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Abstract—Measuring the performance of an algorithm for
solving multiobjective optimization problem has always been
challenging simply due to two conflicting goals, i.e., conver-
gence and diversity of obtained tradeoff solutions. There are
a number of metrics for evaluating the performance of a
multiobjective optimizer that approximates the whole Pareto-
optimal front. However, for evaluating the quality of a preferred
subset of the whole front, the existing metrics are inadequate.
In this paper, we suggest a systematic way to adapt the exist-
ing metrics to quantitatively evaluate the performance of a
preference-based evolutionary multiobjective optimization algo-
rithm using reference points. The basic idea is to preprocess
the preferred solution set according to a multicriterion decision
making approach before using a regular metric for performance
assessment. Extensive experiments on several artificial scenar-
ios, and benchmark problems fully demonstrate its effectiveness
in evaluating the quality of different preferred solution sets
with regard to various reference points supplied by a decision
maker.

Index Terms—Evolutionary multiobjective optimization
(EMO), multicriterion decision making (MCDM), performance
assessment, reference point, user-preference.

I. INTRODUCTION

MOST real-world problem solving tasks usually involve
multiple incommensurable and conflicting objectives

which need to be considered simultaneously. Such prob-
lems are termed as multiobjective optimization problems
(MOPs) that have earned considerable attention in engi-
neering design, modeling, and operations research. Instead
of a single solution that optimizes all objectives simulta-
neously, in multiobjective optimization, we often look for
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a set of Pareto-optimal solutions none of which can be
considered better than another when all objectives are of
importance.

Over the past two decades and beyond, evolutionary
algorithms (EAs) have been widely accepted as a major
approach for multiobjective optimization. Many efforts have
been devoted to developing evolutionary multiobjective
optimization (EMO) algorithms, such as elitist nondominated
sorting genetic algorithm (NSGA-II) [1]–[3], indicator-based
EA [4]–[6], and multiobjective EA based on decomposition
(MOEA/D) [7]–[9]. These algorithms, without any additional
preference information (or intervention) from a decision maker
(DM), are usually designed to obtain a set of solutions that
approximate the whole Pareto-optimal set. However, the ulti-
mate goal of multiobjective optimization is to help the DM
find solutions that meet his/her own preference information. To
facilitate the decision making process, it is desirable to inte-
grate the DM’s preference information into the search process
of EMO for the following reasons.

1) Supplying a DM with a large amount of tradeoff
points not only increases his/her workload, but also
provides many irrelevant or even noisy information to
the decision making process. Rather than the whole
Pareto-optimal front (PF), the DM is usually interested
in only a small set of tradeoff points most relevant to
him/her. A biased search, according to the DM’s pref-
erence information, is able to provide more acceptable
alternatives.

2) Due to the curse of dimensionality, the number of points
used to accurately represent the whole PF increases
exponentially with the number of objectives. This not
only severely increases the computational burden of
an EMO algorithm, but also causes extra difficulties
for the DM to comprehend the obtained solutions and
then to make decisions. Therefore, it is more practical
to search for a fine-grained resolution of a preferred
region of the PF by incorporating the DM’s preference
information.

3) In a high-dimensional space, the mushrooming of non-
dominated solutions, even for a randomly generated
population, renders the traditional Pareto dominance-
based selection useless [10]. However, by consider-
ing the DM’s preference information, we can expect
a necessary selection pressure additional to Pareto
dominance [11].

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0001-7200-4244
https://orcid.org/0000-0001-7402-9939


822 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 6, DECEMBER 2018

In the past decade, there have been a number of studies
on the preference-based EMO. Generally speaking, their ideas
can be divided into four categories. The first one modifies the
original Pareto dominance by classifying objectives into differ-
ent levels and priorities (e.g., [12]–[14]) or expresses the DM’s
preference information by fuzzy linguistic terms according to
different aspiration levels (e.g., [15]–[17]). The second sort
modifies the diversity management module so that the density
of Pareto-optimal solutions can be biased toward the region of
interest (ROI) (e.g., [18]–[20]). The third approach combines
the classical reference point-based method [21] with EMO
(e.g., [22]–[24]). The last category, as a recent trend, combines
the DM’s preference information with performance metrics
(e.g., weight hypervolume (HV) [25], R2-indicator [26], and
averaged Hausdorff distance [27]) in algorithm design. In this
paper, our discussion focuses on the reference point-based
method, which has been recognized as one of most popular
methods in [28].

Despite the progress in algorithm design, few have been
done on evaluating the quality of preferred solutions obtained
by a preference-based EMO algorithm. Although a number
of performance metrics have been suggested to evaluate the
quality of solutions that approximate the whole PF, includ-
ing metrics for evaluating convergence (e.g., [29]–[31]) and
diversity (e.g., [32]–[34]) separately, and metrics that evaluate
both aspects simultaneously (e.g., [35]–[37]), none of them
can be directly applicable when only a partial PF is consid-
ered. Some attempts to adapt the regular metrics to serve the
purpose of assessing the quality of a preferred solution set
have been reported in [38]–[41]. However, they are ad-hoc
and oversimplified which could make the assessments mis-
leading. Possibly due to the lack of reliable metrics, many
studies, if not all, on the preference-based EMO heavily rely
on the visual plot in performance comparisons. These meth-
ods are rather subjective, and how to visualize data in a
high-dimensional space is itself an open problem. This paper
presents a systematic way, denoted as R-metric, to quanti-
tatively evaluate the quality of preferred solutions obtained
by a preference-based EMO algorithm using reference points.
Our basic idea is to use a multicriterion decision mak-
ing (MCDM) approach to preprocess the obtained solutions,
according to their satisfaction to the DM’s preference informa-
tion, before using a regular metric for performance assessment.
It is so simple and general that any existing metric can be
adapted with little modification. Note that it is a compre-
hensive extension and generalization of the metric developed
by the second author and his collaborators [42], while the
major differences are listed in Section I in the supplementary
material.

The rest of this paper is organized as follows. Section II
gives some preliminary concepts related to this paper.
In Section III, the motivations of this paper are delin-
eated and discussed. Section IV is devoted to the descrip-
tion of the proposed method. Sections V and VI present
the empirical studies on several artificial scenarios and
a series of benchmark problems, respectively. Finally,
Section VII concludes this paper and provides some future
directions.

II. PRELIMINARY CONCEPTS

This paper considers the following continuous MOP with
box constraints:

minimize F(x) = (f1(x), . . . , fm(x))T

subject to x ∈ � (1)

where � =∏n
i=1 [ai, bi] ⊂ R

n is the decision (variable) space,
x = (x1, . . . , xn)

T ∈ � is a candidate solution. F : � →
R

m+ constitutes of m real-valued objective functions, and R
m+

is called the objective space. The attainable objective set is
defined as � = {F(x)|x ∈ �}.

Definition 1: x1 is said to Pareto dominate x2, denoted as
x1 � x2, if and only if: ∀i ∈ {1, . . . , m}, fi(x1) ≤ fi(x2) and
∃j ∈ {1, . . . , m}, fj(x1) < fj(x2).

