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Toward Efficient Design Space Exploration for
Fault-Tolerant Multiprocessor Systems
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Abstract—The design space exploration (DSE) of fault-tolerant
multiprocessor systems is very complex, as it contains three
interacting NP-hard problems: 1) task hardening; 2) task map-
ping; and 3) task scheduling. In addition, replication-based task
hardening can introduce new tasks, called replicas, into the
system, enlarging the design space further. As a population-based
global optimization algorithm, evolutionary algorithms (EAs)
have been widely used to explore this huge design space over the
last decade. However, as analyzed in this paper, the search space
of previous works is highly redundant, resulting in poor efficiency
and scalability. This paper proposes an efficient EA-based DSE
method for the design of large-scale fault-tolerant multiprocessor
systems. The main novelties of this paper include: 1) mapping
exploration is explicitly separated, i.e., task mapping is opti-
mized during the evolutionary search, while replica mapping is
constructed heuristically according to the current co-synthesis
state; 2) the design space of task hardening and task mapping
are explored independently by a cooperative co-EA; and 3) as
a complement to global search of EA, problem-specific local
search operators are designed for both task hardening and task
mapping, reducing the number of fitness evaluations required.
Compared with the most relevant state-of-the-art method, the
superiority of the proposed method is demonstrated using exten-
sive experiments on a large set of benchmarks, e.g., 1.75x~2.50 x
better results can be obtained on the benchmarks of 300 tasks
and 30 processors.
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I. INTRODUCTION

S THE rapid advances in transistor size scaling, high

operation frequency, and low voltage level, the number
of transient faults (usually caused by radiation) in circuits has
dramatically increased in the past years. At the same time,
as the technology advancement continues, more processors
have been integrated into a single chip to meet the grow-
ing computing demand of modern applications. Therefore,
the tolerance to transient faults (or soft errors) is one of the
major requirements in the design of nanoscale multiprocessor
systems [1], [2], [42].

During the decades, various fault tolerance techniques have
been proposed against transient faults, such as replication [3],
re-execution [4], and checkpointing [5]. Since they are usu-
ally characterized by different time and space overheads, there
is a tradeoff in the assignment of different fault tolerance
techniques to different portions of a system. This tradeoff,
together with traditional steps in system-level co-synthesis,
i.e., task mapping and task scheduling, makes the design space
of fault-tolerant multiprocessor system increase dramatically.

In general, the design space exploration (DSE) process of
a fault-tolerant multiprocessor system consists of the follow-
ing [6]-[9].

1) Task hardening, i.e., selecting one of the fault toler-
ance techniques for each task (a task is the atomic unit
performed by the system).

2) Task mapping, i.e., mapping each task to one of the
processors in the multiprocessor platform.

3) Task scheduling, i.e., scheduling the tasks on each
processor.

All of them are NP-hard problems. It is notable that
replication-based task hardening can introduce new tasks [3],
i.e., replicas, into the system, and these replicas should be
mapped and scheduled as well, thereby enlarging the orig-
inal design space further. In this case, the design of fault-
tolerant multiprocessor systems can be regarded as a bi-level
optimization problem due to its nested structure. Specifically,
the upper level optimization is task hardening, and the lower
level optimization is task (including replicas) mapping and
scheduling, thereby making the overall optimization computa-
tionally very intensive.
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Given all these degrees of freedom, in order to obtain
optimal designs of fault-tolerant multiprocessor systems,
a variety of DSE methods have been proposed over the
last decade, especially the ones based on evolutionary algo-
rithms (EAs) [6]-[9]. As a population-based metaheuristic
optimization algorithm, EAs often provide good near optimal
solutions to many types of problems, but their high time
complexity [22], [23] is a prohibiting factor in real-word
applications. Besides, EAs usually do not involve any high-
level problem-specific knowledge beyond that required in
fitness evaluation [24], [25]. Due to the huge design space of
fault-tolerant multiprocessor systems, we need a customized
EA-based DSE method rather than a general EA.

This paper builds upon the analysis that the search space
of previous EA-based DSE methods is highly redundant,
because: 1) task hardening is implicitly embedded in task map-
ping, and the number of replicas that might be introduced
by replication is assumed to be maximum, resulting in long
chromosomes [8], [9], [11]-[14] and 2) both task mapping
and replica mapping are encoded in the same chromosome,
resulting in a many-to-one relationship between genotypes and
phenotypes [7], [11]-[16]. A detailed discussion will be given
in Section II-B.

As a remedy, in this paper: 1) the mapping of a task is
done differently depending on whether it is an original task or
a replica, i.e., task mapping is optimized during the evolution-
ary search, while replica mapping is constructed heuristically
according to the current co-synthesis state; 2) the design space
of task hardening and task mapping are searched separately by
a cooperative co-evolutionary algorithm (CCEA); and 3) as
a complement to the global search, problem-specific local
search operators are designed for both task hardening and task
mapping to reduce the number of fitness evaluations required.
The overall goal of this paper is to speed up the whole DSE
process of the EA-based method and enable the EA-based DSE
method applicable to large-scale problems. Compared with the
most relevant state-of-the-art method, the superiority of the
proposed method is demonstrated using extensive experiments
on a large set of benchmarks, e.g., 1.75x~2.50x better results
can be obtained on the benchmarks of 300 tasks and 30 proces-
sors. The major contributions of this paper are summarized as
follows.

1) An in-depth analysis is given for the encoding redun-

dancy of previous EA-based DSE methods.

2) A separating method is developed to explore the map-
pings of original tasks and replicas explicitly.

3) A divide-and-conquer CCEA framework is proposed to
solve task hardening and task mapping simultaneously.

4) Problem-specific local search operators are designed
in the framework for further accelerating the DSE
process.

5) Extensive experiments on a large set of benchmarks
demonstrate the performance of the proposed DSE
method.

The rest of this paper is organized as follows. Section II
gives a critical overview of previous methods. In Section III,
the adopted problem model is briefly introduced. Our proposed
method is then detailed in Section IV. The experimental

studies are given in Section V. Finally, Section VI concludes
this paper.

