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Abstract—Multimodal optimization problem (MMOP), which
targets at searching for multiple optimal solutions simultaneously,
is one of the most challenging problems for optimization. There
are two general goals for solving MMOPs. One is to maintain
population diversity so as to locate global optima as many as pos-
sible, while the other is to increase the accuracy of the solutions
found. To achieve these two goals, a novel dual-strategy differen-
tial evolution (DSDE) with affinity propagation clustering (APC)
is proposed in this paper. The novelties and advantages of DSDE
include the following three aspects. First, a dual-strategy muta-
tion scheme is designed to balance exploration and exploitation
in generating offspring. Second, an adaptive selection mechanism
based on APC is proposed to choose diverse individuals from
different optimal regions for locating as many peaks as possible.
Third, an archive technique is applied to detect and protect stag-
nated and converged individuals. These individuals are stored
in the archive to preserve the found promising solutions and
are reinitialized for exploring more new areas. The experimental
results show that the proposed DSDE algorithm is better than or
at least comparable to the state-of-the-art multimodal algorithms
when evaluated on the benchmark problems from CEC2013, in
terms of locating more global optima, obtaining higher accuracy
solution, and converging with faster speed.
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I. INTRODUCTION

ANY real-world optimization problems require finding

as many optimal solutions as possible, such as elec-
tromagnetic optimization [1], [2], data mining [3]-[5], power
system [6], pattern recognition [7], [8], and protein structure
prediction [9]. These problems are commonly known as mul-
timodal optimization problems (MMOPs), which are more
challenging than the traditional unimodal optimization prob-
lems. Over the past decades, MMOP has drawn considerable
attention [10]-[13]. Owing to the success of evolutionary algo-
rithms (EAs) [14]-[26], many efforts have been paid to extend
EAs to MMOPs [27]-[29]. However, since traditional EAs are
designed to search for a single optimal solution, modifications
and multimodality-specific mechanisms are necessary for EAs
to locate multiple optima simultaneously.

Many multimodal algorithms follow the framework in
Fig. 1. The population is initialized and evaluated similar to
traditional EAs. However, during the evolutionary process,
to tackle MMOPs, the “niching” techniques have been pro-
posed to maintain the population diversity, so as to locate
multiple peaks [10]-[13], [27]-[29]. The working principle
of niching is to partition the whole population into several
subpopulations. There are many kinds of niching methods,
such as speciation [10]-[13], crowding [28], [29], fitness
sharing [30], clustering [31], [32], hill-valley [33], recursive
middling [34], topological species conservation [35], and
dynamic cluster size niching [36]. The algorithm in this paper
adopts the dynamic cluster size niching [36], since the strat-
egy is able to find a good balance between exploration and
exploitation.

After the partition, the evolutionary operators are executed
within subpopulations to generate offspring. Then, the fit-
ness values of offspring are obtained and a new population is
formed by a selection operator. As shown in Fig. 1, two kinds
of selection operators are widely used in multimodal algo-
rithms. One is the combination selection that first combines the
N parents and the N offspring (N is the population size), then
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Fig. 1. Flowchart of multimodal algorithm framework.

selects the N best ones from the 2N individuals. The other is
the one-by-one selection that compares each offspring’s fitness
value with its nearest parent (measured by Euclidean distance),
and then replaces the parent if the offspring is better.

Under the framework of Fig. 1, many EAs have
been successfully extended to solve MMOP, like genetic
algorithm [11], [30], [37], ant colony optimization [38], esti-
mation of distribution algorithm (EDA) [36], particle
swarm optimization (PSO) [39], [40], and differential evo-
lution (DE) [10], [29], [31], [32], [41]-[47]. Among
these EAs, the DE variants have shown promising
performance [10], [29], [31], [32], [41]-[47]. Therefore, we
focus on the DE-based multimodal algorithm in this paper.

Despite the efforts put into utilizing EAs/DEs to solve
MMOP, there are still some drawbacks of the current mul-
timodal algorithms as follows.

1) Itis a dilemma to choose or design an appropriate repro-
duction scheme that favors both exploration (finding
more globally optimal regions) and exploitation (refining
solution in each globally optimal region). For exam-
ple in a DE-based algorithm, a mutation scheme with
high randomness focuses on exploration, while a greedy
mutation scheme concentrates on exploitation. However,
this leads to deficiency when tackling MMOP, since the
algorithms not only require high diversity for exploring
multiple global optima, but also need fast convergence
to refine the solutions in each globally optimal region.