Definition 2: x∗ ∈ � is said to be Pareto-optimal if there
is no other x ∈ � such that x � x∗.

Definition 3: The set of all Pareto-optimal solutions is
called the Pareto-optimal set (PS). The set of all Pareto-optimal
objective vectors, PF = {F(x)|x ∈ PS}, is called the PF.

For the ease of later discussion, we briefly introduce two
widely used performance metrics in the EMO literature.

1) Inverted Generational Distance Metric [35]: Let P∗ be
a set of points uniformly sampled along the PF, and S
be the set of solutions obtained by an EMO algorithm.
The inverted generational distance (IGD) value of S is
calculated as

IGD
(
S, P∗

) =
∑

x∗∈P∗ dist(x∗, S)

|P∗| (2)

where dist(x∗, S) is the Euclidean distance between the
point x∗ ∈ P∗ and its nearest neighbor of S in the
objective space, and |P∗| is the cardinality of P∗.

2) Hypervolume Metric [31]: Let zw = (zw
1 , . . . , zw

m)T be
a worst point in the objective space that is dominated
by all Pareto-optimal objective vectors. HV metric mea-
sures the size of the objective space dominated by
solutions in S and bounded by zw

HV(S) = VOL

(
⋃

x∈S

[
f1(x), zw

1

]× · · · [fm(x), zw
m

]
)

(3)

where VOL(·) indicates the Lebesgue measure.
Both IGD and HV metrics are able to give a comprehen-

sive information, including the convergence and diversity, of
S simultaneously. The lower is the IGD value (or the larger is
the HV value), the better is the quality of S for approximating
the whole PF.

III. MOTIVATION

This section first discusses the shortcomings of some exist-
ing metrics for evaluating the partial PF. Then, we develop the
motivation for our proposed R-metric from the perspective of
the achievement scalarization function (ASF) in MCDM.

A. Shortcomings of Regular Metrics

Let us start from the regular IGD and HV metrics, which are
used as the baseline of R-metric, for assessing the partial PF.
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(a) (b) (c)

Fig. 1. Variations of IGD and HV values with respect to a DM specified reference point zr = (0.16, 0.9). (a) Partial region versus whole region. (b) Ten
point sets along the whole EF. (c) IGD and HV values for point sets in Fig. 1(b).

Note that although IGD and HV are not originally designed to
assess the partial PF, some studies [43], [44] use them for com-
paring preference-based EMO algorithms. The example PF
considered here is a line (i.e., f2 = 1− f1) having an intercept
of one with each objective axis. The DM’s preference informa-
tion is specified as a reference point zr = (0.16, 0.9)T in the
objective space. Points focusing on the region closest to zr are
most relevant to the DM’s preference information. To calcu-
late the IGD values, we sample 670 evenly distributed points
along the PF; and we set the worst point as zw = (1.1, 1.1)T

for calculating the HV value.
1) In Fig. 1(a), two sets of points S1 and S2 have the same

cardinality (|S1| = |S2| = 20), but are with different
spreads along the PF. S1 crowds around zr, while S2

evenly distributes along the whole PF. From the DM’s
perspective, S1 is preferable over S2. However, since S2

has a wider spread over the PF, it obviously has better
IGD and HV values than S1. Specifically, IGD(S1) =
3.476E-1 and IGD(S2) = 4.610E-4; HV(S1) = 0.2910
and HV(S2) = 0.6837.

2) In Fig. 1(b), ten sets of points S1 to S10 are created
along the PF. Each set contains 40 evenly distributed
points and has the same spread. Fig. 1(c) shows the
IGD and HV values obtained by each point set. Since
S2 locates in the ROI, it was supposed to have the
best metric values. However, as shown in Fig. 1(c),
S2 obtains the second worst metric values, whereas S5

and S6, far away from the ROI, obtain the best metric
values.

In summary, neither IGD nor HV metric is reliable for
evaluating the quality of a preferred solution set. A solu-
tion set with additional but unwanted points may obtain a
better metric value, thereby making the IGD and HV met-
rics unsuitable for performance assessment in the toy example
shown in Fig. 1(a). On the other hand, even for different
point sets having the same spread along the PF, their IGD
and HV values depend on their positions and the PF’s geo-
metric property. This makes the IGD and HV metrics unsuit-
able for performance assessment in the toy example shown
in Fig. 1(b).

(a) (b)

Fig. 2. Illustration of two preference-based metrics. Mechanism of (a) [38]
and (b) [39].

B. Overviews of Existing Preference-Based Metrics

In [41], a modified IGD was proposed to assess the close-
ness of an approximation set S toward multiple reference
points. It calculates the average of the shortest distance
between a solution in S and the point in P∗ closest to a
reference point. This metric degenerates to the shortest dis-
tance measure when only considering one reference point.
Analogously, [27] proposed a preference-based EMO algo-
rithm that tries to minimize the averaged Hausdorff distance
between solutions and the DM supplied aspiration set, i.e.,
a set of reference points. Although this idea is not directly
proposed for performance assessment, it can be used to assess
the quality of preferred solutions with respect to the DM’s
preference information. References [38] and [39] adapted the
regular HV metric for the preference-based EMO. Their basic
ideas are similar. At first, they merge solutions obtained by all
considered algorithms into a composite set. Then, they spec-
ify a preferred region within the composite set. Finally, only
solutions falling within this preferred region are considered for
performance assessment. The major difference between [38]
and [39] is the setting of the preferred region. As shown in
Fig. 2(a), [38] uses the closest point to the origin as the center
of the preferred region; while, as shown in Fig. 2(b), [39]
uses the closest point to the DM supplied reference point
as the center. Both these two metrics do not require any
prior knowledge of the PF, and they work for some simple
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Fig. 3. Illustration of the ASF ranking method. Considering the DM supplied
reference point zr , c is preferable over a and b; while a and b are equally
important.

examples. However, they have some flaws that make them
misleading.

1) It is obvious that [38] does not take the DM’s prefer-
ence information into consideration. For the example in
Fig. 2(a), S1 is obviously preferable over S2 consider-
ing the given reference point zr. However, S1 and S2

are distant from each other, and the origin is closer to
the points in S2. Therefore, S1 will be wrongly excluded
from the preferred region for performance assessment.

2) On the other hand, although [39] considers the DM’s
preference information in computation, it treats points
outside the preferred region equally redundant, e.g.,
in Fig. 2(b), no point in S2 will be considered in
performance assessment. Considering the example in
Fig. 1(b), all ten point sets, except S2, cannot get any
meaningful metric value. This gives the DM a wrong
information that S1 to S10, except S2, are equally bad.