II. RELATED WORK

In this section, a comprehensive review of previous DSE
methods for fault-tolerant multiprocessor system design is
given at first, and then, their drawbacks, especially the redun-
dancy in search space, are analyzed in detail.

A. Overview

COFTA [26] can be regarded as the first system co-synthesis
framework for fault-tolerant multiprocessor systems. Fault
detection is achieved through the placement of assertions and
duplicate-with-compare tasks during the co-synthesis process,
and assertion is preferred since it has less overhead than
duplication.

Duplication is considered in [27]. The key idea is to insert
duplicated tasks in the idle time slots of the processors such
that fault detection incurs no performance degradation. One
heuristic is to embed task insertion in the co-synthesis process,
and another heuristic is to perform task insertion as the second
step after the co-synthesis of the nominal system.

When applying more complex fault tolerance techniques,
such as replication and re-execution, EA-based DSE methods
have been widely used in the last decade.

Task replication is explicitly applied in [10] where multiple
task instances are executed independently on different pro-
cessors. For each task, the information about the number of
instances, mapping priority, and scheduling priority is encoded
in separate chromosomes, making up an individual of the EA.

Task replication is implicitly implemented in [11] by map-
ping a task to a set of different processors. For each task, the
priority list for all its mapping edges and the number of map-
ping edges to be selected are encoded as integer genotypes in
the chromosome of the EA. This paper is further extended
to consider voter placement during the DSE process [12].
The same authors also use Boolean genotypes to encode
task instances and the problem is solved by an integer linear
programming solver driven by an EA [40].

Task re-execution, i.e., the task instance is executed again
if a fault is detected, together with replication, is implicitly
implemented in [13]. For each task, the processors that the
task is mapped to are encoded as a list of integer values in the
chromosome of the EA, where multiple mappings of the same
task onto the same processor is interpreted as re-execution, and
multiple mappings of the same task onto different processors
is interpreted as replication. This paper is further extended to
consider the selection of fault detectors [14].

Both replication and re-execution are explicitly consid-
ered in [28]. Tabu search (TS) is used to explore both task
hardening and task mapping. The TS-based DSE method is
further extended to take hardware hardening and fault detec-
tion implementation into account in [29] and [30], respec-
tively. As the performance of TS is generally dependent
on its initial solution, their work starts from several differ-
ent pregenerated solutions for improving the quality of the
results.
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An extended set of fault tolerance techniques is explicitly
considered in [15], including the hardware architectures offer-
ing fault detection/tolerance. A two-layer (TL) EA framework
is proposed, where the outer layer EA is used to explore task
hardening, and each generated solution is evaluated by the
inner layer EA that performs the exploration of task mapping
and replica mapping. It is notable that the EA-based fitness
evaluation of the solutions generated in the outer layer is very
time consuming. This paper is further extended to consider
resource allocation [16] and task grouping [7].

Passive replication, active replication, and re-execution are
considered in [8]. For each task, the redundancy degree of
re-execution, mappings of active and passive task instances,
and mapping of the voter are encoded in the chromosome of
the EA, and a randomized heuristic is designed to repair the
infeasible solutions. This paper is further extended to consider
resource allocation and task dropping [9].

B. Discussion

As mentioned above, various EA-based DSE methods, using
different encoding schemes and optimization frameworks, have
been proposed. However, we find that the search space of these
methods is highly redundant.

EA is population-based, and in general, an individual
must hold information to represent a complete solution, i.e.,
both task hardening and task mapping. If task hardening
schemes, especially replication, is implicitly implemented in
task mapping [8], [9], [11]-[14], the chromosome length of
task mapping has to be very long. This is because the length
is determined by the maximum number of task instances that
may be introduced by replication. For example, if a task can be
mapped to any processor, the maximum number of instances of
a task is equal to the number of processors that could perform
the task. As shown in Fig. 1(a), the maximum chromosome
length of N tasks distributed on M processors is N(M + 1).
However, the real number of instances for a task is often
much less than the number of processors, only a small part
of the chromosome contributes to the fitness evaluation. If
re-execution is considered as well as replication, long chro-
mosome is unnecessary for a task hardened by re-execution,
because all instances of the task should be mapped to a single
processor.

An effective way to avoid the aforementioned
problem of long chromosomes is to explicitly separate
task hardening from task mapping in chromosome
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Motivational examples of the encoding redundancy for (a) task replication and (b) task mapping.

encoding [7], [10], [15], [16]. For example, task hardening
is encoded first and the output is an extended task graph
including both tasks and replicas, and then the encoding
of task mapping operates on the extended task graph [10].
However, the chromosome length of task mapping may be
different for different extended task graphs. This problem
could be resolved in the TL EA [7], [15], [16], where the
outer layer EA is used to explore task hardening, while the
inner layer EA is used to explore task mapping on each
extended task graph independently. The TL EA seems to be
the most promising DSE framework, but the EA-based fitness
evaluation is very time consuming.

In addition to the problem of long chromosomes, there is
a many-to-one relationship between genotypes and phenotypes
in most previous methods, as multiple replicas of a task are
encoded in the same chromosome [7], [11]-[16]. For example,
if we use integer encoding for task mapping, different permuta-
tions of a fixed integer set indicate the same mapping scheme
for a replicated task. As shown in Fig. 1(b), the mappings
three replicas of task ¢ to three processers {pi, p2, p3} can be
interpreted from six different chromosomes. This is because
all replica instances of the same task are homogeneous and
their mappings are interchangeable. However, all these per-
mutations are regarded as different points in the search space,
and all these points may be visited and evaluated during the
evolutionary search. A similar problem is considered in [41],
where the symmetry of mapping tasks to processors of the
same processor type is eliminated by clustering.

To consider high-level problem-specific knowledge beyond
that required in fitness evaluation, the work in [21] proposed
an importance measure (IM)-based local search approach to
enhance the existing EA-based DSE methods, but it is only
applicable to the hardening level selection of processors, which
is a very costly hardware fault-tolerant technique, compared
with software fault-tolerant techniques, such as task replication
and re-execution.