2) Regarding the selection operator, it is strange that almost
all the existing multimodal algorithms do not consider
selecting individuals according to different peaks. If we
partition the population before the evolutionary oper-
ators, why not partition the evolved population for
better selection? The existing methods like combination
selection and one-by-one selection both have their dis-
advantages. For example, suppose that the landscape of
the problem and the distribution of population are as
shown in Fig. 2. In Fig. 2(a), there are five global optima.
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Fig. 2. Two examples of problem landscape and distribution of population.
(a) Case of combination selection. (b) Case of one-by-one selection.

If we use the combination selection, some peaks might
be missed due to the strong selection pressure. That is,
among the combined population denoted by the five cir-
cles and five stars, the five circles located in only two
peaks may be selected. Alternatively, if we use the one-
by-one selection in Fig. 2(b) that contains three global
optima and two local optima, some local optima may
also be selected. That is, the two circles in the two
local optimal regions may also be selected, which may
mislead the evolution.

3) Moreover, most multimodal algorithms are not aware
of the convergence situation of different search regions.
If some individuals have stagnated and converged in
a specific region, it is not necessary to allocate fitness
evaluations (FEs) to these converged individuals.

To solve these drawbacks, a dual-strategy DE (named
DSDE) with affinity propagation clustering (APC) based
selection and archive technique is proposed. Specifically, the
three major novel characteristics and advantages that help
DSDE balance diversity and convergence for locating more
global peaks and increasing solution accuracy are described
as follows.

1) In the individual evolution, a dual-strategy mutation
scheme is adopted, which enables each individual to
choose its own suitable mutation strategy specifically
to meet the exploration and exploitation search require-
ments of its own. This way, the entire population is able
to achieve a good balance between locating as many
peaks as possible by exploring and refining the solution
accuracy by exploiting.

2) In the selection, an adaptive probabilistic selection
mechanism based on APC is proposed. By partition-
ing the population and choosing suitable individuals
from different clusters to match different peaks in the
landscape, the selection is good at diversity preserva-
tion. Meanwhile, we can select high-quality individuals
that are close to the global optima by using a novel
probabilistic model.

3) Moreover, an archive technique is proposed to detect
and protect the converged individuals. These converged
individuals will be reinitialized to increase the popula-
tion diversity for searching more areas. Meanwhile, to
preserve and avoid losing the found optima by reini-
tialization, these converged individuals are stored in the
archive at the same time.

Experiments are performed on the 20 benchmark

multimodal functions from the CEC2013 test suite. The results
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are better than, or at least comparable to those obtained by
the state-of-the-art multimodal algorithms, showing the
effectiveness of our algorithms.

The rest of this paper is organized as follows. Section II
reviews the basic DE and its variants for multimodal optimiza-
tion. Section III gives a detailed description of the proposed
DSDE algorithm. Experimental setup and results are presented
and compared in Section IV. Finally, conclusions and future
works are given in Section V.

II. DE AND MMOP
A. DE

DE realizes the evolution of individuals according to the
difference between individuals. The initial population is ran-
domly generated according to a uniform distribution in the
search space as

xij = Lj +rand x (Uj—Lj) (1)

where L; and U; are the lower and upper bounds of the jth
dimension, rand is a random number in the range of [0, 1].
After initialization, DE updates the population of individu-
als via mutation, crossover, and selection operators. The three
operators constitute the main loop of DE until the algorithm
terminates.

1) Mutation: In each generation, a mutation vector is
obtained for each individual based on the difference of
other individuals. Four frequently used mutation strategies are
listed below.

1) DE/rand/1

Vi =X;1 + F X (X2 — X;3). (2
2) DE/best/1
Vi = Xbest + F X (Xy1 —Xx2). 3)
3) DE/current-to-best/1
Vi =X + F X (Xpest — Xi) + F X (x,1 —x2). (4
4) DE/current-to-rand/1
u; =x;+rand x (x,1 —x;) +F x (x2 —x,3) (5

where r1, r2, and r3 are the indexes of three different individu-
als randomly selected from the population. The parameter F is
a positive real control parameter called the amplification fac-
tor, which controls the amplification of the difference vectors.
Xbest 18 the individual with the best fitness. Note that (5) for
the “DE/current-to-rand/1” mutation actually includes a rota-
tionally invariant arithmetic line recombination operator and
therefore generates u; directly.