C. Intuitions of MCDM Approach

In the MCDM literature, there exists a number of methods
for finding a preferred solution set according to the DM sup-
plied reference point. In this section, we describe the basic
idea of the ASF method [45], which is the foundation of
our proposed R-metric, in detail. In particular, The ASF1

considered in this paper is formulated as follows:

minimize ASF
(
x
∣
∣zr, w

) = max
1≤i≤m

fi(x)− zr
i

wi
subject to x ∈ � (4)

where zr is the reference point that represents the DM’s aspi-
ration level for each objective, and w is the weight vector
that implies the relative importance of objectives. Based on
the ASF, each objective vector has a projection, called iso-
ASF point, on the reference line originated from zr and along
w, as shown in Fig. 3. Specifically, for a point a ∈ �, its
corresponding iso-ASF point al is calculated as

al = zr + δw (5)

1Here, we use the classic weighted Chebyshev function for discussion.
Without loss of generality, other ASF forms can also be adapted accordingly.

where δ = max1≤i≤m [(ai − zr
i )/wi]. This iso-ASF point gives

us an information about the closeness of a to zr along
the preferred direction w. Note that not all Pareto-optimal
solutions are equally important when considering the DM’s
preference information. Based on the supplied reference point
and a preferred direction, ASF is able to rank all Pareto-
optimal solutions. As shown in Fig. 3, for a, any point on
its ASF contour line (e.g., point b) has the same ASF value,
i.e., they are equally good and have the identical rank. For
another point c, its iso-ASF point is cl. Comparing to al, cl

is closer to zr along the preferred direction. Thus, c should
have a better rank than a and b. Another nice property of this
ASF-based ranking concept is its scalability to many-objective
problems.

IV. R-METRIC CALCULATION PRINCIPLE

The basic idea of our proposed method, denoted as
R-metric, is to use an MCDM approach to preprocess the
preferred solution set according to the DM supplied preference
information. Thereafter, regular metrics, e.g., IGD and HV, can
be applied for performance assessment. Note that the R-metric
is specifically designed for evaluating the performance of a
preference-based EMO algorithm using one or more reference
points. In particular, we assume that the DM prefers the solu-
tions lying toward the preferred direction, represented as a
direct objective-wise weighting information or a worst point.
In the R-metric calculation, the DM is required to provide
three parameters relating to his/her preference information:
1) a reference point zr that represents his/her aspiration level
or desired value for each objective; 2) a worst point zw or
a weight vector w that specifies the relative importance of
each objective; and 3) a relative extent of the ROI, denoted
as � (0 < � ≤ 1). Note that most of these parameters are
used to elicit the DM’s preference information and to help the
preference-based optimization procedure find a set of trade-
off solutions in the ROI. Our proposed R-metric calculation
is simple in principle and its high level flowchart is given in
Fig. 4. In the following paragraphs, we first describe each step
in detail. Then, we provide some further comments followed
by a time complexity analysis.

A. Descriptions of Each Step

1) Prescreening Procedure: In multiobjective optimization,
only the nondominated solutions are of interest to the DMs and
are meaningful for performance assessment. Assume that there
are L(L ≥ 1) preferred solution sets (denoted as S1, . . . , SL),
obtained by L different preference-based EMO algorithms, at
hand. We at first merge these L preferred solution sets into a
composite set Sc. For each Si, i ∈ {1, . . . , L}, only the non-
dominated solutions, comparing to those in Sc, are retained for
the R-metric calculation. The pseudo-code of this prescreening
procedure is given in Algorithm 1.

2) Pivot Point Identification: As the name suggests, the
pivot point (denoted as zp) of a given set of preferred solu-
tions (denoted as S) is used as the representative that reflects
the overall satisfaction of S with respect to the DM supplied
preference information. In this paper, we use the best solution
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Fig. 4. Flowchart of R-metric calculation.

Algorithm 1: Prescreening Procedure

Input: Preferred solution sets S1, · · · , SL

Output: Processed S1, · · · , SL

1 for i← 1 to L do

2 Sc ←
L⋃

l=1
Sl\Si;

3 for j← 1 to |Si| do
4 for k← 1 to |Sc| do
5 if Sc(k) � Si(j) then
6 Si = Si\{Si(j)};
7 break;

8 return S1, · · · , SL

Algorithm 2: Trimming Procedure
Input: Preferred solution set S, ROI’s relative extent �

Output: Processed S
1 for i← 1 to |S| do
2 for j← 1 to m do
3 if |fj(xi)− zp

j | > �
2 then

4 S← S\{xi};
5 break;

6 return S

with respect to (4) to serve this purpose and thus zp is

zp = argmin
x∈S

ASF
(
x
∣
∣zr, w

)
. (6)

3) Trimming Procedure: Instead of the whole PF, the ROI
is a bounded region, i.e., a part of the PF, given the DM’s
preference information. Only solutions located in the ROI are
of interest to the DM. This paper defines the ROI approx-
imated by S as the cubic that is centered at the pivot
point and is with a side length �. Only solutions located
in this approximated ROI are valid for performance assess-
ment. The pseudo-code of this trimming procedure is given in
Algorithm 2.

4) Solution Transfer: This step is the main crux of our
R-metric by which the trimmed points are transferred to
a virtual position. Then, we can assess their closeness to
the ROI along the preferred direction. To this end, we first
compute the iso-ASF point of zp (denoted as zl) on the
reference line connecting zr and zw. According to (5), this
requires to identify the objective k that contributes to the ASF
value

k = argmax
1≤i≤m

zp
i − zr

i

zw
i − zr

i
. (7)

Algorithm 3: Solution Transfer
Input: Preferred solution set S
Output: Processed S

1 k← argmax
1≤i≤m

(
zp
i −zr

i
zw
i −zr

i
);

2 for i← 1 to m do

3 zl
i ← zr

i + zp
k−zr

k
zw
k −zr

k
(zw

i − zr
i );// iso-ASF point

4 for i← 1 to |S| do
5 Shift S(i) along the direction vector zl − zp;

6 return S

Then, we can compute zl as

zl
i = zr

i +
zp

k − zr
k

zw
k − zr

k

(
zw

i − zr
i

)
(8)

where i ∈ {1, . . . , m}. Thereafter, all trimmed points are trans-
ferred, along the direction vector zl − zp with the distance
‖zl−zp‖, to a virtual position. The pseudo-code of this solution
transfer procedure is given in Algorithm 3.

5) R-Metric Calculation: In this paper, we choose the IGD
and HV as the baseline metrics to evaluate the quality of a
preferred solution set. The resulting R-metric is thus denoted
as R-IGD or R-HV depending on the chosen baseline. For the
R-HV, we simply compute the HV of the transferred points
with respect to the worst point zw. For the R-IGD, we need
to preprocess P∗ beforehand. More specifically, we first use
the method developed in Section IV-A2 to identify the pivot
point of P∗. Then, we use the trimming procedure suggested
in Section IV-A3 to trim the points outside the ROI along the
PF. In the end, the remaining points form the new P∗ for the
R-IGD calculation.

B. Further Comments

1) In this paper, we set zw = zr + 2.0 × w for proof of
principle studies, where w is an unit vector. This w set-
ting implies that all objectives are equally important.
However, in practice, different objectives might have
various importance to the DM. For example, if we set
w = (2/

√
5, 1/
√

5)T , the first objective is assumed to be
twice less important than the second one. In particular,
the importance is in the inverse order of the weights.
More detailed discussions on an unequal weight set-
ting can be found from Section II in the supplementary
material.

