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Pareto or Non-Pareto: Bi-Criterion Evolution
in Multiobjective Optimization
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Abstract—It is known that Pareto dominance has its own weak-
nesses as the selection criterion in evolutionary multiobjective
optimization. Algorithms based on Pareto criterion (PC) can suf-
fer from problems such as slow convergence to the optimal front
and inferior performance on problems with many objectives.
Non-Pareto criterion (NPC), such as decomposition-based crite-
rion and indicator-based criterion, has already shown promising
results in this regard, but its high selection pressure may lead
to the algorithm to prefer some specific areas of the problem’s
Pareto front, especially when the front is highly irregular. In
this paper, we propose a bi-criterion evolution (BCE) frame-
work of the PC and NPC, which attempts to make use of their
strengths and compensates for each other’s weaknesses. The pro-
posed framework consists of two parts: PC evolution and NPC
evolution. The two parts work collaboratively, with an abun-
dant exchange of information to facilitate each other’s evolution.
Specifically, the NPC evolution leads the PC evolution forward
and the PC evolution compensates the possible diversity loss of
the NPC evolution. The proposed framework keeps the free-
dom on the implementation of the NPC evolution part, thus
making it applicable for any non-Pareto-based algorithm. In the
PC evolution, two operations, population maintenance and indi-
vidual exploration, are presented. The former is to maintain a
set of representative nondominated individuals and the latter is
to explore some promising areas that are undeveloped (or not
well-developed) in the NPC evolution. Experimental results have
shown the effectiveness of the proposed framework. The BCE
works well on seven groups of 42 test problems with various
characteristics, including those in which Pareto-based algorithms
or non-Pareto-based algorithms struggle.

Index Terms—Bi-criterion evolution (BCE), evolutionary
multiobjective optimization (EMO), non-Pareto criterion (NPC),
Pareto criterion (PC).

I. INTRODUCTION

THE AREA of multiobjective optimization has developed
rapidly over the past few decades, reflecting the need for
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simultaneously dealing with multiple objectives in real-world
problems. Unlike global optimization in which there is often a
single optimal solution, multiobjective optimization involves a
set of Pareto-optimal solutions. Evolutionary algorithms (EAs)
have shown high practicability in solving such multiobjec-
tive optimization problems (MOPs). Their population-based
search aims at finding a finite-size set of well-converged,
well-distributed solutions, each representing a unique trade-off
among the objectives.

In evolutionary multiobjective optimization (EMO), the
selection criterion of individuals in the population plays a key
role. Since the output of an EMO algorithm for an MOP is a
set of Pareto nondominated solutions, Pareto dominance nat-
urally becomes a viable criterion to select individuals during
the evolutionary process. Pareto dominance reflects the weak-
est assumption about the preference of a decision maker; an
individual x is said to Pareto dominate an individual y if it
is as good as y in all objectives and better in at least one
objective. This criterion, however, fails to distinguish between
individuals when they have their own advantage in different
objectives of an MOP. In this case, most Pareto-based EMO
algorithms, such as the nondominated sorting genetic algo-
rithm II (NSGA-II) [14], introduce the density information of
individuals in the population to further rank them, serving the
purpose of evolving toward different parts of the problem’s
Pareto front.

Despite its popularity in the EMO community, the Pareto
criterion (PC) or a Pareto-based algorithm is known to suffer
from some drawbacks, such as slow convergence to the opti-
mal front [63], no information on the quantitative difference
between two individuals [5], [71], and inferior performance
on MOPs with a complex Pareto set (PS) [44] or a high-
dimensional objective space [31], [49], [68]. Recently, some
non-Pareto selection criteria have been shown to be promising
in tackling MOPs. Typically, they convert an objective vec-
tor into a scalar value, thus providing a totally ordered set
of individuals in the population. Compared with the PC, such
criteria have clear advantages, e.g., providing higher selection
pressure toward the Pareto front [7], [35], [39] and being eas-
ier to work with local search techniques that stem from global
optimization [5], [43].

The indicator-based EA (IBEA) [82] and decomposition-
based multiobjective EA (MOEA/D) [75] are two represen-
tative examples in using the non-Pareto criterion (NPC) to
deal with MOPs. IBEA adopts a performance indicator to
optimize a desired property of the evolutionary population,
and MOEA/D decomposes an MOP into a set of scalar
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subproblems and handles them collaboratively with the aid
of the information from their neighbors. These two algorithms
have laid the foundation for much state-of-the-art work to date,
leading to indicator-based and decomposition-based criteria,
along with the PC, to have become three mainstream selection
criteria in the EMO area [12], [77].

However, an NPC also comes with some shortcomings.
Ideally, the outcome of an EMO algorithm is a set of uni-
formly distributed solutions on the whole Pareto front. These
solutions are Pareto-optimal and are supposed to be incom-
parable in terms of proximity (convergence). However, most
non-Pareto criteria, which typically provide higher selection
pressure than the PC, make Pareto-optimal solutions com-
parable, completely [13], [82] or partly [17], [42]. In such
criteria, different parts of the Pareto front are treated differ-
ently, e.g., the knee and border of the front being usually
preferred by the hypervolume (HV)-based criterion [3], [59].
In this way, even some Pareto-optimal solutions may be elim-
inated during the evolutionary process because they are not
in favor with the criterion used, which can result in the final
solutions distributed “regularly” but not uniformly along the
Pareto front.

Note that the decomposition-based criterion seems to be
exempt from the above problem since by using a set of weight
vectors, it specifies multiple search directions toward different
parts of the Pareto front. One key issue in decomposition-based
EMO techniques, however, is how to maintain the unifor-
mity of intersection points of the specified search directions
and the problem’s Pareto front. Uniformly distributed weight
vectors cannot guarantee the uniformity of the intersection
points. In fact, it is very challenging for decomposition-based
algorithms to access a set of the well-distributed intersec-
tion points for any MOP, in particular in real-world scenarios
in which the information of a problem’s Pareto front is
often unknown. Although much effort has been made on
this issue recently [2], [16], [21]–[24], [37], [58], [72], it is
still far from being resolved completely, especially when fac-
ing an MOP with a highly irregular optimal front (e.g., a
discontinuous or degenerate front).

Given the above, one question could arise: Is it possi-
ble to develop an algorithm of synthesizing the Pareto and
non-Pareto selection criteria, which makes full use of their
advantages as well as effectively avoiding their disadvantages?
In this paper, we make an attempt along this line and present
a bi-criterion evolution (BCE) framework for MOPs. In BCE,
the PC and NPC collaborate, trying to guide the population
evolving fast toward the optimal front while simultaneously
maintaining the individuals’ diversity during the evolutionary
process.

BCE manipulates two evolutionary populations called the
NPC population and the PC population, each of which is
associated with one criterion. The NPC population steers the
PC population that searches toward the optimal front while
the PC population compensates the possible diversity loss of
the NPC population by exploring some undeveloped (or not
well-developed) but potentially promising regions in the objec-
tive space. The two populations communicate with each other
in a generational manner; once one population produces good

individuals, the other is able to apply them directly within its
search process.

BCE keeps it free on the design of the NPC evolution part,
thus making the framework applicable for any non-Pareto-
based EMO algorithm in the area. Effort of BCE is primarily
on the PC evolution part. In the PC evolution, an individual
exploration operation, coupled with a novel population main-
tenance strategy, is proposed to adaptively allocate resources
(search effort) based on the information contrast between the
current states of the two evolution parts.

The rest of this paper is organized as follows. Section II
explains the motivation of the proposed approach. Section III
is devoted to the description of BCE, including the basic
algorithmic framework, the population maintenance and indi-
vidual exploration operations, and the analysis of the algo-
rithm’s time complexity. Section IV experimentally verifies
the proposed BCE framework, based on its implementation
with three representative non-Pareto-based algorithms. Further
investigation and discussion of BCEs behavior are given in
Sections V and VI, respectively. Finally, Section VII draws
the conclusion of this paper.