2) Crossover: After mutation, DE generally performs
a binomial crossover operation that exchanges some com-
ponents from x; and v; to form a trial vector u;, with each
dimension determined as

- Jvi; ifrand < CR or j = jrand ©6)
Hij = xij otherwise
where jrang 1S an integer uniformly selected from {1, 2, ..., D}

to make sure that at least one dimension of u; comes from v;.

Algorithm 1 Speciation Clustering
Begin

1. Sort the population from better to worse according to fitness value;
2. For i=1 to N/M //N is the population size, M is the cluster size

3. The best individual X is set as the species seed;

4, The X and its nearest M — 1 individuals form a new species;

5. Remove the M individuals from the population;

6. End of For

End

Algorithm 2 Crowding Clustering

Begin

1. Randomly generate a reference point R in the search space;

2. Fori=1to N/M/IN is the population size, M is the cluster size
3. Find the nearest individual X to R in the population;

4. The X and its nearest M — 1 individuals form a new crowd;

5. Remove the M individuals from the population;

6. End of For

End

The crossover rate CR is another parameter, which decides
the proportion of the trial vector inherited from the mutation
vector v;.

3) Selection: This operator selects the better individual
from the trial vector u; and the original vector x; to enter
the next generation. For example, for a maximization prob-
lem, the vector with a higher fitness value is selected into the
next generation, which can be expressed by

X = {ui, if f(ui) = f(x:)
Xi,

otherwise
where f(x) is the FE function for a solution x.

(7

B. MMOP

MMOP aims at simultaneously locating the global optima as
many as possible. This requires the algorithm to main-
tain higher diversity so that it can locate different global
optima. Moreover, due to the limited FEs budget, the
algorithm should also have fast convergence speed to
increase the accuracy of solutions in each globally opti-
mal region. Nowadays, niching techniques have been widely
used and incorporated into EAs for solving MMOPs.
Speciation [10]-[13] and crowding [28], [29] are two of the
most famous niching methods.

In speciation, the population is divided into some
species (subpopulations). Each subpopulation is formed by
a species seed and the neighbors within the niching radius
r. When combined with DE, the algorithm is named species-
based DE (SDE) [10].

In crowding, each offspring is compared with its nearest par-
ent from a crowd formed by randomly selecting C individuals.
Then, the offspring will replace the compared parent if it is bet-
ter. Otherwise, the offspring will be ignored. When combined
with DE, the algorithm is named crowding DE (CDE) [29].

Although these two niching strategies have shown their
effectiveness in SDE [10] and CDE [29], respectively, they
both have two drawbacks. First, their performance is very
sensitive to the niching parameters (i.e., the species radius
r in speciation and the crowding size C in crowding).
Second, when the dimensionality or the complexity of prob-
lem increases, leading to a huge number of local optima, the
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feasibility of these strategies is severely impaired. These two
limitations have restricted their applications.

Recently, research on improving these two niching tech-
niques has drawn considerable attention. For instance, in order
to enhance partition, Qu et al. [31] and Gao et al. [32]
have integrated clustering methods with niching strategies.
The basic clustering framework for speciation and crowd-
ing niching are shown in Algorithms 1 and 2, respectively.
These algorithms are called neighborhood mutation-based DE
(NSDE and NCDE) [31] and self-adaptive clustering-based DE
(Self-CSDE and Self-CCDE) [32]. However, these algorithms
also introduce a new parameter M, which is the neighborhood
size (cluster size). To reduce the influence of this parameter,
Biswas et al. [41] developed an improved local informa-
tion sharing mechanism in niching DE (LoINDE, including
LoISDE and LoICDE), where the neighborhood size is gradu-
ally reduced in a nonlinear manner. They also presented a new
mutation strategy called parent-centric mutation operator in
niching DE (PNPCDE) [47]. In [36], the clustering niching
methods are incorporated with EDA, termed as LMSEDA and
LMCEDA, where the cluster size is dynamically changed from
a certain interval, which can find a potential balance between
diversity and convergence. Parameter-free niching strategies
are also developed, such as hill-valley niching technique [33],
which detects hill valleys by sampling and evaluating some
intermediate points between two individuals. However, to get
more accurate detection, enough points should be sampled and
evaluated, which will cause consumption of extra FEs.

