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Abstract—Locating more peaks and refining the solution
accuracy on the found peaks are two challenging issues in solv-
ing multimodal optimization problems (MMOPs). To deal with
these two challenges, a distributed individuals differential evo-
lution (DIDE) algorithm is proposed in this article based on
a distributed individuals for multiple peaks (DIMP) framework
and two novel mechanisms. First, the DIMP framework provides
sufficient diversity by letting each individual act as a distributed
unit to track a peak. Based on the DIMP framework, each indi-
vidual uses a virtual population controlled by an adaptive range
adjustment strategy to explore the search space sufficiently for
locating a peak and then gradually approach it. Second, the two
novel mechanisms named lifetime mechanism and elite learning
mechanism (ELM) cooperate with the DIMP framework. The
lifetime mechanism is inspired by the natural phenomenon that
every organism will gradually age and has a limited lifespan.
When an individual runs out of its lifetime and also has good
fitness, it is regarded as an elite solution and will be added to an
archive. Then the individual restarts a new lifetime, so as to bring
further diversity to locate more peaks. The ELM is proposed
to refine the accuracy of those elite solutions in the archive,
being efficient in dealing with the solution accuracy issue on the
found peaks. The experimental results on 20 multimodal bench-
mark test functions show that the proposed DIDE algorithm has
generally better or competitive performance compared with the
state-of-the-art multimodal optimization algorithms.

Index Terms—Differential evolution (DE), distributed individ-
uals DE (DIDE), lifetime mechanism, multimodal optimization.
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I. INTRODUCTION

MULTIMODAL optimization problems (MMOPs) refer
to problems that have multiple optimal solutions, which

are common in real-world applications [1], [2]. Generally
speaking, each optimum in MMOPs is also regarded as a peak
and the algorithms are required to locate multiple peaks and
to refine the solution accuracy on the found peaks.

Evolutionary algorithms (EAs) are a kind of promis-
ing approaches that have been widely used for solving
optimization problems with a single global optimum [3]–[5].
However, when extending the conventional EAs to solve
MMOPs, the multimodal EAs should maintain sufficient
population diversity to find multiple peaks. To this aim,
niching methods are popular approaches to extend EAs for
MMOPs [6]. Niching methods preserve the diversity by divid-
ing the population into several subpopulations. Those individu-
als in the same subpopulation are expected to lie in the region
of the same peak. In this way, each subpopulation evolves
independently to track a peak and finally the population can
find multiple peaks. However, how to divide the population
into subpopulations properly is a difficult issue. Most of the
existing niching methods still have diversity challenge in locat-
ing as many peaks as possible and have accuracy challenge in
refining the solution accuracy on the found peaks.

In order to further enhance EA’s performance in solv-
ing MMOPs, we propose a novel distributed individuals for
multiple peaks (DIMP) framework for extending EAs to solve
MMOPs efficiently. The idea of DIMP is to let each indi-
vidual act as a distributed unit to track a peak, which can
avoid the difficulty of population division and also can well
maintain sufficient diversity to locate more peaks. As differ-
ential evolution (DE) is a simple yet effective algorithm that
has been widely studied in both single optimum optimization
problems [7], [8] and MMOPs [9]–[16], we further propose
a DIMP-based DE, termed as distributed individuals DE
(DIDE), for more efficiently solving MMOPs in this article.
However, as each individual acts as a distributed unit in the
DIMP framework, the mutation operation in DIDE may be dif-
ficult to conduct because the mutation operation in DE often
requires the guidance/difference from the other individuals in
the same unit. To address this problem, we construct a virtual
population for each individual to assist the mutation operation.
The virtual population includes some virtual individuals that
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Fig. 1. Basic framework of DIDE.

are generated based on the individual. In this way, the mutation
operation of each individual can be carried out by the guid-
ance/difference of the virtual individuals in its corresponding
virtual population. In order to generate a promising virtual
population, the construction of virtual population is controlled
by an adaptive range adjustment (ARA) strategy, where the
range of the virtual individuals is initially large and gradu-
ally shrinks. Therefore, the diversity of the virtual population
is high in the beginning to help the individual explore the
search space sufficiently to locate a peak. With the range of
virtual population gradually shrinks, the individual can grad-
ually approach the peak. The basic framework of DIDE is
shown in Fig. 1.

Based on the DIMP framework, the DIDE algorithm adopts
a lifetime mechanism and an elite learning mechanism (ELM)
to further cope with the diversity and accuracy challenges in
solving MMOPs, respectively. Lifetime mechanism is inspired
by the natural phenomenon that every organism will gradually
age and has a limited lifespan. Biologists find that this phe-
nomenon plays an important role in maintaining population
diversity [17], [18]. In DIDE, each individual acts as a dis-
tributed unit and is also assigned a lifetime. During its lifetime,
the individual can sufficiently explore the search space to
locate a peak and then gradually approach it according to the
DIMP framework and the ARA strategy. Once it exhausts its
lifetime, the individual will be reinitialized and start a new
lifetime. The reinitialized individuals can bring further diver-
sity to help find more peaks. Note that for each life-exhausted
individual, if it has a good enough fitness that meets an access
criterion, it is regarded as an elite solution and will be added
to an archive.