II. MOTIVATION AND RELATED WORK

Over the past few years, non-Pareto criteria have demon-
strated their success in dealing with many challenging MOPs,
such as an MOP with a huge number of local Pareto
fronts [17], with a complex PS [44], [74], or with a high-
dimensional objective space [32], [51], [68]. They typically
provide higher selection pressure than the PC by either modi-
fying the traditional Pareto dominance relation (such as the
ε-dominance [17], [42], [67], fuzzy-based dominance [26],
and dominance area control [60]) or introducing a quantitative
individual comparison criterion (such as the distance-based cri-
terion [54], [70], indicator-based criterion [8], [39], [82], and
decomposition-based criterion [55], [75]).

However, non-Pareto criteria also suffer from problems,
e.g., in terms of maintaining individuals’ diversity (especially
uniformity) in the population. In general, the ideal output of
an EMO algorithm, in the absence of any preference informa-
tion, is a set of uniformly distributed nondominated solutions
over the whole Pareto front. This means that the compar-
ison between the Pareto-optimal solutions should be based
solely on their density information. However, this is not the
case in non-Pareto criteria whereby the Pareto optimal solu-
tions could be ranked, depending not only on their density
but also on their position in the population as well as the
shape of the Pareto front. For example, the ε-dominance cri-
terion [42] is likely to eliminate boundary individuals of the
population [27], [51]. Some indicator-based criteria, such as
the HV [79] and R2 [9], prefer the knee region of the Pareto
front [19], [59]. The algorithms based on the decomposition
criterion search toward a set of points intersected by the spec-
ified search directions and the Pareto front but struggle to
maintain the uniformity of these intersection points when the
front is highly irregular [24], [37], [58].

Next, we give an empirical example to show the fail-
ure of a non-Pareto-based algorithm in providing a set of
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Fig. 1. Empirical example of the failure of an NPC in both diversity maintenance and search in which the results are obtained with respect to one run of
MOEA/D+TCH on the problem DTLZ7. (a) Solution set maintained by the original criterion of MOEA/D+TCH. (b) Solution set maintained by the criteria
of Pareto dominance and density. (c) Nondominated set of all solutions produced in the run. (d) Pareto front.

representative solutions. Fig. 1 shows the results with respect
to one typical run1 of a popular decomposition-based algo-
rithm, MOEA/D [75] with the Tchebycheff (TCH) scalarizing
function2 (denoted as MOEA/D+TCH), on a discontinuous
test problem DTLZ7 [18]. The final solutions obtained by
MOEA/D+TCH are plotted in Fig. 1(a). For contrast, Fig. 1(b)
gives the final result of the solution set maintained by the crite-
ria of Pareto-based algorithms (i.e., solutions being tested first
by their Pareto dominance relation and then by their density3)
in this run of MOEA/D+TCH. That is, an external archive set
is added in the algorithm to store well-distributed nondomi-
nated solutions produced throughout the whole evolutionary
process. In addition, the nondominated set of all solutions
produced in this run is given in Fig. 1(c).

As can be seen from Fig. 1(a) and (c), MOEA/D+TCH
fails to select a set of diverse solutions from all the solutions
produced in the whole evolutionary process. In contrast, the
selection criteria of Pareto-based algorithms, which consider
the Pareto dominance relation and density of candidate solu-
tions, can make the algorithm’s output representative, as shown
in Fig. 1(b). On the other hand, the deficiency of the algo-
rithm in diversity maintenance also has a detrimental effect
on its search ability. To explain this, the Pareto front of the
problem is added in Fig. 1(d) for the comparison between
the real optimal solutions and the solutions produced during
the evolutionary process. From Fig. 1(c) and (d), it can be
observed that there exist several large pieces of unexplored
regions in the MOEA/D+TCHs search process. This occur-
rence can be attributed to the fact that the selection operation
in this non-Pareto algorithm is always around some particular
points [Fig. 1(a)] at each generation, thus leading individuals’
exploration to concentrate only on some specific regions of
the objective space.

The above problems of non-Pareto criteria are precisely the
underlying motivation of this paper. In this paper, we introduce

1The parameter setting in the run is the same as in the experimental studies,
described in Section IV.

2In order to obtain more uniform solutions, in the TCH scalarizing func-
tion, “multiplying the weight vector wi” in the original MOEA/D+TCH [75]
is replaced by “dividing wi,” as suggested and practiced in recent stud-
ies [16], [45].

3Here, individuals’ density is estimated by the method in BCE that is
described in Section III-B.

a BCE framework of Pareto and non-Pareto criteria in order
to use their strengths and compensate for each other’s weak-
nesses.

It is worth pointing out that the combination of NPC and PC
is not uncommon in EMO. For example, Ishibuchi et al. [33]
combined the Pareto-based algorithm NSGA-II with the
weighted-sum criterion to probabilistically pick out solu-
tions in both mating and environmental selection processes.
Al Moubayed et al. [1] used a decomposition-based criterion
to select the leaders in multiobjective particle swarm opti-
mization and introduced the crowding distance to maintain
the diversity of nondominated solutions in the decision and
objective spaces. Deb and Jain [16] proposed a hybrid EMO
algorithm, NSGA-III, which uses the Pareto nondominated
sorting to develop convergence and the decomposition-based
criterion to maintain diversity during the evolutionary process.

On the other hand, some studies in the literature adopted
multiple archives (or populations) to separately promote
convergence and diversity during the evolutionary process.
Wang et al. [69] developed a two-archive many-objective algo-
rithm, with one archive being driven by an indicator-based
criterion and the other being maintained by an Lp-norm-based
distance criterion. Zăvoianu et al. [73] presented a hybrid co-
EA with three populations, each one associated with a classic
algorithm, i.e., SPEA2 [78], differential evolution (DE) [41],
and a decomposition-based algorithm. Cai et al. [10] pro-
posed a hybrid EMO algorithm for combinatorial MOPs,
by using a decomposition-based strategy to guide its inter-
nal population and a domination-based sorting technique to
maintain the external archive. In addition, the idea of hav-
ing separate archives has also been used in multiobjective
scatter search whereby the reference set is split into two sub-
sets that promote convergence and diversity. In multiobjective
scatter search algorithms, Pareto dominance and decompo-
sition criteria are often used in the convergence-promoting
subset and distance-based criteria in the diversity-promoting
subset [6], [53], [56].

An important difference between the proposed BCE and
existing hybrid EMO algorithms with multiple criteria and/or
multiple archives is that BCE takes advantage of the infor-
mation contrast between the evolutionary populations based
on distinct selection criteria, thus making the search focused
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Fig. 2. Overall framework of BCE.

on promising regions in terms of both Pareto and non-Pareto
criteria. Another clear difference is that BCE is a general
framework rather than a specific algorithm, and it can work
with any non-Pareto EMO algorithm.

III. BI-CRITERION EVOLUTION

Fig. 2 gives the overall framework of BCE. As shown, BCE
consists of two evolution parts: NPC evolution and PC evo-
lution. BCE keeps the freedom on the implementation of the
NPC evolution part—any non-Pareto EMO algorithm can be
directly embedded, with all components (population setting,
individual initialization, fitness assignment, selection, varia-
tion, etc.) remaining unchanged. The only newly introduced
operation is that the population for the next-generation evolu-
tion (the bottom box) comprises individuals that are selected
from itself and newly produced individuals in the PC evolution
part (called the NPC selection).

For the PC evolution part, the manipulated population (i.e.,
the PC population) only preserves the Pareto nondominated
solutions produced in both NPC and PC evolution, thereby
having a varying size. When the size of the PC population
is larger than a predefined threshold, a population main-
tenance operation will be implemented to eliminate some
poorly distributed individuals. If the termination condition
here is satisfied (e.g., reaching a preset number of evalu-
ations), the evolution ends with the PC population as the
final output. Otherwise, an individual exploration operation
is implemented to explore some promising individuals in the
PC population, bearing the evolutionary information from the
NPC population.

