
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 5, OCTOBER 2017 697

A Weighted Biobjective Transformation Technique
for Locating Multiple Optimal Solutions of

Nonlinear Equation Systems
Wenyin Gong, Yong Wang, Member, IEEE, Zhihua Cai, and Shengxiang Yang, Senior Member, IEEE

Abstract—Due to the fact that a nonlinear equation
system (NES) may contain multiple optimal solutions, solving
NESs is one of the most important challenges in numerical com-
putation. When applying evolutionary algorithms to solve NESs,
two issues should be considered: 1) how to transform an NES
into a kind of optimization problem and 2) how to develop an
optimization algorithm to solve the transformed optimization
problem. In this paper, we tackle the first issue by transforming
an NES into a weighted biobjective optimization problem. By the
above transformation, not only do all the optimal solutions of an
original NES become the Pareto optimal solutions of the trans-
formed biobjective optimization problem, but also their images
are different points on a linear Pareto front in the objective space.
In addition, we suggest an adaptive multiobjective differential
evolution, the goal of which is to effectively locate the Pareto
optimal solutions of the transformed biobjective optimization
problem. Once these solutions are found, the optimal solutions of
the original NES can also be obtained correspondingly. By com-
bining the weighted biobjective transformation technique with
the adaptive multiobjective differential evolution, we propose a
generic framework for the simultaneous locating of multiple opti-
mal solutions of NESs. Comprehensive experiments on 38 NESs
with various features have demonstrated that our framework
provides very competitive overall performance compared with
several state-of-the-art methods.
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I. INTRODUCTION

ANONLINEAR equation system (NES) can be formulated
as follows:

⎧
⎪⎨

⎪⎩

e1(x) = 0
...

em(x) = 0

(1)

where ei(x) = 0 (i ∈ {1, . . . , m}) is the ith equation, m is
the number of equations, x = (x1, . . . , xn)

T ∈ S is a decision
vector containing n decision variables, S =∏n

j=1 [xj, xj] is the
decision space, and xj and xj are the lower and upper bounds
of xj, respectively. In general, an NES contains at least one
nonlinear equation. x∗ is called an optimal solution of an NES
if for every i ∈ {1, . . . , m}, ei(x∗) = 0.

It is common to face a considerable number of NESs in the
fields of mathematics, science, and engineering [1]. An NES
may frequently contain more than one optimal solution, espe-
cially when the number of decision variables is equal to or
larger than that of the equations. In order to allow the deci-
sion maker to select the most preferred solution, the purpose
of solving NESs is to simultaneously locate multiple optimal
solutions in a single run, which is perhaps one of the most
challenging tasks in numerical computation [2].

During the past two decades, solving NESs by evolutionary
algorithms (EAs) has been gaining increasing attention from
the evolutionary computation research community, mainly
because of the fact that EAs work with a population of candi-
date solutions and have good potential to find multiple optimal
solutions of an NES in a single run. In principle, solving NESs
by EAs can be considered as a two-step procedure [3]. In the
first step, it is necessary to design a transformation technique,
with the aim of recasting an NES as a kind of optimization
problem. In the next step, an optimization algorithm should
be developed to solve the transformed optimization problem.

The current popular transformation techniques can
be classified into three categories: 1) single-objective
optimization-based transformation techniques [2], [4]–[11];
2) constrained optimization-based transformation tech-
niques [12], [13]; and 3) multiobjective optimization-based
transformation techniques [3], [14], [15]. The first kind of
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transformation technique usually converts an NES into the
following single-objective optimization problem:

min
∑m

i=1
|ei(x)| (2)

or

min
∑m

i=1
ei

2(x). (3)

In addition, a constrained optimization problem is always
constructed in the second kind of transformation technique

{
min

∑m
i=1 |ei(x)|

subject to ei(x) ≥ 0, i = 1, . . . , m.
(4)

These two kinds of transformation techniques have a com-
mon feature: only one objective function is involved. Due to
this feature, EAs may merely focus on one of the optimal
solutions in one run when solving (2)–(4). In order to locate
multiple optimal solutions simultaneously, some extra diversity
preservation strategies should be incorporated into EAs, such
as the repulsion strategy [16]–[18]. However, such extra diver-
sity preservation strategies would inevitably introduce some
complicated operators and/or problem-dependent parameters,
which have a side effect on the generalization. More impor-
tantly, if an NES contains infinitely many optimal solutions,
EAs are not capable of maintaining a set of representative
optimal solutions under the single-objective framework.

In contrast, multiobjective optimization-based transforma-
tion techniques redefine an NES as a multiobjective optimiza-
tion problem. Note that multiobjective optimization problems
also include a set of optimal solutions known as the Pareto
optimal solutions. Moreover, the task of solving multiobjective
optimization problems is to find multiple Pareto optimal solu-
tions in a single run. Obviously, the above similarities imply
that multiobjectivization is quite promising for NESs. Along
this line, several methods have been proposed. In [14], each
equation represents an objective function, and thus, an NES is
converted into an m-objective optimization problem. In [15],
there are (n + 1) objective functions in the transformed opti-
mization problem. It is evident that with regard to these two
methods, the number of objective functions is relevant to the
number of equations or decision variables, respectively. As a
consequence, they may suffer from the curse of dimensional-
ity (i.e., many-objective) with the drastic increase of m and n.
Unlike [14] and [15], Song et al. [3] presented a method
named MONES, which transforms an NES into a biobjective
optimization problem. In MONES, the first decision variable
(i.e., x1) is exploited to guarantee the conflict between the two
objective functions. However, if several optimal solutions of
an NES have the same value in the first decision variable, it is
very likely that some of them will be lost during the evolution.

In this paper, we propose a weighted biobjective trans-
formation technique (called WeB) for NESs based on our
previous work (i.e., MONES) in [3]. WeB shares the same
biobjective structure with MONES. Different from MONES,
in WeB all the decision variables, rather than just the first
decision variable, are linearly weighted to construct the two
objective functions. By doing this, WeB is able to remedy
the loss of some optimal solutions with the same value in
the first decision variable. Indeed, WeB is a generalization of

MONES. Systematic experiments on 38 NESs with a wide
range of features have demonstrated that this simple modi-
fication to MONES can produce significantly better results.
WeB has the following advantages over other transformation
techniques.

1) Compared with other multiobjective optimization-based
transformation techniques, WeB has the potential to map
the optimal solutions of an NES into different points on
the linear Pareto front in the objective space under the
biobjective structure because of the random weights.

2) Compared with both single-objective optimization-based
and constrained optimization-based transformation tech-
niques, WeB has the capability to provide a set of
representative optimal solutions for the situation, where
an NES contains infinitely many optimal solutions.

Additionally, we suggest an adaptive multiobjective differen-
tial evolution (AMODE) to solve the transformed biobjective
optimization problem effectively. Furthermore, by combining
WeB with AMODE, we propose a generic framework for
simultaneously locating multiple optimal solutions of NESs. It
is empirically shown that the performance of our framework
is highly competitive with a lot of well-established methods
for NESs.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III presents WeB.
Section IV describes AMODE. Meanwhile, Section IV gives
the details of our generic framework for solving NESs.
Section V provides the experimental results. Section VI dis-
cusses some issues in our framework. Section VII concludes
this paper and points out some future research directions.

II. RELATED WORK

Utilizing multiobjective optimization-based transformation
techniques to deal with NESs is a novel idea that has arisen in
recent years and is the main focus of this paper. As pointed out
previously, in this kind of transformation technique, an NES is
transformed into a multiobjective optimization problem. After
this transformation, it is generally expected that the objec-
tive functions of the transformed optimization problem are
in conflict with each other. This property plays an important
role, as it can ensure that the optimal solutions of an NES
are the Pareto optimal solutions of the transformed optimiza-
tion problem. Otherwise, it is very difficult to identify the
relationship between the original NES and the transformed
optimization problem.