As pointed out above, the search space of previous
EA-based DSE methods is very large and highly redun-
dant, because of long chromosomes [8], [9], [11]-[14] and
the many-to-one relationship between genotypes and pheno-
types [7], [11]-[16]. The goal of this paper is to reduce these
redundancies by separating replica mapping from task map-
ping and using a divide-and-conquer strategy (i.e., CCEA) for
task hardening and task mapping. Furthermore, the problem-
specific local search is incorporated in the DSE process.
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Fig. 2. Whole (a) DSE framework and the (b) CCEA framework.

III. PROBLEM MODEL

This section briefly introduces the adopted system model,
fault tolerance techniques, and system requirements in the
fault-tolerant multiprocessor system design.

A. System Model

The multiprocessor platform consists of a set of
heterogeneous processors interconnected by an on-chip
network [8], [9], as shown in Fig. 2(a). Generally, the mul-
tiprocessor platform can be described using an architecture
graph [21], A(P, F), characterized by a set of processors
P = {p1,p2,...,pu} and a full connectivity communication
fabric F = {(pi,pj), .. }

The application of a system is made up of a set of sequen-
tial and/or concurrent tasks, or processes. Tasks are the atomic
unit performed by the system and communicate with each
other. In general, the application can be described using a task
graph [6]-[9], G(T, E), as shown in Fig. 2(a). G(T,E) is
characterized by a set of tasks T = {#,1, ..., v} and the
dependency between task pairs £ = {(#;, ), ...}. In addition,
each task #; € T is characterized by the worst-case execution
time (WCET) wceti- on each processor p; € P.

B. Hardening Technique

As mentioned in Section II, replication and re-execution are
the most widely used software hardening techniques against
transient faults or soft-errors [8], [9]. Re-execution uses time
redundancy to tolerate fault occurrences, while replication pro-
vides space redundancy, thus the combination of re-execution
and replication may achieve an optimal tradeoff for the whole
system design. Both of them are considered in this paper, and
in this paper, the term “hardening” represents the assignment
of fault tolerance technique.

In re-execution scheme, the initial state must be saved in
advance in the memory. Once a fault is detected at the end
of the task execution, all the input values are rolled-back to
the initial state and the same task instance is executed again.

GRLS for TH GRLS for 7M
(Algorithm 3) (Algorithm 4) a7
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) ™} tHIM || | | &
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\ 1] a3
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B — Schedule tdhle. g
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In replication scheme, multiple instances (at least two) of the
hardened task are mapped to a set of different processors, and
all task instances are executed independently of fault occur-
rences. It is notable that replication can modify the topology of
the original task graph by introducing replicas [6], [13], [28].

C. System Requirements

The transient faults may occur anywhere in the system dur-
ing one operation cycle of the application, so the tolerance to
transient faults is regarded as a hard constraint, i.e., a speci-
fied number (marked as K) of different transient faults has to
be tolerated [6], [7]. As a perfect fault detector is generally
assumed at the end of the task execution, thus, if a task is
hardened by replication, to tolerate K faults, K + 1 instances
of the task are executed independently; if a task is hardened
by re-execution, to tolerate K faults, the maximum number of
executions of the task instance is K + 1.

It should be noticed that several assumptions are implicated
in the K-fault tolerance systems: 1) task instances with differ-
ent execution time fail with the same probability and 2) there
is no objective function related to fault tolerance, as K-fault
tolerance is regarded as a hard constraint.

Given a multiprocessor platform A(P, F), and an applica-
tion G(7, E) that shall be implemented on the platform, the
goal of the design of fault-tolerant multiprocessor systems is
to: 1) assign replication or re-execution to each task, i.e.,
task hardening; 2) map each task instance (including repli-
cas) to one processor, i.e., task mapping; and 3) schedule the
task instances (including replicas) on each processor, i.e., task
scheduling, such that the overall execution period of the given
application is minimized.

IV. PROPOSED METHOD

The overall goal of our proposed method is to speed up the
whole EA-based DSE process (including task hardening, task
mapping, and task scheduling), through reshaping the search
space and reducing the number of fitness evaluations.
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Algorithm 1 CCEA for Task Hardening and Task Mapping

Algorithm 2 Heuristic Replica Mapping Algorithm

Input: architecture graph A(P, F) and task graph G(T, E) and WCETs and
K, and Pg, P, P;,

Output: the task hardening population TH, the task mapping population TM,
the replica mapping population RM, and the schedule tables

01: TH = {th'}, th* = {thy, thy, .. .thy} € {0, WV, i=1{1,2,...PSty}

02: T = {(m'},tm' = {m, tmy,...tmy} € {1,2,....M¥N,i =
{1,2,...PStm} )

03: evaluate fit(th', /), i ={1,2,...PStp},j ={1,2,... PSTm}

04: fityy, = min(fit(th', md)) and thbest = argmin;(fitpy), i =
{1,2,...PStH} ) ) )

05: fityy, = min(fit(eh/, m')) and tmbest = argmin;(fity,,),i =
{1,2,...PSTm}

06: repeat

07: for i = 1 to PS7y do // evolve the task hardening population
08: (i, th*y < Selection for Reproduction (TH)

09: oth! < Crossover (ti/, th*, P.)