In BCE, the two populations share and exchange informa-
tion frequently but evolve based on their own criterion. Any
new individual (wherever it is produced) will be considered in
both sides of BCE to see if it could be preserved in their own
population. In general, the PC population can be regarded as
a good complement to the NPC population. It is able to not

only preserve representative Pareto nondominated solutions
that could be eliminated in the NPC evolution but also reflect
the current status of the NPC evolution by the information
contrast between the two populations.

Next, we describe key operations of BCE. They are the PC
and NPC selection, population maintenance, and individual
exploration.

A. PC Selection and NPC Selection

As their names suggest, the PC and NPC selections are
to select individuals (from the considered population and the
newly produced individuals) according to the PC and NPC,
respectively. The PC selection is implemented by directly pick-
ing out the Pareto nondominated individuals from the mixed
set of the PC population and new individuals produced in both
the NPC and the PC evolutions.

The NPC selection, in general, can be simply implemented
by the environmental selection operation of the embedded
non-Pareto-based algorithm. For example, in the NPC selec-
tion of BCE-IBEA (i.e., BCE with IBEA embedded into its
NPC evolution part), the resulting NPC population comprises
the individuals with the highest fitness with respect to the
considered criterion (indicator) in the mixed set of the NPC
population and the new individuals from the PC evolution.
However, this is impracticable for some algorithms for which
the survival of a newly produced individual is relevant to
the information from its parent(s), such as MOEA/D. This
is because the candidate individuals in the NPC selection are
from different evolution parts, without being in the parent–
child relationship. For these algorithms, the NPC selection
compares each individual from the PC evolution with all the
members of the NPC population. If an individual from the PC
evolution performs better than one or more population mem-
bers with respect to the considered criterion, then it replaces
one of them (chosen at random); otherwise, it is discarded.
Algorithm 1 gives the procedure of the NPC selection.
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Algorithm 1 NPC Selection (Q, T)
Require: Q (non-Pareto criterion population), T (newly produced

individual set in the Pareto criterion evolution part), label (type
of the environmental selection in the embedded non-Pareto
algorithm)

1: label← SelectionType() /∗ Return 1 if the survival of a newly
produced individual is irrelevant to its parent(s) in the selection
process of the non-Pareto algorithm; otherwise, return 0 ∗/

2: if label = 1 then
3: Q← EnvironmentalSelection(Q, T)

/∗ Select |Q| individuals with the highest fitness with
respect to the considered non-Pareto criterion from Q ∪ T ∗/

4: else
5: for all t ∈ T do
6: Z← ∅
7: for all q ∈ Q do
8: if t is better than q with respect to the considered

criterion then
9: Z← Z ∪ q

10: end if
11: end for
12: if Z �= ∅ then
13: z← Random(Z)

/∗ Select one individual from Z at random ∗/
14: Q← Q \ z
15: Q← Q ∪ t
16: end if
17: end for
18: end if
19: return Q

B. Population Maintenance

In the PC evolution part, the population preserves the Pareto
nondominated individuals produced during the whole search
process and varies in size. When the size of the population
exceeds a predefined capacity, population maintenance will be
activated to truncate some of its individuals with poor distri-
bution. It is known that an effective population maintenance
operation can maintain a set of representative individuals,
which is independent of the properties of the problem (e.g.,
the number of objectives and the shape of the Pareto front).
In this paper, we present a niche-based approach, attempting
to preserve a set of representative individuals for any MOP.

Niching is a class of popular diversity maintenance tech-
niques in the EA field. Originating from the idea of sharing
resources, niching can be used to measure individuals’ crowd-
ing degree (density) in the population. Here, we estimate the
crowding degree of an individual by considering both the num-
ber and the location of the individuals in its niche. Specifically,
the crowding degree of an individual p in the population P is
defined as

D(p) = 1−
∏

q∈P,q �=p

R(p, q) (1)

R(p, q) =
{

d(p, q)/r , if d(p, q) ≤ r
1, otherwise

(2)

where d(p, q) denotes the Euclidean distance between individ-
uals p and q, and r is the radius of the niche (its setting will be
explained later). Note that the scale of the problem’s objectives
could be highly different and this will affect the estimation of
individuals’ crowding degree. To avoid this kind of problem,

in BCE, all the objectives will be normalized (with respect to
their minimum and maximum values in the population) when
the considered operation involves the integration of multiple
objectives.

Next, we give some explanations of the proposed crowding
degree estimation method.

1) The crowding degree of an individual is in the range
[0, 1], with a lower value being preferable. An individ-
ual having the crowding degree 0 means that there is no
other individual in its niche. On the other hand, dupli-
cate individuals have the highest crowding degree 1,
regardless of the distribution of other individuals in their
niche.

2) The crowding degree of an individual is determined by
the number of its neighbors (i.e., the individuals in its
niche) and the distance between it and these neighbors.
Individuals having more neighbors or closer distance
to their neighbors are likely to obtain a higher (worse)
crowding degree.

3) The crowding degree of an individual is influenced more
by its closer neighbor(s). For example, considering two
individuals p and q, let both have two neighbors and the
sum of the distance to their own neighbors be the same
(say 0.2 and 0.8 for p and 0.4 and 0.6 for q). According
to the definition, p, which has a shorter distance (0.2) to
its closer neighbor, will have a higher crowding degree
than q (1−0.16/r2 = 0.84 > 1−0.24/r2 = 0.76, assum-
ing r = 1.0). Actually, even if p has only one neighbor
(closer one), its crowding degree is still higher than that
of q (1 − 0.2/r = 0.8 > 1 − 0.24/r2 = 0.76). This
means that an individual that has a very close neighbor
will be assigned a high crowding degree no matter how
far it is from other individuals in the population. This
is in line with the target of developing the diversity of
individuals.

One crucial issue in the proposed crowding degree estimator
is the setting of the niche radius, which determines the num-
ber of neighbors as well as their location in the niche. Unlike
some niching techniques in which it is fixed and/or set by the
user, the niche radius in the proposed estimator is determined
by the evolutionary population. We consider the average of
the distance from all the individuals to their kth nearest indi-
vidual in the population as the radius, attempting to enable
most of the individuals to have one or several neighbors in
their niche. Here, k is set to 3. The reason of this setting will
be explained in detail in the discussion section of this paper
(Section VI).

Based on the crowding degree of individuals in the popu-
lation, the truncation operation can be simply implemented.
First, the individual that has the highest crowding degree
is removed; if there are several individuals with the high-
est crowding degree, the tie will be split randomly. Then,
the crowding degree of the individuals who are neighbors
of the removed individual (i.e., in its niche) is renewed,
and, again, the current most crowded individual is found
and removed. This process is repeated until a predefined
population size is achieved. Overall, the proposed method
iteratively removes crowded individuals and thus leaves a
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representative population, which can also be observed in the
example of Fig. 1 [see Figs. 1(b) and (c)].

C. Individual Exploration

In BCE, the NPC evolution generally has higher selection
pressure than the PC evolution and may sometimes prefer
partial area(s) of the Pareto front. This may cause repeating
searches on some particular regions of the objective space.
The individual exploration operation in this section aims to
cover this issue. It attempts to explore some promising indi-
viduals in the PC population that have been eliminated, are
not well-developed, or are even unvisited in the NPC evolu-
tion. This exploration is adaptive, based on the information
comparison between the two evolutionary populations. If the
NPC population has been found to be well distributed, little
exploration will be made; otherwise, much exploration will be
made around those promising individuals.

Now, a key question may arise—what individuals are
promising and need to be explored? Since the PC population is
comprised of a set of representative nondominated individuals,
it generally performs well in both convergence and diversity.
Nevertheless, it is unnecessary to explore the whole PC pop-
ulation because some of its individuals may already be well
explored in the NPC evolution. Such individuals are preferred
by the considered NPC, and there may be many individuals
in the NPC population located around the regions where such
individuals reside.