Furthermore, various traditional EAs are also presented with
other techniques to tackle MMOPs. For instance, Li [39] pro-
posed RPSO (including R2PSO and R3PSO) by using ring
topology according to particles’ indexes in PSO for niching.
Qu et al. [40] brought up a distance-based locally informed
PSO (LIPS), which uses the information provided by parti-
cles’ neighborhoods in terms of Euclidean distance. Moreover,
some researchers have utilized multiobjective techniques to
tackle MMOPs. In [37] and [48], the MMOP was converted
into a bi-objective optimization problem, where the first objec-
tive is the fitness function itself, and the second objective is
generated according to gradient. Wang et al. [49] designed
two conflict objectives in each dimension to solve MMOPs,
termed as MOMMOP.

However, when using DE or other EAs for multimodal opti-
mization, it still confronts various difficulties. The algorithms
are required to locate all the global optima, to avoid getting
trapped in the local optima, and to refine the solution accuracy
of each optimal region. These difficulties are especially chal-
lenging when dealing with problems with high dimension or
complexity. Thus, how to find a balance between exploration
(finding more globally optimal regions) and exploitation (refin-
ing solution in each globally optimal region) in DE or other
EAs is still greatly desirable.

ITII. DSDE FOR MMOP

In order to deal with MMOPs efficiently, two major goals
need to be considered and achieved: 1) diversity, which helps
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discover more regions containing the global optima and 2) con-
vergence, which helps increase the accuracy of the solutions in
each globally optimal region. To accomplish these two goals,
our proposed DSDE uses an innovative approach to find a bal-
ance between exploration and exploitation. DSDE follows the
multimodal algorithm framework discussed in Fig. 1, together
with the following novel characteristics and advantages.

First, we design a dual-strategy mutation scheme for dif-
ferent individuals to generate offspring according to their
different search requirements. Second, we propose a new prob-
abilistic selection mechanism based on APC. On the one hand,
the selection operator based on clustering can preserve popula-
tion diversity by choosing suitable individuals from different
clusters for locating different peaks. On the other hand, the
probabilistic model can enhance the solution accuracy and
choose more suitable individuals close to the global optimum.
Third, the archive technique is used to detect converged and
stagnant individuals so as to make good use of limited FEs.

Before we introduce DSDE, we first describe the dynamic
cluster sizing in [36], which is also utilized in our DSDE, as
the speciation cluster niching method shown in Algorithm 1.
Specifically, in every generation, an integer is chosen randomly
from a fixed interval as the cluster size M, while the number of
niches is N/M. Note that if N%M # 0, the last niche will have
M + N%M individuals. The interval for M is set as [4, 20],
due to the fact that DE must have at least four individuals.
This scheme is not only intuitive but also effective and read-
ily applicable to a wide range of uses. For example, if the
current niche gets trapped in the local optima, the cluster size
has a chance to become larger to improve the niching diver-
sity. In contrast, if multiple peaks are found, the cluster size
can be lowered to enhance the capability for exploitation. As
a result, we can achieve a potential balance between population
diversity and fast convergence.

A. Dual-Strategy Individual Evolution

After partitioning the whole population into several sub-
populations, we subdivide each subpopulation into two equal
parts according to individuals’ fitness. The fitness division cri-
terion can be readily implemented and can efficiently divide
individuals into two distinct parts. The first part, namely “supe-
rior individuals”, consists of individuals that are suitable for
exploitation, while the second part, “inferior individuals,” con-
tains individuals that are suitable for exploration. The idea of
the dual mutation strategy based on the two parts of indi-
viduals is illustrated in Fig. 3 for a maximization problem,
where the set A contains the superior individuals with better
fitness values, while the set B contains the inferior individuals
with poorer fitness values. If the current individual belongs
to the superior individuals, e.g., the individual A’ in set A, it
should further exploit its neighborhood to speed up the con-
vergence and to refine the solutions accuracy. On the contrary,
if the current individual belongs to inferior individuals, e.g.,
the individual B’ in set B, it should explore further areas in
the search space and maintain population diversity.

1) Scheme 1-Using DE/lbest/1 if the Current Individual
Is Superior: DE/lbest/1 is derived from DE/best/1 in (3).
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Since the population is divided into several subpopulations,
DE/Ibest/1 uses the local best vector from the subpopulation
instead of the entire population. The superior individuals have
good fitness, therefore, DE/Ibest/1 can keep their good perfor-
mance on exploitation, which can exploit the neighborhoods
of the superior individuals to accelerate the convergence speed
and enhance local search ability.