Next, we will briefly introduce five representative
approaches. Among them, the last two approaches are orig-
inally designed for handling multimodal optimization prob-
lems [19]. Multimodal optimization problems have the same
formulation as single-objective optimization problems. Note,
however, that they involve multiple optimal solutions. One
may be interested in why the last two approaches can be
used for NESs. It is because if an NES is transformed
into (2) or (3), this NES is also a single-objective optimiza-
tion problem with multiple optimal solutions, which means
that an NES with single-objective structure is essentially
equivalent to a multimodal optimization problem. Thus, the
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multiobjective optimization-based transformation techniques,
which convert a multimodal optimization problem into a
multiobjective optimization problem, can be readily extended
for coping with NESs.

A. CA

In 2008, Grosan and Abraham [14] proposed a new
approach for NESs, called CA. By treating each equation as
an objective function, CA converts an NES into the following
m-objective optimization problem:

⎧
⎪⎨

⎪⎩

min f1(x) = |e1(x)|
...

min fm(x) = |em(x)|.
(5)

CA provides a simple and straightforward transforma-
tion from an NES to a multiobjective optimization problem.
However, the main drawback of CA is that its performance
will significantly degrade as the number of equations
increases [20].

B. MONES

In 2015, Song et al. [3] proposed MONES, which is a biob-
jective formulation for NESs. MONES consists of two parts:
1) the location function and 2) the system function. The former
can be expressed as

{
min α1(x) = x1
min α2(x) = 1− x1

(6)

where x1 is the first decision variable of an NES. It is easily
deduced that the Pareto front of (6) is a line segment defined
by y = 1− x in the objective space. In addition, the latter can
be formulated as

{
min β1(x) =∑m

i=1 |ei(x)|
min β2(x) = m×max (|e1(x)|, . . . , |em(x)|). (7)

The transformed biobjective optimization problem can be
obtained by combining these two parts

{
min f1(x) = α1(x)+ β1(x)

min f2(x) = α2(x)+ β2(x).
(8)

It is interesting to note that for any optimal solution x∗ of
an NES, β1(x∗) = β2(x∗) = 0, which means that under this
condition (8) degenerates to (6). As a result, all the optimal
solutions of an NES are the Pareto optimal solutions of (8),
and their images in the objective space are located on the line
segment defined by y = 1− x. In multiobjective optimization,
linear Pareto front is the simplest type and, consequently, it
enables the current multiobjective EAs to find the Pareto optimal
solutions more easily compared with other types of Pareto front,

such as nonlinear Pareto front [3]. However, since only the first
decision variable is chosen to construct the location function,
if several optimal solutions have the same value in the first
decision variable, MONES might lose some of them.

C. Qin et al.’s Method

Inspired by MONES [3], Qin et al. [15] presented a (n+1)-
objective transformation technique in 2015, where n is the
number of decision variables. This transformation technique
is also composed of two parts: 1) the location function and 2)
the system function, which is shown in (9) at the bottom of
the page. In (9), R(x) is the system function which is the mean
of the absolute values of all equations, and C is a parameter
to control the shape of the Pareto front, which increases from
0 to infinity during the evolution.

In [15], all the objective functions in the location function
conflict with each other, and thus, the optimal solutions of
an NES are the Pareto optimal solutions of (9). Moreover, the
location function is able to provide a one-to-one mapping from
the Pareto optimal set to the Pareto front, thereby overcoming
the drawback of MONES to a certain degree. However, similar
to CA, this transformation technique will also suffer from the
curse of dimensionality with the increase of n.

D. MOMMOP

In 2015, Wang et al. [21] developed a method named
MOMMOP to deal with multimodal optimization problems, by
generalizing the idea of MONES. Recognizing the shortcom-
ing of MONES, MOMMOP makes use of each decision vari-
able to construct a biobjective optimization problem like (8)
and, therefore, n biobjective optimization problems appear.
Because of the similarity between NESs and multimodal opti-
mization problems, we revise MOMMOP to solve NESs as
follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

BOP1

{
min x1 + β1(x)

min 1− x1 + β2(x)
...

BOPn

{
min xn + β1(x)

min 1− xn + β2(x).

(10)

In MOMMOP, when comparing two individuals (denoted as
xu and xv), we say xu is better than xv if xu Pareto dominates
xv on all the n biobjective optimization problems in (10)

(xu ≺ xv on BOP1) ∧ . . . ∧ (xu ≺ xv on BOPn). (11)

Compared with MONES, MOMMOP achieves the
performance improvement at the expense of higher computa-
tional time complexity. Additionally, it is hard to analyze the

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min f1(x) = x1
n + x2

n−1 + . . .+ xn−1
2 + xn

1 + C × R(x)× ln (n+ 2)

min f2(x) = x1
n + x2

n−1 + . . .+ xn−1
2 + (1− xn)+ C × R(x)× ln (n+ 1)

min f3(x) = x1
n + x2

n−1 + . . .+ xn−2
3 + (1− xn−1)+ C × R(x)× ln (n)

...

min fn(x) = x1
n + (1− x2)+ C × R(x)× ln (3)

min fn+1(x) = (1− x1)+ C × R(x)× ln (2)

(9)
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property of the Pareto front theoretically since there exist n
2-D objective spaces in MOMMOP.

E. MOBiDE

In 2013, Basak et al. [22] designed a biobjective differential
evolution for multimodal optimization problems, abbreviated
as MOBiDE. In MOBiDE, the first objective function aims to
select the individuals of higher quality, and the purpose of the
second objective function is to maintain the diversity to prevent
the population from converging toward a single optimal solu-
tion. These two objective functions can be easily borrowed to
solve NESs. For example, each individual xi (i ∈ {1, . . . , NP})
in the population is associated with the following two objective
functions for NESs, where NP is the population size

{
min f1(xi) =∑m

k=1 |ek(xi)|
min f2(xi) = − �i

NP
(12)

where �i = ∑NP
j=1 ‖ xi − xj ‖, ‖ xi − xj ‖ denotes the

Euclidean distance between xi and xj in the decision space,
and f2(xi) represents the average Euclidean distance from xi

to all other members in the population.
However, the limitation of MOBiDE is that the two objec-

tive functions are not totally in conflict with each other, which
leads to an unclear relationship between the optimal solutions
of an NES and the Pareto optimal solutions of (12).

Remark 1: Apart from MOMMOP [21] and MOBiDE [22],
many other biobjective transformation techniques for
multimodal optimization problems have been proposed
(see [23]–[25]). We can take advantage of these transfor-
mation techniques to solve NESs. Note, however, that they
have a similar disadvantage as MOBiDE. Consequently, their
capabilities for finding multiple optimal solutions of an NES
in a single run are limited. Due to the space limitation, we
omit them in this paper.

III. A WEIGHTED BIOBJECTIVE TRANSFORMATION

TECHNIQUE

A. Motivation

Based on the above introduction, it is clear that
multiobjective optimization-based transformation techniques,
due to the similarity between NESs and multiobjective opti-
mization problems, provide a natural advantage over other
kinds of transformation techniques for NESs. As analyzed in
Section II, in order to obtain competitive performance, the fol-
lowing four properties deserve much attention in this kind of
transformation technique.

1) Biobjective structure, which has the least number of
objective functions in multiobjective optimization prob-
lems, i.e., two.

2) Conflicting objective functions, which enable the opti-
mal solutions of an NES to become the Pareto optimal
solutions of the transformed multiobjective optimization
problem.

3) Linear Pareto front, which is the simplest type of Pareto
front for a multiobjective EA to approximate.

4) One-to-one mapping, which assures that all the optimal
solutions of an NES are mapped into different points on
the Pareto front in the objective space.

Interestingly, MONES possesses the first three properties.
In this paper, we present a simple yet effective weighted
biobjective transformation technique (WeB) that preserves the
essential details of MONES while eliminating the effect of the
fourth property.

B. WeB

In WeB, the location function is defined as
⎧
⎨

⎩

min γ1(x) =
∑n

i=1 wi×xi∑n
i=1 wi

min γ2(x) = 1−
∑n

i=1 wi×xi∑n
i=1 wi

(13)

where w = (w1, . . . , wn) is the weight vector, and wi is the
ith weight randomly chosen from 0 and 1. With respect to the
location function, we can give the following comments.

1) Equation (13) produces a weighted linear combination
on all the decision variables.

