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A Two-Phase Differential Evolution for Uniform
Designs in Constrained Experimental Domains
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Abstract—In many real-world engineering applications, a
uniform design needs to be conducted in a constrained exper-
imental domain that includes linear/nonlinear and inequal-
ity/equality constraints. In general, these constraints make the
constrained experimental domain small and irregular in the
decision space. Therefore, it is difficult for current methods to
produce a predefined number of samples and make the sam-
ples distribute uniformly in the constrained experimental domain.
This paper presents a two-phase differential evolution for uni-
form designs in constrained experimental domains. In the first
phase, considering the constraint violation as the fitness func-
tion, a clustering DE is proposed to guide the population toward
the constrained experimental domain from different directions
promptly. As a result, a predefined number of samples can be
obtained in the constrained experimental domain. In the sec-
ond phase, maximizing the minimum Euclidean distance among
samples is treated as another fitness function. By optimizing this
fitness function, the samples produced in the first phase can be
scattered uniformly in the constrained experimental domain. The
performance of the proposed method has been tested and com-
pared with another state-of-the-art method. Experimental results
suggest that our method is significantly better than the compared
method in the uniform designs of a new type of automotive
crash box and five benchmark test problems. Moreover, the
proposed method could be considered as a general and promising
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framework for other uniform designs in constrained experimental
domains.

Index Terms—A new type of automotive crash box, constrained
experimental domain, differential evolution, uniform design.

I. INTRODUCTION

ENTERPRISES always try to provide high-quality, low-
cost products and shorten lead time to survive in fierce

competitive environments. This can be achieved through inno-
vative design. Traditional product design is based on empirical
and/or trial-and-error processes. Utilizing traditional methods
to develop a new product will inevitably lead to a long design
cycle and excessive costs because of numerous prototype tests.
With the rapid development of advanced computer technology,
finite element analysis has become a well-established numer-
ical simulation tool to precisely predict product performance
in the design stage, which can reduce design and prototyp-
ing costs [1]. Since the design scheme should be manually
adjusted in line with engineers’ experience, finite element
analysis needs to be performed many times to reevaluate
the results. Furthermore, the above process cannot guaran-
tee the global optimum. In order to achieve more active
design, finite element analysis-based optimization has been
developed as a promising manner to systematically seek an
optimal design [2]. Although finite element analysis-based
optimization is able to improve the design level, it is essen-
tially an iterative process. Note that computation-intensive
design problems are becoming increasingly common in auto-
motive, aerospace, transportation, and defense industries [3].
With respect to such design problems, it is time-consuming for
one iteration. For example, in full vehicle crashworthiness, to
meet all safety criteria, the design is intrinsically a daunting
optimization task often involving multiple loading cases (e.g.,
frontal/side/rear impact, pedestrian safety, roof crush, interior
head impact, and rollover), multiple disciplines, and multiple
objectives [4]–[6]. Just taking the computational cost into
account, it has been reported that it takes Ford Motor Company
about 36–160 h to run one full vehicle crash simulation [7].
In general, a full vehicle crashworthiness design needs to call
hundreds of simulations. In order to enhance the computa-
tional efficiency in design, highly accurate surrogate models
have been widely used [8]–[10]. How to generate represen-
tative samples is the primary issue for constructing highly
accurate surrogate models. The design of experiment can be
considered to be an essential step toward this purpose [11].
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Fig. 1. Illustration of the automotive crash box.

The design of experiment aims to appropriately select a set
of samples to provide uniform coverage over the experimental
domain of interest [12]. Currently, the design of experi-
ment has been broadly applied to computer experiments and
industrial experiments [13]–[15]. Many techniques have been
proposed for the design of experiment, such as orthogonal
design [16]–[18], Latin square design [19]–[21], and uniform
design [22]–[24]. Among them, uniform design is able to
obtain more information from the experimental domain with
a smaller number of samples [25]. Very often, for uniform
designs of some complex practical situations, there are many
linear/nonlinear and inequality/equality constraints due to the
interactions among the decision variables [26]. The uniform
design of a new type of automotive crash box for lightweight
can be taken as an example. The automotive crash box (as
shown in Fig. 1) always bears very complex loading, which
implies that different regions should have different roles to
maximize the usage of materials. How to exhaust the poten-
tial of materials according to the performance requirements is
one of the most important issues for automotive lightweight
design. Fortunately, variable-thickness rolled blank can vary
the blank thickness with a continuous thickness transition
through adjusting the roll gap [27]. This innovative technol-
ogy can easily realize the customized thickness of a new type
of automotive crash box. Note that different thickness distri-
butions of the variable-thickness rolled blanks lead to different
performance; therefore, it is necessary to optimize the thick-
ness distributions to maximize performance [28]. The optimal
thickness distribution among different zones including the thin
zones, thickness zones, and transition zones should satisfy
a variety of manufacturing constraints [27], which are typical
linear/nonlinear and inequality/equality constraints.

In this paper, the aim of a uniform design is to sample
uniformly over a constrained experimental domain which is
usually a small and irregular region in the decision space
because of constraints. At present, many uniform design
approaches have been proposed for this purpose.

1) Traditional Uniform Design Methods: This kind of
method first generates a number of uniform samples
from the decision space, and then checks which samples
satisfy all constraints, deleting the samples violating the

constraints [29]–[32]. However, if there exist nonlinear
constraints and/or equality constraints, the experimental
domain is very small compared to the decision space. As
a result, the samples satisfying all constraints are very
scarce. Under this condition, it is a very challenging
task for traditional uniform design methods to produce
a desired number of samples.

2) Number-Theoretic Uniform Design Methods: This kind
of method generates a number of uniform samples by
number-theoretic techniques and tackles constraints by
mapping function [33]–[35]. Unfortunately, this kind of
method can only handle one linear equality constraint,
and the other constraints are handled by the same pro-
cess as in traditional uniform design methods. Hence, it
faces substantial difficulties when dealing with complex
nonlinear and/or equality constraints.

3) Heuristic Uniform Design Methods: This kind of method
models a uniform design in the constrained experimen-
tal domain as an optimization problem, and optimizes
it via heuristic methods [36]–[39]. However, this kind
of method is not suitable for uniform designs in the
constrained experimental domains with high dimen-
sionality and a large number of design points due to
tremendous computational workload. Additionally, most
methods do not introduce how to cope with nonlinear
constraints and equality constraints.

From the above introduction, it is obvious that lin-
ear/nonlinear and inequality/equality constraints pose a great
challenge to current uniform design methods. Therefore, new
insights toward uniform designs in constrained experimental
domains are quite necessary. In this paper, inspired by [40],
a two-phase differential evolution (DE) called ToPDE is
proposed. In the first phase, a clustering DE integrated with
constraint violation as the fitness function is presented to
guide the population (i.e., a set of samples or a set of design
points) toward the constrained experimental domain quickly.
The advantages of the clustering DE are twofold. On one hand,
it is capable of obtaining a predefined number of samples in
the constrained experimental domain. On the other hand, it
can keep the diversity of the population, with the purpose
of providing high-quality candidate solutions for the second
phase. In the second phase, another fitness function and a novel
replacement strategy are proposed to make the population
distribute uniformly in the constrained experimental domain,
which can also dramatically reduce the computational time.