In view of this, we consider two kinds of individuals out of
the whole PC population: 1) individuals whose niche has no
NPC individual4 and 2) individuals whose niche has only one
NPC individual. The first kind of individuals is clearly not pre-
ferred by the considered NPC. Exploring them means to probe
into undeveloped regions in the NPC evolution. The niches in
which the second kind of individuals resides correspond to
low-density regions of the NPC population. Exploring them
means to probe into the regions that are not well developed in
the NPC evolution but may be potentially promising since they
still have individual(s) existing in both the NPC and the PC
populations after (iterative) selection based on the non-Pareto
and Pareto criteria, respectively.

Algorithm 2 gives the main procedure of individual explo-
ration. As shown, the algorithm can primarily be divided into
two parts. One is to determine which individuals in the PC
population will be explored (steps 3–13) and the other is to
carry out the exploration on those individuals (steps 15–18).
In the proposed framework, the variation operation (step 16)
is not fixed and can be freely specified by users. It can be
the same with what is in the NPC evolution (as done in our
experimental studies), be chosen from other existing variation
operators, or even be directly designed for the exploration. In
addition, note that in different variation operators the number
of parent individuals may be different. For a variation operator
with only one parent (like mutation), the explored individual
is applied directly. For a variation operator with two or more
parents (like crossover), the explored individual is considered

4For brevity, individuals in the NPC and PC populations are denoted as
NPC and PC individuals, respectively.

Algorithm 2 Exploration (P, Q)

Require: P (Pareto criterion population), Q (non-Pareto criterion
population), S (set of the individuals to be explored), T (set of
newly produced individuals)

1: S← ∅
2: r← Radius() /∗ Determine the size of the niche ∗/
3: for all p ∈ P do
4: count ← 0 /∗ For record-

ing the number of the NPC individuals in the niche of p ∗/
5: for all q ∈ Q do
6: if d(p, q) ≤ r then
7: count← count + 1 /∗ When q is in the niche of p ∗/
8: end if
9: end for

10: if count = 0 or count = 1 then
11: S← S ∪ p
12: end if
13: end for
14: T ← ∅
15: for all s ∈ S do
16: s′ ← Variation(s)
17: T ← T ∪ s′
18: end for
19: return T

as one parent (or the primary parent in the operator, e.g., in
DE) and the remaining parent(s) will be selected randomly
from the PC population.

In step 2 of Algorithm 2, the radius of the considered niche
is calculated. The niche range is an important factor in individ-
ual exploration, which, together with the distribution of NPC
individuals, determines how many individuals will be explored
in the PC population. A small enough niche is likely to lead
all PC individuals to be explored, and a large enough niche
can cause none of them to be explored. Here, we introduce
a variable niche whose range varies with the size of the PC
population.

The PC population preserves only nondominated individu-
als, and its size can reflect the role of the Pareto dominance
criterion during the evolutionary process. A small popula-
tion size means that Pareto dominance can provide sufficient
selection pressure to eliminate poorly performed individuals.
This usually happens in the initial stage of the evolution. At
this time, the population maintenance operation is not acti-
vated, and the PC population that stores all nondominated
individuals produced in both the NPC and the PC evolutions
represents the best individuals found so far. Therefore, it is
desirable to put more effort into exploring it. With the progress
of the evolution, more and more individuals are produced,
and Pareto dominance may gradually fail to provide suffi-
cient selection pressure. When newly produced nondominated
individuals significantly exceed the remaining slots of the pop-
ulation capacity, the PC evolution will slow down. At this time,
it is beneficial to make relatively less exploration on the PC
population, thus leading to more resources possessed by the
NPC evolution, which generally has high selection pressure.
Given the above, the radius of the niche is determined as

r = (
N′/N

)× r0 (3)
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Fig. 3. Nondominated set of all the solutions produced in one run of
(a) MOEA/D+TCH and (b) BCE-MOEA/D+TCH on DTLZ7, respectively.

where N denotes the capacity of the PC population, N′ denotes
the actual size of the PC population before the truncation, and
r0 is the basic niche radius, calculated in the same way as in
the population maintenance operation.

In BCE, individual exploration in the PC evolution
inevitably competes with the variation operation in the NPC
evolution for limited computational resources (i.e., function
evaluations). Given a fixed computational budget, the number
of individuals explored directly affects the evolutionary level
of the NPC population. However, it is worth noting that indi-
vidual exploration here is adaptive, depending on the current
evolutionary status of the NPC population. When the NPC
population has diversity loss [like the case in Fig. 1(a) in
which the decomposition-based criterion struggles to main-
tain diversity], intensive exploration will be made. When the
population has been found to be well distributed, little or even
no exploration will be done; for instance, for the test function
DTLZ2 [18] the decomposition-based evolutionary population
can work very well and thus no individual is explored in
the PC population (this will also be empirically presented in
Section V-B).

Finally, Fig. 3 gives the comparative results of the origi-
nal MOEA/D+TCH [i.e., Fig. 1(c)] and BCE-MOEA/D+TCH
(BCE with MOEA/D+TCH embedded into its NPC evolution
part) by plotting all of their nondominated individuals pro-
duced in one run. In contrast to MOEA/D+TCHs solutions
that are located around some specific regions, the solutions
produced by BCE-MOEA/D+TCH nearly cover the whole
optimal space. This difference can be fully attributed to the
individual exploration operation in the PC evolution part of
the algorithm, which conducts the search on some undeveloped
(or not well-developed) regions in the NPC evolution.

D. Computational Complexity of One Generation of BCE

The computational cost of BCE comes from the NPC evo-
lution and the PC evolution. For simplicity, let both parts
have the population size (capacity) N. For the time complex-
ity of the NPC evolution, there are two possible situations,
depending on the selection operation in the embedded non-
Pareto algorithm. When the survival of an individual is
determined by its fitness in the population (like in IBEA),

the NPC selection is implemented in the same way as the indi-
vidual selection in the embedded algorithm (see Section III-A).
In this case, the NPC evolution has the same time complexity
as the embedded algorithm (denoted as C). On the other hand,
when the survival of an individual is relevant to the informa-
tion from its parents (like in MOEA/D), the NPC selection
is implemented by comparing the individuals produced in the
PC evolution with the members of the NPC population. This
requires O(N2) comparisons at most. Hence, the time com-
plexity of the NPC evolution in this situation is C or O(N2),
whichever is larger.

The computational cost of the PC evolution part is deter-
mined by three operations: the PC selection, population main-
tenance, and individual exploration. The PC selection, which
identifies nondominated individuals from a population with
3N members at most, requires O(mN2) comparisons [14],
where m is the number of objectives. In the population mainte-
nance, the Euclidean distance between each pair of individuals
in the population is first calculated, which requires O(mN2)

computations. Then, determining the niche radius requires
O(N2) computations in which finding the kth smallest dis-
tance (k = 3) for an individual needs O(N) comparisons.
Thereafter, the crowding degree estimation and the popula-
tion truncation are sequentially implemented. Both require
O(N2) computations (or comparisons). It is worth mention-
ing that in the population truncation, we need only to update
the crowding degree of the neighbors of the removed indi-
vidual (i.e., the individuals that are in the same niche of the
removed individual). In general, the niche of an individual
only has a few individuals (independent of N) due to the
setting of the radius (namely, the average distance from all
individuals in the population to their third nearest individual).
In the individual exploration, the Euclidean distance between
the individuals and the radius of the niche are also calculated
first, which require O(mN2) and O(N2) computations, respec-
tively. Then, determining which individuals in the population
will be explored requires O(N2) comparisons (steps 3–13 in
Algorithm 2). Finally, carrying out the exploration operation
on the selected individuals requires O(N) computations at
most. Therefore, the total time complexity of the PC evolution
is O(mN2).