Different from the lifetime mechanism, the ELM aims to
refine the accuracy of those elite solutions in the archive.
Generally, the elite solutions already locate some peaks, which
are promising candidates for the further elite learning to
improve the accuracy. However, some elite solutions in the
archive may locate the same peak, so that it is unnecessary
to carry out elite learning on every elite solution. To avoid
this problem, clustering method is conducted on all the elite

Algorithm 1 Original DE
1: Randomly initialize the population with N individuals;
2: For each individual Xi

3:
Vi = Xr1 + F × (Xr2 − Xr3)
where r1, r2, r3 ∈ {1, 2, . . . , N}, r1 �= r2 �= r3 �= i ;

4: rnbri = Random(1, D);
5: For each dimension d

6: Ud
i =

{
Vd

i , if Random (0, 1) ≤ CR or d == rnbri
Xd

i , otherwise
;

7: End For
8: If f (Ui) ≥ f (Xi) /*For maximization problems*/
9: Xi = Ui;

10: End If
11: End For
12: Terminate if the termination criterion is met, otherwise jump back

to Step 2;

solutions and only the elite solution with the best fitness in
each cluster is selected as the representative to carry out elite
learning. The ELM exploits around the selected elite solutions
based on the Gaussian distribution. Moreover, an exponential
descent strategy is proposed to adaptively adjust the stan-
dard deviation of the Gaussian distribution, aiming to make
a sufficient exploitation for refining the solution accuracy.

In summary, the proposed DIDE algorithm is based on
the DIMP framework that lets each individual act as a dis-
tributed unit to track a peak. The virtual population and its
ARA strategy make the DIDE work efficiently under the DIMP
framework. Moreover, the lifetime mechanism in DIDE helps
to enhance the population diversity while the ELM in DIDE
helps to refine the solution accuracy. The performance of
DIDE is evaluated on the widely used CEC’2013 benchmark
set that contains 20 multimodal test functions. Compared with
the state-of-the-art multimodal optimization algorithms, DIDE
obtains the overall better performance.

The rest of this article is organized as follows. Section II
presents the DE and the multimodal optimization algorithms
in the literature. Section III presents the DIDE algorithm and
its novelties in detail. Section IV presents the experimental
study. Finally, Section V presents the conclusion.

II. DIFFERENTIAL EVOLUTION AND MULTIMODAL

OPTIMIZATION ALGORITHMS

A. Differential Evolution

The original DE algorithm is shown in Algorithm 1 [19].
First, the population is randomly initialized. Then for each
individual Xi in every generation, the mutation, crossover, and
selection operations are carried out sequentially. The mutation
operation is shown in step 3, where Xr1, Xr2, and Xr3 are
three different individuals (also different from Xi) randomly
picked from the population. Moreover, F is a parameter named
scaling factor. The crossover operation is shown in steps 4–7
that selects the information in each dimension according to
a crossover rate CR. The rnbri is a random integer for indi-
vidual Xi and ranges in {1, 2, . . . , D} where D is the dimension
size of the optimization problem. It aims to guarantee that at
least one dimension is from the mutant offspring. The selec-
tion operation is shown in steps 8–10 that greedily selects the
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one with better (e.g., higher for maximization problems) fit-
ness between Xi and Ui for the next generation. The algorithm
terminates if the termination criterion is met, otherwise it will
jump back to step 2 and start a new generation.

B. Multimodal Optimization Algorithms

Existing strategies for enhancing EAs in solving MMOPs
can be roughly classified into the following three cate-
gories, i.e., niching method, novel evolutionary operator, and
multiobjective approach.

1) Niching Method: The principle of niching method is
dividing the population into several diverse subpopulations
to preserve the population diversity, with an aim to locate
multiple peaks. In the literature, niching methods are widely
researched, in which crowding [9] and speciation [10], [20]
are two well-known frameworks. In crowding framework, the
offspring replaces its most similar individual in a subpopu-
lation. The subpopulation size is determined by a parameter
named crowding factor. Speciation framework divides the
population according to a species radius. The formation of sub-
populations always requires some niche parameters (e.g., sub-
population size and species radius). However, the algorithm’s
performance is sensitive to these parameters.

To reduce the parameter sensitivity, clustering meth-
ods are incorporated into the algorithms for population
division [11], [12], which employ a less sensitive parameter,
i.e., the cluster size. Wang et al. [21] adopted the affinity prop-
agation clustering, which did not require the cluster size to
be predetermined. In addition, some topology-based niching
methods are proposed for adaptive population division. They
detect whether there is a valley between two individuals on the
fitness landscape. If so, the two individuals are in the region
of different peaks and should be divided into different sub-
populations. Sampling methods are adopted in [13] and [22]
to capture the fitness landscape, but they require extra function
evaluations (FEs). Li and Tang [23] proposed a history-based
topological speciation technique, where the search history was
utilized to capture the fitness landscape without extra FEs.

2) Novel Evolutionary Operator: A number of researches
proposed novel evolutionary operators for adapting EAs to
MMOPs. Biswas et al. [14] designed a parent-centric normal-
ized neighborhood mutation operator for DE, which restricted
the randomness without inhibiting the explorative power. They
also proposed locally informative DEs [15] that adopted two
novel individual generation schemes to assist the mutation
operation. Wang et al. [16] proposed a dual-strategy DE
that adopted two mutation operators and each individual can
adaptively select one of them to balance exploration and
exploitation. Zhao et al. [24] proposed a novel mutation
operator for DE that utilized both the local guidance of the
subpopulation and the global guidance of the whole popula-
tion. Qu et al. [25] proposed a locally informed particle swarm
optimization that used several local best solutions rather than
the global best solution to guide the search of each particle.

