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Dynamic Multiobjectives Optimization With
a Changing Number of Objectives
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Abstract—Existing studies on dynamic multiobjective opti-
mization (DMO) focus on problems with time-dependent objec-
tive functions, while the ones with a changing number of
objectives have rarely been considered in the literature. Instead
of changing the shape or position of the Pareto-optimal front/set
(PF/PS) when having time-dependent objective functions, increas-
ing or decreasing the number of objectives usually leads to the
expansion or contraction of the dimension of the PF/PS mani-
fold. Unfortunately, most existing dynamic handling techniques
can hardly be adapted to this type of dynamics. In this paper,
we report our attempt toward tackling the DMO problems with
a changing number of objectives. We implement a dynamic two-
archive evolutionary algorithm which maintains two co-evolving
populations simultaneously. In particular, these two populations
are complementary to each other: one concerns more about the
convergence while the other concerns more about the diversity.
The compositions of these two populations are adaptively recon-
structed once the environment changes. In addition, these two
populations interact with each other via a mating selection mech-
anism. Comprehensive experiments are conducted on various
benchmark problems with a time-dependent number of objec-
tives. Empirical results fully demonstrate the effectiveness of our
proposed algorithm.

Index Terms—Changing objectives, decomposition-based
method, dynamic optimization, evolutionary algorithm (EA),
multiobjective optimization.

I. INTRODUCTION

DYNAMIC multiobjective optimization (DMO) is more
challenging than the stationary scenarios, as it needs to

deal with the tradeoffs and the time-dependent objective func-
tions or constraints simultaneously. An effective method for
solving the DMO problems (DMOPs) needs to overcome cer-
tain difficulties raised by the dynamics, such as tracking the
time-dependent Pareto-optimal front (PF) or Pareto-optimal
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set (PS), and providing diversified solutions that enable a
timely adaptation to the changing environment. Due to its
inherent adaptation property [1], evolutionary algorithm (EA)
has been recognized as a powerful tool for DMO. According
to the ways of handling dynamics, the existing techniques can
be classified into the following three categories [2].

1) Diversity Enhancement: As the name suggests, its basic
idea is to propel an already converged population jump
out of the current optimum by increasing the popula-
tion diversity. This is usually implemented by either
responding to the dynamics merely after detecting a
change of the environment or maintaining the popula-
tion diversity throughout the whole optimization process.
The prior one is known as diversity introduction and is
usually accompanied by a change detection technique.
For example, [3]–[5] developed some hyper-mutation
methods by which the solutions are expected to jump
out of their current positions and thus to adapt to the
changed environment. In [3], [6], and [7], some addi-
tional solutions, either generated in a random manner
or by some heuristics, are injected into the current pop-
ulation to participate the survival competition. On the
other hand, the latter one, called diversity maintenance,
usually does not explicitly respond to the changing envi-
ronment [8], [9] whereas it mainly relies on its intrinsic
diversity maintenance strategy to adapt to the dynam-
ics. In [10], a multipopulation strategy is developed to
enhance the population diversity in a competitive and
cooperative manner.

2) Memory Mechanism: The major purpose of this sort
of method is to utilize the historical information
to accelerate the convergence progress. For example,
Wang and Li [11] suggested a hybrid memory scheme
that reinitializes a new population either by re-evaluating
the previous nondominated solutions or by using a local
search upon the elite solutions preserved in the archive.
Peng et al. [12] exploited the historical knowledge and
used it to build up an evolutionary environment model.
Accordingly, this model is used to guide the adaptation
to the changing environment.

3) Prediction Strategy: This sort of method is usually
coupled with a memory mechanism to reinitialize the
population according to the anticipated optimal informa-
tion. For example, Hatzakis and Wallace [13] and [14]
employed an autoregressive model, built upon the his-
torical information, to seed a new population within the
neighborhood of the anticipated position of the new PS.
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By utilizing the regularity property [15]–[18] devel-
oped various models to capture the movement of the
PS manifolds’ centers under different dynamic envi-
ronments. Instead of anticipating the position of the
new PS when the environment changes, Wu et al. [19]
and Koo et al. [20] suggested to predict the opti-
mal moving direction of the population. More recently,
Muruganantham et al. [21] proposed a hybrid scheme,
which uses the Kalman filter or random reinitialization,
alternatively, according to their online performance, to
respond to the changing environment.

It is worth noting that the current studies on DMO mainly
focus on problems with time-dependent objective functions,
which result in the change of the PF or PS over time. In
addition to this type of dynamic, many real-life scenarios con-
sider problems in which the number of objective functions may
also change over time. For example, a software development
life cycle usually contains four phases [22], i.e., inception,
elaboration, construction, and transition. Each phase involves
various tasks, some of which might be different from the
other phases. In other words, different phases consider various
number of objectives. In order to manage changes (changing
requirements, technology, resources, products, and so on), the
software development process needs to switch among differ-
ent phases back and forth, and thus changing the number of
objectives. In project scheduling, we usually want to minimize
the makespan and total salary cost simultaneously. However,
given a tighter deadline must be met, the salary cost may
not be important and would not be considered as an objec-
tive any longer under the new circumstance [23]–[25]. In
some other examples, if an application is running on a sys-
tem with a wired power supply, there is no need to consider
the energy consumption [26]. However, once the system is
detached from the wired power supply and only relies on
batteries, minimizing the energy consumption thus becomes
a new objective. Furthermore, in a heterogeneous multicore
system, power consumption, performance, temperature, mas-
ter frequency and reliability are usually considered altogether
when designing a runtime scheduler [27]–[29]. However, these
objectives can be ignored or reconsidered according to some
external instances, e.g., the power plugins, excessive tem-
perature. Similar situations happen in the cloud computing
resource scheduling, where even more varieties of objec-
tives will be considered, e.g., load balance and quality of
service [30]–[32].

The study on how to handle the DMOP with a chang-
ing number of objectives is rather limited, although this
concept was mentioned in [8], [33], and [34]. To the best
of our knowledge, [33] is the only one that discussed the
effects of the objective increment and replacement. It pro-
posed an inheritance strategy that re-evaluates the objec-
tive functions of the current nondominated solutions to
adapt to this type of dynamics. Generally speaking, the
DMOP with a changing number of objectives has two major
characteristics.

1) The PF or PS of the original problem is a subset of the
one after increasing the number of objectives, and vice
versa.

2) Instead of changing the position or the shape of the
original PF or PS, increasing or decreasing the num-
ber of objectives usually results in the expansion and
contraction of the dimension of the PF or PS manifold.

Bearing these two characteristics in mind, this paper presents
a dynamic two-archive EA (DTAEA) to handle the DMOP
with a changing number of objectives. More specifically, our
proposed method simultaneously maintains two co-evolving
populations, which have complementary effects on the search
process. In particular, one population, denoted as the conver-
gence archive (CA), mainly focuses on providing a competitive
selection pressure toward the PF; while the other one, called
the diversity archive (DA), maintains a set of solutions with a
promising diversity. Furthermore, the compositions of the CA
and the DA are adaptively reconstructed when the environ-
ment changes. In addition, the interaction between these two
populations are implemented by a restricted mating selection
mechanism, where the mating parents are selected from the
CA and the DA, respectively, according to the population dis-
tribution. Note that the multipopulation strategy is not a brand
new technique in the evolutionary multiobjective optimiza-
tion (EMO) literature. For example, Praditwong and Yao [35]
and Wang et al. [36], the ancestors of this paper, used two
complementary populations to balance the convergence and
diversity during the search process. Li et al. [37] devel-
oped a dual-population paradigm to take advantages of the
strengths of the Pareto- and decomposition-based techniques.
Nevertheless, none of them have taken the dynamic environ-
ment into consideration.

In the remainder of this paper, we will at first provide some
preliminaries of this paper in Section II. Then, the technical
details of our proposed algorithm are described step by step
in Section III. Comprehensive experiments are conducted and
analyzed in Section V. At last, Section VI concludes this paper
and provides some future directions.

II. PRELIMINARIES

In this section, we first provide some definitions useful for
this paper. Then, we describe the challenges posed by the
DMOPs with a changing number of objectives. Finally, we
discuss the pitfalls of the current dynamic handling techniques.

A. Basic Definitions

There are various types of dynamic characteristics that can
result in different mathematical definitions. This paper focuses
on the continuous DMOPs defined as follows:

minimize F(x, t) = (
f1(x, t), . . . , fm(t)(x, t)

)T

subject to x ∈ �, t ∈ �t (1)

where t is a discrete time defined as t = �(τ/τt)�, τ

and τt represent the iteration counter and the frequency
of change, respectively, and �t ⊆ N is the time space.
� = ∏n

i=1 [ai, bi] ⊆ R
n is the decision (variable) space,

x = (x1, . . . , xn)
T ∈ � is a candidate solution. F : �→ R

m(t)

constitutes of m(t) real-valued objective functions and R
m(t)

is the objective space at time step t, where m(t) is a discrete
function of t.
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Definition 1: At time step t, x1 is said to Pareto dominate
x2, denoted as x1 �t x2, if and only if: ∀i ∈ {1, . . . , m(t)},
fi(x1, t) ≤ fi(x2, t); and ∃j ∈ {1, . . . , m(t)}, fj(x1, t) < fj(x2, t).

Definition 2: At time step t, x∗ ∈ � is said to be Pareto-
optimal, if there is no other x ∈ � such that x �t x∗.