2) Scheme 2-Using DE/current-to-rand/1 if the Current
Individual Is Inferior: As for the inferior individuals, there
is no need to exploit their neighborhoods. But they can be
used to explore further areas. DE/current-to-rand/1 shows good
diversity [50] and is suitable for inferior individuals. Thus,
using DE/current-to-rand/1 can ensure the diversity of the
population and explore more peaks.

B. APC-Based Selection

As we wish to find as many distinct global peaks as possible
in multimodal optimization, it is prudent to select individuals
according to different peaks. Thus, we can use the clustering
method to partition the entire population into a number of
nonoverlapping groups. Each group will focus on converging
to one or a small number of optima.

Motivated by this observation, the selection mechanism
based on clustering is proposed for the first time. After gener-
ating N individuals, we first execute the clustering operator on
the combined population. However, some traditional clustering
methods, such as k-means clustering [S1], [52] are quite sen-
sitive to the predefined parameters like the number of clusters.
Herein, we take a quite different clustering approach, named
APC, which does not need to determine the number of clus-
ters and simultaneously considers all individuals as potential
exemplars [53].

APC is a relatively new clustering approach proposed by
Frey and Dueck [53] in Science. It has also been applied
in EAs [54]. Instead of requiring the number of clusters to
be predefined, the clusters in APC emerge automatically by
a message-passing procedure. There are two kinds of mes-
sage communicated between individuals, responsibility and
availability. The “responsibility” r(i, k) is sent from each indi-
vidual i to a candidate exemplar individual k. It shows the
suitable degree of individual k to be the exemplar for indi-
vidual i. The “availability” a(i, k) is sent from a candidate
exemplar individual & to individual i. It reflects how appropri-
ate it is for individual i to choose individual k as its exemplar.
Particularly, r(i, k) is associated with the availabilities sent

Competing
candidate
exemplar k'

Supporting
Individual i’

Candidate
exemplar k

Candidate

exemplar k i)

N\
(i 1',/{\

a(ije)

Individual i

(a) (b)

Individual i

Fig. 4. Message-passing in APC. (a) Sending responsibilities. (b) Sending
availabilities.

from other potential exemplars to individual i, as illustrated
in Fig. 4(a). Similarly, a(i, k) is related to the responsibili-
ties sent from other supporting individuals to the candidate
exemplar individual k, as shown in Fig. 4(b). In the begin-
ning, the a(i, k) is set to 0. Then in every iteration, the current
responsibilities and availabilities are computed using the rules

r(i, k) = s(i, k) — max{a(i, k) + s(i, K} (8)
k#k'

a(i, k) = min{ 0, r(k. k) + »_ max{0, r(i', k)} )
i'#i,k
where s(i, k) is the similarity between individuals i and &,
which is set as the negative squared error (Euclidean distance):
s, k) = —|x; — x>
The current values will combine with the values in the last
iteration to preserve and utilize the message from last iteration
so as to avoid numerical oscillations. That is, during the infor-
mation transmission process, each message is set as A times of
its value in the last iteration plus (1 — 1) times of its currently
updated value

rGi k) = (1= A) x 7(i, k) + A X (i, K)js
ai, k) = (1 — A) x a(i, k) + A x a(i, k)

(10)
(1)

For each individual i, find the k that maximizes a(i, k) +
r(i, k). If k = i, individual i is identified as an exemplar.
Otherwise, the individual & is identified as the exemplar for
individual i. The message-passing procedure may be termi-
nated after a fixed maximum iterations max_its, or when the
estimated exemplars stay constant for a predefined number
of iterations con_its. In all of our experiments, we use the
fixed parameters A = 0.9, max_its = 100, and con_its = 30.
Herein, the A with relatively large value will keep more mes-
sage from last iteration, making the clustering results more
stable and effectively avoid numerical oscillations. Moreover,
relatively smaller max_its and con_its values make the com-
putational burden of APC relatively light. For more details of
APC, please refer to [53].