10: end for

11: for i =1 to PSyy do

12:  oth' < Mutation (oth', Pp,)

13: end for

14: for i =1 to PSyy do

15:  fityry <evaluate oth' by combining it with rmbest

16: end for

17: TH <« Selection for Survival (TH, OTH, fitty, fitorH)
18: for i =1 to PStyps do // evolve the task mapping population
19: (), tmk) < Selection for Reproduction (TM)

20: otm' < Crossover (¥, tm*, P;)

21: end for

22: for i =1 to PS7p do

23: otm' < Mutation (otm', Py,)

24: end for

25: for i =1 to PS7py do

26: ﬁthTM <« evaluate otm' by combining it with thbest
27: end for

28: TM <« Selection for Survival (TM, OTM, fitty, fitoTm)
29: update thbest and tmbest

30: until maximum number of fitness evaluations reached

The proposed DSE framework is shown in Fig. 2(a). Both
architecture and task graphs are the inputs to the DSE frame-
work. In the proposed DSE framework, instead of using the
TL EA strategy [7], we use a divide-and-conquer strategy
to avoid the overestimation of chromosome length, i.e., the
design space of task hardening and task mapping are explored
independently using a CCEA framework [i.e., Algorithm 1, the
left part in Fig. 2(a)]. In addition, to reduce the redundancy in
genotype—phenotype mappings, we propose to explicitly sep-
arate the mappings of replicas from the mappings of tasks
in chromosome encoding. The mappings of replicas are con-
structed heuristically [i.e., Algorithm 2, the right part in
Fig. 2(a)]. The outputs of the DSE framework are the final
solutions of fault tolerance technique assignment for each task,
the processor assignment for each task (including replicas),
and the schedule table for each processor.

Fig. 2(b) shows the details of the CCEA framework. The
search space of task hardening and task mapping are explored
independently using two interacting populations. The fitness
value is the overall execution period of the hardened task
graph, in other words, the earliest finish time (EFT) of
the sink node. As a complement to the EA-based global
search framework, problem-specific local search operators
(i.e., Algorithms 3 and 4) are designed for both task hardening
and task mapping. In order to evaluate the solution, task hard-
ening and task mapping should be combined as a complete
solution.

Input: architecture graph A(P, F) and task graph G(7, E) and WCETs and K,
the task hardening solution th and the task mapping solution tm
Output: the replica mapping solution rm and the schedule table
01: obtain the extended task graph G'(T”, E')

02: compute the priority for each task #; € T°

03: initialize C; = {P/p;} for each task #; € T and tm; = j

04: initialize I; = O for each processor p; € P

05: L = {the source node from 7"}

06: while L # & do

07: select t, € L with the highest priority

08: ift, €T do

09: fr TUNS ON p; as given in tm

10:  end if

11: ift, € (T'/T} do )

12: estimate EFTj = I; + wcet’, for each p; € C; (it is assumed that 7, is

a replica of task #;)

13: select py € C; with the least EFT value
14: rm(ty) = pi

15: Ci ={Ci/pi}

16: end if
17:  schedule 7 on pg, and adjust the recovery slack of #, according to [6]
18: L ={L/t;}

19: add successors of ¢, to L
20: end while
21: return rm and schedule tables

Algorithm 3 GRLS for Task Hardening

Input: the given task hardening solution th
Output: new task hardening solution th

01: for each task on the critical path f; € CP do
02: if th; = 1 do //re-execution

03: th; = 0 //replication

04: break

05: end if

06: end for

07: return th

The details are given in the following sections.

A. Coevolution for Task Hardening and Task Mapping

CCEAs have been used with success in many applica-
tions [31]-[33]. We propose, for the first time, to co-evolve
solutions of task hardening and those to task mapping simul-
taneously.

In our CCEA framework, the problem of task hardening
and task mapping is decomposed as two interacting subprob-
lems. Each subproblem is assigned to a population, and each
population evolves (through selection, crossover, and muta-
tion) independently of the other. Since any given individual
from a particular population represents only task hardening
or task mapping, a partner, who has the best fitness value,
is selected from the other population. Then, the individual is
combined with its partner to form a complete solution and
its fitness value is evaluated based on Algorithm 2, where
the schedule table is built during the heuristic replica map-
ping process. It should be noted that a complete solution
consists of not only task hardening and task mapping but
also replica mapping and task/replica scheduling, the latter
can be constructed heuristically and will be introduced in
Section IV-B.

The genetic algorithm (GA) is adopted in our CCEA frame-
work to work as the evolutionary engine for each population.
The detailed design of the major steps for evolving the
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Algorithm 4 GRLS for Task Mapping

Input: the given task mapping solution tm
Output: new task hardening solution fm
01: for each task on the critical path t; € CP do

02: pj=1im;

03: if j! = argmin; (WCET¥) do
04: tm; =k, st. wcet{.‘ < weet,
05: break

06: end if

07: end for

08: return tm

populations of task hardening and task mapping is given as
follows.

1) Encoding: In the GA, the solution to the optimization
problem is encoded in a chromosome as a set of parame-
ters. Since task hardening and task mapping are regarded as
two independent subproblems in our CCEA framework, the
encoding of their solutions used in our implementation is
straightforward.

Each chromosome in the task hardening population
is represented by an N-dimensional 0-1 vector th =
{thy, thy,...,thy} € {0, l}N, where N is the number of tasks.
Each position of the vector describes the fault tolerance tech-
nique that assigned to the task, i.e., th; = O indicates that task
t; is hardened by replication, and, th; = 1 indicates that task
t; is hardened by re-execution.

Each chromosome in the task mapping population is
represented by an N-dimensional integer vector tm =
{tmy, tmy, ..., tmy} € {1,2,... ,M}N, where N is the number
of tasks, M is the number of processors, and the processors are
numbered in sequence. Each position of the vector describes
the processor that the task is mapped to, i.e., tm; = j indicates
task #; is mapped to processor p;.

2) Crossover: In the GA, crossover is a genetic operator
that recombines two parent chromosomes to produce one or
two child chromosomes from them. Many crossover operators
have been defined and can be used on the 0-1 or integer vector,
such as one-point crossover, two-point crossover, and uniform
Crossover.

In our implementation, we use one-point crossover, the sim-
plest one, i.e., a single crossover point on both parent vectors
is selected first, and then all data beyond that point in either
vector is swapped between the two parent vectors, the resulting
vectors are the child chromosomes. In this way, the applied
fault tolerance techniques are mixed for the task hardening
solutions, or the applied mapping schemes are mixed for the
task mapping solutions.