Definition 3: At time step t, the set of all Pareto-optimal
solutions is called the tth PS (PSt). The corresponding set of
Pareto-optimal objective vectors is called the tth PF (PFt), i.e.,
PFt = {F(x, t)|x ∈ PSt}.

Theorem 1: When increasing the number of objectives, the
PF and the PS at time step t are a subset of those at time
step t + 1; on the contrary, when decreasing the number of
objectives, the PF and the PS at time step t are a superset of
those at time step t + 1.

Theorem 1 supports the first characteristic given
in Section I, and its proof can be found in Section I of
the supplementary file.1

Definition 4: At time step t, the tth ideal objective
vector is z∗(t) = (z∗1(t), . . . , z∗m(t)(t))

T , where z∗i (t) =
minx∈� fi(x, t), i ∈ {1, . . . , m(t)}.

Definition 5: At time step t, the tth nadir objective vec-
tor is znad(t) = (znad

1 (t), . . . , znad
m(t)(t))

T , where znad
i (t) =

maxx∈� fi(x, t), i ∈ {1, . . . , m(t)}.
Definition 6: Under some mild conditions, the regularity

property, induced from the Karush–Kuhn–Tucker condition,
means that the PF and PS of a continuous m-objective MOP
is an (m − 1)-dimensional piecewise continuous manifold in
both objective space and decision space.

Note that an efficient EMO algorithm may employ this
regularity property explicitly (e.g., [15], [38], and [39]) or
implicitly (e.g., [40]–[42]) in its implementation. This paper
considers continuous DMOPs with the regularity property,
according to which the PFt and PSt of the DMOP at time step
t is a (m(t) − 1)-dimensional piecewise continuous manifold
in both R

m(t) and �. In addition, according to Definition 6,
we can easily derive the second characteristic given in Section
I.

B. Challenges of DMOP With Changing Number
of Objectives

Rather than shifting the position or adjusting the geometric
shape of the PF or PS [43], changing the number of objectives
usually results in the expansion or contraction of the dimen-
sionality of the PF or PS manifold. In order to understand
the challenges posed by changing the number of objectives,
this section uses DTLZ2 [44] as the benchmark problem and
multiobjective EA based on decomposition (MOEA/D) [45]
as the baseline algorithm for investigations. Note that the
DTLZ problems are scalable to any number of objectives and
MOEA/D has been reported to show good performance on
a wide range of problems [45]–[47]. To have a better visual
comparison, we only discuss the challenges in the two- and
three-objective scenarios while the challenges will become
more severe with the growth of dimensionality.

1https://coda-group.github.io/publications/suppDTAEA.pdf

(a) (b)

Fig. 1. Comparison of population distributions when increasing the number of
objectives on DTLZ2. (a) Approximation in the 2-D case. (b) After increasing
one objective.

(a) (b)

Fig. 2. Comparison of population distributions when decreasing the num-
ber of objectives on DTLZ2. (a) Approximation in the 3-D case. (b) After
decreasing one objective.

1) When Increasing the Number of Objectives: First, we
run MOEA/D on a two-objective DTLZ2 instance for 200
generations2 and obtain a well approximation to the PF as
shown in Fig. 1(a). Then, we change the underlying problem to
a three-objective instance. Fig. 1(b) shows the corresponding
population distribution after re-evaluating the objective values.
From this subfigure, we can see that although the population
still converges well to the PF, the diversity is not satisfied any
longer after increasing the number of objectives [as shown
in Fig. 1(b), the population crowds on a curve]. Generally
speaking, the most direct effect of increasing the number of
objectives is the expansion of the PF or PS manifold. In par-
ticular, the population convergence might not be influenced
after increasing the number of objectives; whereas the popu-
lation diversity becomes severely insufficient to approximate
the expanded PF or PS manifold. These characteristics pose
significant challenges to the timely adaptation to the changing
environment, i.e., how to propel the population jump out of
the crowded areas.

2) When Decreasing the Number of Objectives: Here, we
run MOEA/D on a three-objective DTLZ2 instance for 300
generations3 and obtain a reasonably good approximation to
the PF as shown in Fig. 2(a). Then, we change the under-
lying problem to a two-objective instance. Fig. 2(b) shows
the corresponding population distribution after re-evaluating

2Here the differential evolution [48] is used as the reproduction operator,
where CR = 0.5 and F = 0.5. The population size is set to 100, and the other
parameters are set the same as suggested in [45].

3All parameters are set the same as those in Section II-B1, except for the
population size which is set to 105.

https://coda-group.github.io/publications/suppDTAEA.pdf
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Fig. 3. Flow chart of DTAEA.

the objective values. In contrast to the scenario discussed
in Section II-B1, the most direct effect of decreasing the num-
ber of objectives is the contraction of the PF or PS manifold.
In addition, different from increasing the number of objec-
tives, some solutions still stay on the PF after the objective
reduction; while the others are moved away from the PF.
Furthermore, although the spread of the population is not
affected by decreasing an objective, the population diversity
is not satisfied any longer [as shown in Fig. 2(b), there are
many duplicate or similar solutions in the reduced objective
space]. These characteristics make the algorithm design diffi-
cult on both pulling the drifted solutions back to the PF and
propelling the solutions jump out from their duplicates.

C. Weaknesses of Existing Dynamic Handling Techniques

As discussed in Section I, the existing dynamic handling
techniques do not take the changing number of objectives
into consideration. They have the following weaknesses when
encountering this sort of dynamics.

1) As introduced in Section I, the diversity enhance-
ment techniques use some randomly or heuristically
injected candidates to adapt to the changing environ-
ment. However, when increasing the number of objec-
tives, the injected candidates can hardly compete with
the original population whose convergence has not be
influenced. On the other hand, when decreasing the num-
ber of objectives, although the injected candidates are
able to enhance the population diversity to a certain
extent, they can hardly provide any selection pressure
toward the PF.

2) The memory mechanism has been used in [33] to han-
dle the DMOP with a changing number of objectives.
In particular, they suggested an inheritance strategy that
simply re-evaluates the objective values of the original
population whenever the change of the environment is
detected. Obviously, this strategy is too simple to handle
problems with complicated properties.

3) The prediction strategy, which takes advantages of the
historical information, seems to be an antidote for
dynamic optimization. But unfortunately, the existing
prediction strategies are usually proposed to anticipate
the movement of the PS when the environment changes.
However, as discussed in Section II-B, the change of
the number of objectives usually leads to the expan-
sion or contraction of the PS manifold, rather than
the movement of its position. Thus, the prediction,

based on the historical manifold model, can be heavily
erroneous.

III. PROPOSED ALGORITHM

In this section, we develop a DTAEA, whose high-level
flow chart is shown in Fig. 3, for solving the DMOP
with a changing number of objectives. Similar to its ances-
tors [35], [36], [49], DTAEA maintains two co-evolving pop-
ulations simultaneously: one, called the CA, is used to provide
a constantly competitive selection pressure toward the optima;
the other, called the DA, is used to provide diversified solu-
tions as much as possible. It is worth noting that the size
of the CA and the DA is equal and fixed to a constant N
a priori. In each iteration, if a change of the environment is
not occurred, mating parents are separately selected from the
CA and the DA for offspring reproduction according to the
mechanism described in Section III-C. Afterwards, the off-
spring is used to update the CA and the DA according to the
mechanisms described in Section III-B. On the other hand, the
CA and the DA are reconstructed according to the mechanism
described in Section III-A whenever the underlying environ-
ment changes. At the end, all solutions of the CA are used to
form the final population.

A. Reconstruction Mechanisms

This step is the main crux to respond to the changing envi-
ronment. Generally speaking, its basic idea is to reconstruct
the CA and the DA whenever the environment changes. Since
the challenges posed by increasing and decreasing the num-
ber of objectives are different, as discussed in Section II-B,
the reconstruction mechanisms are different accordingly.

1) When Increasing the Number of Objectives: As dis-
cussed in Section II-B1, the convergence of the population
is not affected when increasing the number of objectives;
while the population diversity becomes severely inadequate
to approximate the expanded PF or PS manifold. To avoid
sacrificing any selection pressure toward the optima, we use
all optimal solutions in the last CA before increasing the num-
ber of objectives to form the new CA. In the meanwhile,
all members of the DA are replaced by the randomly gen-
erated solutions. In particular, to provide as much diversified
solutions as possible, here we employ the canonical Latin
hypercube sampling (LHS) method [50] to uniformly sample
N random solutions from the decision space. The pseudo-code
of this reconstruction mechanism is given in Algorithm 1.
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Algorithm 1: Reconstruction Mechanism After Increasing
the Number of Objectives

Input: The last CA before decreasing the number of
objectives P

Output: CA, DA
1 CA← P;
2 Use the LHS to sample N random solutions to form the

DA;
3 return CA and DA

Algorithm 2: Reconstruction Mechanism After
Decreasing the Number of Objectives

Input: The last CA before decreasing the number of
objectives P

Output: CA, DA
1 CA← NonDominationSelection(P); // choose
all non-dominated solutions

2 DA← P \ CA;
3 while |CA| < N do
4 xc ← BirnaryTournamentSelection(CA);
5 xm ← PolynomialMutation(xc);
6 CA← CA

⋃{xm};
7 Use the LHS to sample N − |DA| random solutions to fill

the DA;
8 return CA and DA

Algorithm 3: Binary Tournament Selection
Input: Solution set S
Output: Selected solution xc

1 Randomly select two solutions x1 and x2 from S;
2 if Density(x1) < Density(x2) then
3 xc ← x1;
4 else if Density(x1) > Density(x2) then
5 xc ← x2;
6 else
7 xc ← Randomly pick one between x1 and x2;

8 return xc

2) When Decreasing the Number of Objectives: As dis-
cussed in Section II-B2, the convergence of some, if not all,
population members might be impaired when decreasing the
number of objectives; while the population diversity is also
adversely affected due to the existence of many similar or
duplicate solutions in the reduced objective space. To keep the
selection pressure toward the optima as much as possible, all
nondominated solutions in the last CA before decreasing the
number of objectives are used to form the new CA. If the new
CA is not full, we perform the polynomial mutation [51] on
some selected competitive nondominated solutions to generate
some mutants to fill the gap in the new CA. In particu-
lar, the nondominated solutions used for mutation are chosen
by a binary tournament selection (pseudo-code is shown in
Algorithm 3), where the nondominated solution located in

a less crowded area is preferred. Note that the density esti-
mation method will be discussed in detail in Section III-B1.
Since decreasing the number of objectives does not affect the
spread of the population, instead of reconstructing the DA
from scratch, we at first use all the dominated solutions in the
last CA before decreasing the number of objectives to form the
new DA. To provide enough diversified information to help the
solutions jump out from their duplicates, we use the canonical
LHS method to generate N−|DA| random solutions to fill the
gap in the new DA. The pseudo-code of this reconstruction
mechanism is given in Algorithm 2.