To summarize, the overall computational complexity of one
generation of BCE is bounded by C or O(mN2), whichever
is larger, where C is the computational complexity of the
embedded non-Pareto algorithm.

IV. PERFORMANCE VERIFICATION OF BCE

The proposed framework is verified by embedding non-Pareto
EMO algorithms into its NPC evolution part and comparing
these non-Pareto algorithms with the resulting BCE algorithms.
We consider the two representative non-Pareto-based algo-
rithms IBEA [82] and MOEA/D [44], which lead the evolution
via the indicator-based criterion and decomposition-based cri-
terion, respectively. In MOEA/D, two scalarizing functions
TCH and penalty-based boundary intersection (PBI) are com-
monly used in the literature, and both are included in our
experiments in view of their good performance for different



652 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 20, NO. 5, OCTOBER 2016

TABLE I
SETTINGS AND PROPERTIES OF TEST PROBLEMS. m AND d DENOTE THE NUMBER OF OBJECTIVES AND DECISION VARIABLES, RESPECTIVELY

MOPs [16], [32], [44], [48]. Note that MOEA/D used here
is sourced from [44] rather than from its original paper [75].
This improved version can largely enhance the diversity of
the population by allowing parent individuals to be selected
from the whole population as well as setting a limit of the
maximal number of individuals replaced by a newly produced
child individual. In addition, in the TCH scalarizing function,
we replace “multiplying the weight vector” with “dividing it”
for obtaining more uniform individuals, as pointed out in [16]
and [37]. Overall, the intention that we consider this version
of MOEA/D is to verify the effectiveness of BCE even when
the considered non-Pareto algorithms already work fairly well
in terms of diversity maintenance on most MOPs.

A comprehensive set of 42 MOPs are introduced in the
experiments. These test problems, which are widely used
in the area, have various properties, such as having a con-
vex, concave, mixed, discontinuous, or degenerate Pareto
front, having a multimodal, biased, or deceptive search space,
and/or having strong-linkage decision variables. They cer-
tainly include some MOPs for which non-Pareto algorithms
generally work well, like an MOP with a linear (or fairly
regular) Pareto front, and also have some for which the
algorithms may encounter difficulties, like an MOP with a
discontinuous (or highly irregular) Pareto front. Table I sum-
marizes the properties and configuration of these MOPs. All
the problems are configured as described in their original
papers [18], [28], [61], [66], [74], [80].

To compare the performance of the algorithms, two widely
used quality indicators, such as the inverted generational dis-
tance (IGD) [16], [75] and HV [79], are considered because
they can provide a combined information of convergence and
diversity of a solution set. IGD measures the average Euclidean
distance from uniformly distributed points along the whole
Pareto front to their closest solution in the obtained solution
set, and a smaller value is preferable. HV calculates the vol-
ume of the objective space between the obtained solution set
and a specified reference point, and a larger value is preferable.

In the calculation of HV, two crucial issues are the scal-
ing of the search space [20] and the choice of the reference
point [3]. Since the objectives in the considered test problems
take different ranges of values, we standardize the objective
value of the obtained solutions according to the range of the
problem’s Pareto front. Following the recommendation in [34],

TABLE II
POPULATION SIZE AND FUNCTION

EVALUATIONS IN THE EXPERIMENTS

the reference point is set to 1.1 times the upper bound of the
Pareto front (i.e., r = 1.1m) to emphasize the balance between
proximity and diversity of the obtained solution set. Note that
solutions that do not dominate the reference point are dis-
carded (i.e., solutions that are worse than the reference point
in at least one objective contribute zero to HV).

All the results presented in this paper are obtained by exe-
cuting 30 independent runs for each algorithm. For a fair
comparison, all the algorithms have the same size (or capacity)
of the population (for BCE, this refers to both the NPC and the
PC populations) and the same number of function evaluations
on each problem. Table II lists the settings of the population
size and function evaluations for all the test problems in the
experiments. For the UF functions from the CEC2009 com-
petition [74], the population size and function evaluations are
specified the same as in their original report [76]. For other
MOPs, we used a smaller population size and fewer function
evaluations as they are generally easier than the UF functions.
Like some existing studies [52], the number of function evalu-
ations is set to 25 000 and 30 000 for two- and three-objective
MOPs, respectively. Note that in MOEA/D, the population size
corresponds to the number of weight vectors and the algo-
rithm cannot generate uniformly distributed weight vectors at
an arbitrary number. So, we set the population size consistent
with the number of the uniformly generated weight vectors
in MOEA/D. That is 100, 105, 220, 252, and 220 for the
2-, 3-, 4-, 6-, and 10-objective MOPs, respectively. In addi-
tion, given that many-objective problems often bring bigger
challenges for EMO algorithms than MOPs with two or three
objectives [57], we assign them a larger population size and
more function evaluations, following the practice in [47].

Parameters need to be set in the considered algorithms.
According to [74], the size of the neighborhood, the
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TABLE III
IGD RESULTS (MEAN AND SD) OF THE THREE GROUPS OF PAIRED ALGORITHMS. THE BETTER MEAN FOR EACH CASE IS HIGHLIGHTED IN BOLDFACE

probability of parent individuals selected from the neighbor-
hood, and the maximum number of replaced individuals in
MOEA/D were specified as 10% of the population size, 0.9,
and 1% of the population size, respectively. As suggested
in [75] and [82], the penalty parameter θ in MOEA/D+PBI
was set to 5 and the scaling factor κ in IBEA to 0.05. In BCE,
the embedded non-Pareto algorithms used the same setting of
parameters as in their original versions.

All the considered algorithms were given real-valued vari-
ables. The two widely used crossover and mutation operators
simulated binary crossover (SBX) and polynomial mutation
(with distribution indexes 20 [15]) were used on all the MOPs,
except UF. The crossover probability was set to pc = 1.0 and
mutation probability to pm = 1/d, where d denotes the num-
ber of decision variables. For the UF problems that have a
strong linkage in variables, the use of variable-independent
SBX may not be adequate [16], [44]. Following the study
in [44] and [74], we adopted the DE operation for these
problems, with the two control parameters CR = 1.0 and
F = 0.5.

Tables III and IV give the HV and IGD results (mean
and standard deviation), respectively, for the three groups of

paired algorithms, IBEA versus BCE-IBEA, MOEA/D+TCH
versus BCE-MOEA/D+TCH, and MOEA/D+PBI versus
BCE-MOEA/D+PBI, on all 42 MOPs. The better mean for
each problem is highlighted in boldface. To have statistically
sound conclusions, the Wilcoxon’s rank sum test [81] at a
0.05 significance level is adopted to test the significance of the
differences between the results obtained by paired algorithms.

As stated before, the advantage of NPC is primarily on
addressing challenging MOPs (such as with a complex PS or
with a high-dimensional objective space), whereas the advan-
tage of PC lies in dealing with MOPs with an irregular Pareto
front. Here, we divide the test problems into seven categories
to systematically investigate the effectiveness of BCE for prob-
lems with distinct preference of NPC or PC. The categories are
convex, concave, linear, mixed, discontinuous, complex-PS,
and high-dimensional problem.

A. Test Problems With Convex Pareto Front

In this category, we consider four problems, such as
SCH1, ZDT1, ZDT4, and VNT1. As can be seen in
Tables III and IV, the BCE algorithms show a clear advantage
over the non-Pareto algorithms on these problems. The three
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TABLE IV
HV RESULTS (MEAN AND SD) OF THE THREE GROUPS OF PAIRED ALGORITHMS. THE BETTER MEAN FOR EACH CASE IS HIGHLIGHTED IN BOLDFACE

BCE algorithms outperform their corresponding competitors
for both IGD and HV on all four problems, and the difference
in all of these comparisons is statistically significant.