3) Multiobjective Approach: As multiobjective
optimization [26]–[29] and many-objective optimization [30]
have been widely studied, some researchers also proposed to

transform MMOP into multiobjective optimization problem.
In this sense, two optimization objectives are commonly
considered. One is the fitness value and the other is a diversity
indicator. For example, gradient information is utilized to con-
struct the diversity indicator in [31] and [32] while distance
metric is adopted in [33]. Moreover, Cheng et al. [34] adopted
a grid-based diversity indicator. Instead of setting fitness
value and diversity indicator as two optimization objectives,
Wang et al. [35] designed two conflicting objectives in each
dimension. In this way, multiple optimal solutions in an
MMOP correspond to the Pareto optimal solutions of the
transformed multiobjective optimization problem. The recent
multiobjective approaches in [34] and [35] perform well on
low-dimensional problems, but they are still not good enough
on high-dimensional problems.

III. DISTRIBUTED INDIVIDUALS

DIFFERENTIAL EVOLUTION

Our proposed DIDE algorithm, based on the DIMP frame-
work, lets each individual conduct its mutation operation based
on the virtual population to keep the distributed search of
individuals, which can maintain sufficient population diversity
to locate as many peaks as possible. In addition, the life-
time mechanism is proposed to further enhance the population
diversity for locating more peaks. Lastly, the ELM is proposed
to refine the solution accuracy on the found peaks.

A. Virtual Population-Based Mutation

Based on the DIMP framework, each individual in DIDE
acts as a distributed unit, aiming to maintain sufficient pop-
ulation diversity. However, the mutation operation of an
individual in DE often requires the information from the other
individuals in the same unit, which brings difficulties for
the distributed individuals to conduct the mutation operation.
Therefore, in the proposed DIDE algorithm, each individual
constructs a virtual population to assist the mutation oper-
ation. That is, the mutation operation for the individual Xi

is designed as (1), where VXi,1 and VXi,2 are two different
virtual individuals of Xi

Vi = Xi + F × (
VXi,1 − VXi,2

)
. (1)

The virtual individuals of Xi are randomly generated around
Xi according to its virtual individual range Ri, as

VXd
i = Random

(
max

(
Xd

i − Rd
i

2
, Ld

)
, min

(
Xd

i + Rd
i

2
, Ud

))

(2)

where d ∈ {1, 2, . . . , D} and D is the dimension size of the
optimization problem. L and U are the lower bound and the
upper bound of the search space, respectively. Generally, we
adopt Xd

i − Rd
i /2 and Xd

i + Rd
i /2 as the lower bound and the

upper bound of Xi’s virtual individuals in each dimension d.
However, in order to ensure that the virtual individuals do
not exceed the search space, the lower bound and the upper
bound are restricted to Ld and Ud, respectively if Xd

i − Rd
i /2

and Xd
i + Rd

i /2 exceed the search space. Each time the muta-
tion is conducted, the virtual individuals of each individual
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Algorithm 2 ARA Strategy
1: For each individual Xi in the population
2: If cgi ≥ mcg
3: Ri = Ri/2;
4: cgi = 0;
5: hti = hti + 1;
6: End If
7: End For

are regenerated according to (2). Note that the virtual individ-
uals are only used to assist the mutation operation and only
their position information is used in (1). Therefore, the virtual
individuals do not need to be evaluated, with no extra FEs
needed.

The setting of R is important in DIDE. A large R enhances
the exploration but brings difficulty for the exploitation, while
a small R reverses. In order to balance the exploration and
the exploitation, R is associated with each individual and is
adaptively adjusted by the ARA strategy in every generation.
A large R is initialized at the beginning to help the indi-
vidual explore the search space sufficiently to locate a peak.
During the evolutionary process, the R gradually decreases to
help exploit the peak. Therefore, the individual can gradually
approach the peak.

In detail, each individual’s R is initialized to (U–L), which
is the entire search range. Then, during the evolutionary pro-
cess, the R is adaptively adjusted by the ARA strategy (shown
in Algorithm 2) to gradually decrease. Herein, the adaptive
adjustment of R is according to whether the R can continu-
ously help to improve the individual. We use an indicator cg to
record the consecutive generations that the individual fails to
be improved (i.e., is not replaced by the offspring in the selec-
tion operation). If the individual’s cg reaches mcg (a parameter
named maximal consecutive generations), then the ARA strat-
egy halves the R to enhance the exploitation and cg is reset
to 0, as steps 3 and 4 in Algorithm 2. Meanwhile, the halved
times ht will increase by one (step 5), where ht records the
number of times that the R has been halved. Herein, each indi-
vidual’s ht is initialized to 0 in each lifetime and is used to
control the lifetime mechanism (details refer to Section III-B).
Notice that each individual Xi has its independent R, cg, and
ht (i.e., Ri, cgi, and hti as shown in Algorithm 2). However,
to make the description clearer, we simply use R, cg, and ht
in the above context.