B. Update Mechanisms

As described at the outset of this section, the CA and
the DA have complementary effects on the search process.
Accordingly, their update mechanisms are different and will
be described in Sections III-B2 and III-B3, separately. Before
that, Section III-B1 will at first introduces the density estima-
tion method used in the update mechanisms.

1) Density Estimation Method: To facilitate the density
estimation, we at first specify N(t) uniformly distributed
weight vectors, i.e., W(t) = {w1(t), . . . , wN(t)(t)}, in R

m(t).
In particular, we employ the weight vector generation method
developed in [52] for this purpose, since it is scalable to the
many-objective scenarios. Note that the number of weight
vectors at time step t might not be equal to the size of
the CA and the DA, i.e., N(t) ≤ N. In this case, a weight
vector might be associated with more than one solution if
N(t) < N. Accordingly, these weight vectors divide R

m(t)

into N(t) subspaces, i.e., �1(t), . . . ,�N(t)(t). In particular, a
subspace �i(t), where i ∈ {1, . . . , N(t)} is defined as

�i(t) =
{

F(x, t) ∈ R
m(t)

∣∣〈F(x, t), wi(t)
〉 ≤ 〈F(x, t), w j(t)

〉}

(2)

where j ∈ {1, . . . , N(t)} and 〈F(x, t), w(t)〉 is the perpendic-
ular distance between F(x, t) and the reference line formed
by the origin and w(t). After the setup of subspaces, each
solution of the underlying population is associated with an
unique subspace according to its position in R

m(t). Specifically,
for a solution x, the index of its associated subspace is
determined as

k = argmin
i∈{1,...,N(t)}

〈
F(x, t), wi(t)

〉
(3)

where F(x, t) is the normalized objective vector of x, and its
ith objective function is calculated as

f i(x, t) = fi(x, t)− z∗i (t)
znad

i (t)− z∗i (t)
(4)

where i ∈ {1, . . . , m(t)}. Based on association relationship
between solutions and subspaces (the pseudo-code of asso-
ciation operation is given in Algorithm 5), the density of a
subspace is evaluated as the number of its associated solu-
tions. Fig. 4 gives a simple example to illustrate this density
estimation method. In particular, five weight vectors divide
the underlying objective space into five subspaces, where the
corresponding density of each subspace is 2, 3, 1, 1, and 3,
respectively.
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Fig. 4. Example of the CA’s update mechanism. Note that xi is denoted as
its index i for short.

2) Update Mechanism of the CA: The effect of the CA is to
provide a constantly competitive selection pressure toward the
optima. To achieve this, we at first combine the CA and the
offspring population into a mixed population R. Afterwards,
we employ the fast nondominated sorting method developed
in [53] to divide R into several nondomination levels, i.e., F1,
F2, and so on. Then, starting from F1, each nondomination
level is selected one at a time to construct the new CA. This
procedure continues until the size of the new CA equals to
or for the first time exceeds its predefined threshold. Let us
denote the last included nondomination level as Fl, while all
solutions from Fl+1 onwards are not taken into consideration
any longer. If the size of the new CA equals its predefined
threshold, this update procedure terminates. Otherwise, we use
the density estimation method introduced in Section III-B1 to
evaluate the density information of the current CA. Then, we
eliminate one worst solution from the most crowded subspace
at a time until the CA is trimmed to its predefined threshold.
In particular, for a subspace �i(t), the worst solution xw is
defined as

xw = argmax
x∈�i(t)

{
gtch(x

∣∣wi(t), z∗(t)
)}

(5)

where

gtch(x
∣
∣wi(t), z∗(t)

) = max
1≤j≤m(t)

{∣∣
∣ fj(x, t)− z∗j (t)

∣∣
∣/wi

j(t)
}
. (6)

The pseudo-code of the update mechanism of the CA is given
in Algorithm 4. Fig. 4 gives an example to illustrate this update
mechanism. Assume that the black and green circles indicate
the solutions of the original CA and the offspring population,
respectively. Since the first nondomination level already con-
tains eight solutions, x3 and x7, which belong to the second
nondomination level, are not considered any longer. In the
first iteration, the worst solution x8 in the most crowded sub-
space, i.e., �5(t), is eliminated. Analogously, x2 and x9 will
be eliminated in the latter iterations.

3) Update Mechanism of the DA: Comparing to the CA,
the DA has a complementary effect which aims at provid-
ing diversified solutions as much as possible, especially in
the areas under exploited by the CA. Similar to the update

Algorithm 4: Update Mechanism of the CA
Input: CA, offspring population Q, weight vector set W
Output: Updated CA

1 S← ∅, i← 1;
2 R← CA

⋃
Q;

3 {F1, F2, . . .} ← NonDominatedSorting(R);
4 while |S| ≤ N do
5 S← S

⋃
Fi, i← i+ 1;

6 if |S| = N then
7 CA← S;
8 else
9 foreach x ∈ S do

10 Fk(x, t) = F(x,t)−z∗(t)
znad(t)−z∗(t) ;

11 {�1(t), . . . ,�|W|(t)} ← Association(S, W);
12 while |S| > N do
13 Find the most crowded subspace �i(t);
14 xw ← argmax

x∈�i(t)
{gtch(x|wi(t), z∗(t))};

15 S← S \ {xw};
16 CA← S;

17 return CA

Algorithm 5: Association Operation
Input: Solution set S, weight vector set W
Output: Subspaces �1(t), . . . ,�|W|(t)

1 foreach x ∈ S do
2 foreach w ∈W do
3 Compute d⊥(x, w) = x− wTx/‖w‖;
4 k← argmin

w∈W
d⊥(x, w);

5 �k(t)← �k(t)
⋃{x};

6 return �1(t), . . . ,�|W|(t)

mechanism of the CA, we at first combine the DA and the
offspring population into a mixed population R; in the mean-
while, we also take the up to date CA as the reference set.
Afterwards, we employ the density estimation method intro-
duced in Section III-B1 to build up the association relationship
between solutions in R and the subspaces. Then, based on the
association relationship, we iteratively investigate each sub-
space for which we try to keep itr (1 ≤ itr ≤ N) solutions at
the itrth iteration. In particular, at the itrth iteration, if the CA
already has itr solutions or there is no solution in R associated
with the currently investigating subspace, we stop considering
this subspace during this iteration and move to the next sub-
space directly. Otherwise, the best nondominated solution in R
associated with this currently investigating subspace is chosen
to be included into the newly formed DA. In particular, the
best solution xb of the currently investigating subspace �c(t)
is defined as

xb = argmin
x∈O

{
gtch(x

∣∣wc(t), z∗(t)
)}

(7)
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Fig. 5. Example of the DA’s update mechanism. Note that xi is denoted as
its index i for short.

where O constitutes of the nondominated solutions in R asso-
ciated with �c(t). This iterative investigation continues until
the DA is filled to its predefined threshold. The pseudo-code
of the update mechanism of the DA is given in Algorithm 6.
Fig. 5 gives an example to illustrate this update mechanism.
Assume that the gray triangles represent the solutions of the
up to date CA while the black and green circles indicate the
solutions of the original DA and the offspring population. At
the first iteration, the update mechanism of the DA starts from
�1(t). Since the CA already has two solutions in this subspace,
we move to investigate �2(t). As the CA does not has any
solution in this subspace, the best nondominated solution in
this subspace, i.e., x3 is included into the newly formed DA.
Thereafter, since �3(t) to �5(t) already have a solution in the
CA, they are not considered during this iteration. At the second
iteration, since the CA already has two solutions in �1(t), it
is still not considered during this iteration. As for �2(t), since
the CA does not has any solution in this subspace, the remain-
ing best solution x5 is selected this time. Then, since �3(t) to
�5(t) only have one solution in the CA, we can choose the
best solution from R to be included into the newly formed DA
this time. At the end of the second iteration, the DA is filled
and the update procedure terminates.

