
for the colors of all vertices and to maximize the number of
bichromatic edges (edges with differently colored end points).
A closely related setting is that of simple Ising models, where
the goal is to minimize the number of bichromatic edges. For
bipartite (that is, 2-colorable) graphs, this is identical to max-
imizing the number of bichromatic edges as inverting one set
of the bipartition turns all monochromatic edges into bichro-
matic ones and vice versa. Previous theoretical work includes
EAs on ring/cycle graphs [30], the Metropolis algorithm on
toroids [29], and EAs on binary trees [54].
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Other combinatorial problems with bit-flip symmetry
include cutting and selection problems. Given an undirected
graph, the problems MAXCUT and MINCUT seek to parti-
tion the graph into two nonempty sets, such as to maximize
or minimize the number of edges running between those
two sets, respectively. Using a straightforward binary encod-
ing for all vertices, this results in bit-flip symmetry and
multiple optima. Theoretical studies of EAs on cutting prob-
lems include [49] and [55]; the latter paper considers a
simple instance of two equal-sized cliques that leads to two
complementary optima. Concerning selection problems, the
well-known NP hard PARTITION problem asks whether it
is possible to schedule a set of n jobs on two identical
machines such that both machines will have identical loads.
An optimization problem is obtained by trying to minimize
the load of the fuller machine, also called the makespan. A
straightforward encoding is used: every bit indicates which
machine the corresponding job should be assigned to. Witt [61]
analyzed the performance of the (1 + 1) EA for this problem,
including random instance models where job sizes are drawn
randomly from a real range, according to a uniform or an expo-
nential distribution, respectively. In both cases such instances
will almost surely have two complementary optima.9

Wegener and Witt [60] considered monotone polynomials:
a sum of monomials (products of variables, e.g., x1x3x4) with
positive weights. Here 1n is always a global optimum, but
more optima can exist if there are variables that do not appear
in any monomial: each such variable doubles the number of
optima as it is not relevant for the fitness. Hence, if there are
o(nδ/ log n) such variables then there are at most 2o(nδ/ log n) ≤
exp(o(nδ/ log n)) optima.

Jansen and Zarges [41] presented instance classes called
nearest peak functions and weighted nearest peak functions.
Both are defined with respect to an arbitrary number of peaks:
search points with an associated height and slope. For near-
est peak functions the fitness of a search point is determined
by its closest peak: for the peak itself the fitness is equal to
the height of the peak and for other search points the fitness
decreases gradually with the distance from the peak, accord-
ing to the slope of the peak. Weighted nearest peak functions
are defined similarly, but all peaks are considered and higher
peaks can dominate shallower peaks. This function class was
introduced as a test bed allowing to create an arbitrary number
of optima. It is shown in [41] that the set of local optima is a
subset of all peaks. Hence, the number of peaks is an upper
bound on the number of global (and local) optima. The two
function classes were named Jansen–Zarges function classes
in [7], where they were used as benchmarks for the clearing
diversity mechanism.

Finally, we consider random planted MAX-3-SAT instances
as a popular benchmark model in both experimental [34] and
theoretical studies [3], [19], [56]. The fitness function is the
number of satisfied clauses and each clause contains exactly
three literals (negated or non-negated variables from the set

9More than two optima only exist if there are different combinations of job
sizes (beyond symmetries) that add up to the same value. Since the weight
of each job size is drawn from a continuous range and the number of values
that could lead to equal values is finite, this almost surely never happens.

{x1, . . . , xn}). In this model, we fix a planted optimum x∗
and generate clauses independently such that they are sat-
isfied by x∗. This means that at least one literal needs to
evaluate to true in x∗. The variables for each clause are
chosen uniformly at random (with or without replacement)
from {x1, . . . , xn}. We may assume that instances are gener-
ated by first deciding which of the three literals will match x∗
and which will not. In a second step, the indices of variables
will be picked. We further assume that there is at least a con-
stant probability c1 of a clause having one matching literal
and at least a constant probability c3 of a clause having three
matching variables.10 In this setup, x∗ is a global optimum, but
there may be more global optima. We argue that the number
of optima is bounded if the number of clauses, m, is chosen
large enough.

Consider a solution x with Hamming distance H := H(x, x∗)
to x∗. We argue that for any clause, the probability that the
clause will be satisfied under x is �(H/n). If H ≤ n/2 then
with probability c1 we will choose one matching literal and the
probability that only the variable of this literal will be chosen
among the H ones that differ in x and x∗ is �(H(n−H)2/n3) =
�(H/n). Likewise, if H > n/2 then with probability c3 we
will choose three matching literals and the probability that they
are all different in x and x∗ is �(H3/n3) = �(H/n). Now,
since all clauses are generated independently, the probability
that all m clauses are satisfied under x is (1 − �(H/n))m ≤
exp(−�(Hm/n)).