3) Mutation: In the GA, mutation is a genetic operator that
alters one or more gene values in a chromosome from its ini-
tial state to maintain the genetic diversity of the population.
In general, mutation operators involve a probability that an
arbitrary gene in a chromosome would be changed from its
original state, and this probability should be set low.

In our implementation, we use flip mutation for the 0-1 vec-
tor, i.e., the value of the chosen gene is inverted, and use
uniform mutation for the integer vector, i.e., the value of the
chosen gene is replaced by a uniform random value selected
between the specified upper and lower bounds for that gene.

In this way, the applied fault tolerance technique is changed
for the task in the task hardening solution, or the assigned
processor is changed for the task in the task mapping solution.

4) Selection: Selection occurs two times during each gen-
eration in the GA. In our implementation, selection for
reproduction is performed before the crossover operator is
applied, which is based on a purely random basis without bias
to filter any individual, and selection for survival is performed
to reduce the population to its original size, and we use an
elitist scheme through choosing the best individuals from the
combined pool of parents and children.

5) Fitness Evaluation: Each individual from one popula-
tion is combined with its partner from the other population,
and then its fitness value is evaluated based on the following
heuristic construction of replica mapping (Algorithm 2). In our
implementation, the best solution found so far is defended as
the partner in the population.

The outline of the proposed CCEA for task harden-
ing and task mapping is given in Algorithm 1, where PS, P,
and P,, indicate the population size, probability of crossover,
and probability of mutation. The algorithm starts with ini-
tial populations TH and TM consisting of PSty and PStym
random individuals for task hardening and task mapping
(lines 1 and 2). The fitness of each individual fityy or fitrym
is initialized as the minimum fitness when combine it with
any individual from the other population, and the individual
who has the best fitness is regarded as the partner thbest or
tmbest in its population (lines 3-5). During each generation,
both TH and TM are evolved, the population of PSty and
PStMm individuals generates PSty and PSty children through
the crossover operator (line 9 or 20) and the mutation operator
(line 12 or 23). The offspring OTH or OTM are evaluated by
combining them with tmbest or thbest (line 15 or 26) and then
used to update the current population (line 17 or 28). Finally,
the partners, thbest and tmbest, are updated based on the new
populations (line 29). When the given maximum number of
fitness evaluations is reached, the algorithm stops (line 30).

It should be noticed that tmbest or thbest is selected as the
partner solution for fitness evaluation of the given solution, not
for crossover and mutation. Besides, how to evaluate the fitness
value of a solution is an open problem in the CCEA field.
In fact, there is a tradeoff between evaluation accuracy and
evaluation time. For example, if we select a set of partner
solutions (e.g., 10) to evaluate one solution, the accuracy will
increase, but the runtime will be extended by ten times. In
this paper, we just use a simple evaluation strategy that only
a single partner solution is used to evaluate the given solution.
As we do not use the whole partner population (i.e., 200 in
our experiments) to evaluate the given solution from the point
of view of evaluation time, the resulting solution (tmbest or
thbest) is not necessarily the best one.

B. Separation of Task Mapping From Replica Mapping

In the proposed DSE method, task mapping is optimized
during the aforementioned CCEA process, while replica map-
ping is constructed heuristically according to the current state
of system co-synthesis, i.e., the current mappings of tasks and
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the current schedule tables on the processors. As shown in
Fig. 2(b), fitness evaluations in the CCEA framework are based
on the feedback from replica mapping, we will introduce our
heuristic for the construction of replica mapping. Then, we
will discuss the advantages of the proposed method over a full
evolutionary search (used in the TL EA framework) for both
task mapping and replica mapping.

In our implementation, given task hardening and task map-
ping, replica mapping is performed during task scheduling,
i.e., the mappings of replicas are integrated into the static
scheduling algorithm proposed in [6]. Our proposed heuristic
replica mapping algorithm is given in Algorithm 2.

At first, it is easy to obtain the extended task graph G’
by inserting the replicas (determined by the task hardening
solution th) into the original task graph G (line 1). Then, each
task is assigned a priority which is computed based on the
maximum path length between the task and the sink task, and
the replicas of a task have the same priority as the original
task (line 2). The candidate processor set for mapping the
replicas of task f; is initialized as C; = {P/p;}, where p; is
the processor where #; has been mapped as given in the task
mapping solution tm (line 3). The initial current idle time I;
for each processor p; is initialized as O (line 4).

The tasks and replicas are placed in the ready list if all
their predecessors have been already mapped. All ready tasks
and replicas from the list are investigated, and the task or
replica which has the highest priority is selected for scheduling
or scheduling and mapping. It is notable that although the
replicas have the same priority as the original task, we always
select the original task first, since its mapping has been given
in task mapping. The replica mapping algorithm loops until
the ready list is empty.

At first, task or replica ¢, is selected from the ready list
according to the priority (line 7), if ¢ is an original task, ¢,
runs on processor p; as given in task mapping (lines 8-10).
While, if 7, is a replica, for each processor p; € C; (it is
assumed that 7. is a replica of task #;), the EFT of 7, on P
is estimated based on the current idle time of p; and wcet)
(line 12), and ¢, is mapped to processor p; with the least EFT
value (lines 13 and 14), then py is removed from C; to avoid
mapping two replicas of the same task to the same processor
(line 15). And then, 7, is scheduled and its recovery slack is
adjusted such that it can accommodate recovering of tasks and
replicas scheduled before ¢, on the same processor py (line 17).
As the slack recovery adjustment strategy is out of the scope of
this paper, we suggest finding the details of this strategy in [6].
After the adjustment of the recovery slack, 7. is removed from
the ready list (line 18) and its successor tasks and replicas
are added to the list (line 19). After scheduling all the tasks
and replicas in the extended task graph, the algorithm returns
both mappings of replicas and schedule tables on processors
(line 21). It is notable that the integration of replica mapping
does not improve the time complexity of the original static
scheduling algorithm, and the impact on runtime is negligible
as shown in the experiments (Section V).