2) In practice, the DM has no idea about the range of
the whole PF, not to mention the extent of ROI. Thus,
� plays as an approximate expectation of the relative
extent of ROI comparing to the whole PF. Note that the
objective space is assumed to be normalized to [0, 1].



826 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 6, DECEMBER 2018

(a) (b)

Fig. 5. Illustration of the trimming procedure. (a) Trimming procedure for S1.
(b) Trimming procedure for S2.

3) The trimming procedure penalizes the solution set,
in term of the diversity, for having an excessive
extent or deviating from the ROI. For example, in
Fig. 5(a) and (b), both S1 and S2 have the same cardinal-
ity (|S1| = |S2| = 11), but S1 has a wider spread. From
the DM’s perspective (given � = 0.3), S2 is preferable
over S1. After the trimming procedure, |S1| reduces to 5
while |S2| is still the same. Accordingly, S1 will sacrifice
its diversity when calculating the R-metric value. As for
another example shown in Fig. 6(a) and (b), S1 and S2

again have the same cardinality. Since S2 deviates from
the ROI, its pivot point is identified as one of its extreme.
After the trimming procedure, solutions far away from
the ROI are excluded from further consideration.

4) Given the DM’s preference information, the convergence
is not only the closeness to the PF, but also the closeness
of the transferred points to the ROI along the preferred
direction. This redefinition of convergence is fulfilled
by transferring points to a virtual position along the
iso-ASF line between zp and its iso-ASF point zl. Let
us consider the example shown in Fig. 6 again. The
pivot point of S1 is exactly its iso-ASF point, since
this pivot point lies exactly on the reference line con-
necting zr and zw. In this case, solutions of S1 stay in
their original positions after the transfering procedure.
In contrast, since the pivot point of S2 deviates from
zr, the remaining solutions of the processed S2 after
the trimming procedure are shifted, along the direction
zl−zp, to a virtual position away from the PF, as shown
in Fig. 6(c).

C. Time Complexity Analysis

We now analyze the time complexity of R-metric calcula-
tion. The prescreening procedure requires at most O(L2N2)

dominance comparisons. The identification of a pivot point
zp from N tradeoff points requires O(N) computations. The
trimming procedure can be achieved in O(N) computations.
Transfering at most N points toward the reference line also
requires O(N) computations. The complexity of R-IGD or
R-HV computation in last step is the same as the regular
IGD or HV. In summary, the time complexity of R-IGD is
max{O(NM),O(L2N2)}, where M is size of the newly formed
P∗ after the filtering procedure; the time complexity of R-HV

is max{O(Nm−1),O(L2N2)} by using the method developed
in [31].

V. EMPIRICAL STUDIES ON ARTIFICIAL SCENARIOS

In this section, we verify the proposed R-metrics on several
artificial scenarios. First of all, the effectiveness of R-metrics is
investigated on the two toy examples introduced in Section III.
Afterward, four popular benchmark problems with different
population distributions and different reference point settings
are used to further examine R-metrics. Next, we investigate
the applicability of R-metrics on a problem with disconnected
PFs. Finally, R-metrics are used to evaluate the quality of a
preferred solution set with respect to multiple reference points.

A. Investigations on Toy Examples

For the first example discussed in Section III, as shown
in Fig. 7(b), S1 and S2 are rearranged according to our
proposed R-metric calculation procedure. Since S2 does not
fully meet the DM’s preference, points therein are penalized
in terms of convergence and diversity. More specifically, after
the filtering procedure, only three points have been left in
the processed S2. Then, the processed S2 has been shifted
to an area away from the PF in the solution transfer step.
Thereafter, the R-metric values of S1 should be better than that
of S2, i.e., R-IGD(S1) = 0.0222 and R-IGD(S2) = 0.0452;
R-HV(S1) = 1.1550 and R-HV(S2) = 1.1108. As for the sec-
ond example discussed in Section III, now shown in Fig. 7(c),
all ten point sets have been shifted to their corresponding vir-
tual positions along the preferred direction (the dashed arrow
denotes the transfer direction for each point set). Now, R-IGD
and R-HV successfully figure out the best point set S2. This
is because the processed S2, denoted as P2, is closest to the
ROI. In addition, S1 and S3, which have a similar distance to
the ROI after data preprocessing, achieve similar R-IGD and
R-HV values. As for S4 to S10, their R-metric values become
worse with their increasing distances to the ROI.

B. Investigations on Benchmark Problems

In this section, we investigate the effectiveness of R-metrics
on four classic benchmark problems, including two-objective
ZDT1 and ZDT2 [46], and three-objective DTLZ1 and
DTLZ2 [47].2 For ZDT1 and ZDT2, ten sets of points, S1

to S10, are sampled from different regions of their PFs. Each
set contains 40 evenly distributed points. For DTLZ1 and
DTLZ2, we sample 21 sets of points from different regions of
their PFs, where each set has 25 evenly distributed points. For
R-IGD calculation, we first sample 10 000 evenly distributed
points from the corresponding PFs. Only those located in the
ROI (� is set as 0.2) are chosen to form P∗ in the R-IGD
calculation.

1) Two-Objective Cases: As shown in Fig. 8(a), we inves-
tigate three kinds of reference points for ZDT1.

1) Unattainable Reference Point zr1 = (0.2, 0.5)T: From
the results shown in Fig. 8(b), we find that both R-IGD

2Due to the page limit, the results on ZDT2 and DTLZ2, which are sim-
ilar to the observations on ZDT1 and DTLZ1, are put in the supplementary
material.
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(a) (b) (c)

Fig. 6. Illustration of the R-metric calculation principle. Note that the solution transfer is according to iso-ASF lines for the ASF with zr as the reference
point and zw − zr as the weight vector. Trimming procedure for (a) S1 and (b) S2. (c) Solution transfer.

(a) (b) (c) (d)

Fig. 7. Illustration of R-IGD and R-HV values with respect to a DM supplied reference point zr = (0.16, 0.9). (a) Partial region versus whole region.
(b) After data preprocessing. (c) Ten point sets along the PF. (d) R-IGD and R-HV values for each set.

(a) (b) (c) (d)

Fig. 8. Variations of R-IGD and R-HV with respect to an unattainable reference point zr1 = (0.2, 0.5)T , an attainable reference point zr2 = (0.6, 0.3)T , and an
outside reference point zr3 = (1.1,−0.1)T on ZDT1 problem. (a) Population distribution. (b) zr1 = (0.2, 0.5)T . (c) zr2 = (0.6, 0.3)T . (d) zr3 = (1.1,−0.1)T .

and R-HV are able to make a reasonable assessment on
the quality of a point set with respect to the DM sup-
plied preference information. For example, S3 resides
in the ROI with respect to zr1 . As shown in Fig. 8(b),
the R-IGD and R-HV values obtained by S3 are indeed
the best. For the other point sets, the farther away
from the ROI, the worse the R-metric values are.

2) Attainable Reference Point zr2 = (0.6, 0.3)T: Similar
to the observations in the above scenario, the point set
closest to the reference point, i.e., S6, obtain the best
R-IGD and R-HV values. And the R-metric values also
depend on the distance to the ROI.