Fig. 4 plots the final solutions of the six algorithms in a
single run on SCH1. This particular run, along with others
for visual demonstration in the paper, is associated with the
result that is the closest to the mean IGD value. SCH1 has a
convex Pareto optimal curve in the range f1, f2 ∈ [0, 4]. As
shown, IBEA and MOEA/D+TCH struggle to maintain the
uniformity of the solutions, especially around the edges of the
Pareto front. MOEA/D+PBI fails to find boundary points of
the Pareto front, with their solutions concentrating in the range
[0, 3]. On the other hand, the three BCE algorithms perform
well. Their performance appears similar, and all of their solu-
tions are uniformly distributed along the whole Pareto front.
This is attributable to the population maintenance operation in
BCE, which can effectively eliminate poorly distributed solu-
tions in the evolutionary process. In the rest of this paper,
for brevity, we plot the solutions of only one of the BCE
algorithms, if they perform visually similarly.

In addition, Fig. 5 shows the final solutions on VNT1.
Clearly, for this three-objective problem, only the BCE

algorithms have good diversity. The solutions obtained by
IBEA are solely located in the middle of the Pareto front. The
solutions of the two MOEA/D algorithms, which correspond to
uniformly distributed weight vectors, exhibit a specific struc-
ture but do not have a good distribution over the desired
front.

B. Test Problems With Concave Pareto Front

In this category, we consider 13 problems from the
ZDT, WFG, and DTLZ problem suites. As can be seen in
Tables III and IV, the three BCE algorithms generally per-
form better than their competitors. Specifically, BCE-IBEA,
BCE-MOEA/D+TCH, and BCE-MOEA/D+PBI obtain a bet-
ter IGD value in 12, 8, and 9 out of the 13 test instances,
respectively. For HV, BCE-IBEA, BCE-MOEA/D+TCH, and
BCE-MOEA/D+PBI outperform their corresponding non-
Pareto algorithms in 12, 9, and 9 out of the 13 instances,
respectively.

In fact, for some MOPs (such as DTLZ2), some non-Pareto
algorithms already work quite well. In this case, the explo-
ration operation in the PC evolution of BCE can hardly further
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(a)

(d)

(b)

(e)
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Fig. 4. Final solution set of the six algorithms on SCH1. (a) IBEA. (b) MOEA/D+TCH. (c) MOEA/D+PBI. (d) BCE-IBEA. (e) BCE-MOEA/D+TCH.
(f) BCE-MOEA/D+PBI.

Fig. 5. Pareto front and the final solution set on VNT1, where the solutions of the three BCE algorithms have similar distribution. (a) Pareto front. (b) IBEA.
(c) MOEA/D+TCH. (d) MOEA/D+PBI. (e) BCE-MOEA/D+TCH.

Fig. 6. Final solution set on DTLZ2, where the solutions of the three BCE algorithms have similar distribution. (a) IBEA. (b) MOEA/D+TCH.
(c) MOEA/D+PBI. (d) BCE-MOEA/D+TCH.

improve individuals’ performance but can lead to the decrease
in the computational resources (i.e., function evaluations)
occupied by the NPC evolution. Fig. 6 gives the final solu-
tions obtained by IBEA, MOEA/D+TCH, MOEA/D+PBI,
and BCE-MOEA/D+TCH on DTLZ2. Clearly, for this prob-
lem, IBEA is unable to maintain uniformity of the solutions,
but MOEA/D+TCH and MOEA/D+PBI have a set of excel-
lently distributed solutions over the Pareto front. This is

consistent with the result in Table III, where IBEA performs
worse than BCE-IBEA, but the two MOEA/D algorithms
perform better than their competitors.

As to the statistical results, it can be observed from the
tables that the difference between the paired algorithms is
significant for most of the test instances. Specifically, the pro-
portion of the test instances where the three BCE algorithms
BCE-IBEA, BCE-MOEA/D+TCH, and BCE-MOEA/D+PBI
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(a) (b)

Fig. 7. Final solution set obtained by (a) MOEA/D+PBI and (b) BCE-
MOEA/D+PBI on WFG3.

outperform their competitors with statistical significance is
11/13, 6/13, and 9/13 for IGD and 9/13, 9/13, and 9/13 for HV,
respectively. Conversely, the proportion of the instances where
the three non-Pareto algorithms IBEA, MOEA/D+TCH, and
MOEA/D+PBI are superior with statistical significance is
0/13, 4/13, and 3/13 for IGD and 1/13, 4/13, and 1/13
for HV, respectively.

C. Test Problems With Linear Pareto Front

Non-Pareto EMO algorithms in general work well on this
kind of problem as their NPC is not likely to prefer spe-
cific areas of a plane Pareto front. Despite that, the proposed
approach is still competitive, as can be seen from the results
on test problems WFG3 and DTLZ1 in Tables III and IV. For
WFG3, the three BCE algorithms all outperform their competi-
tors. For a visual comparison, Fig. 7 plots the final solutions
of MOEA/D+PBI and BCE-MOEA/D+PBI as well as the
problem’s Pareto front. As shown, BCE-MOEA/D+PBI has a
better performance than MOEA/D+PBI in terms of both diver-
sity and convergence. This observation is interesting because
it is commonly believed that the solutions guided by an NPC
have a better convergence than those by the PC. One impor-
tant reason for this occurrence is that the exploration around
the nondominated solutions in BCE can effectively drive the
population evolving toward the Pareto front, especially at the
initial stage of evolution.

To take a closer look, Fig. 8 gives the results of
MOEA/D+PBI and BCE-MOEA/D+PBI during the initial
1000 function evaluations, where Fig. 8(a) plots all 1000
individuals produced by the two algorithms and Fig. 8(b)
plots their evolutionary population at the 1000 evaluations.
As can be seen in Fig. 8(a), there exist some individuals of
BCE-MOEA/D+PBI apparently closer to the optimal front.
This is the result of effective exploration of the nondominated
individuals (i.e., the PC population) in BCE. These nondomi-
nated individuals, whose number is smaller than the population
capacity at that time, can represent the best individuals found
so far, as seen from the comparison between Fig. 8(a) and (b).

The test function DTLZ1 has a huge number of local opti-
mal fronts (115−1). For this problem, BCE-IBEA outperforms
IBEA, but BCE-MOEA/D+TCH and BCE-MOEA/D+PBI
perform worse than the two MOEA/D algorithms. In
Section V-C, we will provide a detailed explanation for why
BCE may be outperformed by some non-Pareto algorithms on
such MOPs with a number of local optima.

(a) (b)

Fig. 8. Results of MOEA/D+PBI and BCE-MOEA/D+PBI during initial
1000 function evaluations on WFG3. (a) All the individuals produced during
the 1000 evaluations. (b) Evolutionary population at the 1000 evaluations.

D. Test Problems With Mixed Pareto Front

The results of three of this kind of problems, WFG1, VNT2
and VNT3, are shown in Tables III and IV, where the BCE
algorithms significantly outperform their competitors. They are
superior with statistical significance in eight out of the nine
comparisons for both IGD and HV indicators. For a visual
observation, Fig. 9 plots the final solutions obtained by IBEA,
MOEA/D+TCH, MOEA/D+PBI, and BCE-MOEA/D+TCH
on VNT3. Clearly, only BCE-MOEA/D+TCH has well-
distributed solutions over the whole Pareto front. The solu-
tions obtained by the three non-Pareto algorithms concentrate
mainly in the middle segment and fail to extend to the left
part of the optimal front.

E. Test Problems With Discontinuous Pareto Front

As can be seen from the two tables, for MOPs with a dis-
continuous Pareto front, the proposed approaches have a clear
advantage over the non-Pareto algorithms. The three BCE
algorithms significantly outperform their competitors for all
the instances, and on most of these instances they even have
an order of magnitude smaller IGD values.