Besides, replica mapping can be performed after task
scheduling as well. For example, the static scheduling

algorithm [6] is invoked first, and then the replicas are inserted
in the schedule tables one by one, and meanwhile the sched-
ule tables are adjusted correspondingly. In general, this kind
of methods incurs much higher time complexity than the
aforementioned heuristic [27], so it is not applicable to be inte-
grated into the EA-based DSE framework, where replica map-
ping and scheduling, as a part of fitness evaluation process,
are invoked frequently.

Compared with a full evolutionary search for both task map-
ping and replica mapping [7], the benefits of the proposed
method of separation of task mapping and replica mapping
are threefold.

1) Given a task hardened by replication with redundancy
degree d and generally d < M (M is the number of
processors), the number of all permutations that would
be visited during a full evolutionary search is A%,, (.e.,
C]’f,, ~Aj), while the number of all different mapping
schemes is C/”‘l,,, where Cj, indicates the number of n-
combinations of m and A’ indicates the number of
n-permutations of m. In the proposed method, the orig-
inal task is mapped first to one of the M processors,
and then the mappings of other d — 1 replicas are con-
structed by the deterministic heuristic, thus the number
of permutations that would be visited by the proposed
method is M - ij[_ll (.e., C,dw -d) in the worst case, and
the redundancy is reduced by at least a factor of Ag:}.

2) Generally, it is not a good choice of mapping the
replicas of a task to the same processor as the orig-
inal task, or mapping two replicas of a task to the
same processor. However, for a full evolutionary search,
it is very hard to maintain this requirement due to
the randomness in crossover and mutation operations.
In the proposed method, the task is mapped first,
and its replicas are mapped heuristically one by one,
so infeasible mappings can be easily avoided dur-
ing the heuristic replica mapping process as shown in
Algorithm 2.

3) Above all, by separating replica mapping from task
mapping, it is possible to optimize task hardening and
task mapping in a divide-and-conquer way (i.e., CCEA)
rather than a nested TL structure [7], because the length
of task mapping chromosome is not determined by
any specific task hardening scheme any more. This is
detailed in Section I'V-A.

In the proposed method, replica mapping is determined
heuristically, and in general, there is an inevitable mapping
bias in the heuristic deterministic search. It seems that a full
evolutionary search for both task mapping and replica map-
ping has a stronger tendency to converge toward global optima,
but it is faced with a much larger search space as discussed.
As shown in the experiments (Section V-A), the proposed
method has better performance in terms of both efficiency
and effectiveness, and a detailed analysis will be given later.
In this paper, “efficiency” represents the cost of runtime of
the algorithms to achieve the objective fitness value, and
“effectiveness” represents the obtained fitness values of the
algorithms within the given runtime.
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C. Problem-Specific Local Search

For real-world optimization problems, it is often effec-
tive to incorporate problem-specific knowledge into local
search operators, which are referred to as memes in the case
of memetic algorithm (MA) [34]-[36], where local search
operators are used to complement the evolutionary or any
population-based global search framework. For combinato-
rial optimization problems, local search operators generally
work in the form of heuristics that are customized to a spe-
cific problem. In our implementation, the key idea is inherited
from the greedy reassignment local search (GRLS) opera-
tors [37], [38], which is to reassign the gene values of part
of the parent chromosome by taking advantage of the greedy
information extracted from the problem instance. In this
paper, this idea is extended for both task hardening and task
mapping.

1) GRLS for Task Hardening: The idea of replication is
to distribute the time overhead of fault-tolerance to multiple
processors, in a local time slot, it generally causes less time
delay than re-execution does for a hardened task. The GRLS
operator designed for task hardening tries to flip the hardening
technique from re-execution to replication for the given task.
The outline of the proposed GRLS operator for task harden-
ing is given in Algorithm 3. The key steps are flipping the
hardening technique from re-execution to replication (lines 2
and 3 in Algorithm 3).

2) GRLS for Task Mapping: Obviously, a task can be fin-
ished earlier on a faster processor, when it is assumed that
the resources on the processor are endless and the intertask
communication is free. The GRLS operator designed for task
mapping tries to replace the current processor by a faster one
for the given task. Here, a faster processor p means that the
wcet of task ¢ on processor p is less than that of task ¢ on
processor g to which ¢ is currently mapped. The outline of
the proposed GRLS operator for task mapping is given in
Algorithm 4. The key steps are replacing the current processor
by a faster one (lines 2—4 in Algorithm 4).

In order to release the time overhead added to the iterative
process of GA, the time complexity of the operator should
be as low as possible. In fact, for each task, the priority list
of processors in terms of WCET can be obtained in advance,
thus the greedy information of the problem instance only needs
to be computed once. Besides, for both Algorithms 3 and 4,
only one change is allowed, as the solution/individual should
be re-evaluated once a change is made.

It is notable that we only apply the local search operations
to the tasks on the critical path (CP) of the extended task graph
(line 1 in Algorithms 3 and 4). CP can be obtained according
to the schedule tables on the processors. The new solution is
combined with tmbest or thbest for the further evaluation of
its fitness value, and then used to replace the original solution
if the fitness is better.

In fact, for some specific combinations of N, M, and K, we
can judge which one (re-execution or replication) is better for
most tasks, but not for all tasks (as shown in Section V-E).
Algorithms 3 and 4 can be regarded as knowledge-guided
mutations to test whether the change can improve the current
solution or not. But they are not as fully random as mutations

are, because the task is chosen from the critical path and
the move is guided by knowledge. In fact, more sophisticated
heuristics can be used in the design of the local search opera-
tors for further improvements, but complex heuristics are time
consuming. On the other hand, for EAs, greedy heuristics may
make the solutions fall into local optima easily.

V. EXPERIMENTAL STUDIES

In this section, the performance of the proposed method is
experimentally investigated. First, we show that by integrating
the heuristic replica mapping algorithm (Algorithm 2) into the
TL EA framework [7], it can speed up the whole DSE pro-
cess. Then, the effectiveness of the CCEA framework and the
GRLS operators is verified by extensive experiments, espe-
cially on large-scale benchmarks. Finally, a real-world case
study of cruise control system (CCS) [39] is used to test the
performance of the proposed method.