2) The two objective functions totally conflict with each
other.

3) The Pareto front is a line segment defined by y = 1− x.
4) If w1 	= 0 and (w2, . . . , wn) = (0, . . . , 0), the location

function of WeB is equivalent to that of MONES, which
means MONES is just a special case of WeB.

In addition, the system function is the same with (2) and
β1(x) in (7) of MONES. It is because we would like to make
the implementation and formulation as simple as possible.

The weighted biobjective optimization problem can be
obtained by combining the location function with the system
function

⎧
⎨

⎩

min f1(x) =
∑n

i=1 wi×xi∑n
i=1 wi

+∑m
i=1 |ei(x)|

min f2(x) = 1−
∑n

i=1 wi×xi∑n
i=1 wi

+∑m
i=1 |ei(x)|.

(14)

For an optimal solution x∗ of an NES, (14) will degenerate
to (13) since

∑m
i=1 |ei(x∗)| = 0, which signifies that all the

optimal solutions of an NES are the Pareto optimal solutions
of WeB and that the Pareto front of WeB is linear.

From the previous description, one can conclude that the
implementation of WeB is very simple and it does not
introduce any problem-dependent parameters. Moreover, WeB
keeps the main properties of MONES, i.e., biobjective struc-
ture, conflicting objective functions, and linear Pareto front.

The major difference between WeB and its predecessor
MONES is that in WeB, all the decision variables are utilized
to design the location function in a linearly weighted fashion.
As pointed out previously, MONES might fail to achieve a
one-to-one mapping from the optimal set of an NES to the
Pareto front, in the case of some optimal solutions having the
same value in the first decision variable. That is, the optimal
solutions with the same value in the first decision variable will
be mapped into the same point on the Pareto front. However,
regarding WeB, the probability that the optimal solutions with
the same values in certain decision variables or completely
different values in all the decision variables are mapped into
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Fig. 1. Images of the eight individuals in the objective spaces defined by five different multiobjective optimization-based transformation techniques for the
example in Table I. (a) CA [14]. (b) MONES [3]. (c) MOBiDE [22]. (d) WeB with w = (0.5, 0.5). (e) WeB with w = (0.9, 0.1).

TABLE I
EIGHT INDIVIDUALS IN THE EXAMPLE

the same point on the Pareto front is very low because of the
random weights. Therefore, WeB also has the fourth property
mentioned in Section III-A.

C. Analysis of the Principle

An example with two decision variables is considered to
illustrate the working principles of five different multiobjective
optimization-based transformation techniques, i.e., CA [14],
MONES [3], MOMMOP [21], MOBiDE [22], and WeB. As
introduced in Section II, the Qin et al.’s method [15] is
also a multiobjective optimization-based transformation tech-
nique. However, this method depends on a dynamic control
parameter C, and it is not trivial to analyze its performance.

As shown in Table I, this example involves two equations
(e1 and e2). Suppose that there are eight individuals (denoted
as A, B, C, D, E, F, G, and H) in the population. Among
them, six individuals (i.e., A, B, C, D, E, and F) are the
optimal solutions since all the values of the two equations
are equal to zero, and the remaining two individuals (i.e., G
and H) are not the optimal solutions since the absolute val-
ues of the two equations are greater than zero. Fig. 1 depicts

the images of these eight individuals in the objective spaces
defined by CA, MONES, MOBiDE, and WeB. Note that
there are n biobjective optimization problems in MOMMOP,
so we cannot provide a visualized result for it in the 2-D
objective space.

Suppose also that the task is to select six individuals from
the population for the next generation based on nondomi-
nated sorting [26]. Next, we are interested in what happens
to these five multiobjective optimization-based transformation
techniques.

1) In CA, all the optimal solutions of an NES are mapped
into the origin [i.e., (0, . . . , 0)] in the objective space
since the objective function values of all the optimal
solutions are equal to zero based on (5). As shown in
Fig. 1(a), the images of the six optimal solutions lie in
the origin. These six optimal solutions are the nondom-
inated solutions in the population and will survive into
the next generation.

2) With respect to MONES, C and D are mapped into
the same point in the objective space, and seven indi-
viduals (six optimal solutions and H) are the non-
dominated solutions as shown in Fig. 1(b). Among
these seven individuals, C and D have the smallest
crowding distance [26]. Thus, A, B, C (or D), E,
F, and H will be selected into the next generation.
Clearly, one of the optimal solutions (i.e., C or D) is
missed.

3) For MOMMOP, after a careful analysis, all the indi-
viduals in the population are the nondominated solu-
tions according to (10). Subsequently, we compute their
crowding distances in the decision space [21], and find
that two of the optimal solutions (C and D) have the
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smallest crowding distance and will be removed during
the selection.

4) In terms of MOBiDE, all the optimal solutions are
mapped into different points in the objective space and
the population can be divided into six levels of nondomi-
nated set as shown in Fig. 1(c): {A}, {E, H}, {B, G}, {F},
{C}, and {D}. As a result, A, B, E, F, G, and H are the
individuals with the most potential to be selected and
two optimal solutions (C and D) are lost.

5) To implement WeB, all the weights in the weight vec-
tor w are randomly generated from 0 and 1. In order
to analyze the effect of the weight vector w, we vary
the weights with a step-size equal to 0.1 and obtain
the following 11 weight vectors: (0.0, 1.0), (0.1, 0.9),
(0.2, 0.8), (0.3, 0.7), (0.4, 0.6), (0.5, 0.5), (0.6, 0.4),
(0.7, 0.3), (0.8, 0.2), (0.9, 0.1), and (1.0, 0.0). According
to our observation, all the optimal solutions correspond
to different points in the objective space for all the
weight vectors with the exception of w = (1.0, 0.0). It is
because WeB with w = (1.0, 0.0) is roughly equivalent
to MONES, thereby exhibiting the same drawback. In
addition, for all the weight vectors except w = (1.0, 0.0)

and w = (0.9, 0.1), the nondominated solutions are
just the six optimal solutions, which will be chosen
for the next generation. For example, the experimen-
tal results of WeB with w = (0.5, 0.5) are given in
Fig. 1(d). However, WeB with both w = (1.0, 0.0)

and w = (0.9, 0.1) tend to lose one of the opti-
mal solutions (i.e., C or D). This can be attributed
to the fact that in these two cases, the nondominated
solutions consist of seven individuals (the six optimal
solutions and H), and one of C and D will be elimi-
nated due to their having the smallest crowding distance.
Fig. 1(e) shows the experimental results of WeB with
w = (0.9, 0.1).

We now summarize the above discussions from two aspects.
1) MOBiDE can provide a one-to-one mapping from the

set of the optimal solutions to the Pareto front. For ten
out of the 11 weight vectors, WeB is also able to achieve
that. Unfortunately, it is a fact that CA will map all the
optimal solutions into one point in the objective space
and MONES will map the optimal solutions with the
same value in the first decision variable into one point
in the objective space.

2) CA succeeds in selecting the six optimal solutions into
the next generation.1 For nine out of the 11 weight
vectors, WeB can also do that. However, MONES,
MOBiDE, and MOMMOP definitely lose some of the
optimal solutions.

Overall, WeB seems to be the best choice: it offers a one-
to-one mapping while maintaining the optimal solutions in a
vast majority of cases. It is necessary to emphasize that in the
practical implementation of WeB, all the weights in the weight
vector w are randomly generated. Thus, the probability that

1As mentioned in Section II-A, CA will suffer from the curse of dimen-
sionality with the increase of the number of equations.

w = (1.0, 0.0) is very low and the performance of WeB will
be further enhanced.

IV. AN ADAPTIVE MULTIOBJECTIVE

DIFFERENTIAL EVOLUTION

As pointed out previously, when solving NESs by EAs,
both the transformation technique and the optimization algo-
rithm are vital. After transforming an NES into a biobjective
optimization problem in Section III, the next issue is how
to design an optimization algorithm to effectively solve the
transformed biobjective optimization problem. To address this
issue, we propose an adaptive multiobjective differential evo-
lution, referred to as AMODE, which is an improved version
of DEMO proposed in [27]. DEMO is mainly based on
NSGA-II—a well-known multiobjective EA [26], whereas the
search engine is replaced with differential evolution (DE)—a
very popular EA paradigm [28]. Due to its simple struc-
ture, ease of implementation, and better performance than
NSGA-II, DEMO2 serves as the baseline optimization algo-
rithm in AMODE. Moreover, two simple improvements are
integrated within AMODE to make it more suitable for NESs
as follows.