In fact, non-Pareto algorithms commonly struggle to main-
tain the diversity of solutions on this kind of MOPs. This
happens mainly because the imaginary parts of the discon-
tinuous Pareto front largely affect the accuracy of the fitness
estimation based on an NPC. For example, in MOEA/D, the
breakpoints of the discontinuous Pareto front may correspond
to the optimal solution of multiple scalar subproblems [58].
This is likely to cause the failure of uniformity maintenance
of solutions, further leading to the search of the algorithm
only on some specific regions of the objective space. Fig. 10
plots the final solutions obtained by IBEA, MOEA/D+TCH,
MOEA/D+PBI, and BCE-MOEA/D+TCH on SCH2. It can
be observed that IBEA and MOEA/D+TCH are unable to
maintain the uniformity of solutions, and MOEA/D+PBI fails
to find the upper part of the Pareto front. Note that there
exist some dominated solutions in the set of solutions obtained
by MOEA/D+PBI because a dominated solution may have a
closer distance than a nondominated one to the corresponding
reference point in MOEA/D+PBI, as pointed out in [16].
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Fig. 9. Pareto front and the final solution set on VNT3 in which the solutions of the three BCE algorithms have similar distribution. (a) Pareto front. (b)
IBEA. (c) MOEA/D+TCH. (d) MOEA/D+PBI. (e) BCE-MOEA/D+TCH.

(a) (b) (c) (d) (e)

Fig. 10. Pareto front and the final solution set on SCH2 in which the solutions of the three BCE algorithms have similar distribution. (a) Pareto front.
(b) IBEA. (c) MOEA/D+TCH. (d) MOEA/D+PBI. (e) BCE-MOEA/D+TCH.

(a) (b)

Fig. 11. Final solution set obtained by (a) MOEA/D+TCH and (b) BCE-
MOEA/D+TCH on UF1.

F. Test Problems With Complex PS

In this section, we consider the UF problem suite from the
CEC2009 competition [74]. These MOPs involve a strong link-
age in variables among the Pareto optimal solutions, thereby
posing a big challenge for EMO algorithms [44], [76]. In spite
of that, the BCE algorithms outperform their corresponding
non-Pareto algorithms on the majority of the test instances,
as shown in Tables III and IV. Specifically, BCE-IBEA,
BCE-MOEA/D+TCH, and BCE-MOEA/D+PBI achieve a
better IGD value than their competitors in eight, seven, and
nine out of the ten test instances, respectively. For HV,
BCE-IBEA, BCE-MOEA/D+TCH, and BCE-MOEA/D+PBI
outperform their competitors in eight, seven, and ten out
of the ten instances, respectively. Also, the difference in
most of these comparisons is statistically significant, with
the winning ratio of the BCE algorithms against their com-
petitors being 19 to 2 for IGD and 19 to 0 for HV in
the 30 comparisons, respectively. One reason for this occur-
rence is likely due to the population maintenance operation
in BCE, which is able to maintain the diversity of solutions
effectively.

Fig. 11 plots the final solutions obtained by MOEA/D+TCH
and BCE-MOEA/D+TCH on UF1. As shown, although a
good distribution of solutions is obtained in most parts of
the Pareto front by MOEA/D+TCH, there is a clear interval
between the upper bound and the other solutions. In contrast,
the solutions obtained by BCE-MOEA/D+TCH have a good
distribution uniformity along the whole front.

G. Test Problems With Many Objectives

In this section, test problems DTLZ2 [18] and
DTLZ5(I, m) [62], [64] are used to verify the perfor-
mance of BCE on many-objective problems. DTLZ2 has
a spherical Pareto front in the range f1, f2, . . . , fm ∈ [0, 1],
and DTLZ5(I, m) has a degenerate Pareto front, with its
dimensionality I lower than that of the objective space m.

Tables III and IV show the results of the six algorithms on
five instances of DTLZ2 and DTLZ5(I, m). These instances
are three DTLZ2 functions with four, six, and ten objectives,
and two 10-objective DTLZ5(I, m) functions with 2-D and 3-D
Pareto front, i.e., DTLZ5(2,10) and DTLZ5(3,10). As can be
seen from the tables, the compared algorithms perform sim-
ilarly on the four- and six-objective instances in which the
BCE algorithms often have a better IGD result, whereas the
non-Pareto algorithms generally obtain a higher HV value.
For three 10-objective instances, the BCE algorithms signif-
icantly outperform their competitors. This suggests that the
advantage of the proposed approach becomes clearer when a
higher-dimensional space is involved. Fig. 12 shows the final
solutions of MOEA/D+TCH and BCE-MOEA/D+TCH on
the ten-objective DTLZ2 by parallel coordinates. As shown,
MOEA/D+TCH fails to find widely distributed solutions on
objectives f1 to f3, which is in contrast to the result of BCE-
MOEA/D+TCH whereby a spread of solutions over fi ∈ [0, 1]
is obtained.
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(a) (b)

Fig. 12. Final solution set obtained by (a) MOEA/D+TCH and
(b) BCE-MOEA/D+TCH on the ten-objective DTLZ2, as shown by parallel
coordinates.

In DTLZ5(I, m), all objectives within { f1, . . . , fm−I+1}
are positively correlated, whereas the objectives in
{ fm−I+1, . . . , fm} conflict with each other. Fig. 13 plots the
final solutions of IBEA, MOEA/D+TCH, MOEA/D+PBI,
and BCE-MOEA/D+TCH in the last three objectives ( f8,
f9, f10) of DTLZ5(3,10). The Pareto optimal solutions
of the problem with respect to these objectives satisfy
2f 2

8 + f 2
9 + f 2

10 = 1. As shown, despite several solutions
of BCE-MOEA/D+TCH not located on the optimal front,
the rest has good uniformity and coverage over the whole
front. In contrast, the three non-Pareto algorithms struggle to
maintain diversity, with their solutions concentrating in some
tiny parts (or even several points) of the Pareto front.

Finally, it is worth mentioning that Pareto-based algorithms
are often seen as failing to deal with many-objective problems.
Their Pareto dominance and density-based selection criteria
even could push the population against the optimal front
in a high-dimensional space [31], [47], [68]. Interestingly,
the solution set of BCE, which is the PC population main-
tained by Pareto dominance and density, performs well in
many-objective problems. This occurrence can be attributed
to the role of the NPC evolution in BCE, which leads the PC
population to evolve toward the desired direction.

H. Result Summary

To summarize, the BCE algorithms generally outper-
form their corresponding non-Pareto algorithms. BCE-IBEA,
BCE-MOEA/D+TCH, and BCE-MOEA/D+PBI have a bet-
ter IGD value in 38, 32, and 35 out of the 42 test
problems. For HV, BCE-IBEA, BCE-MOEA/D+TCH, and
BCE-MOEA/D+PBI perform better in 36, 33, and 34 out of
the 42 test problems. Note that for a couple of test problems,
some paired algorithms obtain different comparison results
with respect to IGD and HV, although both indicators involve
comprehensive performance of convergence and diversity. For
example, for the four- and six-objective DTLZ2, BCE-IBEA
has a better IGD but worse HV than the original IBEA. This
contradiction between HV and IGD happens more on the prob-
lems with a concave Pareto front, as reported in [38]. The
reason for this occurrence is the different preference of the two
indicators [50]. IGD, which is based on uniformly distributed
points along the entire Pareto front, prefers the distribution
uniformity of the solution set, whereas HV, which is typically

influenced more by the boundary solutions, has a bias toward
the extensity of the solution set.

V. FURTHER INVESTIGATIONS OF BCE

Having demonstrated its competitiveness on various test
problems above, BCE is further investigated in this section
for a deeper understanding of its behavior. Due to the space
limit and similar comparative results obtained by the IGD and
HV indicators, we present only the IGD results in this and the
following sections.

A. Performance Verification of the NPC Evolution

The previous experimental results have shown the effective-
ness of the PC evolution in maintaining the individual diversity
and approaching the optimal front. A question may now arise
regarding the NPC evolution. Does the NPC evolution ben-
efit from the information exchange with the PC evolution?
In other words, can non-Pareto EMO algorithms themselves
benefit when working under this BCE framework?