3) Extreme Reference Point zr3 = (1.1,−0.1)T: Since this
reference point lies on one extreme, it is expected that

the point set at the respective extreme boundary, i.e., S10,
is desirable. From the results shown in Fig. 8(d), we find
that our proposed R-metrics are able to capture this fact
and their trajectories show a monotone property.

2) Three-Objective Cases: As shown in Fig. 9, we investi-
gate two kinds of reference points for DTLZ1.

1) Unattainable Reference Point zr1 = (0.05, 0.05, 0.2)T:
Different from the two-objective case, in a 3-D space,
points are distributed in an ambient space, where the
neighboring points can be in various directions. This
explains the significant fluctuations of R-IGD and R-HV
curves shown in Fig. 9(c). Nevertheless, the point set
most relevant to the DM supplied preference informa-
tion, i.e., S17, obtains the best R-IGD and R-HV values.



828 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 6, DECEMBER 2018

(a) (b) (c) (d)

Fig. 9. Variations of R-IGD and R-HV with respect to an unattainable reference point zr = (0.05, 0.05, 0.2)T and an attainable reference point
zr = (0.3, 0.3, 0.2)T on DTLZ1 problem. (a) Population distribution (front view). (b) Population distribution (side view). (c) zr = (0.05, 0.05, 0.2)T .
(d) zr = (0.3, 0.3, 0.2)T .

(a) (b)

Fig. 10. Variations of R-IGD and R-HV with respect to a reference
point zr = (0.5, 0.0)T on ZDT3 problem. (a) Population distribution.
(b) zr = (0.5, 0.0)T .

Furthermore, we also notice that the point sets close to
the reference point obtain similar R-metric values, e.g.,
S9, S13, S14, S16, and S18 in DTLZ1 get similar R-IGD
and R-HV values as shown in Fig. 9(d).

2) Attainable Reference Point zr2 = (0.3, 0.3, 0.2)T: From
the results shown in Fig. 9(d), we find that R-metrics are
able to provide a reliable assessment on different point
sets. S9, which is closest to this reference point, obtains
the best R-IGD and R-HV values.

C. Investigations on Problems With Disconnected PFs

Although the investigations in Sections V-B1 and V-B2
are based on problems with continuous PFs, our proposed
R-metrics are also effective for problems with disconnected
PFs. For proof of principle purpose, this section chooses
ZDT3, whose PF consists of five disconnected segments,
for investigation. Five point sets, S1 to S5 as shown in
Fig. 10(a), are, respectively, sampled from each segment and
zr = (0.5, 0.0)T . In addition, we also plot the transferred point
sets, denoted as green circles, for illustration (the dashed arrow
denotes the transfer direction for each point set). From the
results shown in Fig. 10(b), we find that the R-metrics are able
to provide a reasonable assessment for problems with discon-
nected PFs. In particular, S3, which is closest to zr, obtains
the best R-metric values. Note that the transferred points of S3

still lie on S3 and is indeed closest to zr. From Fig. 10(a), we
find that S4 is also very close to zr, the same for its transferred
points. This explains its similar R-metric values with respect
to S3. On the other hand, S1, farthest away from zr, obtains
the worst R-metric values.

(a) (b)

Fig. 11. Variations of R-IGD and R-HV with respect to two different
reference point zr1 = (0.2, 0.5)T and zr2 = (0.6, 0.3)T simultaneously.
Index 1 indicates (S3, S6), 2 indicates (S1, S2), 3 indicates (S4, S5), 4 indi-
cates (S3, S4), and 5 indicates (S6, S7). (a) Population distribution. (b) Point
sets combination.

D. Investigations on Multiple Reference Points

In practice, the DM might not be sure about his/her exact
preference beforehand. The DM would like to simultaneously
explore several ROIs by supplying T (1 < T ≤ |S|) reference
points at the same time. Accordingly, a small modification is
required to adapt the R-metrics to this circumstance. Generally
speaking, when there are more than one reference point, the
preprocessing procedure should take each reference point into
consideration separately. At first, we use the prescreening pro-
cedure introduced in Section IV-A1 to remove those dominated
solutions from further R-metric calculation. Afterward, we
apply the k-means [48] algorithm to divide the remaining solu-
tions into T clusters. Then, each cluster is associated with a
reference point closest to its centroid. For each cluster, we use
steps 2 to 4 introduced in Section IV-A to preprocess the points
and transfer them to a virtual position. Finally, we combine
all preprocessed points together and evaluate their R-metric
values as a whole. In particular, the worst point for R-HV cal-
culation is chosen as the nadir point of the worst point for
each reference point; for R-IGD calculation, P∗ needs to be
preprocessed for each reference point separately according to
the method introduced in Section IV-A.

To validate the effectiveness of our strategy, we take the
example in Fig. 11(a) for investigation. Here, we set two
reference points zr1 = (0.2, 0.5)T and zr2 = (0.6, 0.3)T , simul-
taneously, in the objective space. Five point set combinations,
i.e., (S3, S6), (S1, S2), (S4, S5), (S3, S4), (S6, S7), are chosen as
the candidates for performance assessment. From the results
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shown in Fig. 11(b), we find that (S3, S6) obtains the best
R-IGD and R-HV values. From Fig. 11(a), we can see that S3

and S6 are in the corresponding ROI of zr1 and zr2 , respec-
tively. In contrast, (S1, S2) obtains the worst R-metric values.
From Fig. 11(a), we find that both S1 and S2 are close to
zr1 , but are far away from zr2 . Therefore, the R-metric values
with respect to zr1 can be acceptable, whereas the R-metric
values with respect to zr2 should be significantly bad. This
makes its final R-metric values become the worst. Notice that
sometimes DMs tend to use multiple reference points to dis-
cretely approximate the ROI. Therefore, the regions between
these supplied reference points are also very important. From
Fig. 11(b), we found that the R-IGD and R-HV values obtained
by (S4, S5) and (S3, S4) are similar and are only inferior to
(S3, S6). In contrast, although (S6, S7) has some part locating
in the ROI of zr2 , S7 is far away from zr1 . This makes its
R-metric values not as good as (S4, S5) and (S3, S4). In sum-
mary, due to the existence of multiple reference points, a good
point set should have a promising satisfaction for every refer-
ence point. In Section III of the supplementary material, we
provide some further discussions on the “scalability” issue of
R-metric.

VI. EMPIRICAL STUDIES ON PREFERENCE-BASED

EMO ALGORITHMS

In this section, we apply our proposed R-metrics to evaluate
the performance of the following four preference-based EMO
algorithms. Notice that all multiobjective optimizers use refer-
ence points to articulate the DM’s preference information, and
all of them, except g-NSGA-II, are capable of handling more
than one reference point. Here, we choose the classic ZDT
and DTLZ test suites as benchmark problems. For R-IGD cal-
culation, similar to Section V, we at first sample 10 000 points
from the corresponding PF. Then, points located in the ROI
(� is set as 0.2) are used to form P∗.