After executing the clustering operator on the combined
population, we will have several clusters, so called subpop-
ulations. In each subpopulation, we first sort the individuals
in decreasing order according to the individuals’ fitness val-
ues. Then, each subpopulation will have a species seed with
the best fitness. We always select and move the best indi-
vidual from each subpopulation to the population of the next
generation.
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Fig. 5. Example of the population distribution after clustering, the circle
individuals are more preferred than the star individuals.

It is obvious that fitter species seeds are more likely to be
close to the global optima and thus should have a larger oppor-
tunity to be chosen. For example, suppose that the landscape of
the problem is as Fig. 5, which contains three global optima
and two local optima. The circles represent the individuals
which have higher fitness values and are close to the global
optima, while the stars indicate the individuals which are close
to the local optima. Apparently, we prefer to choose the cir-
cles rather than the stars. In order to do this, we proposed
a probabilistic model for the selection operator, where the
probability of carrying out the selection operator on a sub-
population is associated with the fitness of its species seed.
Mathematically, the probability P; for the ith subpopulation
can be formulated as

_ ﬁ _fmin + ¢
fmax _fmin + d’

where f; is the fitness value of the species seed in the ith
subpopulation, fmax and fiin are the maximum and minimum
fitness values of all the species seeds. To meet the case where
Jfmin = fmax, ¢ is utilized here and is set as 1E—4.

Next, the selection is performed in a queueing manner, as
illustrated in Fig. 6. Different from the deterministic queue-
ing selection proposed in [55], our operator is probabilistically
based on the above-defined P;. In Fig. 6, each rectangle rep-
resents a subpopulation, and different shapes denote different
individuals, which are sorted in decreasing order of their fit-
ness values. The arrows provide the choosing sequences of
the subpopulation in each round. If the subpopulation i is not
empty, we generate a random value in [0, 1]. If the value
is smaller than the probability P;, the first individual in the
subpopulation i (i.e., the one with the best fitness) will be
selected and moved to the next generation. Otherwise, no indi-
vidual will be selected from this subpopulation in this round.
For example, in Fig. 6(a), the label “Y” means the individ-
ual is selected and moved to the next generation, while the
label “N” means the individual is temporarily ignored. After
the first round of the selection, the remaining individuals are
shown in Fig. 6(b). Then, we continue to select the remaining
best individuals in each subpopulation based on the probabil-
ity P;. The selection process repeats until N individuals are
selected. There are two advantages of our selection operator
to solve MMOPs.

1) Picking individuals from different subpopulations can
help maintain the population diversity, which can choose
the individuals from different peaks to match the
multiple peaks search requirements. Besides, we always

P; 12)
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Fig. 6. Illustration of the selection operator in DSDE. (a) Before selection.
(b) After the first round selection.

Algorithm 3 Adaptive Selection Mechanism
Begin

1. Execute APC on the combined population;

2. Calculate the choosing probability P; for each subpopulation;

3. No=0;i=1;

4. While No<N

5. If Subpopulation 7 is not empty

6. If rand <P;

7. Remove the best individual X in subpopulation i and
add X to the next generation;

8. No= No+1;

9. End of If

10. End of If

11. i=i+1;

12. If i > n (n is the number of subpopulations identified by APC)
13. i=1;

14. End of If

15. End of While

choose the top-ranking individuals in each subpopula-
tion, the quality and accuracy of selected individuals
is guaranteed. In other words, we can find a balance
between diversity and convergence.

2) The selection operator on a subpopulation i is carried out
based on P;, meaning that the better the species seed
is, the higher probability the subpopulation is chosen
and vice versa. In this way, we can choose more suit-
able individuals close to global optima and avoid getting
trapped in local optima.

The framework of the adaptive selection mechanism is

shown in Algorithm 3.

C. Archive Technique

The archive technique has been widely used in multiobjec-
tive optimization to store nondominated solutions [56]-[60].
Besides, cultural algorithm can also archive previous knowl-
edge to control the search [61], [62]. However, it is rarely used
in multimodal algorithms. In [63], an archive technique was
proposed to detect converged subpopulation and reinitialize
them for searching other regions. However, the converged sub-
population is obtained by the hill-valley method, which would
cause a waste of FEs. Differently, in this paper, we proposed
to detect the stagnant individuals and to obtain the converged
subpopulation by simple distance information. The process is
described as follows.
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Algorithm 4 DSDE