C. Offspring Reproduction

The interaction between two co-evolving populations is a
vital step in the DTAEA. To take advantage of the complemen-
tary effects between the CA and the DA, here the interaction
is implemented as a restricted mating selection mechanism
that chooses the mating parents from these two co-evolving
populations, respectively, according to the population distri-
bution. It is worth noting that, comparing to the CA, the DA
plays as an auxiliary which provides diversified information as
much as possible and propels the adaptation to the changing
environments. In addition, the CA and the DA become gradu-
ally asymptotic with the progress of the evolution. This results
in a weakened complementary effects between these two co-
evolving populations. Bearing these considerations in mind,
the pseudo code of the restricted mating selection mechanism

Algorithm 6: Update Mechanism of the DA
Input: CA, DA, offspring population Q, weight vector

set W
Output: Updated DA

1 S← ∅, i← 1;
2 R← DA

⋃
Q;

3 {�1(t), . . . ,�|W|(t)} ← Association(R, W);
4 itr← 1;
5 while |S| ≤ N do
6 for i← 1 to |W| do
7 if �i(t) �= ∅ ∧ CA has less than itr solutions in

�i(t) then
8 O← NonDominationSelection(�i(t));
9 xb ← argmin

x∈O
{gtch(x|wc(t), z∗(t))};

10 �i(t)← �i(t) \ {xb};
11 S← S

⋃{xb};
12 itr← itr+ 1;

13 DA← S;
14 return DA

Algorithm 7: Restricted Mating Selection Mechanism
Input: CA, DA
Output: Mating parents p1, p2

1 p1 ← RandomSelection(CA);
2 if rnd < Io

CA then
3 p2 ← RandomSelection(CA);
4 else
5 p2 ← RandomSelection(DA);

6 return p1, p2

is given in Algorithm 7. More specifically, the first mating
parent is randomly chosen from the CA. If the diversity of the
CA is not promising, the second mating parent is randomly
chosen from the DA; otherwise, it still comes from the CA.
In particular, the diversity of the CA is measured by the occu-
pation rate (denoted as Io

CA) which is the percentage of the
subspaces having associated solutions. It is intuitive to under-
stand that a high Io

CA indicates a well diversified distribution in
the CA. Accordingly, we should give a larger chance to select
the second mating parent from the CA. Based on the selected
mating parents, the offspring solution can be generated by the
appropriate crossover and mutation operations as desired. In
particular, we use the classic simulated binary crossover [54]
and the polynomial mutation in this paper.

D. Time Complexity Analysis

This section discusses the complexity of DTAEA in one
generation. The CA and the DA will be reconstructed once the
environment changes, i.e., when the number of objectives is
increased or decreased. In the former case, i.e., when increas-
ing the number of objectives, the reconstruction of the CA
does not incur any further computation while the reconstruc-
tion of the DA costs O(N) function evaluations. As for the
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latter case, i.e., when decreasing the number of objectives,
the identification of the nondominated solutions costs O(N2)

comparisons. Then, filling the gap of the CA and the DA may,
respectively, take O(N) function evaluations. As for the update
mechanism of the CA, the most time consuming operations
are the nondominated sorting (line 3 of Algorithm 4) and the
association operation (line 11 of Algorithm 4). In particular,
the prior one costs O(N2) comparisons while the latter one
takes O(N|W|), where |W| returns the cardinality of a W. As
for the update mechanism of the DA, the association oper-
ation in line 3 of Algorithm 6 costs O(N|W|) comparisons.
During the main while loop, the update procedure performs
one by one for the subspaces. In particular, if �i(t) �= ∅,
where i ∈ {1, . . . , |W|}, the most time consuming part of the
for loop from lines 6 to 11 is the nondominated sorting in
line 8 of Algorithm 6, which costs O(|�i(t)|2) comparisons.
Since

∑|W|
i=1 �i(t) = 2N, this for loop costs O(N2) compar-

isons in total. In summary, the complexity of DTAEA in one
generation is O(N2).

E. Further Discussions

As DTAEA is developed upon the decomposition-based
framework, this section discusses the connections with
some state-of-the-art decomposition-based EMO algorithms,
MOEA/D-M2M [55], NSGA-III [56], MOEA/D-GR [57],
and MOEA/D-STM [58]–[60]. Similar to MOEA/D-M2M,
DTAEA uses the weight vectors to divide the objective space
into several subspaces. However, the major purpose of sub-
space division in MOEA/D-M2M is to enforce an equal
distribution of the computational resources to each subspace;
while the subspace division is used to facilitate the density
estimation in DTAEA. Similar to NSGA-III, MOEA/D-GR,
and MOEA/D-STM, each weight vector in DTAEA is associ-
ated with its related solutions to facilitate the environmental
selection. It uses different strategies to maintain its two co-
evolving archives. In particular, according to the association
relationship, the CA trims solutions from the most crowded
subspaces; while the DA gives higher survival rates to solu-
tions resided in the subspaces under exploited by the CA. In
contrast, NSGA-III merely uses the association relationship to
guide the truncation through the most crowded subspaces. In
MOEA/D-GR and MOEA/D-STM, the next parent population
is composed of the elite solutions from each of the nonempty
subspace, which has at least one associated solution.

IV. EXPERIMENTAL SETTINGS

This section introduces the benchmark problems, perfor-
mance metrics, and the state-of-the-art EMO algorithms used
in the experimental studies of this paper.

A. Benchmark Problems

Benchmark problems play important roles in assessing and
analyzing the performance of an algorithm, and thus guiding
its further developments. Although some dynamic multiobjec-
tive benchmark problems have been proposed in [43] and [61],
most, if not all, of them merely consider the dynami-
cally changing shape or position of the PF or PS. In [34],

a dynamic multiobjective test instance with a changing number
of objectives was developed, for the first time, by modify-
ing the classic DTLZ benchmark suite [44]. In this paper, we
develop a dynamic multiobjective benchmark suite as shown
in Section II of the supplementary file. Note that, in addition to
the changing number of objectives, F5 and F6 are also accom-
panied by a time-dependent change of the shape or position
of the PF or PS.

B. Performance Metrics

In the field of DMO, there is still no standard metric for
quantitatively evaluating the performance of algorithms. In this
paper, we employ the following two metrics, adapted from
two popular metrics used in the literature, for the performance
assessment.

1) Mean Inverted Generational Distance (MIGD) [16]: Let
P∗t is a set of points uniformly sampled along the PFt,
St is the set of solutions obtained by an EMO algorithm
for approximating the PFt, and T is a set of discrete time
steps in a run

MIGD = 1

|T|
∑

t∈T

IGD
(
P∗t , St

)
. (8)

In particular, as defined in [62]

IGD
(
P∗t , Pt

) =
∑

x∈P dist
(
x, P∗t

)

|S| (9)

where dist(x, P∗t ) is the Euclidean distance between a
point x ∈ St and its nearest neighbor in P∗t . Note that
the calculation of IGD requires the prior knowledge of
the PF. In our experiments, we use the method suggested
in [52] to sample 10 000 uniformly distributed points on
the corresponding PFt at the tth time step where t ∈ T .

2) Mean Hypervolume (MHV): Let zw
t = (zw

1 , . . . , zw
m(t))

T

be a worst point in the objective space that is dominated
by all Pareto-optimal objective vectors at the tth time
step

MHV = 1

|T|
∑

t∈T

HV(St). (10)

In particular, as defined in [63], HV measures the size
of the objective space dominated by solutions in St and
bounded by zw

t . It is calculated as

HV(St) = VOL

⎛

⎝
⋃

x∈St

[
f1(x), zw

1

]× . . .
[
fm(t)(x), zw

m(t)

]
⎞

⎠

(11)

where VOL(·) indicates the Lebesgue measure. Note that
solutions, dominated by the worst point, are discarded
for HV calculation. In our experiments, we set zw

t =
(2, . . . , 2︸ ︷︷ ︸

m(t)

)T . For a better presentation, the HV values

used in (10) are normalized to [0, 1] by dividing zt =∏m
i=1 zw

i .
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TABLE I
PERFORMANCE COMPARISONS OF DTAEA AND THE OTHER ALGORITHMS ON MIGD METRIC

C. EMO Algorithms Used in the Experimental Studies

In our empirical studies, four state-of-the-art EMO algo-
rithms are used for comparisons: the dynamic version
of the elitist nondominated sorting genetic algorithm
(DNSGA-II) [3] and MOEA/D with Kalman filter predic-
tion (MOEA/D-KF) [21]; and their corresponding stationary
baseline NSGA-II [53] and MOEA/D [40]. They were cho-
sen because of their popularity and good performance in both
dynamic and static environments. Comparisons with the base-
line algorithms are important. Because we want to check
whether the dynamic algorithms outperform their static coun-
terparts or not when handling the DMOP with a changing
number of objectives. More detailed descriptions of these algo-
rithms are given in Section III of the supplementary file. Each
algorithm is independently run 31 times on each problem
instance. Three hundred generations are given to each algo-
rithm before the first change. In other words, the first change
occurs after the first 300 generations. To have a statistically
sound conclusion, we use the Wilcoxon rank sum test at the
5% significance level in the comparisons.

V. EXPERIMENTAL RESULTS

A. Results on F1–F4

Let us at first consider F1–F4 in which only the number of
objectives changes with time. In particular, we define the time
varying number of objectives m(t) as follows:

m(t) =
⎧
⎨

⎩

3, t = 1
m(t − 1)+ 1, t ∈ [2, 5]
m(t − 1)− 1, t ∈ [6, 10]

(12)

where t ∈ {1, . . . , 10} is a discrete time. The population size
is constantly set as 300 while the number of weight vectors
is set according to Section IV of the supplementary file. To
investigate the performance of different algorithms under var-
ious frequencies of change, we set τt as 25, 50, 100, and 200,
respectively. Tables I and II give the median and the interquar-
tile range (IQR) of the corresponding metric values obtained
by different algorithms under various circumstances. In par-
ticular, the best metric values are highlighted in the bold face
with a gray background. In addition to the metric values, we
also keep a record of the ranks of the IGD and HV values
obtained by different algorithms at each time step. We assign a
global rank to each algorithm by averaging the ranks obtained
at all time steps. The experimental results clearly demonstrate
that DTAEA is the best optimizer as it wins on all compar-
isons (64 out of 64 for MIGD and 64 out of 64 for MHV),
and it is always top ranked. In the following paragraphs, we
will explain these results in detail.