The main contributions of this paper can be summarized as
follows.

1) ToPDE can be viewed as a new algorithmic frame-
work with the incorporation of the properties of uniform
designs in constrained experimental domains. Moreover,
ToPDE is not dependent on the type and number of
constraints.

2) Recognizing that the computational overhead of the
existing heuristic uniform design methods is very high,
the fitness function in the second phase offers a tradeoff
between uniform distribution and computational cost.

3) ToPDE has been applied to the uniform designs of
a practical engineering problem (i.e., a new type of
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Fig. 2. Rolling processes of the variable-thickness rolled blank [27].

automotive crash box) and five benchmark test prob-
lems. The experimental results show that ToPDE is
significantly better than NTMD [33], which is a state-
of-the-art number-theoretic method for uniform designs
in constrained experimental domains.

This paper is organized as follows. Section II describes
the uniform design of a new type of automotive crash box.
Section III introduces the concepts of DE. ToPDE is proposed
in Section IV. Section V presents the experimental results.
Section VI further discusses the advantage and effectiveness
of ToPDE. Finally, Section VII concludes this paper.

II. UNIFORM DESIGN OF A NEW TYPE

OF AUTOMOTIVE CRASH BOX

Reducing the weight of an automobile is an effective method
for saving energy and reducing emissions. The most impor-
tant premise of automotive lightweight design is not to reduce
product performance [41], especially safety. In all automotive
safety parts, the crash box shown in Fig. 1 is an irreplaceable
part [42] whose energy absorption has a significant effect on
occupant safety. To improve the energy absorption, the most
commonly used way is to increase the wall thickness of the
traditional automotive crash box, which inevitably leads to
a significant increase in weight. Therefore, it is very chal-
lenging to achieve light weight and high crashworthiness
simultaneously. In order to address this issue, it is necessary to
design a new type of automotive crash box for the purpose of
reducing the weight. Herein, the new type of automotive crash
box is designed by variable-thickness rolled blank, the rolling
processes of which are shown in Fig. 2 [27]. The variable-
thickness rolled blank consists of different thickness zones and
transition zones, where the transition zones are used to link
different thickness zones. As mentioned, directly combining
optimization algorithms with finite element analysis will con-
sume a great deal of time to search for the optimal thickness
distribution of the new type of automotive crash box. Indeed,
highly accurate surrogate models provide an effective way to
improve the computational efficiency. From [11], we know
that the key issue of constructing highly accurate surrogate
models is to obtain representative samples.

The structure of a new type of automotive crash box is
shown in Fig. 3, which includes 14 decision variables, i.e., nine
different lengths (x1, x2, . . . , x9) and five different thicknesses

Fig. 3. Structure of a new type of automotive crash box. (a) Overall view
of the new type of automotive crash box. (b) Sectional view of the new type
of automotive crash box.

TABLE I
RELATIONSHIP OF THE DECISION VARIABLES IN THE

NEW TYPE OF AUTOMOTIVE CRASH BOX

(x10, x11, . . . , x14). In addition, there are many constraints.
First, each decision variable xi should be in a predefined
range, i.e., [xlower

i , xupper
i ], i = 1, 2, . . . , 14, where xlower

i and
xupper

i denote the lower and upper bounds of xi, respectively.
Second, the new type of automotive crash box should satisfy
the requirement of the standard industrial size. Therefore, the
sum of the length of different thickness zones and transition
zones should be equal to a constant L. Third, the transition
zones should satisfy the limitations of manufacturing technol-
ogy, and thus, the ratio of adjacent thicknesses should be in
the range of [a, b]. Moreover, the ratio between the difference
of adjacent thicknesses and the length of the corresponding
transition zone should be in the range of [c, d]. Finally, the
weight of the new type of automotive crash box should be less
than or equal to a constant M. The detailed relationships of
the decision variables are given in Table I and the parameter
values are given in Table II.
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TABLE II
PARAMETER VALUES OF THE NEW TYPE OF AUTOMOTIVE CRASH BOX

From Table I, it can be seen that the experimental domain
is subject to 14 boundary constraints, one linear equality con-
straint, and 17 nonlinear inequality constraints. The ultimate
aim of the uniform design of the new type of automotive crash
box is to sample uniformly over this constrained experimental
domain.

III. CONCEPTS OF DIFFERENTIAL EVOLUTION

DE, proposed by Storn and Price [43], is a population-
based optimizer. It is one of the most popular paradigms
of evolutionary algorithms and has been successfully applied
to solve different kinds of optimization problems [44]–[48].
Suppose that an optimization problem is to minimize the
objective function f (�x). First, DE randomly generates NP
samples (also called NP individuals) from the decision space

�xi = (
xi,1, xi,2, . . . , xi,D

) ∈ S, i = 1, 2, . . . , NP (1)

where
xi,j(j ∈ {1, 2, . . . , D}) jth decision variable;
D number of decision variables;
S = ∏D

j=1 [xlower
j , xupper

j ] decision space;

xlower
j and xupper

j lower and upper bounds of xi,j,
respectively.

These NP samples form the initial population, i.e., an
NP × D matrix. Next, DE adopts three main steps, i.e.,
mutation, crossover, and selection to evolve the population.

A. Mutation

By the mutation, DE creates a mutant vector �vi =
(vi,1, vi,2, . . . , vi,D) for each sample �xi. The two extensively
used mutation operators (called DE/rand/1 and DE/current-
to-rand/1) are introduced as follows.

1) DE/rand/1

�vi = �xr1 + F × (�xr2 − �xr3

)
, i = 1, 2, . . . , NP (2)

2) DE/current-to-rand/1

�vi = �xi + rand × (�xr1 − �xi
) + F × (�xr2 − �xr3

)
,

i = 1, 2, . . . , NP (3)

where r1, r2, and r3 are three random and mutually different
integers chosen from [1, NP], rand is a uniformly distributed
random number from [0, 1], and F ∈ (0, 1] is the scaling fac-
tor which controls the amplification of the differential vector
(�xr2 − �xr3).

B. Crossover

The crossover is implemented on �xi and its mutant vector
�vi to produce a trial vector �ui = (ui,1, ui,2, . . . , ui,D)

ui,j =
{

vi,j, if randj < CR or j = jrand

xi,j, otherwise
,

i = 1, 2, . . . , NP
j = 1, 2, . . . , D

(4)

where CR ∈ [0, 1] is the crossover control parameter, randj is
the jth evaluation of a uniformly distributed random number
between 0 and 1, and jrand is an index randomly chosen from
{1, 2, . . . , D}. The condition “j = jrand” ensures that �ui differs
from �xi by at least one element.