Hence, for all search points x with H ≥ nδ/ log3 n
the probability that x is a global optimum is at most
exp(−�(nδ/(log3 n)·m/n)) = exp(−�(n log n)) if the number
of clauses is m = �(n2−δ log4 n). In this case, the probability
that any such search point will be a global optimum is at most
2n · exp(−�(n log n)) = exp(−�(n log n)), a failure probabil-
ity so small that it can be absorbed in the failure probabilities
for our tail bounds. Now, with overwhelming probability the
number of global optima is bounded by the number of search
points with Hamming distance less than nδ/ log3 n from x∗.
By (8), this number is exp(o(nδ/ log n)).

The following theorem summarizes all the above.
Theorem 8: Every unary unbiased λ-parallel black-box

algorithm A needs more than

max

{
λn

60 ln+ λ
, (1 − δ)n ln n

}
= �

(
λn

ln+ λ
+ n ln n

)

evaluations, with probability 1 − exp(−�(nδ/ log n)), to find
a global optimum for all of the following settings.

1) All functions with exp(o(nδ/ log n)) optima.
2) All functions where all optima have at most nδ/ log3 n

ones or at most nδ/ log3 n zeros.
3) TWOMAX := max{∑n

i=1 xi,
∑n

i=1(1 − xi)}.
4) H-IFF.
5) Vertex coloring/Ising model problems: maximizing or

minimizing the number of bichromatic edges when

10This is the case in [3], [19], and [56] where implicitly c1 = 3/7 and
c3 = 1/7 and in [34] where c1 = 4/6 and c3 = 1/6. The latter probabilities
favor clauses with only one matching literal in order not to give an obvious
bias toward the values of x∗. Note that we don’t care about the value of c2
(two matching literals).
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trying to color a connected bipartite graph with two
colors.

6) MINCUT instances with two equal-sized cliques.
7) PARTITION instances having two symmetric optimal

solutions (which almost surely applies to random
instances).

8) Monotone polynomials with positive weights where
all but o(nδ/ log n) variables appear in at least one
monomial.

9) Jansen–Zarges nearest peak functions and weighted
nearest peak functions with exp(o(nδ/ log n)) peaks.

10) Random planted MAX-3-SAT instances as described
above with at least m = �(n2−δ log4 n) clauses.

The expected time also satisfies the asymptotic bound.
We remark that results on the expectation are tight for some

of these problems: for TWOMAX and the mentioned MINCUT

instances, the (1 + λ) EA with adaptive mutation rates and
appropriate restart schemes can find global optima in expected
O(λn/(ln+ λ) + n ln n) fitness evaluations (this easily follows
from the analysis on ONEMAX). Other function classes from
Theorem 8 contain functions with an exponential black-box
complexity, for instance the NEEDLE function. Our results
should be regarded as a general baseline that applies to all
unary unbiased black-box algorithms and a wide range of
problems.

B. Lower Bounds on the Time to Reach Local Optima

For many multimodal problems where the lower bounds
from Theorem 8 are not tight, there is another significant appli-
cation of Theorem 5. It can also be applied to bound the time
until any unary unbiased black-box algorithm has found a local
optimum, or any search point of reasonably high fitness, if the
number of such points is bounded.

This includes functions with exp(o(nδ/ log n)) local optima,
and those where all local optima have at most nδ/ log3 n ones
or at most nδ/ log3 n zeros. The latter function class includes
the well-known JUMPk functions [8], [26], where a gap of
Hamming distance k has to be “jumped” to reach a global
optimum, with parameter k ≤ nδ/ log3 n: here all search points
with k zeros are local optima, in addition to the global opti-
mum 1n. A similar function class CLIFFd was used in [5], [37],
and [51], where the same holds for d in lieu of k; the difference
between these two functions is that in the region “between”
local and global optima JUMPk has a gradient pointing back
toward the local optima whereas CLIFFd points toward the
global optimum 1n.

Functions with difficult local optima include a modi-
fied version of TWOMAX used in [31]: in TWOMAX′ :=
max{∑n

i=1 xi,
∑n

i=1(1− xi)}+∏n
i=1 xi the point 1n is the only

global optimum and 0n is a local optimum that is very hard to
escape from. A combinatorial example of a MAXSAT instance
with difficult local optima was studied in the context of EAs
in [27], with variables x1, . . . , xn and clauses

{(
xi ∨ xj ∨ xk

)|i �= j �= k �= i
} ∪ {(xi)|1 ≤ i ≤ n}. (9)

Here the optimum is again 1n, and all n search points with
a single 1 bit are local optima. Likewise, the MINCUT

instance from Theorem 8 has O(n) local optima as well: all
search points with exactly one 1 bit or one 0 bit are locally
optimal. Sudholt [55] further presented a hard KNAPSACK

instance with (n + 1)/2 “small” objects of weight and value
n and (n − 1)/2 “big” objects of weight and value n + 1. The
weight limit is set to (n+1)/2·n, such that, including all small
objects yields a global optimum, but selecting all but one big
object gives a local optimum. Similar as above, the number of
local optima is O(n).