A. Parameter Adaptation

The performance of DE is significantly influenced by its
parameter settings, such as the scaling factor F and the
crossover control parameter CR [29], [30]. In this paper, the
parameter adaptation of AMODE originates from a very com-
petitive DE variant, namely SHADE [31], in which a historical
memory of successful parameter settings has been used to
produce future parameter values.

In SHADE, each individual xi (i ∈ {1, . . . , NP}) in the
population has its own F and CR, denoted as Fi and CRi.
At each generation, the successful Fi and CRi are stored into
SF and SCR, respectively. The main characteristic of SHADE
is that it maintains a historical memory with H entries for
MF = {MF,1, . . . , MF,H} and MCR = {MCR,1, . . . , MCR,H}.
The contents of MF and MCR are initialized to 0.5 and updated
as follows:

MF,k =
{

meanWL(SF) if SF 	= ∅
MF,k otherwise

(15)

MCR,k =
{

meanWA(SCR) if SCR 	= ∅
MCR,k otherwise

(16)

where k ∈ {1, . . . , H} determines the position to update,
meanWL(SF) is the weighted Lehmer mean of SF, and
meanWA(SCR) is the weighted arithmetic mean of SCR.3

During the evolution, the value of k increases generation by
generation. If k > H, then it is reset to be 1. In SHADE, the
contents of MF and MCR are utilized to produce Fi and CRi

for the next generation.

2Note that three versions of DEMO are presented in [27],
i.e., “DEMO/parent,” “DEMO/closest/dec,” and “DEMO/closest/obj.” In
this paper, DEMO/closest/dec is chosen because of its power to maintain
high diversity of the population.

3Note that in (15) the weighted Lehmer mean is used since it can generate
larger scaling factors than the weighted arithmetic mean [32]. In this way, the
diversity of the population can be promoted.
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Algorithm 1: Procedure of A-WeB
Input: NP: the population size;

H: the entries of the historical memory
Output: The nondominated solutions in the final population

1 Randomly generate a weight vector w = (w1, . . . , wn), where wi (i ∈ {1, . . . , n}) is
randomly chosen from 0 and 1;

2 Generate the initial population P = {x1, . . . , xNP};
3 Evaluate each individual in P according to the weighted biobjective optimization

problem in Equation (14);
4 Set all values in the historical memory MF = {MF,1, . . . , MF,H } and

MCR = {MCR,1, . . . , MCR,H } to 0.5;
5 k = 1;
6 while the termination criterion is not met do
7 Set A = ∅, SF = ∅, and SCR = ∅;
8 for i = 1 to NP do
9 j = randint(1, H);

10 Fi = randc(MF,j, 0.1);
11 CRi = randn(MCR,j, 0.1);

12 for i = 1 to NP do
13 Generate the mutant vector vi for xi by Equation (17);
14 Generate the offspring ui by implementing the binomial crossover of

DE on vi and xi;
15 Evaluate ui according to the weighted biobjective optimization

problem in Equation (14);

16 for i = 1 to NP do
17 Find the nearest individual in P to ui according to the Euclidean

distance in the decision space, denoted as xs;
18 if xs is Pareto dominated by ui then
19 xs = ui;
20 else if xs Pareto dominates ui then
21 ui is discarded;
22 else
23 ui is added into the archive A;

24 if
∑m

j=1 |ej(ui)| ≤
∑m

j=1 |ej(xi)| then
25 SF ← SF ∪ Fi and SCR ← SCR ∪ CRi;

26 if A 	= ∅ then
27 P ← NSGA-II(A ∪P);

28 if SF 	= ∅ and SCR 	= ∅ then
29 Update MF,k and MCR,k based on Equation (15) and Equation (16),

respectively;
30 k = k + 1 ;
31 if k > H then
32 k = 1;

B. Mutation Operator

Several classical mutation operators are known in the DE
research community. In this paper, we employ the mutation
operator “DE/current/1” to create a mutant vector for each
individual xi (i ∈ {1, . . . , NP}) in the population

vi = xi + Fi ×
(
xr1 − xr2

)
(17)

where vi is the mutant vector, the indices r1 and r2 are two
mutually distinct integers randomly selected from {1, NP}, and
Fi is a scaling factor between 0 and 1.

DE/current/1 is similar to a local search since the scaled
difference of two individuals is directly added into the current
individual xi. Thus, the search is carried out around the neigh-
borhood of each individual, which facilitates the diversity of
the population and provides an advantage to locate multiple
optimal solutions. Note that DE/current/1 has also attracted a
lot of attention in multiobjective optimization [33], [34].

C. Combining AMODE With WeB for Solving NESs

By combining AMODE with WeB, we propose a generic
framework called A-WeB to simultaneously locate multiple
optimal solutions of NESs, which is shown in Algorithm 1.

In each run of A-WeB, all the elements of the weight
vector w are randomly generated and kept unchanged dur-
ing the evolution, which means that each run has its own
weight vector w. Additionally, all the individuals are evaluated
according to the weighted biobjective optimization problem
in (14). During the evolution, firstly Fi and CRi are pro-
duced for each individual xi in the population P by lines
8–11, where randint(1, H) is a randomly integer from 1 to H,
randc(·, ·) is a random number obeying a Cauchy distribution,
and randn(·, ·) is a random number obeying a Gaussian dis-
tribution.4 Subsequently, the mutation operator DE/current/1
and the binomial crossover of DE are used to yield an off-
spring ui for each individual xi in P . Afterward, the nearest
individual xs in P to ui is identified and compared with ui

based on Pareto dominance. If
∑m

j=1 |ej(ui)| ≤ ∑m
j=1 |ej(xi)|

which suggests that Fi and CRi are the successful parameter
settings, then they are stored into SF and SCR, respectively.
After the above update, NSGA-II [26] are utilized to choose
NP individuals from P and the archive A. Finally, the con-
tents of the historical memory MF and MCR are updated based
on (15) and (16), respectively. The above procedure is repeated
until the termination criterion is met.

From the above explanations, it can be seen that the imple-
mentation of A-WeB is simple and its computational time
complexity is the same with NSGA-II. In addition, it only
contains two user-defined parameters, i.e., NP and H.

V. EMPIRICAL STUDIES

Thirty-eight test instances with a broad range of charac-
teristics, denoted as F01–F38, are used for our empirical
studies. These 38 test instances are chosen from [3], [14],
and [35]–[37], and can be divided into three classes.

1) NESs with known optimal solutions (F01–F21), which
include a number of optimal solutions.

2) NESs with unknown optimal solutions (F22–F25),
which include infinitely many optimal solutions.

3) Ill-scaled NESs (F26–F38), in which the decision vari-
ables have different search ranges.

Table II summarizes the information of these 38 test
instances and the details of them can be found in the sup-
plementary material. For 15 test instances (i.e., F04, F07,
F09, F12, F14, F15, F16, F18, F19, F20, F23, F24, F27, F30,
and F38), some optimal solutions contain the same values in
certain decision variables.