1) r-MOEA/D-STM [49]–[51]: It is an extension of our
recently proposed MOEA/D variant based on sta-
ble matching model [52]. Different from the original
MOEA/D, where the selection of next parents is merely
determined by the ASF value of a solution, MOEA/D-
STM treats subproblems and solutions as two sets of
agents and considers their mutual-preferences simulta-
neously. In particular, the preference of a subproblem
over a solution measures the convergence issue, while
the preference of a solution over a subproblem measures
the diversity issue. Since the stable matching achieves
an equilibrium between the mutual-preferences between
subproblems and solutions, MOEA/D-STM strikes a bal-
ance between convergence and diversity of the search
process. In order to incorporate the DM’s preference
information into the search process, we need to specify
a population of weight vectors spread around reference
points.

2) R-NSGA-II [22]: It is a variant of NSGA-II which
modifies the crowding operator based on the idea of
classic reference point-based method. More specifi-
cally, solutions close to reference points have a larger

chance to survive in the selection procedure. In addi-
tion, R-NSGA-II employs an ε-clearing idea to control
the spread of the final obtained solutions in the ROI.

3) g-NSGA-II [53]: It modifies NSGA-II by replacing the
Pareto dominance with a new dominance relation, called
g-dominance. More specifically, g-dominance uses a
reference vector to represent DM’s desired value for
each objective, i.e., aspiration levels. Solutions either
satisfying all aspiration levels or fulfilling none of
the aspiration levels are preferable over those merely
satisfying some aspiration levels.

4) r-NSGA-II [23]: It uses a new dominance relation,
called r-dominance, to replace the Pareto dominance
in NSGA-II. When two solutions are nondominated in
terms of Pareto dominance, the one closer to the refer-
ence point is preferable. Moreover, its search behavior is
adjusted by two parameters: one is the non-r-dominance
threshold δ that controls the spread of the obtained solu-
tions; the other is the ASF weight vector that controls
the relative importance of different objectives.

All multiobjective optimizers use simulated binary
crossover [54] and polynomial mutation [55] as the repro-
duction operators. For proof of principle purpose, all four
algorithms assume all objectives are equally important in
our empirical studies. Note that although r-MOEA/D-STM,
R-NSGA-II, and r-NSGA-II are able to control the spread of
obtained solutions, there is no specific guideline to set the
corresponding parameter. Due to the page limit, the parameter
settings and the specifications of reference points for different
test instances are given in Section V in the supplementary
material.

A. Empirical Studies on Benchmark Problems

Each algorithm is performed 31 independent runs, and the
R-metric values for two different reference point settings are,
respectively, given in Tables I and II. In particular, the best
mean metric values are highlighted in bold face with gray
background, and the Wilcoxon’s rank sum test at a 0.05 signifi-
cance level is used to compare the statistical significance of the
difference between the best mean metric value and the others.
To have a visual comparison, we also plot the final solutions
obtained by different algorithms having the best R-IGD value.
Due to the page limit, they are presented in Section VI in the
supplementary material. In the following paragraphs, we will
separately discuss the effectiveness of the R-metrics for eval-
uating the performance of different algorithms on problems
with continuous and disconnected PFs.

1) Problems With Continuous PFs: ZDT1 and ZDT2 are
two relatively simple test instances, where all four algorithms
do not have too much difficulty in finding solutions around
the DM supplied reference points. However, as shown in
Figs. 6(d) and 7(d) in the supplementary material, the con-
vergence of solutions found by r-NSGA-II is not satisfactory.
This makes most of its obtained solutions be trimmed during
the prescreening step of the R-metric calculation. Accordingly,
its R-IGD and R-HV values are the worst among all four
algorithms. As for r-MOEA/D-STM and g-NSGA-II, their
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TABLE I
COMPARISON RESULTS OF R-IGD AND R-HV VALUES ON UNATTAINABLE REFERENCE POINT

TABLE II
COMPARISON RESULTS OF R-IGD VALUES ON ATTAINABLE REFERENCE POINT

performance is visually similar on finding preferred solutions
for ZDT1 and ZDT2. However, the R-IGD and R-HV val-
ues obtained by g-NSGA-II are better than r-MOEA/D-STM
in 6 out of 8 comparisons. Let us look at Fig. 6(a) and (c)
in the supplementary material, for the unattainable reference
point, all solutions found by r-MOEA/D-STM well converge

to the PF, whereas some solutions found by g-NSGA-II are
not fully converged. In this case, the R-metric values obtained
by r-MOEA/D-STM are better than g-NSGA-II. For the other
three cases (i.e., ZDT1 with an attainable reference point
and ZDT2 with both unattainable and attainable reference
points), although solutions found by r-MOEA/D-STM well
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(a) (b) (c) (d)

Fig. 12. Variations of R-metric values for different �. (a) zr = (0.3, 0.4)T . (b) zr = (0.3, 0.4)T . (c) zr = (0.65, 0.3)T . (d) zr = (0.65, 0.3)T .

converge to the PF, their overall distributions deviate from
the ROI a bit. In contrast, solutions found by g-NSGA-II
not only converge to the PF, but also have a well concen-
tration on the ROI. Therefore, it should be preferable and
our proposed R-metrics also make a reasonable assessment.
ZDT4 has the same PF shape as ZDT1, but it is more diffi-
cult due to the presence of many local optima. All algorithms,
except r-MOEA/D-STM, cannot find solutions that fully con-
verge to the PF. Accordingly, r-MOEA/D-STM obtains the
best R-metric values among all four algorithms. r-NSGA-II
obtains the worst R-metric values since it only finds solu-
tions close to the unattainable reference point. ZDT6 has a
concave PF shape and a biased distribution in the search
space. It is interesting to note that although the solutions
found by r-MOEA/D-STM not only well converge to the
PF but also have a uniform distribution, the R-metric values
obtained by r-MOEA/D-STM are not as good as R-NSGA-II
and g-NSGA-II. This might be explained as the representative
point found by r-MOEA/D-STM is inferior to that found by
R-NSGA-II and g-NGSA-II. In this case, the solution transfer
step of the R-metric calculation transfer the solutions found by
r-MOEA/D-STM to a farther position. Due to the poor con-
vergence property, the R-metric values obtained by r-NSGA-II
are still the worst.