F1 is developed from DTLZ1 [44] which has a multimodal
property to hinder an algorithm from converging to the PFt, t ∈
{1, . . . , 10}. As shown in Tables I and II, the performance of
DTAEA is robust as it obtains the best MIGD and MHV values
under all four frequencies of change. Fig. 1(a) of the supple-
mentary file shows the trajectories of IGD values obtained by
different algorithms across the whole evolution process; while
Fig. 2(a) of the supplementary file shows the average ranks of
IGD obtained by different algorithms at each time step. From
these two figures, we clearly see that DTAEA shows the best
performance at every time step. It is worth noting that the
performance of DTAEA has some fluctuations when τt = 25.
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TABLE II
PERFORMANCE COMPARISONS OF DTAEA AND THE OTHER ALGORITHMS ON MHV METRIC

This is because, under a high frequency of change, DTAEA
can hardly drive the solutions fully converge to the PFt before
the environment changes. However, with the decrease of the
frequency of change, i.e., the increase of τt, the performance
of DTAEA becomes stable. As for the other four algorithms,
the performance of different algorithms fluctuate a lot at dif-
ferent time steps. It is interesting to note that the performance
of the stationary algorithms, i.e., NSGA-II and MOEA/D, are
comparable to their dynamic counterparts, i.e., DNSGA-II and
MOEA/D-KF. In particular, under a high frequency of change,
i.e., τt = 25, NSGA-II and MOEA/D have shown a better
performance than DNSGA-II and MOEA/D-KF at every time
step. This implies that the dynamic handling techniques of
DNSGA-II and MOEA/D-KF might not be capable of han-
dling the expansion or contraction of the objective space.
Even worse, these mechanisms can have an adverse effect to
the population for adapting to the changing environments. In
addition, we also notice that NSGA-II and DNSGA-II show
better performance than MOEA/D and MOEA/D-KF at the
first several time steps; whereas their performance degenerate
significantly afterwards. This is because NSGA-II can have a
faster convergence than MOEA/D when the number of objec-
tives is relatively small. As discussed in Section II-B, the
increase of the number of objectives does not influence the
population convergence. Thus, the competitive IGD values
obtained at the two- and three-objective cases have an accumu-
lative effect which makes NSGA-II and DNSGA-II maintain
a competitive performance at the first couple of time steps.
However, the ineffectiveness of NSGA-II and DNSGA-II for

handling problems with a large number of objectives [64] leads
to their poor performance at the latter time steps. Even worse,
their poor performance at six- and seven-objective scenarios
also disseminate a negative accumulation which results in their
poor performance when decreasing the number of objectives.

F2 is developed from DTLZ2 [44] which is a relatively
simple benchmark problem. From Figs. 1(b) and 2(b) of the
supplementary file, we also find that DTAEA has shown
the consistently best performance across all time steps. It is
interesting to note that the MIGD and MHV values obtained
by all five algorithms lie in the same scale. This is because
F2 does not pose too much challenge to the algorithms for
converging to the PFt. Thus all algorithms are able to adapt
their populations to the changing environments within a rea-
sonable number of function evaluations. Due to this reason, as
shown in Fig. 1(b) of the supplementary file, the IGD trajecto-
ries of NSGA-II and DNSGA-II surge up to a relatively high
level when the number of objectives becomes large; whereas
their IGD trajectories gradually go down when decreasing the
number of objectives. Moreover, similar to the observations
on F1, DNSGA-II, and MOEA/D-KF do not show superior
performance than their corresponding stationary counterparts
on F2.

F3 is developed from DTLZ3 [44] which has the same
PFt, t ∈ {1, . . . , 10}, as F2 but has a multimodal property.
Due to the multimodal property, which hinders the population
from approaching the PFt, the IGD trajectories of NSGA-II
and DNSGA-II can hardly drop down when decreasing the
number of objectives. In the meanwhile, we still notice that the
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dynamic handling techniques of DNGSA-II and MOEA/D-KF
do not help the population adapt to the changed environments.
Even worse, the injected solutions provide a false information
about the newly changed PF or PS, which is harmful to the
evolution process.

F4 is developed from DTLZ4 [44] which also has the same
PFt, t ∈ {1, . . . , 10}, as F2 but has a parametric mapping
that introduces a biased density of Pareto-optimal solutions
toward some particular coordinates. In this case, F4 not only
poses significant challenges for handling the changing num-
ber of objectives, but also requires that the algorithm can have
a well balance between convergence and diversity. The supe-
rior performance of DTAEA can be attributed to the dedicated
operations of two co-evolving populations for balancing con-
vergence and diversity during the whole evolution process.
Similar to the observations on the previous problem instances,
the stationary algorithms still show competitive performance
than their dynamic counterparts at most time steps.

B. Results on F5 and F6

Different from F1–F4, F5 and F6 not only consider a
changing number of objectives, but also have a time varying
PS. Here we use (12) to define the time varying number of
objectives; as for the parameters related to the time varying PS,
we set its change frequency as τt̄ = 5 and change severity as
nt̄ = 10 (these settings are widely used in [10], [65], and [66]).
From the experimental results shown in Tables I and II, we
find that DTAEA has shown the best performance on almost
all comparisons (30 out of 32 for MIGD and 28 out of 32
for MHV). In the following paragraphs, we will explain these
results in detail.

F5 is developed from F2 and is with a time varying
PS of which the position is changed with time. Although
the overall performance of DTAEA is the best as shown
in Tables I and II, its performance fluctuates significantly under
a high frequency of change, i.e., τt = 25 and τt = 50, as
shown in Figs. 1(e) and 2(e) of the supplementary file. It is
worth noting that DTAEA does not have any dynamic detec-
tion or handling technique for the time varying PS. Thus, under
a high frequency of change, DTAEA does not make a good
adaption to two kinds of dynamics. However, as discussed
in Section V-A, F2 does not pose too much difficulty to the
algorithm for converging to the PF. This explains the compa-
rable performance achieved by the other four algorithms under
a high frequency of change. Nevertheless, even without any
specific dynamic handling technique for the time varying PS,
the complementary effects of two archives of DTAEA help the
population adapt to the changing environments when decreas-
ing the frequency of change, i.e., increasing τt. Furthermore,
NSGA-II and MOEA/D still show comparable performance
than their dynamic counterparts when encountering two kinds
of dynamics.

F6 is also developed from F2 but it poses more chal-
lenges to the algorithm for approaching the PF. Similar to
the observations on F5, the performance of DTAEA fluctu-
ate significantly under a high frequency of change as shown
in Figs. 1(f) and 2(f) of the supplementary file. However,

since the g function of F6, which controls the difficulty for
converging to the PF, is more difficult than that of F5, the
superiority of DTAEA is more observable than F5. In addi-
tion, although the dynamic handling technique of DNSGA-II
and MOEA/D-KF are designed for handling the time varying
PS, they do not show better performance than their station-
ary counterparts. We explain these observations as that the
severity of change of the time varying PS is smaller than
the expansion or contraction of the PF or PS manifold when
changing the number of objectives. Thus, due to the ineffec-
tiveness of the dynamic reaction mechanisms of DNSGA-II
and MOEA/D-KF for handling the changing number of objec-
tives, it makes their performance be not much indifferent from
their dynamic counterparts.

C. Further Analysis

From the experimental studies in Sections V-A and V-B,
it is clear to see the superiority of our proposed DTAEA for
handling the DMOPs with a dynamically changing number
of objectives. As introduced in Section III, DTAEA consists
of three major components. The following paragraphs analyze
their effects separately.

1) Effects of the Reconstruction Mechanism: As discussed
in Section II-B, the population convergence might not be
affected when increasing the number of objectives. However,
the diversity enhancement strategy, e.g., the random injection
of DNSGA-II, has an adverse effect to the population conver-
gence. In the meanwhile, it cannot provide enough diversified
information to remedy the loss of population diversity. As for
the prediction strategy, e.g., the Kalman filter of MOEA/D-KF,
it is usually developed to predict the change of the PS’s posi-
tion or shape, instead of the expansion or contraction of the
PS or PF manifold. As a consequence, its large prediction
errors are harmful to both convergence and diversity. Since
the stationary EMO algorithms do not make any reaction to
the changing environment, the population convergence is not
affected; while the self-adaptive property of EA can also help
the population gradually adapt to the changed environment.
These explain the competitive performance of the stationary
EMO algorithms comparing to their dynamic counterparts for
handling the DMOPs with a dynamically changing number
of objectives. In contrast, the CA of our proposed DTAEA,
consisted of the elite solutions, preserves the population con-
vergence; in the meanwhile, the DA of DTAEA, consisted of
a set of uniformly sampled solutions from the decision space,
provide as much diversified information as possible to help
the population adapt to the changed environment. In Fig. 3 of
the supplementary file, we keep track of the population dis-
tribution for several iterations after the number of objectives
increases from two to three. From this figure, we can clearly
see that neither NSGA-II nor DNSGA-II is able to spread
the population across the expanded PF. As for MOEA/D
and MOEA/D-KF, although the population seems to have an
acceptable spread along the expanded PF, the solutions are a
bit away from the PF. In contrast, our proposed DTAEA suc-
cessfully spread the solutions across the PF without sacrificing
any convergence property.
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Fig. 6. Proportion of the second mating parent selected from the CA and
DA, respectively.