A. Performance Metrics

Based on [3] and [38], two performance metrics, i.e., peak
ratio (PR) and success rate (SR), are used to assess the

4In this paper, Fi is generated obeying a Cauchy distribution and CRi is
generated obeying a Gaussian distribution. The reasons are twofold. On one
hand, recognizing the outstanding performance of SHADE [31], our parameter
adaptation follows SHADE. On the other hand, the Cauchy distribution is
more helpful to diversify Fi than the Gaussian distribution [32]. Moreover, the
Cauchy distribution coupled with the weighted Lehmer mean is more likely
to produce larger values of Fi. Hence, under this condition the diversity of
the population can be maintained, which is beneficial to find multiple optimal
solutions of NESs simultaneously.
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TABLE II
CHARACTERISTICS OF 38 TEST INSTANCES, WHERE n IS THE NUMBER OF DECISION VARIABLES, S IS THE DECISION SPACE, LI IS THE NUMBER OF

LINEAR EQUATIONS, NE IS THE NUMBER OF NONLINEAR EQUATIONS, NOS IS THE NUMBER OF KNOWN OPTIMAL SOLUTIONS OF AN NES,
Max_FEs IS THE MAXIMAL NUMBER OF FUNCTION EVALUATIONS, AND “ACTIVE OPTIMAL SOLUTIONS” INDICATES THAT SOME

OPTIMAL SOLUTIONS HAVE THE SAME VALUES IN CERTAIN DECISION VARIABLES

performance of a method for NESs with known optimal solu-
tions (F01–F21) and ill-scaled NESs (F26–F38) in this paper.
Prior to introducing these two performance metrics, we need
to explain how to determine the number of the optimal solu-
tions found in a run. Since the optimal solutions of these NESs
are known a priori, first, we choose one of the optimal solu-
tions. If the minimum Euclidean distance between this optimal
solution and all the solutions in the population obtained at
the end of a run is less than a predefined accuracy level ε,
then we consider that an optimal solution is found. Afterward,
the same process will be executed for the remaining optimal
solutions one by one, and finally the number of the optimal
solutions found can be calculated. If all the optimal solutions
can be found in a run, then it is called a successful run. PR
denotes the average percentage of the optimal solutions found
over all the runs and SR denotes the percentage of the suc-
cessful runs. In this paper, ε = 0.01 if n ≤ 5, otherwise,
ε = 0.1.

For NESs with unknown optimal solutions (F22–F25), these
two performance metrics cannot be directly applied. Under this
condition, the hypervolume metric [39] is used.

Note that for all the three performance metrics (PR, SR, and
hypervolume), the larger the value, the better the performance
of a method.

B. Methods in Comparison and Experimental Setup

We compare A-WeB with the following nine methods.
1) A-MONES, A-MOMMOP, and A-MOBiDE: These three

methods are obtained by combining AMODE with
MONES [3], MOMMOP [21], and MOBiDE [22],
respectively. MONES, MOMMOP, and MOBiDE have
been introduced in Section II. Note that CA [14] is
not chosen for comparison since its performance is out-
performed by MONES as shown in [3]. In this paper,
when implementing MONES, we randomly select a
decision variable to construct the location function in
each run.

2) NCDE [40], NSDE [40], LIPS [41], and R3PSO [42]:
These are four state-of-the-art niching methods designed
for multimodal optimization problems. We pointed out
in Section II that the methods for multimodal opti-
mization problems can be easily generalized to handle
NESs. When making use of NCDE, NSDE, LIPS, and
R3PSO to solve NESs, an NES is transformed into the
single-objective optimization problem in (2).

3) Rep-SHADE and Rep-CLPSO: The repulsion strategy
presented in [16] is combined with two powerful EAs,
i.e., SHADE [31] and CLPSO [43], to solve NESs. The
two resultant methods are referred to as Rep-SHADE
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TABLE III
RESULTS OBTAINED BY THE MULTIPLE-PROBLEM WILCOXON TEST FOR

THE TEN COMPARED METHODS ON F01–F21. R+ MEANS THE SUM OF

RANKS THAT A-WEB PERFORMS BETTER THAN ITS COMPETITOR,
AND R− IS THE SUM OF RANKS FOR THE OPPOSITE

and Rep-CLPSO. For Rep-SHADE and Rep-CLPSO, an
NES is transformed into the following repulsion function
once one optimal solution has been found:

min
∑m

i=1
|ei(x)| + β

∑K

j=1
e−δjχρ

(
δj

)
(18)

where

δj = ‖ x− x∗j ‖ (19)

χρ

(
δj

) =
{

1, if δj ≤ ρ

0, otherwise
(20)

K is the number of optimal solutions that have been
found, x∗j is the jth optimal solution, δj is the Euclidean
distance between x and x∗j , ρ is a small constant to adjust
the radius of repulsion areas, and β is a large penalty
constant. As suggested in [16], ρ = 0.01 and β = 1000.
From (18), we can see that the repulsion strategy creates
the repulsion areas around the found optimal solutions
and that an individual lies within one of the repulsion
areas will be penalized. By doing this, the repulsion
strategy has the potential to make the search algorithm
find new optimal solutions.

It is evident that to achieve the simultaneous locating of
multiple optimal solutions of an NES, among the aforemen-
tioned ten methods, the first four methods (i.e., A-WeB,
A-MONES, A-MOMMOP, and A-MOBiDE) integrate the
multiobjective optimization-based transformation techniques
with a multiobjective EA (AMODE), while the remaining
six methods integrate the single-objective optimization-based
transformation techniques with either the niching strategy or
the repulsion strategy.

In our experiments, the parameter settings of A-WeB were:
NP = 100 and H = NP. For the other nine methods,
NP was also fixed to 100 and the other parameter settings
were the same as in their original papers. Since AMODE is
also considered as the optimization algorithm in A-MONES,
A-MOMMOP, and A-MOBiDE, the parameter H was fixed to
NP for them. The detailed parameter settings of the ten com-
pared methods were given in Table S-R-I of the supplementary
material. Fifty independent runs were performed for each test
instance with the maximal number of function evaluations
(Max_FEs) as the termination criterion. Note that Max_FEs
was set according to the difficulty of an NES as shown in
Table II. To have a fair comparison, all the ten methods started
with the same initial population in each of 50 runs.

TABLE IV
RANKINGS OBTAINED BY THE FRIEDMAN ALIGNED TEST FOR THE TEN

COMPARED METHODS ON F01–F21. THE LOWER THE RANKING, THE

BETTER THE PERFORMANCE OF A METHOD. THE BEST AND

THE SECOND BEST RESULTS ARE HIGHLIGHTED IN

BOLDFACE AND ITALIC, RESPECTIVELY

C. Comparison on NESs With Known Optimal
Solutions (F01–F21)

The PR and SR values resulting from the ten compared
methods are summarized in Tables S-R-II and S-R-III of the
supplementary material, respectively. Next, we will discuss the
experimental results from the following four aspects.

1) A-WeB performs the best in comparison with the other
nine methods since it obtains both the highest aver-
age PR value (0.8839) and the highest average SR
value (0.64). In addition, A-WeB provides both the
best PR values and the best SR values on ten test
instances (i.e., F01, F03, F05, F06, F08, F10, F11,
F14, F18, and F20). A-WeB also achieves 100% PR
and 100% SR on seven test instances (i.e., F01, F03,
F05, F06, F11, F14, and F20), which means that it suc-
ceeds in locating all the optimal solutions over all 50
runs. Moreover, the PR and SR values derived from
A-WeB are larger than zero for all the test instances
except F15.

2) A-MOMMOP, NCDE, NSDE, and Rep-SHADE show
similar and competitive performance in terms of the
average PR and SR. They have the capability to success-
fully solve five, five, five, and seven NESs, respectively.
Note that NCDE and Rep-SHADE fail to find any opti-
mal solution on one (F10) and two (F02 and F08) test
instances, respectively.

3) Again, A-MONES and Rep-CLPSO present similar
overall performance. However, they do not perform as
well as the above five methods. They are able to locate
all the optimal solutions of four and six test instances,
respectively. Rep-CLPSO cannot find any optimal solu-
tion on three test instances (F02, F08, and F10).

4) The performance of A-MOBiDE, LIPS, and R3PSO is
found to decrease remarkably. A-MOBiDE and LIPS can
achieve 100% successful runs on only two (F06 and F11)
and one (F01) test instance, respectively. R3PSO cannot
solve any test instance consistently in all runs and does
not yield good performance in a vast majority of test
instances. As mentioned in Section II, for A-MOBiDE,
the relationship between the optimal solutions of an
original NES and the Pareto optimal solutions of the
transformed biobjective optimization problem cannot be
described explicitly. The poor performance of LIPS and
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TABLE V
AVERAGE AND STANDARD DEVIATION OF THE HYPERVOLUME VALUES OF THE SEVEN COMPARED METHODS ON F22–F25

Fig. 2. Images of the obtained nondominated solutions of different methods in the objective space defined by (14) for F22 in a representative run. The solid
line is the theoretical Pareto front with y = 1− x. (a) A-WeB. (b) A-MONES. (c) A-MOMMOP. (d) NCDE. (e) NSDE. (f) Rep-SHADE. (g) Rep-CLPSO.