The larger the search space, the more generations are needed
for an individual to make a sufficient search. Therefore, mcg is
set adaptively based on the dimension size of the optimization
problem, as

mcg = 10 × 2�D/10�+1. (3)

B. Lifetime Mechanism

According to the DIMP framework and the ARA strategy,
each individual can locate a peak and gradually approach it.
However, the initial population may be unable to locate all
peaks. For example, even though each individual can locate
a peak, the population still cannot locate all peaks if the pop-
ulation size is less than the number of peaks. For another

Algorithm 3 Lifetime Mechanism
1: For each individual Xi in the population
2: If hti ≥ mht
3: rank = 1;
4: For each other individual Xj
5: If f (Xi) < f (Xj) /*For maximization problems*/
6: rank = rank + 1;
7: End If
8: End For
9: If rank ≤ N × at /*N is the population size*/

10: Add Xi to the archive;
11: End If
12: Re-initialize Xi;
13: Ri = U − L; cgi = 0; hti = 0;
14: End If
15: End For

example, the fitness landscapes of different peaks may be dif-
ferent. In this case, the individuals are more likely to move
to those peaks with large region and gentle slope, while those
peaks with small region and steep slope are difficult to explore.

Therefore, inspired by the aging phenomenon in nature, we
propose a lifetime mechanism shown in Algorithm 3 to let
DIDE have opportunities to locate more peaks. In order to
activate the lifetime mechanism, a maximum halved times mht
is defined. If an individual’s ht reaches mht, the lifetime of this
individual is exhausted. If the life-exhausted individual meets
an access criterion (details refer to the next paragraph and
steps 3–11 in Algorithm 3), it is regarded as an elite solution
and will be added to the archive. After the judgement, the
individual will be reinitialized, together with its R, cg, and ht,
as steps 12 and 13 in Algorithm 3. In this way, the archive will
keep the individual’s elite knowledge in each lifetime, while
the individual’s new lifetime will bring new information to
the population that will greatly enhance the diversity to locate
more peaks.

Herein, the access criterion for judging a life-exhausted
individual and adding it to the archive (as steps 3–11 in
Algorithm 3) is described and discussed. For a life-exhausted
individual, it may locate a global peak or a local peak.
However, it is only useful to add those life-exhausted indi-
viduals around the global peaks to the archive and refine
their accuracies via ELM, where ELM is detailed described in
Section III-C. Therefore, a simple access criterion is proposed
to filter out those life-exhausted individuals around the local
peaks. Before adding a life-exhausted individual to the archive,
we first check the rank of its fitness in the entire population.
If it ranks top at (a parameter named access threshold ranging
in (0, 1]) of the population, we regard it as an elite solution
and add it to the archive. Otherwise, it will be filtered. The
parameter analysis of at (details refer to Section IV-E) shows
that setting at to 0.8 can obtain a good tradeoff between fil-
tering the life-exhausted individuals around local peaks and
preserving those around global peaks, helping DIDE to have
a good performance. Therefore, at is set to 0.8 in DIDE.

C. Elite Learning Mechanism

The elite solutions are stored in the archive. Each elite
solution already locates a peak but it may still not meet the
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accuracy requirement. Therefore, we propose the ELM shown
in Algorithm 4 to refine the accuracy of the elite solutions.
It should be noticed that some elite solutions in the archive
may actually locate the same peak. In this case, it is unnec-
essary to carry out elite learning on every elite solution. In
order to avoid repeating similar work, clustering method can
be a promising solver because it can cluster those solutions
locating the same peak. Then we can select one represen-
tative solution from each cluster to carry out elite learning.
Among the well-known clustering methods, the k-means clus-
tering requires the number of clusters to be predetermined but
the number of peaks in MMOPs is not known in advance.
Therefore, the nonparametric mean-shift clustering [36], [37]
is employed in DIDE. The principle of mean-shift clustering
is iteratively shifting each point to a higher density position
until convergence. Those points whose shifted points converge
to the same position belong to the same cluster. The widely
used Gaussian kernel function is adopted to determine the
weight of points for estimating the density. The procedure
of the mean-shift clustering is shown in Algorithm S.1 in the
supplementary material. The Gaussian kernel function requires
a parameter named bandwidth. According to the experimental
tests, we find that the setting of bandwidth is not sensitive
that the value ranging in [0.001, 0.01] does not have a signifi-
cant influence on DIDE’s performance. Therefore, bandwidth
is simply set to 0.001 in DIDE. One note is that the clustering
operation only need to be carried out in the generation where
there is/are new elite solution(s) added to the archive by the
lifetime mechanism.

After the clustering, each cluster may correspond to a peak.
In each cluster, only the solution with the best fitness is
selected for elite learning. Each selected solution actually
refers to a solution in the archive (i.e., Ai). The elite learning
of Ai is according to (4), which is based on the Gaussian dis-
tribution with Ai as the mean and a standard deviation σi. In
order to enhance the efficiency, two elite learning solutions are
generated each time. The better one of the two elite learning
solutions will replace Ai if it has better fitness than Ai

ELSi = Gaussian(Ai, σi). (4)

A fixed σi cannot perform well in various cases. Therefore,
an exponential descent strategy (steps 11–19 in Algorithm 4) is
proposed to adaptively adjust σi. The σi is initialized to σini.
A stagnation counter sci is used to record the consecutive times
that the elite learning solution cannot replace Ai. If sci reaches
a descent threshold dt, divide σi by 10 and reset sci to 0. The
elite learning process of Ai will stop until σi is smaller than
σtermin. The exponential descent strategy helps to refine the
solution accuracy sufficiently.