As discussed in Section II-B, the spread of the population
might not be affected too much when decreasing the number of
objectives, while some solutions are propelled away from the
PF. In this case, the randomly injected solutions of DNGSA-II
cannot provide sufficient selection pressure toward the PF. As
for MOEA/D-KF, due to the large prediction errors, the effect
of those predicted solutions of the Kalman filter is almost
the same as the random solutions. In contrast, DTAEA uses the
nondominated solutions of the elite population to construct the
CA; in the meanwhile, it uses the remaining ones, which have
a well spread in the objective space, to construct the DA. By
these means, the population is able to have a well balance
between convergence and diversity in the changed environ-
ment. In Fig. 4 of the supplementary file, we keep track of the
population distribution for several iterations after the number
of objectives decreases from four to three. From this figure, we
can clearly see that the population spread after decreasing the
number of objectives is acceptable in the first place, but hav-
ing some duplicate solutions. After several iterations, DTAEA
achieves a significantly better performance on both conver-
gence and diversity than the other comparative algorithms.

2) Effects of the Restricted Mating Selection Mechanism:
As discussed in Section III-C, the CA and the DA have differ-
ent characteristics. In particular, the prior one concerns more
about convergence whereas the latter one concerns more about
the diversity. Their complementary effect, which finally con-
tributes to the balance between convergence and diversity, is
implemented by the restricted mating selection mechanism
between them. In particular, one of the mating parents is con-
stantly selected from the CA while the selection of the other
one depends on the diversity information of the CA. In order
to validate the effect of this restricted mating selection mech-
anism, we choose F2 as the instance where τt = 50 and plot
the trajectories of proportion of second mating parent selected
from the CA and DA, respectively, in Fig. 6. From this figure,
we notice that the proportion for selecting the second mating
parent from the DA is relatively high at the beginning when
the number of objectives is changed. But with the progress of
evolution, both mating parents are selected from the CA when
its diversity becomes better.

3) Effects of the Update Mechanisms: As discussed
in Section III-B, the update mechanisms are used to maintain
the complementary effects between the CA and the DA. The
CA keeps a continuously strong selection pressure for the

population convergence; while the DA maintains a set of well
diversified solutions. In order to validate the importance of
the three different components of DTAEA, we developed three
DTAEA variants as follows.

1) DTAEA-v1: This variant modifies DTAEA by remov-
ing the restricted mating selection mechanism proposed
in Section III-C. In particular, now the mating parents
are, respectively, selected from the CA and the DA
without considering the population distribution.

2) DTAEA-v2: This variant modifies DTAEA by removing
the reconstruction mechanism proposed in Section III-A.
In other words, it does not make any response to the
changing environment.

3) DTAEA-v3: This variant merely uses the update mech-
anisms to maintain the CA and the DA whereas it does
not make any response to the changing environment. In
addition, it does not use the restricted mating selection
mechanism as DTAEA-v1.

We conduct the experiments on F1–F6 according to
the same experimental settings introduced in Section IV.
Tables III and IV of the supplementary file give the median and
IQR values according to the MIGD and MHV metrics. From
these results we can see that the original DTAEA, consisted
of all three components, has shown clearly better performance
than the other three variants. More specifically, as shown in
Tables III and IV of the supplementary file, the performance of
DTAEA-v3 is the worst among all three variants. This obser-
vation is reasonable as DTAEA-v3 neither responds to the
changing environment nor takes advantages of the complemen-
tary effect of the CA and the DA for offspring generation. The
performance of DTAEA-v2 is slightly better than DTAEA-v3.
Therefore, we can see that even without any response to the
changing environment, the restricted mating selection mecha-
nism can also provide some guidance to the search process.
As for DTAEA-v1, we can see that the performance can be
significantly improved by using the reconstruction mechanism
proposed in Section III-A to respond to the changing environ-
ment. This superiority is more obvious when the frequency of
change is high. By comparing the results between DTAEA-v1
and the original DTAEA, we can clearly see the importance
of taking advantages of the complementary effect of the CA
and the DA for offspring generation. All in all, we can con-
clude that all three components of DTAEA are of significant
importance for handling the DMOP with a changing number
of objectives.

4) Performance Comparisons on Different Changing
Sequence: In Sections V-A and V-B, the experiments only
consider the scenarios where the number of objectives
increases or decreases by one at each time step. A natural
question is: how is the performance of our proposed algo-
rithm under the circumstance where the number of objectives
changes in a different sequence? Without loss of generality,
this further experiment considers the time varying number of
objectives m(t) as follows:

m(t) =

⎧
⎪⎪⎨

⎪⎪⎩

3, t = 1
m(t − 1)+ 2, t ∈ [2, 3]
m(t − 1)− 2, t ∈ [4, 5]
m(t − 1)− 1, t = 6

(13)
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where t ∈ {1, . . . , 6} is a discrete time. Here we also consider
four different frequencies of change, i.e., τt is as 25, 50, 100,
and 200, respectively. From the empirical results shown in
Tables V and VI of the supplementary file, we can clearly see
that our proposed DTAEA is the best optimizer on almost all
comparisons (92 out of 96 for MIGD and 88 out 96 for MHV).
Similar to the observations from the previous sections, the
performance of DTAEA might not be stable under a high fre-
quency of change; while its performance becomes constantly
competitive with the increase of τt.

VI. CONCLUSION

Different from the current studies on DMO, which mainly
focus on problems with time-dependent objective functions,
this paper considers the DMOP with a time varying num-
ber of objectives. This type of dynamics brings the expansion
or contraction of the PF or PS manifold when increasing or
decreasing the number of objectives. In this case, the exist-
ing dynamic handling techniques are not able to handle this
scenario. To address this challenge, this paper has proposed a
DTAEA for handling the DMOP with a changing number of
objectives. More specifically, DTAEA simultaneously main-
tains two co-evolving populations, i.e., the CA and the DA,
during the evolution process. In particular, they have comple-
mentary effects: the CA concerns more about the convergence
while the DA concerns more about the diversity. The CA and
the DA are separately reconstructed whenever the environment
changes. In the meanwhile, they are maintained in different
manners. By using a restricted mating selection mechanism,
DTAEA takes advantages of the complementary effects of the
CA and the DA to strike the balance between convergence
and diversity all the time. Comprehensive experiments on a set
of dynamic multiobjective benchmark problems fully demon-
strate the superiority of DTAEA for handling the DMOP with
a dynamically changing number of objectives. In particular,
it is able to effectively and efficiently track the expansion or
contraction of the PF or PS manifold whenever the environ-
ment changes. In the experiments, we also noticed that some
state-of-the-art dynamic EMO algorithms even showed inferior
performance than their stationary counterparts.

This paper is the first attempt toward a systematic investiga-
tion of the methods for handling the DMOP with a changing
number of objectives. Much more attention and effort should
be required on this topic. In future, it is interesting to inves-
tigate the dynamic environments where the changes are hard
to detect and do not vary regularly. Constrained optimization
problems, which are ubiquitous in the real-life application sce-
narios, have not been considered in this paper. It is worth
considering dynamic constraints in the dynamic environment
as well and thus requires effective constraint handling tech-
niques accordingly [52]. Furthermore, this paper focuses on
designing an effective environmental selection operator to
adapt to the changing environment. It is also interesting to
investigate the reproduction operation which can adapt the
search behavior autonomously [67]–[72] according to the cur-
rent landscape. In addition, our recently developed efficient
nondomination level update method [73] can be considered

to accelerate the process of identifying the current nondomi-
nation level structure. The benchmark problems used in this
paper are developed from the classic DTLZ benchmark suite.
It is interesting to develop more challenging benchmark prob-
lems with additional characteristics, e.g., from the WFG [74]
and the CEC 2009 competition [75] benchmark suites. Last
but not the least, new performance metrics are also needed
to better facilitate the analysis and comparisons of dynamic
EMO algorithms.

REFERENCES

[1] J. H. Holland, Adaptation in Natural and Artificial Systems. Cambridge,
MA, USA: MIT Press, 1975.

[2] S. Yang and X. Yao, Evolutionary Computation for Dynamic
Optimization Problems. Heidelberg, Germany: Springer, 2013.

[3] K. Deb, N. U. B. Rao, and S. Karthik, “Dynamic multi-objective opti-
mization and decision-making using modified NSGA-II: A case study
on hydro-thermal power scheduling,” in Proc. 4th Int. Conf. Evol.
Multi-Criterion Optim. (EMO), Matsushima, Japan, 2007, pp. 803–817.

[4] B. Zheng, “A new dynamic multi-objective optimization evolutionary
algorithm,” in Proc. Int. Conf. Comput. Netw. Commun. (ICNC), 2007,
pp. 565–570.

[5] R. Liu, W. Zhang, L. Jiao, F. Liu, and J. Ma, “A sphere-dominance based
preference immune-inspired algorithm for dynamic multi-objective opti-
mization,” in Proc. Genet. Evol. Comput. Conf., Portland, OR, USA,
2010, pp. 423–430.