C. Selection

�xi is replaced by �ui if the objective function value of �xi is
not better than that of �ui; otherwise, �xi will survive into the
next generation

�xi =
{ �ui, if f (�ui) ≤ f (�xi)

�xi, otherwise
, i = 1, 2, . . . , NP. (5)

In DE, the mutation, crossover, and selection are executed
generation by generation until a predefined stopping criterion
is satisfied. From the introduction, it is evident that DE does
not include any complex operators.

IV. A TWO-PHASE DE FOR UNIFORM DESIGNS IN

CONSTRAINED EXPERIMENTAL DOMAINS

A. Fitness Functions

If a sample satisfies all constraints, then it is called a fea-
sible sample; otherwise, it is called an infeasible sample.
A constrained experimental domain is the set of all feasible
samples. As pointed out previously, the constrained experi-
mental domain may be a small and irregular region in the
decision space because of constraints. The generated samples
in the population of DE by the initialization satisfy bound-
ary constraints, but most of them—even all of them—could
not satisfy linear/nonlinear and inequality/equality constraints,
which indicates that maybe there is no feasible sample in
the initial population. Therefore, constraint satisfaction is the
first issue for uniform designs in constrained experimental
domains.

Based on this analysis, we establish the first fitness function.
Since the degree of constraint violation can directly mea-
sure the feasibility of a sample, minimizing the degree of
constraint violation is an efficient way to motivate a sample
toward the constrained experimental domain. The degree of
constraint violation of a sample �xi(i ∈ {1, 2, . . . , NP}) on the
kth constraint is computed by the following equation:

{
Gk(�xi) = max{0, gk(�xi)}, 1 ≤ k ≤ p
Hk(�xi) = max{0, |hk(�xi)| − δ}, 1 ≤ k ≤ q

(6)

where gk(�xi) denotes the kth inequality constraint, p is the
number of inequality constraints, Gk(�xi) represents the degree
of constraint violation on the kth inequality constraint, hk(�xi)

denotes the kth equality constraint, q is the number of equal-
ity constraints, δ is the tolerance value to relax the equality
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constraint to a certain extent, and Hk(�xi) represents the degree
of constraint violation on the kth equality constraint.

Then, the degree of constraint violation of �xi on all con-
straints can be expressed as follows:

FF1(�xi) =
p∑

k=1

Gk(�xi) +
q∑

k=1

Hk(�xi). (7)

In this paper, (7) is considered to be the first fitness func-
tion for the purpose of constraint satisfaction. Note that the
smaller the value of FF1, the better the performance of a sam-
ple. Moreover, FF1(�xi) = 0 means that �xi is a feasible
sample. By minimizing (7), the degree of constraint viola-
tion of the population will decrease gradually, and more and
more samples in the population will become feasible. As
a result, a predefined number of samples can be obtained in
the constrained experimental domain.

The ultimate purpose of uniform designs in constrained
experimental domains is to uniformly spread the samples
throughout the constrained experimental domain. Therefore,
the second issue is related to the uniform distribution of the
obtained samples in the constrained experimental domain.

Chen et al. [36] proposed a heuristic method, called dis-
crete particle swarm optimization, for constructing uniform
designs in constrained experimental domains. In this method,
each individual in the population is an NP × D array and the
central composite discrepancy (CCD) [49] is used to measure
the uniformity of an individual. However, it is an NP-hard
problem to search for the optimal design based on the CCD
criterion. Although a discrete version of CCD can save the
computational cost, it is still very time-consuming. For exam-
ple, the uniform design of the new type of automotive crash
box introduced in Section II includes 14 decision variables. If
a population consists of 50 samples, then the method in [36]
will take about 3 × 108 years to produce the optimal uniform
design in the constrained experimental domain. Obviously, it
is very hard for this method to be directly applied in practical
engineering.

To achieve uniform designs in constrained experimental
domains more efficiently, we design a second fitness function,
which maximizes the minimum Euclidean distance among the
samples in the population. This fitness function is able to
make an effective tradeoff between uniform distribution and
computational cost, which is implemented as follows.

For each sample �xi(i ∈ {1, 2, . . . , NP}) in the population,
we compute the normalized Euclidean distance from �xi to
the other samples, and the minimum normalized Euclidean
distance is denoted as min_disi

min_disi = min
j=1,2,...,NP,j �=i

distance
(
normalized(�xi), normalized

(�xj
))

(8)

where distance(·,·) represents the Euclidean distance in the
decision space, and normalized(�xi) and normalized(�xj) mean
that each dimension of �xi and �xj is normalized as follows:

normalized
(
xi,k

) = (xi,k − xlower
k )/

(
xupper

k − xlower
k

)
,

k = 1, 2, . . . , D (9)

normalized
(
xj,k

) =
(

xj,k − xlower
k

)/(
xupper

k − xlower
k

)
,

k = 1, 2, . . . , D. (10)

Afterward, the second fitness function can be expressed as
follows:

FF2 = min
i=1,2,...,NP

min_disi. (11)

The larger the value of FF2, the better the overall unifor-
mity of the population. A smaller value of FF2 means that
some samples in the population are stuck at a subregion of
the constrained experimental domain. On the contrary, a larger
value of FF2 means that the samples are distributed rela-
tively uniformly in the constrained experimental domain. The
computational time complexity of FF2 is O(NP2).

According to the characteristics of uniform designs in con-
strained experimental domains and the two fitness functions,
we divide the whole evolutionary process into two phases.
These two phases are elaborated on next.

B. Phase 1

The first phase aims at obtaining a predefined number of fea-
sible samples by minimizing the first fitness function. Note that
the first phase should also provide feasible candidate solutions
with good diversity for the next phase to achieve the ultimate
purpose, i.e., uniform design. In order to keep the diversity of
the population, a possible way is to guide the samples toward
the constrained experimental domain from different directions.
Inspired by Wang and Cai [40], a clustering DE is utilized.

First, population P including NP samples is clustered into
�NP/NS� subpopulations, where NS denotes the number of
samples in each subpopulation and �·� denotes rounding down
to the nearest integer. Afterward, DE is employed to evolve
each subpopulation. The clustering DE is implemented in the
following iterative way.

Step 1: Randomly generate a reference point �r from the
decision space and normalize �r according to (9).

Step 2: Set i = 1 and TP = ∅. // TP denotes a temporary
population.

Step 3: Compute the normalized Euclidean distance from
�r to the samples in P and determine the nearest
sample in P to �r (denoted as �z).

Step 4: Find (NS − 1) samples in P, which are nearest to �z.
These (NS−1) samples and �z form a subpopulation,
denoted as SPi.

Step 5: Delete these NS samples from P.
Step 6: Generate an offspring subpopulation (denoted as

OPi) for SPi by the mutation and crossover of DE,
and implement the selection of DE on SPi and OPi

to update SPi. Note that the comparison is based
on the first fitness function FF1.