In our experiments, a large set of benchmarks with dif-
ferent scales are synthesized, e.g., N = 40, 60, 80, 100, 200,
and 300 that indicate the number of tasks in the applica-
tion, and M = 4, 6, 8, 10, 20, and 30 accordingly that indicate
the number of processors in the multiprocessor platform. The
WCETs of the tasks on the processors range from 10 to
50 ms and are randomly determined. The communication
time between tasks is determined by the Manhattan distance
between the locations of processors, e.g., | ms between pro-
cessors p; and p; and 2 ms between processors p; and
ps in Fig. 2(a). The detection time and recovering time
involved in replication and re-execution are assumed to be 6
and 12 ms, respectively. The number (K) of transient faults
that has to be tolerated is assumed to be 1, 2, or 3. We
implement the algorithms [including both TL and cooperative
co-evolutionary (CC) frameworks] in MATLAB and use the
same scheduling algorithm [6]. All the experiments are per-
formed on a 2 x 2.0 GHz Intel Xeon E5-2683 platform with
8 x 16 GB memory. For a fair comparison, all the tested algo-
rithms are implemented as monolithic processes and no CPU
core parallelism is exploited.

A. Effectiveness of Mapping Separation

In the TL EA framework [7], the inner layer EA is used
to explore both task mapping and replica mapping and return
the fitness values for the given solutions of task hardening
generated by the outer layer EA. Instead of using a full evo-
lutionary search in the inner layer, we propose to construct
replica mapping by heuristics, e.g., using Algorithm 2. One
hundred different solutions of task hardening are randomly
generated as the inputs of the inner layer. Fig. 3 shows the evo-
lutionary curves of the average fitness values (execution period
of the whole application) using different methods, i.e., a full
evolutionary search for both task mapping and replica map-
ping, and an evolutionary search for task mapping and the
heuristic replica mapping algorithm (Algorithm 2). The meth-
ods are marked as Full GA and GA+Heuristic, respectively.
GA is used as the evolutionary search engine, and the popula-
tion size (PS), probability of crossover (P.), and probability of
mutation (P,,) are set as PS = 40, P, = 0.8, and P,, = 0.8/N.
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Fig. 3. Evolutionary curves of the average fitness value with the number of fitness evaluations using the full GA and GA+Heuristic on different benchmarks.
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It is notable that as the inner layer, the time complexity of
the GA does not allow evolving a large population within
a reasonable amount of time. The maximum number of fit-
ness evaluations is set to be 20000 to limit the runtime, and
in most cases, both algorithms have converged to good solu-
tions. Fig. 4 shows the average runtime for different methods
within the same number fitness evaluations (i.e., 20000) on
different benchmarks of different scales and fault tolerance
requirements.

For GA-+Heuristic, replica mapping is determined during
task scheduling. As shown in Fig. 3, its advantage over
Full GA is significant, e.g., GA+Heuristic not only obtained
much better initialized solutions, but also converged faster to
more near optimal solutions. For a given solution of task
hardening, a task mapping solution that is better than the
final solution obtained by the Full GA can be obtained by
GA+Heuristic using a much small number of fitness evalua-
tions (2000~6000) instead of 20 000. In other words, the effi-
ciency of the EA-based fitness evaluation would be improved
significantly (3~10 times). Furthermore, as the benchmark
size scales up or the value of K increases, the advantage of
GA+Heuristic over the Full GA becomes greater.

As shown in Fig. 4, for each benchmark case, there is
no obvious difference between the runtime of the Full GA
and GA+Heuristic when they are given the same number
of fitness evaluations, and the runtime ranges from 3 min
(N = 40 and K = 1 benchmarks) to 160 min (N = 300

and K = 3 benchmarks), which is very time consuming, as it
is used as the inner loop in the TL EA framework. For exam-
ple, if the maximum number of fitness evaluations of the outer
layer GA is set to be 400 only, it would take about 45 days
(400 x 160 min) to optimize N = 300 and K = 3 benchmarks.

As GA+Heuristic converged faster than the Full GA, it is
expected to speed up the whole TL EA-based DSE process by
using GA+Heuristic as the inner layer EA, this new method is
marked as two-layer genetic algorithm II (TLGAII), while the
original one using the Full GA as the inner layer EA is marked
as two-layer genetic algorithm I (TLGAI). Fig. 5 shows
their evolutionary curves of the average fitness values on
N = 40, 60, 80, and 100 benchmarks. In order to limit the
computational time overhead, the maximum number of fit-
ness evaluations of the inner layer GA is set to be 2000,
instead of 20000 used in the previous experiments. The max-
imum number of fitness evaluations of the outer layer GA is
set to be 400, so the total number of fitness evaluations is
400 x 2000 = 800 000.

As shown in Fig. 5, the advantage of TLGAII over TLGAI
in term of efficiency is clear, e.g., TLGAII not only obtained
much better initialized solutions but also converged fast to bet-
ter near optimal solutions. This is because that given a limited
computation overhead (e.g., 2000 fitness evolutions) for the
inner layer GA, it is difficult for the Full GA to make a full
evaluation of the given solutions generated by the outer layer
GA, while GA+Heuristic could. Although the efficiency of the
TL EA-based DSE method has been significantly improved by
TLGAII, this kind of method still scales poorly due to the TL
framework.

B. Effectiveness of Coevolution

In order to avoid the TL framework, we propose to optimize
task hardening and task mapping separately by the CC frame-
work. The new CCEA method is marked as cooperative
co-evolutionary genetic algorithm (CCGA). The parameters
of CCGA are set the same as those of the TLGAs, except
for the population size that is set as PS = 200. Besides, the
maximum number of fitness evaluations for CCGA is set to be
400 000. Fig. 6 shows the evolutionary curves (CCGA versus
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TLGAII) of the average fitness values on N = 40, 60, 80, and
100 benchmarks.