R3PSO could be explained by the fact that they employ
simple velocity updating equation of PSO, and as a
result, their search ability is limited.

We also tested the statistical differences of the ten compared
methods by making use of the multiple-problem Wilcoxon test
and the Friedman Aligned test [44]. It is noteworthy that the
statistical tests were implemented via the KEEL software [45].
Moreover, we chose the Bonferroni–Dunn method as the
post-hoc test for the Friedman Aligned test. The statistical
test results are given in Tables III and IV.

As shown in Table III, in terms of the multiple-problem
Wilcoxon test, A-WeB provides higher R+ values than R− val-
ues in all the cases for both the PR and SR metrics. Especially,
A-WeB significantly outperforms A-MONES, A-MOBiDE,
LIPS, R3PSO, and Rep-CLPSO in that all the p-values are
less than 0.05. In addition, it can be seen from Table IV that
with respect to both the PR and SR metrics, A-WeB has the
best ranking, followed by Rep-SHADE.

D. Comparison on NESs With Unknown Optimal
Solutions (F22–F25)

F22–F25 contain infinitely many optimal solutions. The PR
and SR metrics are not suitable for evaluating the performance
of a method on these four test instances. To complete the

performance comparison, the hypervolume metric [39] was
used. To make the comparison fair, the nondominated indi-
viduals in the final populations provided by different methods
need to be mapped into the same objective space. In this paper,
with the termination of each run, the nondominated individ-
uals in the final populations provided by different methods
are mapped into the 2-D objective space defined by (14).
Since the Pareto front in this objective space is a line seg-
ment defined by y = 1 − x, we need to measure how close
the nondominated individuals converge toward the Pareto front
and how uniformly the nondominated individuals distribute
along the Pareto front, which are the two essential goals
in multiobjective optimization. Fortunately, the hypervolume
metric is effective in measuring both the convergence and
uniformness.

Table V records the average and standard deviation of
the hypervolume values derived from different methods on
F22–F25. In Table V, “NA” denotes that the experimen-
tal results of Rep-CLPSO are not available on F25 since
Rep-CLPSO cannot find any optimal solution with the
prespecified accuracy level (i.e., 0.01) and the repulsion
strategy is not triggered under this condition. Due to the
fact that A-MOBiDE, LIPS, and R3PSO do not yield good
performance in Section V-C, their experimental results are not
included for convenience. To test the statistical significance
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Fig. 3. Images of the obtained nondominated solutions of different methods in the objective space defined by (14) for F23 in a representative run. The solid
line is the theoretical Pareto front with y = 1− x. (a) A-WeB. (b) A-MONES. (c) A-MOMMOP. (d) NCDE. (e) NSDE. (f) Rep-SHADE. (g) Rep-CLPSO.

Fig. 4. Images of the obtained nondominated solutions of different methods in the objective space defined by (14) for F24 in a representative run. The solid
line is the theoretical Pareto front with y = 1− x. (a) A-WeB. (b) A-MONES. (c) A-MOMMOP. (d) NCDE. (e) NSDE. (f) Rep-SHADE. (g) Rep-CLPSO.

between A-WeB and each competitor, Wilcoxon signed-rank
test at a 0.05 significance level was applied. As shown in
Table V, A-WeB performs significantly better than A-MONES,
A-MOMMOP, NCDE, NSDE, Rep-SHADE, and Rep-CLPSO
on four, two, four, four, three, and three test instances, respec-
tively. However, A-MOMMOP and Rep-CLPSO have an edge
over A-WeB on only one test instance (F22), and A-MONES,
NCDE, NSDE, and Rep-SHADE cannot surpass A-WeB on
any test instance. The above comparison confirms that, on the
whole, A-WeB presents the best performance among the seven
compared methods on four test instances with infinitely many
optimal solutions.

Next, we further study the performance differences by
observing the nondominated solutions in the final popula-
tion. Figs. 2–5 provide the experimental results of the seven
compared methods in a representative run. In this paper, the

run in which the hypervolume value of the nondominated solu-
tions in the final population ranks 26th (from worst to best)
is termed as a representative run among 50 runs. It is easy
to see that A-WeB is able to consistently produce a set of
representative nondominated solutions with good convergence
and uniformness on F22–F25. Although the performance
of A-MOMMOP is better than that of A-Web on F22,
A-MOMMOP is not as effective as A-WeB for approximating
the Pareto front of F23 and F25. The reason could be that when
comparing two individuals in MOMMOP, the Pareto domi-
nance should be checked on all the n biobjective optimization
problems. If the Pareto dominance does not hold between them
on any of the n biobjective optimization problems, then they
are considered to be nondominated. Thus, the population of
MOMMOP might contain a lot of nondominated solutions,
which leads to low selection pressure and slow convergence
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Fig. 5. Images of the obtained nondominated solutions of different methods in the objective space defined by (14) for F25 in a representative run. The solid
line is the theoretical Pareto front with y = 1− x. (a) A-WeB. (b) A-MONES. (c) A-MOMMOP. (d) NCDE. (e) NSDE. (f) Rep-SHADE.

TABLE VI
RESULTS OBTAINED BY THE MULTIPLE-PROBLEM WILCOXON

TEST FOR THE SEVEN COMPARED METHODS ON F26–F38

speed. As depicted in Figs. 3 and 4, A-MONES runs the
risk of missing some parts of the Pareto front of F23 and
F24, in which some optimal solutions have the same values
in certain decision variables. The preformation degradation
of A-MONES coincides with our analysis in Section II.
Regarding the four single-objective optimization-based meth-
ods (NCDE, NSDE, Rep-SHADE, and Rep-CLPSO), they
tend to yield decent performance when the number of deci-
sion variables is small (i.e., F22 and F23). But, as the number
of decision variable increases (i.e., F24 and F25), they can-
not obtain promising results in terms of the convergence and
uniformness as shown in Figs. 4 and 5.

E. Comparison on Ill-Scaled NESs (F26–F38)

As for the previous test instances, the decision variables
have the same search region. A question which arises naturally
is how the performance of a method is influenced by the ill-
scaled NESs, in which the search ranges of decision variables
are different. To this end, we collect 13 ill-scaled NESs (F26–
F38) in Table II and the performance of different methods is
compared on them. Like Section V-D, the experimental results
of A-MOBiDE, LIPS, and R3PSO are omitted.

Tables S-R-IV and S-R-V in the supplementary
material summarize the PR and SR values provided
by the seven compared methods, respectively. From
Tables S-R-IV and S-R-V, it can be observed that A-WeB

TABLE VII
RANKINGS OBTAINED BY THE FRIEDMAN ALIGNED TEST FOR THE SEVEN

COMPARED METHODS ON F26–F38. THE BEST AND THE SECOND BEST

RESULTS ARE HIGHLIGHTED IN BOLDFACE AND ITALIC, RESPECTIVELY

achieves the second best average PR value, and the same best
average SR value with NSDE. Additionally, A-WeB provides
the best results on nine out of 13 test instances for both
the PR and SR metrics. It can successfully solve nine test
instances over all 50 runs.

Tables VI and VII report the statistical test results based on
the multiple-problem Wilcoxon test and the Friedman Aligned
test, respectively. As shown in Table VI, A-WeB provides
higher R+ values than R− values when comparing with all
the competitors except Rep-SHADE. Rep-SHADE provides
higher R− value than R+ value for PR, and the same R+ and
R− value for SR. As far as the multiple-problem Wilcoxon
test at α = 0.05 is concerned, the significant differences can
be observed in three cases (i.e., A-WeB versus A-MOMMOP,
A-WeB versus NCDE, and A-WeB versus Rep-CLPSO) for
SR, which suggests that under this condition A-WeB is signif-
icantly better than A-MOMMOP, NCDE, and Rep-CLPSO. In
addition, Table VII indicates that A-WeB ranks the second best
and the best in terms of the PR and SR metrics, respectively.
Therefore, on the whole, we can conclude that the performance
of A-WeB is highly competitive on the 13 ill-scaled NESs.