Finally, the arguments for Jansen–Zarges function classes
also hold with respect to the number of local optima.

The following theorem summarizes all the above.
Theorem 9: Every unary unbiased λ-parallel black-box

algorithm A needs more than

max

{
λn

60 ln+ λ
, (1 − δ)n ln n

}
= �

(
λn

ln+ λ
+ n ln n

)

evaluations, with probability 1 − exp(−�(nδ/ log n)), to find
a local or global optimum for all of the following settings.

1) All functions with exp(o(nδ/ log n)) local optima.
2) All functions where all local optima have at most

nδ/ log3 n ones or at most nδ/ log3 n zeros.
3) JUMPk functions with k ≤ nδ/ log3 n.
4) CLIFFd functions with d ≤ nδ/ log3 n.
5) TWOMAX := max{∑n

i=1 xi,
∑n

i=1(1 − xi)} as well
as the modified TWOMAX function TWOMAX′ :=
max{∑n

i=1 xi,
∑n

i=1(1 − xi)} +∏n
i=1 xi.

6) MINCUT instances with two equal-sized cliques.
7) The hard MAXSAT instance from (9).
8) The hard KNAPSACK instance mentioned above.
9) Jansen–Zarges nearest peak functions and weighted

nearest peak functions with exp(o(nδ/ log n)) peaks.
The expected time also satisfies the asymptotic bound.

We can even push our applications a bit further. Again
using (8), there are at most exp(o(nδ/ log n)) search points
within a Hamming ball of radius nδ/ log3 n around any search
point. If there are exp(o(nδ/ log n)) global or local optima then
the number of all search points within the union of Hamming
balls around all these points is still exp(o(nδ/ log n)) ·
exp(o(nδ/ log n)) = exp(o(nδ/ log n)). Hence, our main result
from Theorem 5 still applies when considering the time to get
to within Hamming distance nδ/ log3 n of any global or local
optimum.

Theorem 10: Theorems 8 and 9 still apply when replacing
“to find a global optimum” with “to find any search point
within Hamming distance nδ/ log3 n to any global optimum”
in Theorem 8 and replacing “to find a local or global opti-
mum” with “to find any search point within Hamming distance
nδ/ log3 n to any local or global optimum” in Theorem 9.

In particular, this implies that with overwhelming probabil-
ity no unary unbiased black-box algorithm can find a search
point of fitness at least n − nδ/ log3 n for ONEMAX, LO,
and TWOMAX within the stated time. In other words, the
expected fitness after the stated time is n − nδ/ log3 n + o(1)

[where the o(1) term accounts for an exponentially small fail-
ure probability, in case of which the fitness could be as large
as n]. Such results are known as fixed-budget results [15], [40].
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This shows that our λ-parallel black-box complexity results
with tail bounds can be applied in a large variety of settings.

VIII. CONCLUSION

We have introduced the parallel uBBC to quantify the lim-
its on the performance of parallel search heuristics, including
offspring populations, island models, and multistart meth-
ods. We proved that every λ-parallel unbiased black-box
algorithm needs at least �(λn/(ln+ λ) + n ln n) function eval-
uations on every function with unique optimum, and at
least �(λn/(ln+(λ/n)) + n2) function evaluations on LO.
Corresponding parallel times are by a factor of λ smaller.
For LO and ONEMAX we identified the cut-off point for λ,
above which the asymptotic number of function evaluations
increases, compared to nonparallel algorithms (λ = 1). All
smaller λ allow for linear speedups with regard to the paral-
lel time. For ONEMAX this cut-off point is higher than that
for the standard (1 + λ) EA; optimal performance for all λ is
achieved by a (1 + λ) EA with an adaptive mutation rate.

In a novel and more detailed analysis we have
established tail bounds showing that the lower bound
�(λn/(ln+ λ) + n ln n) holds with overwhelming probability,
for parallel and nonparallel algorithms (where λ = 1) and for
finding any target set of search points we can choose. This
makes it a very general, powerful and versatile statement: we
obtain lower bounds on the optimization time on functions
with many optima, the time to find a local optimum, and the
time to even get close to any local or global optimum. We
demonstrated the usefulness of this approach by deriving the
first black-box complexity lower bounds for a range of popular
and illustrative problems, from synthetic problems (TWOMAX,
H-IFF, JUMPk, and CLIFF) to classes of multimodal bench-
mark functions [41] and important problems from combina-
torial optimization, such as VERTEX COLORING, MINCUT,
PARTITION, KNAPSACK, and MAXSAT.

A major open problem for future work is to derive lower
bounds for the λ-parallel uBBC when allowing binary opera-
tors like crossover, or operators combining many search points
as in EDAs or swarm intelligence algorithms. Currently, even
in the nonparallel case no nontrivial lower bounds on the
binary uBBC are known.
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