In addition, MMOPs may have some peaks that are very
difficult to exploit. In this case, only one elite learning process
for Ai may be not sufficient to obtain high accuracy solution.
To address this problem, we can restart a new elite learning
process for Ai. That is, as steps 20–24 in Algorithm 4, when
σi is smaller than σtermin, Ai finishes its current elite learning
process. However, if it is worse than the best solution in the
archive (denoted as Abest), we think that Ai has not sufficiently
exploited the peak yet and it will restart a new elite learning

Algorithm 4 ELM
1: If there is/are new elite solution(s) added to the archive
2: Initialize its/their σ and sc to σini and 0, respectively;
3: Cluster the solutions in the archive by mean-shift clustering;
4: End If
5: For each cluster
6: Its best solution refers to a solution Ai in the archive;
7: If σi ≥ σtermin /*Ai carries out the elite learning process*/
8: Generate two elite learning solutions ELSi,1 and ELSi,2

according to (4) and evaluate their fitness values;
/*For maximization problems*/

9: Replace Ai with ELSi,1 if f (ELSi,1) > f (Ai);
10: Replace Ai with ELSi,2 if f (ELSi,2) > f (Ai);
11: If replacement does not happen
12: sci = sci + 2;
13: If sci ≥ dt
14: σi = σi/10;
15: sci = 0;
16: End If
17: Else
18: sci = 0; /*reset sc because the replacement happens*/
19: End If
20: Else /*σi < σtermin, i.e., Ai finishes the elite learning process*/
21: If f (Abest) > f (Ai) /*For maximization problems*/
22: σi = σini; /*restart a new elite learning process for Ai*/
23: Go to Step 8;
24: End If
25: End If
26: End For

Algorithm 5 DIDE
1: Randomly initialize each individual in the population;
2: For each individual Xi
3: Ri = U − L; cgi = 0; hti = 0;
4: End For
5: For each individual Xi
6: Generate two virtual individuals VXi,1 and VXi,2 according

to (2);
7: Vi = Xi + F × (VXi,1 − VXi,2);
8: rnbri = Random(1, D);
9: For each dimension d

10: Ud
i =

{
Vd

i , if Random (0, 1) ≤ CR or d == rnbri
Xd

i , otherwise
;

11: End For
12: If f (Ui) ≥ f (Xi) /*For maximization problems*/
13: Xi = Ui;
14: cgi = 0;
15: Else
16: cgi = cgi + 1;
17: End If
18: End For
19: Carry out the ARA strategy according to Algorithm 2;
20: Carry out the lifetime mechanism according to Algorithm 3;
21: Carry out the ELM according to Algorithm 4;
22: Terminate if the termination criterion is met, otherwise jump back

to Step 5;

process. In detail, for a maximization problem, if f (Abest) >

f (Ai), then σi will be reset to σini for restarting a new elite
learning process.

D. Complete Procedure of Distributed Individuals
Differential Evolution

The complete procedure of DIDE is shown in Algorithm 5.
First, each individual is randomly initialized. Then each



CHEN et al.: DIMP: NOVEL DE FOR MMOPs 713

individual’s R, cg, and ht are also initialized. In each gen-
eration, each individual Xi generates two virtual individuals
according to (2) (step 6) and carries out the mutation oper-
ation according to (1) (step 7). If the position of Vi is out
of the search space, it will be restricted to the corresponding
boundary. The crossover operation (steps 8–11) is the same
as the original DE in Algorithm 1. After that, an offspring Ui

is generated. The selection operation (steps 12–17) is carried
out by greedily selecting the one with better fitness between
Ui and Xi for the next generation. Meanwhile, the cg of Xi

is updated to assist the ARA strategy. After all individuals
finishing a generation, the ARA strategy, lifetime mechanism,
and ELM are carried out sequentially (steps 19–21). DIDE
terminates if the termination criterion is met, otherwise it will
jump back to step 5 and start a new generation.

IV. EXPERIMENTAL STUDY

A. Benchmark Functions and Performance Metrics

The widely used CEC’2013 benchmark set [38] is adopted
to evaluate the performance of DIDE in solving MMOPs. The
CEC’2013 benchmark set contains 20 multimodal test func-
tions and the basic properties of these 20 functions are shown
in Table S.I. in the supplementary material. All of the functions
are maximization problems. F1, F2, and F3 are simple 1-D
functions. F4 and F5 are 2-D functions that are not scalable.
F6 − F10 are scalable functions of 2-D or 3-D. F11 − F20 are
complex composition functions constructed by several basic
functions with different properties. Among these 20 func-
tions, F1 − F17 are low-dimensional functions of 1-D–5-D
while F18 − F20 are high-dimensional functions of 10-D or
20-D. More details of the CEC’2013 benchmark set can be
referred to [38].

Two metrics are adopted for the performance evaluation,
which are peak ratio (PR) and success rate (SR). Given a max-
imum number of FEs (MaxFEs) and an accuracy level ε, PR
represents the average percentage of global peaks that found
over multiple runs, formulated as

PR =
∑NR

i=1 NPFi

TNP × NR
(5)

where NR is the number of runs, NPFi is the number of global
peaks found in the ith run, and TNP is the total number of
global peaks in the optimization problem.

SR represents the percentage of the successful runs among
multiple runs, formulated as

SR = NSR

NR
(6)

where NSR is the number of successful runs among total
NR runs. A successful run is defined as a run where all
global peaks are found. More details of these two performance
metrics can be referred to [38].

Three accuracy levels, ε = 1.0E–03, ε = 1.0E–04,
and ε = 1.0E–05, are adopted in the experiments. One
note is that we mainly discuss the experimental results
at ε = 1.0E–04, as in [16] and [35], while the experimental
results at ε = 1.0E–03 and ε = 1.0E–05 are presented in the
supplementary material. The settings of MaxFEs on different

TABLE I
SETTING OF MAXFES

functions are shown in Table I, the same as the suggestion
in [38].