The PF of DTLZ1 is a simplex having an intercept of
0.5 at each coordinate. Due to the presence of 115 − 1
local PFs, DTLZ1 causes difficulties for an EMO algorithm
in reaching the global PF. From Fig. 10 in the supplemen-
tary material, only r-MOEA/D-STM well approximates the
ROIs. Accordingly, it obtains the best R-metric values. It is
interesting to note that solutions found by R-NSGA-II seem
to have a nice concentration on the DM supplied reference
points, but their spreads are too narrow. In contrast, nei-
ther g-NSGA-II nor r-NSGA-II finds any reasonable solution.
DTLZ2 is a relatively simple test instance, where all four algo-
rithms do not have much difficulty in finding solutions close
to the ROIs. As shown in Fig. 11 in the supplementary mate-
rial, it is clear that solutions found by r-MOEA/D-STM are
preferable over the other candidates. Accordingly, its obtained
R-metric values are also the best. Although solutions found
by R-NSGA-II well converge to the PF, their spreads are too
narrow. This explains its unsatisfied R-metric values. DTLZ3
has the same PF shape as DTLZ2, but is with 310 − 1 local
PFs. From Fig. 12 in the supplementary material, it is obvi-
ous that g-NSGA-II and r-NSGA-II have some difficulties in

converging to the PF. Thus, their R-metric values are extremely
poor. In contrast, solutions found by r-MOEA/D-STM and
R-NSGA-II are similar to those in DTLZ2. DTLZ4 also has
the same PF shape as DTLZ2, but it has a strong bias toward
f3− f1 plane. From Fig. 13 in the supplementary material, we
can see that solutions found by r-MOEA/D-STM are signifi-
cantly better than the other three algorithms. Accordingly, its
R-IGD and R-HV values are the best. DTLZ5 and DTLZ6 are
two degenerate problems, where the latter one has a strong
bias away from the PF. From Fig. 14 in the supplementary
material, we find that solutions obtained by r-MOEA/D-STM
are preferable since they converge well to the PF and have a
good approximation to the ROIs. Accordingly, its obtained
R-metric values are also the best among four algorithms.
Although solutions found by R-NSGA-II converge well to
the PF, their spreads are too narrow. For DTLZ6, all four
algorithms have difficulties in converging to the PF. Solutions
found by r-MOEA/D-STM seem to be closer to the PF and
have a wide spread. Accordingly, it obtains the best R-metric
values.

2) Problems With Disconnected PFs: After the empirical
studies on problems with continuous PFs, this section inves-
tigates the effectiveness of our proposed R-metrics on two
problems with disconnected PFs. For ZDT3, as shown in
Fig. 16 in the supplementary material, all four algorithms
are able to find solutions close to the reference points, but
those found by g-NSGA-II are visually better, where most
solutions converge to the PF and the spread is satisfactory.
Accordingly, the R-metric values obtained by g-NSGA-II are
better than the other three algorithms. For DTLZ7, as shown
in Fig. 17 in the supplementary material, although solutions
found by r-NSGA-II have a well focus on the ROIs, they are
away from the PF. This explains its poorest R-metric val-
ues. All the other three algorithms find some solutions on
the PF segments outside the ROIs. In particular, solutions
found by r-MOEA/D-STM spread over all four PF segments,
while those found by g-NSGA-II are the visual best as
shown in Fig. 17 in the supplementary material. Accordingly,
g-NSGA-II obtains the best R-IGD and R-HV values on both
unattainable and attainable reference points.

B. Empirical Studies on Many-Objective Problems

Recently, problems with more than three objectives have
become one of the hottest topics in EMO. Due to the expansion
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TABLE III
COMPARISONS OF R-IGD AND R-HV VALUES ON DTLZ2 WITH 5 AND 10 OBJECTIVES

of the objective space in size, many-objective problems cause
several challenges to the traditional EMO algorithm design.
For example, the mushrooming of nondominated solutions in
a population significantly weaken the selection pressure of
Pareto-based EMO methods, and the sparse distribution of a
limited number of solutions in a high-dimensional space makes
the density estimation and diversity management become even
more difficult than the two- and three-objective cases. As
discussed in [56], instead of searching for the whole PF,
finding a preferred subregion satisfying the DM’s preference
information is more practical in many-objective optimization.

In this section, we investigate the scalability of R-metrics for
quantitatively assessing the quality of a preferred solution set
in a high-dimensional space. DTLZ2 with 5 and 10 objectives
are chosen as the test instances. The reference point is set as
zr = (0.1, 0.3, 0.2, 0.4, 0.2)T for the 5-objective test instance,
and zr = (0.3, 0.3, 0.3, 0.1, 0.3, 0.55, 0.35, 0.35, 0.25, 0.45)T

for the 10-objective case. For the R-IGD calculation, we
employ the method suggested in [56] to sample 101 270 points
from DTLZ2’s PF in the 5-objective case, and 3 124 550 points
in the 10-objective case. Moreover, � is increased to 0.5 in the
R-metric calculation due to the sparse distribution of solutions
in a high-dimensional space. For preference-based EMO algo-
rithms, all parameters are kept the same as Section VI, except
the number of function evaluations. Specifically, it is set as
80 000 and 150 000 for the 5- and 10-objective case, respec-
tively. Table III shows the comparisons of R-metric values and
the parallel coordinates of the populations with the medium R-
IGD value are plotted in Figs. 18 and 19 in the supplementary
material. In particular, the red dotted line represents the refer-
ence point. From the results shown in these two figures, it is
clear that g-NSGA-II and r-NSGA-II are the worst optimizers.
This observation is also confirmed by their worst R-IGD and
R-HV values. Both r-MOEA/D-STM and R-NSGA-II are able
to find solutions around the ROIs. However, solutions found by
R-NSGA-II almost concentrate on the reference point, while
those found by r-MOEA/D-STM have a wider spread. This
explains the better R-HV values obtained by r-MOEA/D-STM
in these two test instances.

C. Further Investigations

In this section, we further investigate some other interesting
properties of R-metrics. ZDT1 and DTLZ2 are chosen as the
test instances, since all four EMO algorithms have no dif-
ficulty on solving them. For each test instance, we keep a
record of R-IGD and R-HV values of an intermediate pop-
ulation every ten consecutive generations. Fig. 20 in the

supplementary material plots the variations of R-IGD and
R-HV values versus the number of generations on ZDT1 with
zr = (0.3, 0.4)T . From this figure, we find that all algo-
rithms, except r-NSGA-II, converge to their optimal R-IGD
and R-HV values within a few generations. In contrast, the
R-metric trajectories of r-NSGA-II grow slowly with the num-
ber of generations. Fig. 21 in the supplementary material plots
some intermediate populations for different algorithms. From
these four subfigures, we find that r-NSGA-II approximates
the preferred region in a layer-wise manner while the other
three algorithms converge to the preferred region rapidly (with
around 100 generations). These observations are in accord with
the corresponding R-metric trajectories. For DTLZ2, we have
a similar observation. As shown in Fig. 22 in the supplemen-
tary material, the R-metric trajectories of r-MOEA/D-STM and
R-NSGA-II converge to a stable value within a few genera-
tions. These observations are also validated by the plots of
intermediate populations in Fig. 23(a) and (b) in the supple-
mentary material. As for g-NSGA-II, we also notice some
fluctuations in its R-metric trajectories. This observation is
also in line with the fluctuations of the evolutionary popula-
tion as shown in Fig. 23(c) in the supplementary material. The
R-metric trajectories of r-NSGA-II are rather rugged. From
Fig. 23(d) in the supplementary material, we find that the
intermediate populations of r-NSGA-II vibrate significantly
during the search process.