Based on the discussions in the above three sections, we
can give the following remarks.

1) WeB has the capability to alleviate the drawback of
MONES when some optimal solutions have the same
values in certain decision variables, which verifies the
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Fig. 6. Box plots of the hypervolume values derived from WeB with different weight vectors for (a)–(d) F22–F25.

main motivation of this paper. We attribute the superior-
ity of WeB to the fact that it uses the information of all
the decision variables under the biobjective framework
by random weights.

2) The single-objective optimization-based methods with
the niching or repulsion strategy (such as NCDE, NSDE,
Rep-SHADE, and Rep-CLPSO) can find multiple opti-
mal solutions of an NES in a single run. However, such
strategies always introduce some user-defined param-
eters, which need to be set properly to solve dif-
ferent NESs. More importantly, this kind of method
has no specific diversity maintenance mechanism as in
multiobjective EAs and, consequently, its performance
is poor for the NESs with infinitely many optimal solu-
tions, especially when the number of decision variables
is high, which makes WeB more attractive.

3) WeB is the best multiobjective optimization-based
transformation technique compared with MONES,
MOMMOP, and MOBiDE. A-WeB exhibits the best
overall performance when solving different kinds of
NESs.

VI. DISCUSSION

The aim of this section is to study the robustness of A-WeB,
the scalability of A-WeB, the effectiveness of some mecha-
nisms in A-WeB, and the influence of the parameter settings
on the performance of A-WeB.

A. On the Robustness of A-WeB

In A-WeB, the weight vector w = (w1, . . . , wn) in (14) is
randomly generated at the beginning of each run and is kept
untouched during the evolution. Then, a straightforward ques-
tion is how A-WeB performs with a fixed weight vector rather
than a random weight vector over all 50 runs. Subsequently, we
carried out experiments to answer this question. Specifically,
we chose 11 weight vectors in which the first ten weight
vectors were randomly produced and the last weight vec-
tor contained equal elements for all the decision variables,
i.e., w1 = · · · = wn. Fifty independent runs were implemented
for A-WeB associated with each of the 11 weight vectors and
test instances F22–F25 were used to produce the experimental
results.

The box plots of the hypervolume values over 50 runs
are shown in Fig. 6 for F22–F25. It is noteworthy that if
w1 = · · · = wn, then for any optimal solution x∗ =

(x∗1, . . . , x∗n) of an NES, (14) becomes

{
min f1(x) = 1

n ×
∑m

i=1 x∗i
min f2(x) = 1− 1

n ×
∑m

i=1 x∗i .
(21)

A unique characteristic of F22 and F24 is that the sum of
all the decision variables of an optimal solution is equal to
a constant, and thus, the Pareto front is just one point in the
2-D objective space. Consequently, the experimental results of
A-WeB with the 11th weight vector are not included in Fig. 6
for F22 and F24. It is necessary to point out that in the practical
implementation of A-WeB, the probability of w1 = · · · = wn
is extremely low due to the randomization.

As shown in Fig. 6, A-WeB performs similarly for the
different fixed weight vectors and the hypervolume values
move in a small range. Therefore, we can conclude that the
performance of A-WeB is robust with regard to the change of
the weight vector.

B. On the Scalability of A-WeB

To better comprehend the performance of A-WeB, its scal-
ability is analyzed in this section. F05 is selected as a test
instance because the number of optimal solutions (NOS)

of F05 is scalable with the search range in each dimen-
sion. For example, if S = [−60, 60]2, NOS = 76; if S =
[−70, 70]2, NOS = 89; if S = [−80, 80]2, NOS = 101; if S =
[−90, 90]2, NOS = 113; and if S = [−100, 100]2, NOS =
127. It can be seen that all the above cases contain a large
number of optimal solutions. Similar to Section V-D, A-WeB
is compared with A-MONES, A-MOMMOP, NCDE, NSDE,
Rep-SHADE, and Rep-CLPSO. For these seven compared
methods, NP = 200 and Max_FEs = 300 000. All other
parameter settings were kept unchanged.

Table VIII reports the experimental results of different meth-
ods on F05. From Table VIII, it is clear that A-WeB is able
to consistently provide the best PR and SR values, regardless
of the search range in each dimension. Moreover, the SR val-
ues provided by A-WeB are greater than 0 for all the cases,
which means that A-WeB succeeds in finding all the opti-
mal solutions in some independent runs. In contrast, NCDE,
NSDE, and Rep-CLPSO cannot achieve any successful run.
Therefore, we can conclude that A-WeB has better scalability
than other compared methods, and has better potential to be
applied to NESs with a large number of optimal solutions.
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TABLE VIII
COMPARISON OF DIFFERENT METHODS ON F05 WITH A LARGE NOSS IN DIFFERENT DECISION SPACES.
THE BEST RESULT FOR EACH CASE AMONG THE COMPARED METHODS IS HIGHLIGHTED IN BOLDFACE

TABLE IX
INFLUENCE OF THE NORMALIZATION OF THE DECISION VARIABLES FOR

A-WEB. THE BETTER RESULT FOR EACH TEST INSTANCE BETWEEN THE

COMPARED METHODS IS HIGHLIGHTED IN BOLDFACE. IN THE LAST

ROW, THE RESULTS IN THE FORM OF (R+, R−, p) ARE OBTAINED

BY THE MULTIPLE-PROBLEM WILCOXON TEST

C. On the Normalization of the Decision Variables

A-WeB uses a linearly weighted sum of all the decision vari-
ables for its location function as shown in (13). This section
studies the effect of normalization of the decision variables.
For this purpose, the location function in (13) is modified as

⎧
⎨

⎩

min α1(x) =
∑n

i=1 wi×x′i∑n
i=1 wi

min α2(x) = 1−
∑n

i=1 wi×x′i∑n
i=1 wi

(22)

where x′i = (xi − xi/xi − xi), i = 1, . . . , n. In this way, x′i is
normalized in [0, 1].

With the modified location function, the resultant A-WeB
variant is referred to as A-WeB-1. Table IX shows the
performance of A-WeB and A-WeB-1 on test instances
F01–F21 and F26–F38, where the experimental results are
omitted when both of them achieve PR = 1.0 and SR = 1.0
for an NES. As can be seen, in contrast to A-WeB-1, A-Web
loses on six out of 22 test instances, while gets better results
on 14 test instances with respect to PR. For SR, A-WeB loses
on six test instances, yet wins on 13 test instances. In general,
A-WeB provides better PR and SR values on average, and
higher R+ values than R− values for the PR and SR metrics.

TABLE X
RESULTS OBTAINED BY THE MULTIPLE-PROBLEM WILCOXON TEST FOR

A-WEB WITH DIFFERENT HISTORICAL MEMORY SIZE H ON F01–F21

From the above analysis, it seems that the performance
of A-WeB cannot be substantially improved by normalizing
the decision variables in the location function. This topic still
needs a thorough study in the future.

D. Influence of the Historical Memory Size H

The historical memory size H is one of the parameters in
A-WeB. In the previous experiments, the default setting H =
NP = 100 was adopted as in [31]. In this section, its influence
on the performance of A-WeB is investigated empirically. The
detailed experimental results on test instances F01–F21 are,
respectively, given in Tables S-R-VI and S-R-VII of the sup-
plementary material for PR and SR. In addition, the statistical
test results by the multiple-problem Wilcoxon test are reported
in Table X.

From Tables S-R-VI, S-R-VII, and X, A-WeB with H < 100
shows decreased performance against H = 100. On the other
hand, for H > 100, the performance of A-WeB is improved
compared with H = 100. The comparison in Table X also indi-
cates that there are no significant differences among A-WeB
with the values of H changing from 30 to 500 in that all the
p-values are greater than 0.05. Therefore, A-WeB is insensi-
tive to H and the value of H can be chosen from a large range,
for example, from 30 to 500.