B. Compared Algorithms and Parameter Configurations

In this article, our proposed DIDE algorithm is compared
with 13 state-of-the-art multimodal optimization algo-
rithms, which are CDE [9], SDE [10], NCDE, NSDE [11],
MOMMOP [35], LIPS [25], NMMSO [39], LoICDE,
LoISDE [15], PNPCDE [14], EMO-MMO [34], self-CCDE,
and self-CSDE [12]. The population size is set to 100 for
all compared algorithms and our proposed DIDE algorithm,
except for MOMMOP, NMMSO, and EMO-MMO because
they have their special setting schemes of population size to
deal with the CEC’2013 benchmark set. The configurations
of the other parameters in the compared algorithms are all
based on their corresponding references.

In DIDE, the scaling factor F and the crossover rate CR
are set to 0.3 and 0.9, respectively. In lifetime mechanism,
the maximum halved times mht is 10. In ELM, the descent
threshold dt is 40 while the σini and σtermin are 1.0E–04 and
1.0E–10, respectively.

For fair comparison, 50 independent runs are conducted and
the average results are reported. The Wilcoxon rank-sum test
at the widely used significance level α = 0.05 is adopted to
statistically evaluate the PR results in the 50 runs. If DIDE
is significantly better than a compared algorithm, the result is
“+.” If DIDE is significantly worse, the result is “−.” If the
performances of DIDE and the compared algorithm are not
significantly different, the result is “≈.”

C. Comparison With State-of-the-Art Algorithms

The experimental results of PR and SR on the
CEC’2013 benchmark set at the accuracy level ε = 1.0E–04
are shown in Table II. Those PR results that are the best among
DIDE and the compared algorithms are bolded. Form the table,
DIDE’s performance is the best on 16 functions out of all the
20 functions, which is the most among all tested algorithms.

On F1–F6 and F10, DIDE can stably find all the peaks
(i.e., the SR results are 1.000). Among all the compared algo-
rithms, only EMO-MMO can achieve the same performance
as DIDE. MOMMOP fails on F4 while NMMSO fails on
F6. The other algorithms fail on at least two functions. On
F7–F9, MOMMOP, NMMSO, and EMO-MMO obtain very
good performance, being better than DIDE. However, the
performance of DIDE on F7–F9 is still very promising and
is significantly better than the other ten compared algorithms.



714 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 24, NO. 4, AUGUST 2020

TABLE II
EXPERIMENTAL RESULTS OF PR AND SR ON THE CEC’2013 BENCHMARK SET AT THE ACCURACY LEVEL ε = 1.0E–04

F11–F20 are complex composition functions, where DIDE has
great advantage compared with the other algorithms. On F11
and F12, DIDE can stably find all the peaks. On F13, although
EMO-MMO’s performance is the best, the performances of
DIDE and EMO-MMO are not significantly different accord-
ing to the Wilcoxon rank-sum test. On F14–F20, DIDE’s
performance is the best among all tested algorithms. EMO-
MMO shows strong competitiveness on F11–F13, but it cannot

deal with F14–F20 very well. In detail, DIDE outperforms
EMO-MMO on six functions (i.e., F14, F15, and F17–F20).

Particularly, DIDE’s performance on F19 and F20 (two
high-dimensional functions of 10-D and 20-D, respectively) is
obviously better than the other algorithms. These two functions
are more challenging than the other composition functions due
to their high-dimension sizes. Many algorithms can only locate
very few peaks or even cannot find any peak on both F19 and
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TABLE III
EXPERIMENTAL RESULTS OF PR IN THE COMPONENT ANALYSIS OF LIFETIME MECHANISM AND ELM

F20, i.e., CDE, SDE, NSDE, LIPS, LoISDE, PNPCDE, Self-
CCDE, and Self-CSDE. Moreover, NCDE and LoICDE can
only locate very few peaks on F19 while EMO-MMO can only
locate very few peaks on F20. DIDE’ PR results on F19 and
F20 are 0.543 and 0.355, respectively, while the best PR results
among all the compared algorithms on these two functions are
only 0.350 and 0.170, respectively.

In the bottom of each compared algorithm column, the num-
bers of functions that DIDE performs significantly better, not
significantly different, and significantly worse, are counted and
presented according to the results of Wilcoxon rank-sum test.
Compared with any of the algorithms, the number of functions
that DIDE is significantly better is more than the number of
functions that DIDE is significantly worse, which shows the
overall better performance of DIDE.

The experimental results of PR and SR on the
CEC’2013 benchmark set at the accuracy level ε = 1.0E–
03 and ε = 1.0E–05 are shown in Tables S.II and S.III in the
supplementary material, respectively. They further verify the
good performance of DIDE.

D. Component Analysis

The effect of DIDE’s two components, lifetime mecha-
nism and ELM, is discussed as follows. As described in
Section III-B, one of the conditions for an individual to be
added to the archive is that the individual exhausts its life-
time. If the lifetime mechanism is unemployed, no solution
will be added to the archive and as a result, ELM will also

not function. Therefore, we test the DIDE without ELM and
the DIDE without both lifetime mechanism and ELM.