Step 7: Incorporate the updated SPi into the temporary
population TP, i.e., TP = TP ∪ SPi .

Step 8: i = i + 1. If i ≤ �NP/NS�, then go to step 3;
otherwise P = P ∪ TP.

Step 9: If each subpopulation has at least �NP′/(NP/NS)�
feasible samples, then randomly choose
�NP′/(NP/NS)� feasible samples from each
subpopulation to form a new population P′ for the
second phase; otherwise go to step 1.



670 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 5, OCTOBER 2017

Fig. 4. Example of the replacement strategy. C is a feasible offspring which
is added into the population, and A and B are two samples in the population.
Since A and B have the minimum normalized Euclidean distance and the
second minimum normalized Euclidean distance of A is less than that of B,
A is deleted from the population. If the updated population has a better value
of FF2, then the replacement is successful. Otherwise, the population returns
to its original state.

Since different subpopulations converge toward the con-
strained experimental domain from different directions, in
step 9 we choose �NP′/(NP/NS)� feasible samples from each
subpopulation to guarantee the diversity of P′, where NP′ is
the population size of P′. In general, NP′ � NP.

C. Phase 2

After the first phase, we obtain the population P′, which
contains a predefined number of feasible samples (i.e., NP′).
In the second phase, the mutation and crossover of DE are
executed to generate NP′ offspring for P′. It is noteworthy
that maybe some offspring are not in the constrained exper-
imental domain. Therefore, it is necessary to check whether
a newly generated offspring is feasible or not by the first fit-
ness function FF1. If all the newly generated offspring are
infeasible, DE will be implemented continuously until at least
one offspring is feasible.

In order to make P′ distribute uniformly in the constrained
experimental domain, a novel replacement strategy is proposed
in this paper. First, the feasible offspring are added to P′
one by one. After adding one feasible offspring to P′, we
will choose the sample which has the minimum normalized
Euclidean distance to the other samples according to (8). If
several samples have the same minimum normalized Euclidean
distance, then we will consider the second minimum normal-
ized Euclidean distance and so forth. At last, we obtain one
individual. Subsequently, this individual is deleted from P′;
thus, the population size of P′ is unchanged. If the updated P′
has a better value of FF2, then the replacement is successful;
otherwise, P′ returns to its original state. If the successful
replacement cannot occur over continuous count times, then
the second phase halts. Fig. 4 gives a simple example. Through
this replacement strategy, the overall uniformity of P′ can be
strengthened constantly during the evolution.

The details of the second phase are given as follows.
Step 1: Compute the fitness function FF2 for P′.
Step 2: Set k = 0.
Step 3: Generate NP′ offspring for P′ by implementing the

mutation and crossover of DE.
Step 4: Find the feasible offspring and suppose that there

are NS′ feasible offspring.

Step 5: If NS′ = 0, which suggests that there are no feasible
offspring, then go to step 3.

Step 6: For i = 1 : NS′.
Step 6.1: Q′ = P′; // Q′ denotes the original state

of P′.
Step 6.2: Put the ith feasible offspring into P′.
Step 6.3: Choose the sample having the minimum

normalized Euclidean distance accord-
ing to (8) (if several samples have the
same minimum normalized Euclidean
distance, then select the sample with the
second minimum normalized Euclidean
distance and so forth) and delete it
from P′.

Step 6.4: Compute the fitness function FF2 for the
updated P′.

Step 6.5: If the updated P′ has a better value of
FF2, then it is a successful replacement
and k = 0; otherwise P′ = Q′ and k =
k + 1.

Step 6.6: If k > count, break and output P′.
Step 7: Go to step 3.
Remark 1: Based on our introduction, it can be concluded

that the above two phases combined with the two fitness func-
tions can not only guide the population toward the constrained
experimental domain from different directions quickly, but also
have the potential to uniformly scatter the population in the
constrained experimental domain.

D. Performance Criterion

With the termination of the second phase, the final popula-
tion P′ can be obtained. In order to evaluate the performance
of P′, the maximum distance-based criterion (called MD) is
adopted [33]. According to [33], first we need to produce
a test set TS, which contains m individuals randomly gen-
erated from the constrained experimental domain and m is
a very large integer. In this paper, TS is produced by repeat-
edly implementing the first phase of ToPDE introduced in
Section IV-B until m individuals have been obtained in the
constrained experimental domain. Afterward, the following
procedure is executed.

Step 1: Normalize each sample in P′ and each individual
in TS according to (9). After the normalization, let
P′ = {�x′

1, �x′
2, . . . , �x′

NP′ } and TS = {�y′
1, �y′

2, . . . , �y′
m}.

Step 2: For each �y′
j(j = 1, 2, . . . , m) in TS, compute the

minimum normalized Euclidean distance from �y′
j to

P′ : min_dis(�y′
j, P′) = min

i=1,2,...,NP′ distance(�y′
j, �x′

i).

Step 3: Compute the maximum min_dis(�y′
j, P′) : MD =

max
j=1,2,...,m

min_dis(�y′
j, P′).

In principle, this performance criterion computes the maxi-
mum distance between any �y′

j(j = 1, 2, . . . , m) in TS and the
sample in P′ nearest to �y′

j. A small value of MD implies that
the individuals in TS tend to be close to P′, and a large value
of MD implies that some subregions are not well covered by
P′ [33]. Therefore, the smaller the value of MD, the better the
performance of a method.
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TABLE III
DETAILS OF THE 2-D EXAMPLE

E. Framework of ToPDE

By integrating the important components introduced in the
above four sections, ToPDE for uniform designs in constrained
experimental domains works as follows.

Step 1: Randomly generate an initial population P from the
decision space, which contains NP samples.

Step 2: Implement the first phase and obtain another pop-
ulation P′ which contains NP′ diversified samples
in the constrained experimental domain.

Step 3: Implement the second phase to make the NP′ sam-
ples in P′ distribute uniformly in the constrained
experimental domain.

Step 4: Evaluate P′ via the performance criterion.
ToPDE includes six main parameters.
1) NP: The size of population P in the first phase.
2) NS: The size of each subpopulation in the first phase.
3) NP′: The size of population P′ in the second phases.
4) count: The maximum tolerance value for the unsuccess-

ful replacement in the second phase.
5) F: The scaling factor of DE.
6) CR: The crossover control parameter of DE.

V. EXPERIMENTAL STUDY

In this section, at first a 2-D example is utilized to show
how ToPDE works. Afterward, ToPDE is applied to the uni-
form design of the new type of automotive crash box. In order
to further test the performance of ToPDE, it is also applied
to five benchmark test problems. Moreover, the performance
of ToPDE is compared with that of another state-of-the-art
method, called NTMD [33].

A. 2-D Example

A 2-D example is designed to explain the working principle
of ToPDE. This example contains two decision variables and,
therefore, is easy to visualize. In addition, there are one linear
inequality constraint and three nonlinear inequality constraints.
The details of this example are given in Table III. Assume
that the aim is to attain 20 uniform samples in the constrained
experimental domain.