E. Influence of F and CR in DE

In A-WeB, the scaling factor F and the crossover control
parameter CR of DE are tuned in an adaptive way. To study
the influence of the parameter settings, A-WeB is compared
with its variants with fixed F and CR. For this purpose,
four commonly used settings are selected, i.e., (F, CR) =
(0.9, 0.1), (0.9, 0.9), (0.5, 0.3), and (0.5, 0.9) [21], [32], [46],
and their corresponding methods are referred to as A-WeB-
2, A-WeB-3, A-WeB-4, and A-WeB-5, respectively.
Tables S-R-VIII and S-R-IX in the supplementary mate-
rial summarize the PR and SR values on test instances
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TABLE XI
RESULTS OBTAINED BY THE MULTIPLE-PROBLEM WILCOXON

TEST FOR A-WEB AND ITS FOUR VARIANTS WITH FIXED

PARAMETER SETTINGS ON F01–F21

TABLE XII
RANKINGS OBTAINED BY THE FRIEDMAN ALIGNED TEST FOR A-WEB

AND ITS FOUR VARIANTS WITH FIXED PARAMETER SETTINGS ON

F01–F21. THE BEST AND THE SECOND BEST RESULTS ARE

HIGHLIGHTED IN BOLDFACE AND ITALIC, RESPECTIVELY

F01–F21, respectively. The statistical test results obtained
by the multiple-problem Wilcoxon test and the Friedman
Aligned test are given in Tables XI and XII, respectively.

As shown in Tables S-R-VIII and S-R-IX, A-WeB provides
the best average PR and SR values. From Table XI, A-WeB-2,
A-WeB-3, and A-WeB-4 suffer from significant performance
degradation since all the p-values are less than 0.05 when
comparing with A-WeB in terms of the PR and SR metrics. It
is evident from Table XII that A-WeB ranks the first.

The above comparison indicates that A-WeB exhibits supe-
rior performance against its variants with the fixed parameter
settings, while avoiding a trial-and-error process to choose the
proper parameter values.

F. Effectiveness of the Parameter Adaptation

A-WeB adapts the parameters F and CR of DE based on
SHADE [31]. Note that adaptive parameter adaptation has
been actively studied by DE researchers [47]. In this section,
the adaptive parameter adaptation of SHADE is replaced with
that of two state-of-the-art DE variants, i.e., jDE [48] and
JADE [32], and the resultant methods are called jDE-WeB
and JADE-WeB, respectively. We compared the performance
of A-WeB with that of jDE-WeB and JADE-WeB. The PR
and SR values resulting from the three compared methods are
summarized in Tables S-R-X and S-R-XI of the supplementary
material on test instances F01–F21, respectively. In addition,
Table XIII reports the statistical test results obtained by the
Friedman Aligned test.

As shown in Tables S-R-X, S-R-XI, and XIII, A-WeB
provides the best average PR and SR values and ranks the
first. Thus, A-WeB achieves the best overall performance.
However, according to our observation, there are no signif-
icant differences between A-WeB and the two competitors in
terms of the multiple-problem Wilcoxon test in both the PR
and SR metrics. Hence, other adaptive parameter adaptation
mechanisms are also effective for handling NESs under our
framework.

TABLE XIII
RANKINGS OF THE METHODS FOR PARAMETER ADAPTATION BY THE

FRIEDMAN ALIGNED TEST ON F01–F21. THE BEST AND THE

SECOND BEST RESULTS ARE HIGHLIGHTED IN BOLDFACE

AND ITALIC, RESPECTIVELY

G. Effectiveness of the Mutation Operator

In A-WeB, the mutation operator DE/current/1 in (17) is
applied. In this section, we compared it with another classical
mutation operator “DE/rand/1.” Note that there are also a lot
of other mutation operators in the DE literature [49], [50].
We do not conduct comprehensive comparisons between
DE/current/1 and them because it is out of the scope of this
paper. The experimental results are provided in Table S-R-XII
of the supplementary material for test instances F01–F21.
When the two compared methods are both capable of achiev-
ing PR = 1.0 and SR = 1.0 for an NES, their results are not
reported in Table S-R-XII.

As shown in Table S-R-XII, A-WeB with DE/current/1 pro-
vides better results than A-WeB with DE/rand/1 on most test
instances both in terms of the PR and SR metrics. A-WeB with
DE/current/1 can also obtain better average PR and SR values.
With respect to the multiple-problem Wilcoxon test, although
the differences are not significant at α = 0.05, A-WeB with
DE/current/1 still gets higher R+ values than R− values for
both the PR and SR metrics. Therefore, A-WeB gets great
benefit from DE/current/1 to find multiple optimal solutions
of an NES simultaneously in a single run.

H. Effect of the Distance Comparison Criterion

For multimodal optimization problems, Wang et al. [21]
presented a new distance comparison criterion to avoid a large
attraction basin containing too many similar individuals and to
make the distribution of the population more appropriate. In
this section, this distance comparison criterion is also incor-
porated into A-WeB for solving NESs. The corresponding
A-WeB variant is called A-WeB-6. In A-WeB-6, an individual
xu is said to be better than another individual xv if

∑m

i=1
|ei(xu)| <

∑m

i=1
|ei(xv)| ∧ norm_dist(xu, xv) < δ

(23)

where norm_dist(xu, xv) denotes the normalized Euclidean
distance between xu and xv, and δ is a distance thresh-
old which is set to 0.01 [21]. The experimental results are
given in Table S-R-XIII of the supplementary material for test
instances F01–F21. Again, the experimental results of those
test instances, for which A-WeB and A-WeB-6 can achieve
100% PR and 100% SR, are omitted.

From Table S-R-XIII, A-WeB-6 is able to obtain better
results on 12 and 11 out of 16 test instances in terms of
the PR and SR metrics, respectively. Compared with A-WeB,
A-WeB-6 also gets better average PR and SR values, and
higher R+ values than R− values for both the PR and SR met-
rics. Therefore, this distance comparison criterion is applicable
to further improve the performance of A-WeB.
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VII. CONCLUSION

This paper has proposed a weighted biobjective transfor-
mation technique named WeB to formulate an NES as a
biobjective optimization problem, which extends our previous
work [3]. WeB attempts to produce a weighted linear combina-
tion of all the decision variables in the two objective functions.
Thanks to random weights, WeB is very likely to achieve a
one-to-one mapping from the optimal solutions of an NES to
different points on the Pareto front of the transformed biob-
jective optimization problem. Therefore, it can alleviate the
risk of losing some optimal solutions with the same values
in certain decision variables due to the many-to-one map-
ping in [3]. Subsequently, we have also suggested an adaptive
multiobjective DE named AMODE as the optimization algo-
rithm. By combining WeB with AMODE, a generic framework
referred to as A-WeB, has been proposed for dealing with
NESs. It is worth noting that the Pareto front of the trans-
formed biobjective optimization problem is linear. We thus
expect that A-Web is able to effectively locate multiple Pareto
optimal solutions in a single run. As a result, the optimal
solutions of an NES can also be obtained correspondingly.

The performance of A-WeB has been extensively tested on
38 test instances which include 21 NESs with known optimal
solutions, four NESs with infinitely many optimal solutions,
and 13 ill-scaled NESs. Moreover, A-WeB is compared with
three multiobjective optimization-based transformation tech-
niques equipped with AMODE as the optimization algorithm
and six well-established single-objective optimization-based
methods. The empirical studies verify that A-WeB has the
best overall performance across these three kinds of NESs.

Since there is no prior knowledge about the importance of
each decision variable, the weights in A-WeB were randomly
generated. In the future, we plan to design adaptive/self-
adaptive weights by online analysis of the importance of the
decision variables according to the properties of NESs at hand.
Additionally, developing other advanced optimization algo-
rithms (such as the multioperator-based EAs [46], [51]) for
NESs will be another part of our future work.

The C++ source code of A-WeB can be downloaded from
Y. Wang’s homepage: http://ist.csu.edu.cn/YongWang.htm.
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