The experimental results are shown in Table III. The best
results on each function are bolded. In order to save space,
the DIDE without ELM is abbreviated as NE* (No ELM)
and the DIDE without both lifetime mechanism and ELM
is abbreviated as NLE* (No Lifetime nor ELM). Compared
with NE*, DIDE has significantly higher PR on F11−F20,
which shows that ELM can greatly refine the solution accu-
racy. However, NE* outperforms DIDE on F9 at the accuracy
level of 1.0E–03 and 1.0E–04. That is because the solutions
found by those life-exhausted individuals have already met
the accuracy requirement so that ELM cannot bring further
improvement and may waste the FEs. NLE*’s performance on
F11 and F16 is quite competitive. According to the ARA strat-
egy in Algorithm 2, the decrease of R will be unlimited if the
lifetime mechanism is unemployed, which encourages individ-
uals’ exploitation. As a result, the solution accuracy will be
improved gradually. However, without the lifetime mechanism,
the NLE* does not have sufficient diversity to locate more
peaks. Therefore, DIDE still outperforms NLE* on many func-
tions, particularly on F7–F9, with the cooperation of lifetime
mechanism and ELM.

The experimental results on F6–F9 can further illustrate the
effect of these two components. As shown in Fig. 2(a), the
peaks in F6 are “sharp,” which are difficult to refine solution
accuracy. Therefore, NE* performs poorly without ELM. As
we can see from the table, NE*’s PR result on F6 at the accu-
racy level of 1.0E–5 is only 0.363 while DIDE can find all the



716 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 24, NO. 4, AUGUST 2020

(a) (b) (c) (d)

Fig. 2. Fitness landscapes of (a) F6, (b) F7, (c) F11, and (d) F13. In (c) and (d), the red stars and black circles mark the global peaks with different
characteristics.

peaks (i.e., PR = 1.000). The experimental results on F8 (the
3-D version of F6) are more obvious, where NE* finds very
few peaks. The peaks in F7, shown in Fig. 2(b), distribute
unevenly and the region of each peak is of different sizes.
The randomly initialized individuals are more likely to move
to those peaks that have large region. In this case, the life-
time mechanism brings the reinitialized individuals with new
opportunities to explore those small-region peaks. As we can
see in the table, NE* outperforms NLE* on F7 and F9 (the
3-D version of F7).

In conclusion, the lifetime mechanism enhances the popu-
lation diversity to locate more peaks while the ELM refines
the solution accuracy on the found peaks. The lifetime mech-
anism and the ELM cooperatively balance exploration and
exploitation, helping DIDE obtain overall good performance.

Moreover, the proposed DIMP framework is compared with
two existing frameworks in solving MMOPs, i.e., crowding
and speciation. In detail, we replace the DIMP framework
in our proposed algorithm with the crowding and specia-
tion frameworks, and test their performance. The experimental
results of PR under these three frameworks are shown in
Table S.IV in the supplementary material. We can see that the
DIMP framework has better performance than the crowding
and speciation frameworks.

E. Parameter Analysis

We divide the parameters in DIDE into two groups. The
first group contains three basic DE parameters, i.e., the pop-
ulation size N, the scaling factor F, and the crossover rate
CR. The second group contains five parameters, i.e., the max-
imum halved times mht and access threshold at in lifetime
mechanism, and the descent threshold dt, σini, and σtermin in
ELM.

For each parameter, five levels of values are tested. Since
it is too time-consuming to test all possible combinations of
parameter setting, design of experiments (DOE) is carried out
to test the parameter setting in this article. Herein, we use
Taguchi’s method [40], [41] to conduct DOE based on orthog-
onal arrays. The parameter settings based on orthogonal arrays
for the two groups of parameters are shown in Tables S.V
and S.VI in the supplementary material, respectively. Both of
them contain 25 tests. When testing a group of parameters,
the other parameters are set as adopted in DIDE. The experi-
mental results of PR for the two groups of parameters at the

accuracy level ε = 1.0E–03, 1.0E–04, and 1.0E–05 are shown
in Tables S.VII–S.XII in the supplementary material, respec-
tively. Note that the adopted setting in DIDE is not included
in Tables S.V and S.VI in the supplementary material, and its
experimental results are shown in the column named “adopted”
in Tables S.VII-S.XII in the supplementary material. From
these tables, we can see that compared with the other set-
tings, the number of functions that the DIDE with adopted
setting performs significantly better is more than the number
of functions that it performs significantly worse, showing that
the adopted parameter setting is promising.

Moreover, the Friedman test with Bonferroni–Dunn proce-
dure [42] is adopted to test the robustness of DIDE. Friedman
test can rank the performance of each parameter setting on
each benchmark function, and Bonferroni–Dunn procedure
can further detect whether the performances of the parameter
settings in solving all the 20 benchmark functions are signif-
icantly different. The experiments of the Friedman test with
Bonferroni–Dunn procedure are divided into two parts cor-
responding to the two groups of parameters, and the results
are shown in Tables S.XIII and S.XIV in the supplemen-
tary material, respectively. The p-value shows the result of
Bonferroni–Dunn procedure. “Y” represents the correspond-
ing setting performs significantly different from the adopted
setting at the significance level α = 0.05, while “N” repre-
sents there is no significant difference. For the first group of
parameters, the performance of the adopted setting is not sig-
nificantly different from 15, 14, and 16 settings out of all the
25 settings at the three accuracy levels, respectively. For the
second group of parameters, the performance of the adopted
setting is not significantly different from 17, 17, and 16 set-
tings out of all the 25 settings at the three accuracy levels,
respectively. The above results show that the parameter set-
ting has an influence on the performance of DIDE, but it is
not highly sensitive.

In addition, we further analyze three parameters in detail to
show their contributions to the algorithm, i.e., the population
size N, the access threshold at, and the maximal consecutive
generations mcg.