The parameter settings of ToPDE are given in Table IV
and they were used in the experiments. For the performance
criterion, the size of the test set was set to 10 000. After
the initialization, the first phase of ToPDE was executed.
The aim of this phase is to guide the population toward
the constrained experimental domain from different directions
promptly. Following the steps of the first phase introduced
in Section IV-B, a reference point was randomly selected,
and five (i.e., �NP/NS�) subpopulations were generated by

TABLE IV
PARAMETER SETTINGS OF TOPDE FOR THE 2-D EXAMPLE

Fig. 5. Initial distribution of the five subpopulations. The blue cross is the
reference point, the five subpopulations are depicted with five different colors
and shapes, and the cyan part is the constrained experimental domain.

Fig. 6. End of the first phase. Under this condition, each subpopulation has
at least four feasible samples.

the clustering DE. The initial distribution of the five subpop-
ulations is shown in Fig. 5. From Fig. 5, we can see that
the five subpopulations, depicted with five different colors and
shapes, are located at different subregions and represent differ-
ent search directions. If each subpopulation has at least four
[i.e., �NP′/(NP/NS)�] feasible samples, then the first phase
terminates. The end of the first phase is shown in Fig. 6.
Afterward, four feasible samples were randomly chosen from
each subpopulation, and these 20 feasible samples formed
the initial population of the second phase, which is shown
in Fig. 7.

Subsequently, the second phase was triggered, with the
purpose of motivating the 20 feasible samples to uniformly
cover the constrained experimental domain. The final popu-
lation with the end of the second phase is shown in Fig. 8.
From Fig. 8, it is clear that ToPDE has the capability to uni-
formly distribute these 20 feasible samples in the constrained
experimental domain.

Moreover, we independently ran ToPDE 50 times for this
2-D example. The MD values over 50 runs are summarized in
Table V. From Table V, it can be seen that ToPDE is able to
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Fig. 7. Initial population of the second phase, which contains 20 feasible
samples chosen from the five subpopulations.

Fig. 8. Final population of the second phase, in which the 20 feasible samples
are uniformly distributed in the constrained experimental domain.

TABLE V
EXPERIMENTAL RESULTS OF TOPDE OVER

50 RUNS FOR THE 2-D EXAMPLE

consistently provide very small MD values, which verifies the
stable performance of ToPDE.

B. Uniform Design of the New Type of Automotive
Crash Box

Section II has introduced a 14-dimensional uniform design
of a new type of automotive crash box, the detailed description
of which is given in Tables I and II. Assume that the aim is to
obtain 100 uniform samples in the constrained experimental
domain which is subject to one linear equality constraint and
17 nonlinear inequality constraints.

ToPDE was applied to solve this problem. In order to verify
its effectiveness, the performance of ToPDE was compared
with that of NTMD [33]. Previously, NTMD was proposed for
the uniform design of a highly constrained mixture experiment
which has one linear equality constraint and several inequality

TABLE VI
PARAMETER SETTINGS OF TOPDE FOR THE UNIFORM DESIGN

OF THE NEW TYPE OF AUTOMOTIVE CRASH BOX

TABLE VII
EXPERIMENTAL RESULTS OF TOPDE OVER 50 RUNS FOR THE UNIFORM

DESIGN OF THE NEW TYPE OF AUTOMOTIVE CRASH BOX

TABLE VIII
EXPERIMENTAL RESULTS OF NTMD OVER 50 RUNS FOR THE UNIFORM

DESIGN OF THE NEW TYPE OF AUTOMOTIVE CRASH BOX

constraints. It is worth noting that all the decision variables are
involved in the linear equality constraint. The implementation
of NTMD is given in the Appendix, in which step 4 is used to
deal with the linear equality constraint and step 5 is employed
to handle other inequality constraints.

Different from [33], some of the decision variables in the
uniform design of the new type of automotive crash box are
not involved in the linear equality constraint. As shown in
Table I, five decision variables (i.e., x10, x11, . . . , x14) are not
included in the linear equality constraint. Thus, NTMD cannot
be directly applied to the uniform design of the new type of
automotive crash box. Next, we make a simple revision of
step 4 of NTMD.

Step 4: Produce a number of samples, in which
x1, x2, . . . , x9 satisfy the linear equality constraint by imple-
menting (14)–(19), and x10, x11, . . . , x14 are uniformly sam-
pled by taking advantage of the Latin square design.

In the experiments, 50 independent runs were implemented
for ToPDE and NTMD. The parameter settings of ToPDE
are summarized in Table VI. For the performance criterion,
the size of the test set was set to 50 000. The experimental
results of ToPDE and NTMD are listed in Tables VII and VIII,
respectively.
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Fig. 9. Box plots of the experimental results provided by ToPDE and NTMD
for the uniform designs of the new type of automotive crash box, G04, and
G09. (a) New type of automotive crash box. (b) G04. (c) G09.

Fig. 10. Evolution of the mean MD values derived from ToPDE over 50 runs
versus the number of evaluations of the second fitness function (i.e., FF2) on
the new type of automotive crash box, G04, G05, G09, G18, and G21.

From Tables VII and VIII, we can see that the mean MD val-
ues of ToPDE and NTMD are 0.5856 and 0.7149, respectively.
Therefore, the performance of ToPDE is on average 18.09%
better than that of NTMD. Furthermore, Fig. 9(a) provides the
box plot of the experimental results of ToPDE and NTMD. The
convergence curve of the average MD value derived from
ToPDE over 50 runs is presented in Fig. 10. In Fig. 10, the
iteration will terminate if the number of evaluations of the sec-
ond fitness function (i.e., FF2) has reached 8000. As shown
in Fig. 10, ToPDE converges after about 3000 evaluations of
the second fitness function.

The above experimental results reveal that ToPDE is more
effective than NTMD for the uniform design of the new type
of automotive crash box.

C. Five Benchmark Test Problems

In order to further verify the effectiveness of ToPDE on
other uniform designs in constrained experimental domains,
five benchmark test problems (called G04, G05, G09, G18, and
G21) are selected from “the special session and competition
on evolutionary constrained real parameter single-objective
optimization” of the 2006 IEEE Congress on Evolutionary
Computation [50]. Note that the purpose of this paper is to

study how to uniformly sample over the constrained exper-
imental domain. Consequently, we only exploit the decision
variables and constraints of these test problems, and their
objective functions are ignored. The decision variables and
constraints of G04, G05, G09, G18, and G21 are summarized
in Table IX. In Table IX, D is the number of decisions vari-
ables, LI is the number of linear inequality constraints, NI
is the number of nonlinear inequality constraints, LE is the
number of linear equality constraints, NE is the number of
nonlinear equality constraints, and θ is the estimated feasibil-
ity ratio between the constrained experimental domain and the
decision space. The characteristics of these five test problems
can be briefly summarized as follows.

1) G04, G09, and G18 only contain inequality constraints,
and G05 and G21 include both equality and inequality
constraints.