From the above experiments, we have another interesting
observation that some algorithms do not need the predefined
number of generations to find preferred solutions. For exam-
ple, as shown in Figs. 21(a) and 23(a) in the supplementary
material, r-MOEA/D-STM only uses around 100 generations
to converge to the preferred region for ZDT1 and around
80 generations for DTLZ2. Furthermore, an algorithm almost
converges to the preferred region when the R-metric trajec-
tories become stable. Based on these observations, we keep
a record of the standard deviations of the R-IGD and R-HV
values obtained by different algorithms for every 10 and 25
consecutive generations. In addition, we set two thresholds
τ = 0.1 and τ = 0.01 and to see how many generations an
algorithm needs to have a R-metric’s standard deviation less
than τ . From the empirical results shown in Table V in the
supplementary material, we observe that the standard devia-
tion of R-IGD can be reduced to the given thresholds when
the time window is set to ten generations. More interestingly,
the number of generations that makes the standard deviation
of R-IGD reduce to 0.01 is similar to the required budgets
of the corresponding algorithm converges to the preferred
region. Moreover, we also notice that the standard deviation
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of R-HV cannot always be reduced to the given thresholds on
DTLZ2. However, if we extend the time window to 25 gen-
erations, even the standard deviation of R-IGD cannot drop
down to the expected thresholds in many cases. From this
experiment, we find that our proposed R-metrics are not only
reliable metrics to evaluate the performance of a preference-
based EMO algorithm, more interestingly, the variation of
a certain R-metric (e.g., R-IGD with a time window of ten
generations and standard deviation’s threshold τ = 0.1) can
be used as a stopping criterion in searching for a preferred
solution set.

D. Influence of �

As described in Section IV, � represents the DM’s expec-
tation of the ROI’s relative extent comparing to the whole PF.
It is also used to trim the irrelevant solutions for the R-metric
calculation. A large � means that the DM prefers solutions
having a wide spread, while a small � indicates that the DM
prefers solutions having a good concentration on the ROI. This
section takes ZDT1 as an example to investigate the influence
of � on R-metric values, where � varies from 0.1 to 1.0 with
an increment of 0.1. Fig. 12 shows the variations of R-metric
values obtained by four preference-based EMO algorithms for
different �.

Let us start from zr = (0.3, 0.4)T . As shown in Fig. 12(a),
the R-IGD value obtained by R-NSGA-II is worse than
r-MOEA/D-STM and g-NSGA-II when � is small. But it
becomes the best in case � is larger than 0.2. Moreover, the
R-IGD value obtained by r-NSGA-II is the worst when �

is small. However, when � is larger than 0.4, the R-IGD val-
ues obtained by r-MOEA/D-STM, g-NSGA-II, and r-NSGA-II
are almost the same. Let us refer to Fig. 6 in the supple-
mentary material, as for zr = (0.3, 0.4)T , solutions found by
R-NSGA-II and r-NSGA-II have a wider spread than those
of r-MOEA/D-STM and g-NSGA-II. If the DM expects the
ROI to be concentrated on his/her provided reference point,
i.e., � is set to be small, solutions found by r-MOEA/D-STM
and g-NSGA-II are preferable. Accordingly, the R-metric
values obtained by the previous two algorithms should be
better. On the flip side, if the DM expects the ROI to be
widely spread, i.e., � is set to be large, solutions found
by r-MOEA/D-STM and g-NSGA-II are not satisfactory any
longer. Even though the solutions found by R-NSGA-II and
r-NSGA-II are not well converged, their wide spread meet
the DM’s expectation and provide him/her more choices.
This explains their better R-metric values when � becomes
large. As for zr = (0.65, 0.3), since solutions found by g-
NSGA-II not only well converge to the PF, but also have
a wide spread around the DM supplied reference point, its
R-metric values are constantly better than the other competi-
tors. In contrast, although solutions obtained by R-NSGA-II
still have a wide spread along the PF, their convergence is poor.
Therefore, the R-metric values of R-NSGA-II are worse than
g-NSGA-II.

It is worth noting that although some preference-based EMO
algorithms (e.g., [22], [23], and [49]) claim to be able to con-
trol the ROI’s extent by setting an appropriate parameter, to

the best of our knowledge, there is no rule-of-thumb to set
the corresponding parameter. We believe that �, used in the
R-metric calculation, is able to provide a general guideline to
tune the corresponding parameters in a posterior manner.

VII. CONCLUSION

Given the DM’s preference information, approximating a
partial and preferred PF, rather than the whole PF, has been
one of the most important topics in the modern EMO research.
Besides developing effective algorithms that drive solutions
toward the ROI, how to evaluate the quality of a set of
preferred tradeoff solutions is of the same importance but has
rarely been studied in this literature. In this paper, we presented
a systematic way to evaluate the quality of a set of preferred
solutions obtained by a preference-based EMO using reference
points. More specifically, we preprocess the preferred solu-
tions, according to an MCDM approach, before using a regular
metrics for performance assessment. In particular, according
to the DM’s expectation of the ROI’s extent, our proposed
R-metric has a trimming procedure that penalizes the popula-
tion diversity of a preferred solution set having an excessive
extent. Furthermore, inspired by the ASF-based ranking from
the MCDM literature, our proposed R-metric has a transfer-
ring procedure that transfers the preferred tradeoff solutions to
a virtual position according to their satisfaction degree to the
DM supplied preference information. Extensive experiments
on several artificial scenarios and benchmark problems fully
demonstrate the efficacy of our proposed R-metrics for eval-
uating the quality of a preferred solution set according to the
DM supplied preference information.

This paper is a very first attempt to systematically and quan-
titatively evaluate the quality of a preferred solution set. Much
more attention and effort should be required on this topic. In
future, we want to explore the following issues.

1) Note that there is no single way of expressing the
DM’s preference information, so we may not be able to
expect a universal way for performance assessment. This
paper assumes that the DM’s preference information is
expressed in terms of a reference point. However, there
exist other types of preferences to which our proposed
R-metric may not be directly useful. To solve this draw-
back, one may consider the method presented in [57] to
adapt the R-metric to other types of preferences.

2) As described in Section IV-B, the setting of � assumes
the objective space is normalized to [0, 1]. However, in
practice, this assumption might not always hold. It is
interesting to investigate other method to specify the
DM’s expectation of the relative extent of ROI with
respect to objectives in different scales.

3) Other than the weighted Chebyshev function used in
our proposed R-metric, there have been some other
ASF formats [58], [59] proposed in the multiobjective
optimization field. Different ASFs have distinct contour
lines and characteristics. It is interesting to study the
influences and effects of using different ASFs.

4) To avoid wasting computational resources and to exam-
ine the formal convergence and optimality achieved by
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an EMO algorithm, the research on the online stop-
ping criteria (OSC) has obtained increasing popularity.
Empirical studies in Section VI-C shows a simple
application of our proposed R-metrics for designing
OSC. Nevertheless, more sophisticated and advanced
techniques [60] are worth being studied in future.

5) In addition to the empirical studies, it is of impor-
tance to have a rigorous analysis of the optimal archive
with respect to the R-metric. This is not only useful
for better understanding the behavior of R-metric itself,
but also for providing foundations in the case of using
the R-metric to design an indicator-based algorithm in
future.
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