As shown in Fig. 6, the advantage of CCGA over TLGAII
in term of efficiency is clear. CCGA converged much faster
to better near optimal solutions. As the benchmark size scales
up or the value of K increases, the advantage of CCGA over
TLGAII becomes greater.

C. Effectiveness of GRLS

We show GRLS could help to improve the efficiency of the
CC framework further, especially on large-scale benchmarks.
We integrate the GRLS operators into the CCEA framework,
and the new method is marked as memetic CCGA (MCCGA).
The parameters of MCCGA are set the same as those of
CCGA. Once the state of a solution is changed by the
GRLS operator, its fitness should be re-evaluated, so even
with the same number of maximum fitness evolutions (e.g.,
400 000), the number of iterations of MCCGA is much
smaller than that of CCGA. Fig. 7 shows their evolution-
ary curves of the average fitness values, when N = 100, 200,
and 300.

As shown in Fig. 7, the advantage of MCCGA over CCGA in
term of efficiency is obvious. Although both methods start with
similar solutions (because of the same population initialization
process), MCCGA converged faster to better near optimal
solutions. The performance difference between MCCGA and
CCGA becomes larger as the problem grows larger.

D. Comprehensive Comparison

Finally, a comprehensive comparison of TLGAI, TLGAII,
CCGA, and MCCGA is shown in Fig. 8. The superior
performance of MCCGA can be seen clearly, especially on
large-scale benchmarks, e.g., the final fitness values (after
400000 fitness evaluations) of MCCGA on N = 300 and
M = 30 benchmark are about 1.75x~2.50x smaller than
those of TLGAL

We have performed statistical tests for the results of every
paired EAs, i.e., TLGAI versus TLGAII, TLGAII versus
CCGA, and CCGA versus MCCGA on each benchmark
instance. A two-tailed #-test is conducted with a null hypothe-
sis stating that there is no difference between two algorithms
in comparison. The null hypothesis is rejected if the p-value
is smaller than the significance level o = 0.05. We find that:
1) the results of TLGAII are statistically better than those
of TLGAI on all instances; 2) the results of CCGA are sta-
tistically better than those of TLGAII on all instances; and
3) the results of MCCGA are statistically better than those of
CCGA on the large instances (N > 80).

E. Changing Ratio of N/M

In order to investigate which task hardening technique
(re-execution or replication) is more suitable in different sce-
narios, we change the ratio of the number of tasks to that
of processors and compute the percent of re-executed tasks.
As shown in Fig. 9, if the number of tasks compared to
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Fig. 8. Evolutionary curves of the average fitness value with the number of fitness evaluations using TLGAI, TLGAII, CCGA, and MCCGA on different

benchmarks (a) (K = 1), (b) (K =2), and (c) (K = 3).

the number of processors is relatively low (e.g., N = 40

and M = 10, or N = 100 and M = 30), the per- and M =

if the number of tasks is much higher (e.g., N
10, or N = 100 and M

200
5), the percent

cent of re-executed is low, this is because replication is
more effective since the replicas (i.e., space redundancy) can
be distributed on different processors; on the other hand,

of re-executed is high, this is because re-execution (time
redundancy) is more effective since the space resources is very
limited.
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Fig. 9. Percent of re-executed tasks with changing ratio of the number of
tasks to that of processors.
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Fig. 10. Evolutionary curves of the average fitness value with the number
of fitness evaluations using MCCGA and TS on the cruse controller system.

F. Case Studies

A CCS [39] is considered as a case study for the proposed
method. The task graph of CCS has 20 tasks, and four hetero-
geneous processors are assumed on the target multiprocessor
platform in this experiment. The WCET of each task on each
processor is randomly decided in the range of 1~1.5 times
its standard execution time which has been given in [39].
As an individual-based metaheuristic, TS is commonly con-
sidered as a very efficiency search method for fault-tolerant
multiprocessor system design [6], [28]-[30]. For a fair com-
parison, a customized TS is included here as the baseline
algorithm. The key idea is the use of two vectors, Tabu and
Wait, to implement the selective history during the search.
Specifically, the purpose of the Tabu vector is to avoid revis-
iting the recent past solutions, while the purpose of the Wait
vector is to diversify the search, more details can be found
in [28]. Fig. 10 shows the evolutionary curves of the aver-
age fitness value with the number of fitness evaluations using
MCCGA and TS on CCS. It should be noticed that it is pos-
sible to accept bad solutions during the TS process, we record
and show the best historical solution until the current iteration
in the figures for TS. It can be seen that MCCGA can converge
to much better solutions, if we have enough fitness evalu-
ation times (i.e., 10000), as shown in Fig. 10(left). But, if
given a very limited fitness evaluation times (i.e., 1000), TS
can obtain better results, as shown in Fig. 10(right). As this
paper focuses on offline DSE of fault-tolerant multiprocessor
systems, we think MCCGA is a better candidate method.

VI. CONCLUSION

This paper aims at improving the efficiency of the EA-
based DSE method for fault-tolerant multiprocessor system
design. In order to reduce the redundancy in genotype-to-
phenotype mappings in the previous EA-based methods, we

have proposed to separate the mapping exploration explic-
itly. In order to avoid the problem of long task mapping
chromosomes, we have proposed to employ the CCEA frame-
work. In addition, in order to accelerate the DSE process
further, we have designed new GRLS operators and embed-
ded them in the CCEA framework. The effectiveness and
efficiency of the proposed strategies are demonstrated by
extensive experiments. The experimental results show that
using the proposed DSE method, MCCGA, it is possible
to obtain 1.75x~2.50x better results on the benchmarks of
300 tasks and 30 processors, compared to the state-of-the-art.

A limitation of this paper is that we only consider replicat-
ing a task or re-executing a task. Our future work is to extend
the proposed method to include the combination of replica-
tion and re-execution, and other hardware and software fault
tolerance techniques. Besides, we will also consider multiple
objectives in our future work, such as reliability, performance,
and temperature [43].
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