2) G04 has a moderate feasibility ratio (i.e., 51.1230%)
and G09 has a small feasibility ratio (i.e., 0.5121%). In
particular, G05, G18, and G21 are highly constrained
problems, the feasibility ratios of which are extremely
small and approximate to zero.1

With respect to these five test problems, 50 independent
runs were implemented for ToPDE and NTMD. The parame-
ter settings of ToPDE were the same as in Section V-B. For
the performance criterion, the size of the test set was set to
50 000. Tables X and XI summarize the experimental results
of ToPDE and NTMD on G04, and Tables XII and XIII sum-
marize the experimental results of ToPDE and NTMD on G09.
In addition, the box plots for the performance comparison
between ToPDE and NTMD on G04 and G09 are given in
Fig. 9(b) and (c), respectively.

Regarding G04, the mean MD values provided by ToPDE
and NTMD are 0.4543 and 0.7310, respectively, which
means that ToPDE is on average 37.85% better than
NTMD. Fig. 9(b) describes the distribution of the MD values
over 50 independent runs. It is obvious from Fig. 9(b) that the
worst MD value derived from ToPDE is even better than the
best MD value provided by NTMD.

For G09, the mean MD values of ToPDE and NTMD
are 0.4012 and 0.7382, respectively, which signifies that
ToPDE achieves 45.65% performance improvement. It can
be observed again from Fig. 9(c) that the worst MD
value of ToPDE is even better than the best MD value
of NTMD.

In terms of G05, G18, and G21, the average and stan-
dard deviation of the MD values obtained by ToPDE and
NTMD over 50 runs are presented in Table XIV. According

1For a real-world industrial application, maybe an algorithm cannot find
any feasible sample. There are two reasons: 1) there does not exist any region
satisfying all constraints and 2) the constrained experimental domain occupies
a very small proportion of the decision space, such as G05, G18, and G21.
To the best of our knowledge, there is no ready answer for the first scenario.
However, for the second scenario, a commonly used method is to relax an
equality constraint to a certain degree as in (6). Note that, usually inequality
constraints are not relaxed. In (6), δ is a very small positive number and set
to 0.0001 in this paper. This manner slightly enlarges the constrained experi-
mental domain and enables an algorithm to enter the constrained experimental
domain more easily. In addition, the power of an optimization algorithm
also plays a crucial role in searching for the feasible samples in the second
scenario.
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TABLE IX
DETAILS OF G04, G05, G09, G18, AND G21

to our observation, NTMD cannot find any feasible solution
even after running one week. Therefore, in Table XIV, “NA”
denotes the experimental results of NTMD are not available.
The reason why NTMD cannot find any feasible solution on
G05, G18, and G21 can be explained as follows. NTMD
is very suitable for dealing with one linear equality con-
straint. However, G05, G18, and G21 do not involve any linear
equality constraint. Under this condition, NTMD is equiva-
lent to a traditional uniform design method as pointed out in
Section I. Note that when handling other constraints, a tra-
ditional uniform design method generates a large number of
samples and retains only those samples satisfying all con-
straints. Therefore, it is essentially a brute-force method. Due
to the fact that the feasibility ratios of G05, G18, and G21 are
extremely small, it is not difficult to understand that NTMD
fails to find any feasible solution. As shown in Table XIV,
ToPDE achieves quite good performance since the mean MD
values are consistently less than 0.2.

TABLE X
EXPERIMENTAL RESULTS OF TOPDE OVER 50 RUNS ON G04

The convergence curves of the average MD value derived
from ToPDE over 50 runs on these five test problems are given
in Fig. 10. From Fig. 10, it is interesting to see that ToPDE
exhibits very fast convergence speed. In particular, for G05
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TABLE XI
EXPERIMENTAL RESULTS OF NTMD OVER 50 RUNS ON G04

TABLE XII
EXPERIMENTAL RESULTS OF TOPDE OVER 50 RUNS ON G09

TABLE XIII
EXPERIMENTAL RESULTS OF NTMD OVER 50 RUNS ON G09

TABLE XIV
AVERAGE AND STANDARD DEVIATION OF THE MD VALUES (DENOTED

AS “MEAN VALUE” AND “STD DEV”) OBTAINED BY TOPDE AND NTMD
OVER 50 RUNS ON G05, G18, AND G21

and G18, the performance of ToPDE is nearly stable at the
beginning of the second phase.

The above experimental results demonstrate that ToPDE
is also an effective method for other uniform designs in
constrained experimental domains, and that ToPDE is not
dependent on the type and number of constraints. In the case
of moderate and small constrained experimental domains (such
as G04 and G09), the performance of ToPDE is significantly
better than that of NTMD. Moreover, it seems that NTMD is
not capable of coping with the uniform designs in the highly

constrained experimental domains without any linear equality
constraint (such as G05, G18, and G21).

Remark 2: As pointed out by Borkowski and Piepel [33],
for the high-dimensional constrained experimental domain,
distance-based methods such as [11], [51], and [52] tend to
move samples on or near the boundary, and the interior region
is thus not effectively covered. Our proposed ToPDE is also
a distance-based method. However, it still works well on the
high-dimensional constrained experimental domain. The above
phenomenon can be illustrated as follows. First, the meth-
ods in [11], [51], and [52] maximize the minimum distance
between two samples. It is a local manner to improve the
uniformity. Note that although the performance of these two
samples can be improved, the overall uniformity may deteri-
orate. In contrast, ToPDE maximizes the minimum distance
of the entire population in a global manner, which pushes
the entire population as far apart as possible. Second, the
methods in [11], [51], and [52] produce new samples by local
search algorithms. As a result, their capability to explore the
previously uncovered areas is limited in the high-dimensional
constrained experimental domain. On the contrary, ToPDE
designs a population-based global search algorithm, which is
much more powerful, to produce samples in some promis-
ing areas of the high-dimensional constrained experimental
domain.

VI. DISCUSSION

In this section, we investigate the advantage of ToPDE
over NTMD, the scalability to the sample size, the effect of
the disconnected constrained experimental domain, and the
effectiveness of the mutation operator of ToPDE.

A. Advantage of ToPDE Over NTMD

The experimental results in Sections V-B and V-C have cor-
roborated the superior performance of ToPDE. In this section,
the advantage of ToPDE over NTMD is further analyzed by
taking G04 as an example. Figs. 11 and 12 show the distribu-
tions in the x1 −x4 space and in the x3 −x4 space produced by
the test set, the final population of ToPDE in a typical run, and
the final population of NTMD in a typical run, respectively.
In this paper, a typical run means the run in which the MD
value ranks 26th (from worst to best) among 50 runs.