Algorithm 5 DSDE-C

Begin

1. Randomly initialize the population;

2. Randomly generate an integer as the cluster size M,

3. Partition the population into several species using Algorithm 1;

4. For each species

5. For each individual x; in the current species

6 If x; is a superior individual

7 Using DE/lbest/1 strategy for x;;

8 Else

9. Using DE/current-to-rand/1 strategy for x;;

10. End of If

11. End of For

12.  End of For

13.  Perform adaptive selection mechanism using Algorithm 3;

14.  For each individual x;

15. If s¢; >T

16. Move x; and its neighbors whose fitness values are worse
than x; to archive and reinitialize these individuals;

17. End of If

18. End of For

19. Repeat Steps 2 to 18 until the termination criterion is satisfied.

End

Each individual x; in the population is associated with
a stagnation counter sc;, which is initialized as 0 and is used
to record the number of generations that x; has not been
improved. Once x; is improved, sc; is reset to 0. Once sc;
exceeds a certain threshold 7, x; is treated to be stagnant.
For each stagnant individual x;, we find its M nearest neigh-
bors (M is the current cluster size in this generation) in the
population to form a converged subpopulation with M + 1
individuals. In such a condition, in order to avoid wasting
the FEs budget on these stagnated individuals, some of the
individuals in the converged subpopulations will be reinitial-
ized to increase the population diversity for searching other
areas. However, these stagnant individuals are probably the
optima of the search space. To preserve and avoid losing the
found optima by reinitialization, these individuals are stored
in the archive at the same time. Herein, the individuals to
be reinitialized and stored are only x; and those worse than
x;. The individuals better than x; are still kept in the popula-
tion so as to maintain the exploitation ability. These stagnated
individuals are maintained in the archive until the end of the
search. Therefore, by doing so, we are also able to preserve the
converged solutions or the probably optimal solutions found
during the search.

D. Complete DSDE Algorithm

Based on all the components described above, the pseudo
code of the complete procedure of DSDE is outlined in
Algorithm 4. The superiority of DSDE is shown as follows.

1) Each individual chooses a mutation strategy suitable

for itself by using the dual-strategy mutation technique,
leading to a balance between diversity and convergence.

2) The adaptive selection operator based on APC can

choose more suitable individuals distributed in different
optimal regions. It fulfills the requirement of MMOP for
locating all the optimal regions. Besides, the proposed
probabilistic model can ensure the accuracy of solutions
and avoid getting trapped in local optima.

Begin

1. Randomly initialize the population;

2. Randomly generate an integer as the cluster size M;

3. Partition the population into several species using Algorithm 1;

4. For each species

5. For each individual x; in the current species

6 If x; is a superior individual

7 Using DE/lbest/1 strategy for x;;

8 Else

9. Using DE/current-to-rand/1 strategy for x;;

10. End of If

11. End of For

12.  End of For

13.  For each offspring u;

14. Compare u; with the nearest parental individual
and replace it if u; has a better fitness value;

15. End of For

16. For each individual x;

17. If s5¢; > T

18. Move x; and its neighbors whose fitness values are worse
than x; to archive and reinitialize these individuals;

19. End of If

20. End of For

21. Repeat Steps 2 to 20 until the termination criterion is satisfied.

End

3) The archive technique can detect and protect the con-
verged individuals. These converged individuals will
be reinitialized to increase the population diversity for
searching more areas. Meanwhile, storing these con-
verged individuals in the archive can preserve and avoid
losing the found optima by reinitialization.

E. DSDE for Higher Dimensional Problems

DSDE performs particularly well on many MMOPs, which
will be further discussed in Section IV. However, the selec-
tion mechanism based on APC in DSDE does not work
well enough in high-dimensional functions, mainly due to the
“curse of dimensionality” that limits the efficiency of APC. For
the high-dimensional space, the individual distribution is more
dispersed. Therefore, the distance or similarity between any
two individuals is not significantly different. The failure of the
similarity estimation in APC causes the difficulties in forming
stable clusters to locate different optimal regions.

Aiming at this problem, when solving high-dimensional
problems, we incorporate the selection operator like in CDE
in our method, termed as DSDE-C. That is, after generating
a new individual u;, we will compare the fitness of u; with
the most similar parental individual (denoted by Euclidean
distance) and replace the parent if u; is better. The com-
plete pseudo code of the procedure of DSDE-C is outlined
in Algorithm 5.