[6] V. Aragon, S. Esquivel, and C. A. C. Coello, “Evolutionary multiob-
jective optimization in non-stationary environments,” J. Comput. Sci.
Technol., vol. 5, no. 3, pp. 133–143, 2005.

[7] C. R. B. Azevedo and A. F. R. Araújo, “Generalized immigration
schemes for dynamic evolutionary multiobjective optimization,” in Proc.
IEEE Congr. Evol. Comput. (CEC), New Orleans, LA, USA, 2011,
pp. 2033–2040.

[8] R. Azzouz, S. Bechikh, and L. B. Said, “A multiple reference point-
based evolutionary algorithm for dynamic multi-objective optimization
with undetectable changes,” in Proc. IEEE Congr. Evol. Comput. (CEC),
Beijing, China, 2014, pp. 3168–3175.

[9] K. Li et al., “Achieving balance between proximity and diversity
in multi-objective evolutionary algorithm,” Inf. Sci., vol. 182, no. 1,
pp. 220–242, 2012.

[10] C.-K. Goh and K. C. Tan, “A competitive-cooperative coevolutionary
paradigm for dynamic multiobjective optimization,” IEEE Trans. Evol.
Comput., vol. 13, no. 1, pp. 103–127, Feb. 2009.

[11] Y. Wang and B. Li, “Investigation of memory-based multi-objective opti-
mization evolutionary algorithm in dynamic environment,” in Proc. IEEE
Congr. Evol. Comput. (CEC), Trondheim, Norway, 2009, pp. 630–637.

[12] Z. Peng, J. Zheng, and J. Zou, “A population diversity maintain-
ing strategy based on dynamic environment evolutionary model for
dynamic multiobjective optimization,” in Proc. IEEE Congr. Evol.
Comput. (CEC), Beijing, China, 2014, pp. 274–281.

[13] I. Hatzakis and D. Wallace, “Dynamic multi-objective optimization
with evolutionary algorithms: A forward-looking approach,” in Proc.
Conf. Genet. Evol. Comput. (GECCO), Seattle, WA, USA, 2006,
pp. 1201–1208.

[14] I. Hatzakis and D. Wallace, “Topology of anticipatory populations
for evolutionary dynamic multi-objective optimization,” in Proc. 11th
Multidisciplinary Anal. Optim. Conf. (AIAA/ISSMO), Portsmouth, VA,
USA, 2006, pp. 1–10.

[15] Q. Zhang, A. Zhou, and Y. Jin, “RM-MEDA: A regularity model-based
multiobjective estimation of distribution algorithm,” IEEE Trans. Evol.
Comput., vol. 12, no. 1, pp. 41–63, Feb. 2008.

[16] A. Zhou, Y. Jin, and Q. Zhang, “A population prediction strategy for evo-
lutionary dynamic multiobjective optimization,” IEEE Trans. Cybern.,
vol. 44, no. 1, pp. 40–53, Jan. 2014.

[17] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. P. K. Tsang,
“Prediction-based population re-initialization for evolutionary
dynamic multi-objective optimization,” in Proc. 4th Int. Conf. Evol.
Multi-Criterion Optim. (EMO), Münster, Germany, 2006, pp. 832–846.

[18] Z. Peng, J. Zheng, J. Zou, and M. Liu, “Novel prediction and mem-
ory strategies for dynamic multiobjective optimization,” Soft Comput.,
vol. 19, no. 9, pp. 2633–2653, 2015.



170 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 1, FEBRUARY 2018

[19] Y. Wu, Y. Jin, and X. Liu, “A directed search strategy for evolutionary
dynamic multiobjective optimization,” Soft Comput., vol. 19, no. 11,
pp. 3221–3235, 2015.

[20] W. T. Koo, C. K. Goh, and K. C. Tan, “A predictive gradient strategy for
multiobjective evolutionary algorithms in a fast changing environment,”
Memetic Comput., vol. 2, no. 2, pp. 87–110, 2010.

[21] A. Muruganantham, K. C. Tan, and P. Vadakkepat, “Evolutionary
dynamic multiobjective optimization via Kalman filter prediction,” IEEE
Trans. Cybern., vol. 46, no. 12, pp. 2862–2873, Dec. 2016.

[22] P. Kruchten, The Rational Unified Process: An Introduction, 2nd ed.
Boston, MA, USA: Addison-Wesley, 2000.

[23] X. Shen, L. L. Minku, R. Bahsoon, and X. Yao, “Dynamic soft-
ware project scheduling through a proactive-rescheduling method,” IEEE
Trans. Softw. Eng., vol. 42, no. 7, pp. 658–686, Jul. 2016.

[24] X.-N. Shen and X. Yao, “Mathematical modeling and multi-objective
evolutionary algorithms applied to dynamic flexible job shop scheduling
problems,” Inf. Sci., vol. 298, pp. 198–224, Mar. 2015.

[25] J. Xiao, L. J. Osterweil, Q. Wang, and M. Li, “Dynamic resource
scheduling in disruption-prone software development environments,” in
Proc. 13th Int. Conf. Fundam. Approaches Softw. Eng. (FASE), Uppsala,
Sweden, 2010, pp. 107–122.

[26] J. Zhuo and C. Chakrabarti, “An efficient dynamic task scheduling algo-
rithm for battery powered DVS systems,” in Proc. Conf. Asia South Pac.
Design Autom. (ASP-DAC), Shanghai, China, 2005, pp. 846–849.

[27] R. Chen, P. R. Lewis, and X. Yao, “Temperature management for hetero-
geneous multi-core FPGAs using adaptive evolutionary multi-objective
approaches,” in Proc. IEEE Int. Conf. Evol. Syst. (ICES), Orlando, FL,
USA, 2014, pp. 101–108.

[28] S. Sharifi, A. K. Coskun, and T. S. Rosing, “Hybrid dynamic energy and
thermal management in heterogeneous embedded multiprocessor SOCs,”
in Proc. 15th Asia South Pac. Design Autom. Conf. (ASP DAC), Taipei,
Taiwan, 2010, pp. 873–878.

[29] J. Luo and N. K. Jha, “Static and dynamic variable voltage scheduling
algorithms for real-time heterogeneous distributed embedded systems,”
in Proc. 7th Asia South Pac. 15th Int. Conf. VLSI Design (ASP DAC),
Bengaluru, India, 2002, pp. 719–726.

[30] H. M. Fard, R. Prodan, and T. Fahringer, “A truthful dynamic workflow
scheduling mechanism for commercial multicloud environments,” IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1203–1212, Jun. 2013.

[31] Z.-H. Zhan et al., “Cloud computing resource scheduling and a survey
of its evolutionary approaches,” ACM Comput. Surveys, vol. 47, no. 4,
2015, Art. no. 63.

[32] Z.-G. Chen, K.-J. Du, Z.-H. Zhan, and J. Zhang, “Deadline constrained
cloud computing resources scheduling for cost optimization based on
dynamic objective genetic algorithm,” in Proc. IEEE Congr. Evol.
Comput. (CEC), Sendai, Japan, 2015, pp. 708–714.

[33] S.-U. Guan, Q. Chen, and W. Mo, “Evolving dynamic multi-objective
optimization problems with objective replacement,” Artif. Intell. Rev.,
vol. 23, no. 3, pp. 267–293, 2005.

[34] L. Huang, I. H. Suh, and A. Abraham, “Dynamic multi-objective opti-
mization based on membrane computing for control of time-varying
unstable plants,” Inf. Sci., vol. 181, no. 11, pp. 2370–2391, 2011.

[35] K. Praditwong and X. Yao, “A new multi-objective evolutionary optimi-
sation algorithm: The two-archive algorithm,” in Proc. Comput. Intell.
Security (CIS), Guangzhou, China, 2006, pp. 95–104.

[36] H. Wang, L. Jiao, and X. Yao, “Two_arch2: An improved two-archive
algorithm for many-objective optimization,” IEEE Trans. Evol. Comput.,
vol. 19, no. 4, pp. 524–541, Aug. 2015.

[37] K. Li, S. Kwong, and K. Deb, “A dual-population paradigm for evo-
lutionary multiobjective optimization,” Inf. Sci., vol. 309, pp. 50–72,
Jul. 2015.

[38] O. Schütze, C. A. C. Coello, S. Mostaghim, E.-G. Talbi, and M. Dellnitz,
“Hybridizing evolutionary strategies with continuation methods for
solving multi-objective problems,” J. Eng. Optim., vol. 40, no. 5,
pp. 383–402, 2008.

[39] H. Zhang et al., “A self-organizing multiobjective evolutionary algo-
rithm,” IEEE Trans. Evol. Comput., vol. 20, no. 5, pp. 792–806,
Oct. 2016.

[40] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

[41] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, “MOCell:
A cellular genetic algorithm for multiobjective optimization,” Int. J.
Intell. Syst., vol. 24, no. 7, pp. 726–746, 2009.

[42] X. Ma et al., “A multiobjective evolutionary algorithm based on decision
variable analyses for multiobjective optimization problems with large-
scale variables,” IEEE Trans. Evol. Comput., vol. 20, no. 2, pp. 275–298,
Apr. 2016.

[43] M. Farina, K. Deb, and P. Amato, “Dynamic multiobjective optimization
problems: Test cases, approximations, and applications,” IEEE Trans.
Evol. Comput., vol. 8, no. 5, pp. 425–442, Oct. 2004.

[44] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test prob-
lems for evolutionary multiobjective optimization,” in Evolutionary
Multiobjective Optimization (Advanced Information and Knowledge
Processing), A. Abraham, L. Jain, and R. Goldberg, Eds. London, U.K.:
Springer, 2005, pp. 105–145.