As mentioned previously, the general purpose of uniformly
sampling over the constrained experimental domain is to pro-
vide adequate support for developing the surrogate model.
Therefore, it is very important to include the samples on the
boundary as well as in the interior of the constrained experi-
mental domain [13], [33]. As shown in Fig. 11, NTMD pays
less attention to the boundary of the constrained experimental
domain and is very likely to miss some parts of the constrained
experimental domain in the x1 − x4 space. In contrast, ToPDE
has the advantage of being able to not only place a number
of samples exactly on the boundary of the constrained exper-
imental domain, but also cover the interior of the constrained
experimental domain with a lot of samples.

Fig. 12 suggests that ToPDE still maintains good space-
filling performance in the x3 −x4 space. However, the samples
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Fig. 11. Distributions in the x1 − x4 space on G04. Distribution of the (a) test set containing 50 000 points, (b) final population of ToPDE in a typical run,
and (c) final population of NTMD in a typical run.

Fig. 12. Distributions in the x3 − x4 space on G04. Distribution of the (a) test set containing 50 000 points, (b) final population of ToPDE in a typical run,
and (c) final population of NTMD in a typical run.

TABLE XV
EXPERIMENTAL RESULTS OF TOPDE AND NTMD OVER 50 RUNS FOR THE NEW TYPE OF AUTOMOTIVE CRASH BOX, G04, AND G09 WITH VARYING

SAMPLE SIZES. “MEAN VALUE” AND “STD DEV” INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE MD VALUE, RESPECTIVELY.
PERCENTAGES IN PARENTHESES DENOTE THE IMPROVEMENT RATES

resulting from NTMD are nearly located on a line segment. It
is because the nonlinear interaction between x3 and x4 cannot
be identified by NTMD.

B. Scalability to the Sample Size

Prior to establishing the surrogate model, a lot of com-
putational resources and costs must be spent evaluating the
performance of the obtained samples by physical examples/
simulations. For example, for establishing the surrogate model
of a new type of automotive crash box, crashworthiness cri-
teria such as energy absorption and peak force should be
evaluated. Note that this process is computationally expensive;
therefore, a moderate sample size is usually recommended
(e.g., 100).

However, from the viewpoint of algorithm design, one may
still be interested in the scalability of ToPDE and NTMD to
the sample size. To this end, we tested four different sample

sizes: 50, 100, 200, and 300. The average and standard devia-
tion of the MD values resulting from ToPDE and NTMD are
given in Table XV and Fig. 13 presents the visualized com-
parison. Since NTMD fails to find any feasible solution for
G05, G18, and G21, only the experimental result of the new
type of automotive crash box, G04, and G09 are summarized
in Table XV. It is noteworthy that Table XV also reports the
improvement rate achieved by ToPDE against NTMD.

The first observation from Table XV is that the mean value
of ToPDE and NTMD gradually decreases with the increase
of the sample size. In addition, in terms of the improvement
rate, ToPDE has the increasing advantage over NTMD with
the increase of the sample size on the three problems, except
that for G09 ToPDE achieves the highest improvement rate
when the sample size is equal to 50.

The above comparison verifies that ToPDE consistently
outperforms NTMD regardless of the sample size.
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Fig. 13. Average and standard deviation of the MD values derived from ToPDE and NTMD with four different sample sizes, i.e., 50, 100, 200, and 300.
(a) New type of automotive crash box. (b) G04. (c) G09.

TABLE XVI
EXPERIMENTAL RESULTS OF TOPDE AND TOPDE_1 OVER 50 RUNS.

“MEAN VALUE” AND “STD DEV” INDICATE THE AVERAGE AND

STANDARD DEVIATION OF THE MD VALUE, RESPECTIVELY.
WILCOXON’S RANK SUM TEST AT A 0.05 SIGNIFICANCE LEVEL

IS PERFORMED BETWEEN TOPDE AND TOPDE_1

C. Effect of the Disconnected Constrained
Experimental Domain

In the previous experiments, the constrained experimental
domain was connected. A question which arises naturally is
whether ToPDE is also applicable to a uniform design in
a disconnected constrained experimental domain, which is
composed of several disjointed areas. To ascertain the effect
of the disconnected constrained experimental domain on the
performance of ToPDE, we devised the following test problem:

g1(�x) = (x1 + 4)2 + (x2 − 4)2 − 3 ≤ 0 or

g2(�x) = (x1 − 4)2 + (x2 + 4)2 − 3 ≤ 0 or

g3(�x) = (x1 + 2)2 + (x2 + 2)2 − 3 ≤ 0 or

g4(�x) = (x1 − 2)2 + (x2 − 2)2 − 3 ≤ 0

−8 ≤ x1, x2 ≤ 8. (12)

Based on this test problem, we also designed three scenar-
ios, denoted as S1–S3. S1–S3 contain the first two constraints,
the first three constraints, and all the constraints, respectively.
Therefore, their constrained experimental domains, respec-
tively, consist of two, three, and four disjointed areas, each
of which is a circle. In S1–S3, if a sample lies within one of
the disjointed areas, then it is feasible.

When dealing with the above three scenarios, the parameter
settings of ToPDE were kept untouched and the purpose is to

obtain 100 uniform samples in each scenario. The experimen-
tal results of a typical run provided by ToPDE are given in
Fig. 14. As shown in Fig. 14, ToPDE achieves quite promising
performance in that a good distribution can be maintained in
each disjointed area of each scenario. Moreover, based on our
observation, each disjointed area nearly has the same num-
ber of samples in each scenario, which implies that ToPDE is
also able to maintain a good overall distribution over all the
disjointed areas. The excellent performance of ToPDE can be
attributed to the fact that the first phase of ToPDE guides
the population toward the disconnected constrained experi-
mental domain from different directions and effectively keeps
the diversity of the population, and that the second phase of
ToPDE facilitates the uniform distribution of samples in each
disjointed area.

D. Effectiveness of DE/current-to-rand/1 Mutation Operator

In this paper, DE/current-to-rand/1 is adopted as the muta-
tion operator in DE. To study how the performance of
ToPDE is affected by the mutation operator, we implemented
a variant of ToPDE called ToPDE_1, in which DE/current-to-
rand/1 in (3) is replaced by DE/rand/1 in (2). The experimental
results of ToPDE and ToPDE_1 are presented in Table XVI for
the new type of automotive crash box, G04, G05, G09, G18,
and G21, in which “NA” denotes the experimental results are
not available due to the fact that ToPDE_1 cannot enter the
second phase on G21.

Table XVI indicates that ToPDE performs statistically bet-
ter than ToPDE_1 on two problems (i.e., the new type of
automotive crash box and G05), and performs similar with
ToPDE_1 on three problems (i.e., G04, G09, and G18).
However, ToPDE_1 cannot surpass ToPDE even on one
problem. More importantly, ToPDE_1 cannot succeed in sat-
isfying the stopping criterion of the first phase on G21. The
performance superiority of ToPDE can be explained as follows.