F. Complexity Analysis

Herein, we denote the population size and the dimension
of problem as N and D, respectively. First, in our niching
method for both DSDE and DSDE-C, the time complexity is
O(N x log(N)) + O(N? x D), which are obtained by line 1 and
lines 2-6 in Algorithm 1, respectively. This time-complexity is
actually reduced to the O(N? x D) and is similar to many other
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TABLE I
PARAMETER SETTINGS

Function Max_FEs N
Fi-Fs 5.00E+04 80
Fs 2.00E+05 100
F; 2.00E+05 300
Fs-Fy 4.00E+05 300
Fio 2.00E+05 100
Fu-Fis 2.00E+05 200
Fia-Fxo 4.00E+05 200

state-of-the-art multimodal algorithms because of the calcula-
tions of pairwise distance. As for individual evolution, both
DSDE and DSDE-C have the same complexity as O(N x D),
as obtained by lines 4—12 in both Algorithms 4 and 5. In the
selection operator, DSDE uses the selection mechanism based
on APC, so we first analyze the time complexity of APC. To
implement APC, we first need to calculate the similarity matrix
s(i, k), the time complexity of which is O(N? x D). Then, we
should calculate message r(i, k) and a(i, k) in each iteration,
the time complexity of which is O(N?). Therefore, the time
complexity of APC is O(N? x D+ N> x NT), where NT is the
number of iterations in APC. As a result, the time complexity
of the selection in DSDE is O(N2 x D+N? x NT)+O(N x D),
which are obtained by line 1 and lines 2—15 in Algorithm 3,
respectively. Therefore the time-complexity is actually reduced
to the O(N? x D+ N> x NT), while DSDE-C takes O(N? x D),
as obtained by lines 13 and 14 in Algorithm 5. Furthermore,
the time complexity of the archive technique in both DSDE
and DSDE-C is O(N? x D), as obtained by lines 14-18 in
Algorithm 4 or lines 16-20 in Algorithm 5. Therefore, the
overall time complexities of DSDE and DSDE-C are O(N? x
D + N3 x NT) and O(N? x D), respectively.

It should be noted that the time complexity of most state-
of-the-art multimodal algorithms is O(N? x D) due to the
calculations of pairwise distance, which is the same to the
time complexity of the proposed DSDE-C. Detailed com-
parisons of time complexity are listed in Table S.I in the
supplementary file.

IV. EXPERIMENT STUDIES
A. Benchmark Functions and Performance Metrics

In this section, 20 widely used benchmark functions from
CEC2013 test suite [64] are used to test the performance of
DSDE:s (also including DSDE-C). These functions can be clas-
sified into three groups. The first group includes the first ten
functions F| — F'jo which are low-dimensional base functions.
The second group consists of the next five functions F11 — F5
which are low-dimensional composition function with a huge
number of local optima. The third group consists of the last
five functions F16—F>¢ that are high-dimensional composition
function. Due to the space limitation, the properties of these
functions are given in Table S.II in the supplementary mate-
rial. For more details about these test functions, please refer
to [64].

Three popular evaluation criteria in [64] called peak
ratio (PR), success rate (SR), and convergence speed (AveFEs)
are used to evaluate the performance of DSDEs and other
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state-of-the-art multimodal algorithms. For a given maximum
number of FEs (denoted as Max_FEs) and an accuracy level &,
PR refers to the average percentage of all global optima found
over multiple runs. SR denotes the percentage of successful
runs out of all runs. Here, a successful run means a run, where
all the global optima are found. AveFEs is the average num-
ber of function evaluations required in the successful runs.
If an algorithm cannot locate all the global optima under the
Max_FEs, then the Max_FEs is used to calculate AveFEs.

There are five frequently adopted accuracy levels, ¢ =
1.0E - 01, e = 1.0E—02, ¢ = 1.0E — 03, ¢ = 1.0E — 04,
and ¢ = 1.0E — 05. However, the accuracy levels with
e = 1.0E — 01 and ¢ = 1.0E — 02 are easy to accom-
plish and are imprecise. So in our experiments, only the
accuracy levels with ¢ = 1.0E — 03, ¢ = 1.0E — 04, and
& = 1.0E — 05 are chosen. Besides, in this paper, we mainly
discuss the results at ¢ = 1.0E — 04, which is commonly used
in [31], [32], and [39]-[49]. Furthermore, the Max_FEs is set
the same as proposed in CEC2013 com