[45] H. Li and Q. Zhang, “Multiobjective optimization problems with compli-
cated Pareto sets, MOEA/D and NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 13, no. 2, pp. 284–302, Apr. 2009.

[46] H. Ishibuchi, N. Akedo, and Y. Nojima, “Behavior of multiobjective
evolutionary algorithms on many-objective knapsack problems,” IEEE
Trans. Evol. Comput., vol. 19, no. 2, pp. 264–283, Apr. 2015.

[47] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: A survey,” ACM Comput. Surveys, vol. 48, no. 1, 2015,
Art. no. 13.

[48] K. V. Price, “Differential evolution,” in Handbook of Optimization—
From Classical to Modern Approach (Intelligent Systems Reference
Library), vol. 38. Berlin, Germany: Springer, 2013, pp. 187–214.

[49] B. Li, J. Li, K. Tang, and X. Yao, “An improved two archive algo-
rithm for many-objective optimization,” in Proc. IEEE Congr. Evol.
Comput. (CEC), Beijing, China, 2014, pp. 2869–2876.

[50] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison
of three methods for selecting values of input variables in the anal-
ysis of output from a computer code,” Technometrics, vol. 21, no. 2,
pp. 239–245, 1979.

[51] K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS)
for engineering design,” Comput. Sci. Informat., vol. 26, no. 4,
pp. 30–45, 1996.

[52] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary many-
objective optimization algorithm based on dominance and decompo-
sition,” IEEE Trans. Evol. Comput., vol. 19, no. 5, pp. 694–716,
Oct. 2015.

[53] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[54] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous
search space,” Complex Syst., vol. 9, no. 2, pp. 115–148, 1994.

[55] H.-L. Liu, F. Gu, and Q. Zhang, “Decomposition of a multiobjective
optimization problem into a number of simple multiobjective sub-
problems,” IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 450–455,
Jun. 2014.

[56] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part I: Solving problems with box constraints,” IEEE Trans. Evol.
Comput., vol. 18, no. 4, pp. 577–601, Aug. 2014.

[57] Z. Wang, Q. Zhang, A. Zhou, M. Gong, and L. Jiao, “Adaptive replace-
ment strategies for MOEA/D,” IEEE Trans. Cybern., vol. 46, no. 2,
pp. 474–486, Feb. 2016.

[58] K. Li, Q. Zhang, S. Kwong, M. Li, and R. Wang, “Stable matching-based
selection in evolutionary multiobjective optimization,” IEEE Trans. Evol.
Comput., vol. 18, no. 6, pp. 909–923, Dec. 2014.

[59] K. Li, S. Kwong, Q. Zhang, and K. Deb, “Interrelationship-based
selection for decomposition multiobjective optimization,” IEEE Trans.
Cybern., vol. 45, no. 10, pp. 2076–2088, Oct. 2015.

[60] M. Wu, K. Li, S. Kwong, Y. Zhou, and Q. Zhang, “Matching-
based selection with incomplete lists for decomposition multi-objective
optimization,” IEEE Trans. Evol. Comput., to be published.

[61] S. Jiang and S. Yang, “Evolutionary dynamic multiobjective optimiza-
tion: Benchmarks and algorithm comparisons,” IEEE Trans. Cybern.,
vol. 47, no. 1, pp. 198–211, Jan. 2017.

[62] P. A. N. Bosman and D. Thierens, “The balance between proximity and
diversity in multiobjective evolutionary algorithms,” IEEE Trans. Evol.
Comput., vol. 7, no. 2, pp. 174–188, Apr. 2003.

[63] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms:
A comparative case study and the strength Pareto approach,” IEEE
Trans. Evol. Comput., vol. 3, no. 4, pp. 257–271, Nov. 1999.

[64] V. R. Khare, X. Yao, and K. Deb, “Performance scaling of
multi-objective evolutionary algorithms,” in Proc. 2nd Int. Conf. Evol.
Multi-Criterion Optim. (EMO), Faro, Portugal, 2003, pp. 376–390.



CHEN et al.: DMO WITH CHANGING NUMBER OF OBJECTIVES 171

[65] R. Shang, L. Jiao, Y. Ren, J. Wang, and Y. Li, “Immune clonal coevo-
lutionary algorithm for dynamic multiobjective optimization,” Natural
Comput., vol. 13, no. 3, pp. 421–445, 2014.

[66] S. Jiang and S. Yang, “A steady-state and generational evolutionary
algorithm for dynamic multiobjective optimization,” IEEE Trans. Evol.
Comput., vol. 21, no. 1, pp. 65–82, Feb. 2017.

[67] K. Li, Á. Fialho, S. Kwong, and Q. Zhang, “Adaptive operator selec-
tion with bandits for a multiobjective evolutionary algorithm based on
decomposition,” IEEE Trans. Evol. Comput., vol. 18, no. 1, pp. 114–130,
Feb. 2014.

[68] K. Li, Á. Fialho, and S. Kwong, “Multi-objective differential evolution
with adaptive control of parameters and operators,” in Proc. 5th Int.
Conf. Learn. Intell. Optim. (LION), Rome, Italy, 2011, pp. 473–487.

[69] K. Li, S. Kwong, R. Wang, J. Cao, and I. J. Rudas, “Multi-objective
differential evolution with self-navigation,” in Proc. IEEE Int. Conf. Syst.
Man Cybern. (SMC), Seoul, South Korea, 2012, pp. 508–513.

[70] K. Li, R. Wang, S. Kwong, and J. Cao, “Evolving extreme learn-
ing machine paradigm with adaptive operator selection and parameter
control,” Int. J. Uncertainty Fuzziness Knowl. Based Syst., vol. 21,
pp. 143–154, Dec. 2013.

[71] K. Li and S. Kwong, “A general framework for evolutionary multiob-
jective optimization via manifold learning,” Neurocomputing, vol. 146,
pp. 65–74, Dec. 2014.

[72] K. Li, S. Kwong, R. Wang, K.-S. Tang, and K.-F. Man, “Learning
paradigm based on jumping genes: A general framework for enhanc-
ing exploration in evolutionary multiobjective optimization,” Inf. Sci.,
vol. 226, pp. 1–22, Mar. 2013.

[73] K. Li, K. Deb, Q. Zhang, and Q. Zhang, “Efficient nondomina-
tion level update method for steady-state evolutionary multiobjective
optimization,” IEEE Trans. Cybern., to be published.

[74] S. Huband, P. Hingston, L. Barone, and R. L. While, “A review of
multiobjective test problems and a scalable test problem toolkit,” IEEE
Trans. Evol. Comput., vol. 10, no. 5, pp. 477–506, Oct. 2006.

[75] Q. Zhang et al., “Multiobjective optimization test instances for the
CEC 2009 special session and competition,” Dept. Mech. Eng.,
Univ. Essex, Colchester, U.K., Nanyang Technol. Univ., Singapore,
Tech. Rep. CES-487, 2008.

Renzhi Chen received the bachelor’s degree in
computer science from the National University of
Defence Technology, Hunan, China, in 2012. He
is currently pursuing the Ph.D. degree in com-
puter science with the University of Birmingham,
Birmingham, U.K.

His current research interests include evolution-
ary algorithms for solving dynamic multiobjective
optimization problems.

Ke Li (S’10–M’17) received the B.Sc. and M.Sc.
degrees in computer science and technology from
Xiangtan University, Xiangtan, China, in 2007 and
2010, respectively, and the Ph.D. degree in computer
science from the City University of Hong Kong,
Hong Kong, in 2014.

He was a Post-Doctoral Research Associate with
Michigan State University, East Lansing, MI, USA,
and a Research Fellow with the University of
Birmingham, Birmingham, U.K. He is currently a
Lecturer (Assistant Professor) of Data Analytics

with the University of Exeter, Exeter, U.K. He has published several
research papers in renowned journals, such as the IEEE TRANSACTIONS

ON EVOLUTIONARY COMPUTATION and the IEEE TRANSACTIONS ON

CYBERNETICS. His current research interests include the evolutionary
multiobjective optimization, large-scale optimization, statistical machine
learning, and applications in software engineering and industrial design.

Xin Yao (M’91–SM’96–F’03) received the B.Sc.
and Ph.D. degrees from the University of Science
and Technology of China, Hefei, China, in 1982 and
1990, respectively.

He is a Chair Professor of Computer Science with
the Southern University of Science and Technology,
Shenzhen, China, and a Professor of Computer
Science with the University of Birmingham,
Birmingham, U.K. He has been researching on mul-
tiobjective optimization since 2003, when he pub-
lished a well-cited EMO’03 paper on many objective

optimization. His current research interests include evolutionary computation,
ensemble learning, and their applications in software engineering.

Dr. Yao was a recipient of the 2001 IEEE Donald G. Fink Prize
Paper Award, the 2010, 2016, and 2017 IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION Outstanding Paper Awards, the 2010 BT
Gordon Radley Award for Best Author of Innovation (Finalist), the 2011
IEEE TRANSACTIONS ON NEURAL NETWORKS Outstanding Paper Award,
the Prestigious Royal Society Wolfson Research Merit Award in 2012, and
the IEEE Computational Intelligence Society (CIS) Evolutionary Computation
Pioneer Award in 2013, and many other best paper awards. He was the
President of the IEEE CIS from 2014 to 2015, and the Editor-in-Chief of
the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION from 2003
to 2008. He is a Distinguished Lecturer of the IEEE CIS.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