DIDE sets 100 as the population size, denoted as “N =
100,” while “N = 50,” “N = 200,” and “N = 300” are fur-
ther tested for comparison. The experimental results of PR
at the accuracy level ε = 1.0E–04 are shown in Table IV.
The best results on each function are bolded. Compared with
the other settings, the numbers of functions that N = 100
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TABLE IV
EXPERIMENTAL RESULTS OF PR IN THE PARAMETER ANALYSIS OF THE

POPULATION SIZE AT THE ACCURACY LEVEL ε = 1.0E–04

performs significantly better, not significantly different, and
significantly worse, are counted and presented in the bot-
tom of each column. N = 100 outperforms N = 50 on
eight functions, i.e., F8, F9, F14, F15, and F17−F20, while
their performances are not significantly different on the other
functions. N = 200 and N = 300 have better performance
than N = 100 on F8. However, they perform very poorly
on F20. The complete experimental results of PR at all three
accuracy levels (1.0E–03, 1.0E–04, and 1.0E–05) are shown
in Table S.XV in the supplementary material. We can see
that the adopted setting N = 100 obtains the overall better
results.

In DIDE, the access threshold at in lifetime mechanism is
set to 0.8. The other three settings, “at = 0.2,” “at = 0.5,” and
“at = 1.0,” are tested for comparison. Notice that “at = 1.0”
means all life-exhausted individuals can access the archive.
F8, F11, and F13 are three typical functions to illustrate the
effect of at and the experimental results of PR on these three
functions at the accuracy level ε = 1.0E–04 are shown in
Fig. 3. A small at is preferred on F8. As shown in Fig. 2(a),
F6’s global peaks are significantly higher than the local peaks.
F8 is the 3-D version of F6 that has the same characteristic.
Therefore, on F8, the fitness value of the individual around
a global peak is significantly higher than the one around a local
peak. In this case, a small at can successfully filter those life-
exhausted individuals around the local peaks while preserving
those around the global peaks. However, the performance of
a large at is better on F11 and F13. From Fig. 2(c) and (d),
we can see that these two functions have some peaks that

Fig. 3. Experimental results of four different at settings on F8, F11, and
F13 at the accuracy level ε = 1.0E–04.

Fig. 4. Experimental results of four different mcg settings on F7, F9, F13,
and F20 at the accuracy level ε = 1.0E–04.

are “smooth” and have a large region, which are marked with
black circles. In addition, there are also some peaks that are
sharp and have a small region, which are marked with red
stars. Those individuals in the region of the smooth peaks can
easily have high fitness value. However, an individual that is
already very close to a sharp peak still has a small fitness
value. Therefore, a large at in this case is more likely to pre-
serve the life-exhausted individuals around the sharp peaks.
The complete experimental results of these four at settings on
all 20 benchmark functions are shown in Table S.XVI in the
supplementary material. The best results on each function are
bolded. We can see that the adopted setting “at = 0.8” obtains
a good tradeoff between filtering the life-exhausted individuals
around local peaks and preserving those around global peaks,
which performs better than the other settings.

The maximal consecutive generations mcg in the ARA strat-
egy is adaptively adjusted according to (3) in DIDE. The
higher the dimension size of the benchmark function, the larger
mcg is. To verify the effectiveness of the adaptive mcg, four
fixed settings, “mcg = 20,” “mcg = 40,” “mcg = 60,” and
“mcg = 80” are tested. The experimental results on four typ-
ical functions, F7, F9, F13, and F20 at the accuracy level
ε = 1.0E–04 are shown in Fig. 4. According to (3), F7, F9,
and F13 are 2-D or 3-D functions where a small mcg (i.e., 20)
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is adopted in DIDE, while F20 is a 20-D function where a large
mcg (i.e., 80) is adopted. From Fig. 4, we can see that a small
mcg performs better on F7, F9, and F13 while a large mcg
is preferred on F20. The complete experimental results of the
four mcg settings on all 20 benchmark functions are shown
in Table S.XVII in the supplementary material. On each func-
tion, the best results are bolded and the adopted mcg setting in
DIDE plays as the baseline for the Wilcoxon rank-sum test.
From the table, DIDE’s adopted mcg settings have the best
performance on all functions, which verifies the effectiveness
of the adaptive mcg in DIDE.

V. CONCLUSION

In this article, a novel DIDE algorithm is proposed for
MMOPs. DIDE is based on the DIMP framework that lets
each individual act as a distributed unit to track a peak. The
mutation operation in DIDE is conducted according to the
virtual population. The ARA strategy is proposed to control
the construction of virtual population, helping each individual
explore the search space sufficiently to locate a peak and then
gradually approach it. In addition, the lifetime mechanism and
the ELM are incorporated into DIDE. On the one hand, the
lifetime mechanism enhances the population diversity to locate
more peaks. On the other hand, the ELM refines the solu-
tion accuracy on the found peaks. Experiments are conducted
on 20 multimodal test functions in the CEC’2013 bench-
mark set. The experimental results show that the overall
performance of DIDE is better than the other 13 state-of-the-
art multimodal optimization algorithms. In the future, we will
extend DIDE to deal with some MMOPs in real-world appli-
cations, such as finding multiple Nash equilibria in electricity
markets [1] and the multimodal design optimization of perma-
nent magnet synchronous machine [2]. Moreover, we will test
DIDE’s performance in solving other kinds of problems such
as multiobjective optimization problems [43]–[45].
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