1) For DE/rand/1, three individuals are randomly selected
from the population for mutation and, consequently, the
probability that the offspring is better than the parent is
low. Thus, for certain problems (such as G21), based
on our observation some subpopulations cannot con-
tain a predefined number of the feasible solutions in the
end. In addition, for certain problems (such as the new
type of automotive crash box and G05), even though
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Fig. 14. Experimental results of ToPDE on three scenarios (denoted as S1–S3) with the disconnected constrained experimental domain defined by (12) in
a typical run. (a) S1 with two disjointed areas. (b) S2 with three disjointed areas. (c) S3 with four disjointed areas.

Fig. 15. Example of the geodesic distance and the Euclidean distance between
two samples A and B.

the population can enter the second phase, the replace-
ment cannot occur frequently due to the randomness of
DE/rand/1, which results in the poor performance.

2) In contrast, DE/current-to-rand/1 generates the offspring
around the current individual. As a result, if the pop-
ulation contains some feasible solutions, then ToPDE
is very likely to produce the feasible offspring, thus
enhancing search efficiency.

The above discussion suggests that DE/current-to-rand/1 is
a more reasonable choice for uniform designs in constrained
experimental domains.

Remark 3: In this paper, ToPDE is a framework for uniform
designs in constrained experimental domains and DE is its
search engine. The function of DE is to generate offspring.
The main reason why we chose DE is twofold.

1) The implementation of DE is very simple.
2) DE provides various mutation operators and we can

choose one of them with the most potential to match
the characteristics of an optimization problem.

Up to now, apart from DE, a considerable number of
evolutionary algorithm paradigms have been presented, such
as genetic algorithm, evolution strategy, evolutionary pro-
gramming, particle swarm optimization, artificial bee colony
algorithm, and so on. In principle, any evolutionary algorithm
paradigm can be incorporated into our framework by replac-
ing DE. It is noteworthy that some evolutionary algorithm
paradigms (e.g., particle swarm optimization) make use of the
information of the personal best of an individual and/or the
entire population’s best. In our framework, (7) can be utilized
to identify the personal best of an individual and the entire
population’s best in the first phase, and (8) can serve a simi-
lar purpose in the second phase. In addition, according to the
discussion in Section VI-D, generating offspring around the

current individuals could also be beneficial to the performance
when using other evolutionary algorithm paradigms.

VII. CONCLUSION

In this paper, a two-phase differential evolution (ToPDE)
has been proposed for uniform designs in constrained experi-
mental domains. The main task of the first phase is to obtain
a predefined number of samples in the constrained experi-
mental domain. For this purpose, a clustering DE has been
presented which divides the population into several subpopu-
lations and guides the subpopulations toward the constrained
experimental domain from different directions quickly. In addi-
tion, the second phase aims at uniformly distributing the fea-
sible samples obtained in the first phase. To accomplish this,
a new replacement strategy has been introduced. It is notewor-
thy that we have also designed two fitness functions for these
two phases, respectively. Many experiments have been imple-
mented in this paper. First, we studied the principle of ToPDE
by a simple 2-D example. Afterward, ToPDE was applied to
the uniform designs of a new type of automotive crash box
and five benchmark test problems. The performance of ToPDE
was compared with that of NTMD, a state-of-the-art method.
The experimental results verify the effectiveness of ToPDE.

In this paper, the distance between any two samples in the
population is measured by the Euclidean distance. However,
the distance indicator depends largely on the type of a uniform
design in a constrained experimental domain. Fig. 15 gives an
example. In this example, suppose that the geodesic distance is
more appropriate than the Euclidean distance. Under this con-
dition, the Euclidean distance will severely underestimate the
actual distance between two samples A and B. In the future,
we will investigate other types of distance indicator in the real-
world applications. Moreover, ToPDE will be applied to more
uniform designs in constrained experimental domains of other
fields.

The MATLAB source code of ToPDE can be down-
loaded from Y. Wang’s homepage: http://ist.csu.edu.cn/
YongWang.htm.

APPENDIX

The implementation of NTMD [33] for uniform designs in
the constrained experimental domains defined by one linear
equality constraint and several inequality constraints.

It is necessary to point out that in [33] NTMD has two vari-
ants. One is the one-pass exchange algorithm and the other is
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the power-modulo-a-prime algorithm. In this paper, the one-
pass exchange algorithm is employed. Moreover, we also make
a simple improvement on the setting of N∗, which gradually
increases during the iteration. It is because for a highly con-
strained problem, NTMD cannot find any feasible solution
with small and moderate values of N∗. In NTMD, the linear
equality constraint is formulated as follows:

D∑

i=1

xi = 1, Ai ≤ xi ≤ Bi (13)

where Ai and Bi are the lower and upper bounds of xi,
respectively, and 0 ≤ Ai ≤ Bi ≤ 1.

NTMD includes the following steps.
Step 1: Given a positive integer N∗, let �h =

(h1, h2, . . . , hD−1) be a vector satisfying the
following conditions: a) h1 < h2 . . . < hD−1 < N∗
and b) ∀j ∈ {1, 2, . . . , D − 1}, gcd(N∗, hj) = 1,
where gcd(N∗, hj) denotes the greatest common
divisor of N∗ and hj. The second condition means
that hj is relatively prime N∗.

Step 2: ci,j = mod(i × hj, N∗), i = 1, 2, . . . , N∗, j =
1, 2, . . . , D−1, where mod(i×hj, N∗) denotes the
remainder after dividing i × hj by N∗. If ci,j = 0,

then reset it to N∗. The matrix consisting of ci,j

is called an N∗ × (D − 1) lattice-point matrix of
integers.

Step 3: di,j = (2ci,j − 1)/2N∗, i = 1, 2, . . . , N∗, j =
1, 2, . . . , D − 1. Clearly, 0 < di,j < 1 and
�di = (di,1, di,2, . . . , di,D−1) is a point in the
(D-1)-dimensional unit hypercube.

Step 4: Let �di = (0, di,1, di,2, . . . , di,D−1), i = 1, 2,

. . . , N∗. For each �di, the following equations are
calculated:

�D = 1 (14)

�k = 1 − (
di,k + di,k+1 + . . . + di,D

)
,

k = 2, 3, . . . , D − 1 (15)

ek = max

(
Ak

�k
, 1 − B1 + B2 + . . . + Bk−1

�k

)

(16)

φk = max

(
Bk

�k
, 1 − A1 + A2 + . . . + Ak−1

�k

)

(17)

xi,k = G
(
di,k, ek, φk,�k, k − 1

)

= �k

{
1 −

[
di,k(1 − φk)

k−1

+ (
1 − di,k

)
(1 − ek)

k−1
]1/(k−1)

}
(18)

xi,1 = 1 − (
xi,2 + xi,3 + . . . + xi,D

)
. (19)

After the above process, �di is transformed into �xi

which can satisfy the linear equality constraint.
Step 5: Store �xi(i = 1, 2, . . . , N∗) into a predefined set if �xi

satisfies all inequality constraints. If the number of
points in the set is larger than or equal to NP′, i.e.,
a predefined number of the sample size, then stop;
otherwise add the value of N∗ and go to step 1.
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