To answer this question, we give the IGD results between
the solution set of the original non-Pareto algorithms and that
of the embedded ones (i.e., the NPC population) on the 42
test problems in Table V. As shown, for most of the prob-
lems, the performance of the three non-Pareto algorithms
is improved when working under the BCE framework. The
NPC population of BCE-IBEA, BCE-MOEA/D+TCH, and
BCE-MOEA/D+TCH has a better IGD value than the solu-
tion set of the corresponding non-Pareto algorithms in 31, 31,
and 32 out of all the 42 instances, respectively.

In addition, it is worth mentioning that unlike the PC evo-
lution that can preserve any nondominated individual located
in a sparse region, the NPC evolution may not preserve such
individuals due to its own selection criterion. That is, even
when the PC evolution produces plenty of promising individ-
uals that clearly help enhance the population diversity, they
may still not enter the NPC population if not preferred by
the considered NPC. That is why, for some MOPs in which
the PC population significantly outperforms that of the non-
Pareto algorithm, the NPC population yet performs similarly
to (or even slightly worse than) the latter, such as the results
of BCE-MOEA/D+TCH on DTLZ5(2,10). Interestingly, there
are also some exceptions that the population of non-Pareto
algorithms has a clear improvement when working collabo-
ratively with the PC population in BCE. Fig. 14 gives such
an example, where the solution set of the original IBEA and
the one working under the BCE framework (i.e., the NPC
population of BCE-IBEA) are plotted by parallel coordinates.
Clearly, in contrast to IBEA that fails to find diverse solutions
on objectives f1 to f6, the NPC evolution in BCE-IBEA main-
tains a good diversity of population for all the objectives of
the Pareto front.

In summary, despite evolving based on their own selection
criterion, the non-Pareto algorithms generally show a perfor-
mance improvement when embedded into the NPC evolution
part of BCE. This, along with the experimental results in
the previous section, indicates that both the NPC and PC
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Fig. 13. Pareto front and the final solution set in the subspace ( f8–f10) of DTLZ5(3, 10), where the solutions of the three BCE algorithms have similar
distribution. (a) Pareto front. (b) IBEA. (c) MOEA/D+TCH. (d) MOEA/D+PBI. (e) BCE-MOEA/D+TCH.

TABLE V
IGD COMPARISON BETWEEN THE ORIGINAL NON-PARETO ALGORITHMS AND THE NPC EVOLUTION IN THEIR CORRESPONDING

BCE ALGORITHMS. THE BETTER MEAN FOR EACH CASE IS HIGHLIGHTED IN BOLDFACE

evolutions benefit from the information share and exchange
under the BCE framework.

B. Individual Exploration in the PC Evolution

In BCE, the individual exploration operation plays a key
role. It is designed to compensate for the possible diversity
loss of the NPC evolution by exploring some promising indi-
viduals in the PC population that are not well developed or
have already been eliminated in the NPC population. In this
section, we take a closer look at this operation, investigating
its role during the evolutionary process. That is, we record

how many individuals are produced in the operation and from
them, how many individuals enter the PC and NPC populations
via the PC and NPC selection, respectively.

For a comparison observation, we consider two situations in
which the embedded non-Pareto algorithm performs poorly and
well, separately. They are BCE-IBEA and BCE-MOEA/D+PBI
on DTLZ2 [Fig. 6(a) and (c)]. Fig. 15 gives the evolutionary
trajectories of the average number of those individuals that are
produced in the exploration operation and enter the PC and
NPC populations across the 30 runs. As can be seen in Fig. 15,
the exploration appears to be adaptive, based on the perfor-
mance of the embedded non-Pareto algorithm. If the embedded
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(a) (b)

Fig. 14. Final solution set of IBEA and the one working under the BCE
framework (i.e., the NPC population of BCE-IBEA) on the ten-objective
DTLZ2, as shown by parallel coordinates. (a) IBEA. (b) BCE-IBEA.

(a) (b)

Fig. 15. Evolutionary trajectories of the average number of individuals that
are produced in individual exploration and enter the PC and NPC populations
across the 30 runs of (a) BCE-IBEA and (b) BCE-MOEA/D+PBI on DTLZ2.
Black square denotes the number of individuals produced in the individual
exploration operation, and red circle and blue triangles denote the number of
the individuals entering the PC and NPC populations, respectively.

algorithm performs poorly, constant exploration is being made
throughout the whole evolutionary process; if the algorithm
works well, the exploration stops at certain evaluations, giving
the NPC evolution more computational resources. This adap-
tive operation leads to a good balance between the NPC and
the PC evolutions during the search process and enables BCE
to be always competitive no matter whether the embedded
non-Pareto algorithm performs well or not.

Next, we consider the number of individuals that enter the
PC and NPC populations. In both situations, most of the indi-
viduals produced in the exploration operation are preserved in
the PC population. This shows the effectiveness of the explo-
ration in producing competitive individuals in terms of the
PC. On the other hand, very few individuals produced in the
exploration operation can be selected into the NPC popula-
tion after around 3000 evaluations for BCE-IBEA because the
NPC evolution of the algorithm already performs “well” based
on its own criterion. In spite of that, there do exist a number
of individuals successfully entering the NPC population in the
initial stage of the evolution for both algorithms, especially
at the first generation where all the individuals produced in
the exploration operation are preserved in the NPC popula-
tion. This indicates the effectiveness of exploring promising
nondominated individuals on accelerating the evolution of the
NPC population during the initial stage of the search.

C. Population Maintenance in the PC Evolution

Like in Pareto-based algorithms, the population in the PC
evolution is maintained by the Pareto dominance relation and

(a) (b)

Fig. 16. Final solution set obtained by (a) NSGA-II and (b) BCE-
MOEA/D+TCH on DTLZ5(2,10), as shown by parallel coordinates.

individual density. They prefer nondominated individuals and
individuals with a lower crowding degree. Now a concern may
arise: does the PC evolution suffer from what Pareto-based
algorithms commonly suffer, such as inferior performance on
MOPs with a complex PS [44] or with a high-dimensional
objective space [68]?

In fact, the answer to the above question can be found from
the results in the previous section (Sections IV-F and IV-G).
As shown in Table III, for most of the variable-linkage
and many-objective problems, the PC population outper-
forms the solution set obtained by the indicator-based
and decomposition-based algorithms. And these non-Pareto
algorithms have already been demonstrated to have a
clear advantage over Pareto-based algorithms on such
MOPs [25], [32], [44], [51], [68], [76]. This suggests a fun-
damental difference of performance between the PC evolution
and the Pareto-based algorithms.

For a visual comparison, we give the results of BCE-
MOEA/D+TCH and a well-known Pareto-based algorithm,
NSGA-II, on the ten-objective problem DTLZ5(2,10). Fig. 16
plots the solution set obtained by the two algorithms via par-
allel coordinates. It is clear that in contrast to NSGA-II whose
solutions are far away from the optimal front (the objec-
tive value being up to around 200), BCE-MOEA/D+TCH
performs superiorly, with its solutions fully covering the
whole Pareto front. This contrast indicates the interplay
between the NPC evolution and the PC evolution in the
BCE framework. Not only does the PC evolution maintain a
set of well-distributed individuals to compensate for possible
diversity loss of the NPC population but the NPC evolution
also guides the PC population forward—it produces suffi-
cient well-converged individuals, which can “pull” the PC
population toward the Pareto front.

Finally, it is necessary to point out that although BCE
generally works well on the MOPs where Pareto-based algo-
rithms have struggled, its Pareto dominance and density-based
population maintenance strategy, in some cases, still has an
impact on the algorithm’s performance. This maintenance
strategy can cause the existence of some dominance resis-
tant solutions5 (DRSs) [30] in the PC population. This has
often been observed in problems with many local optimal

5DRSs are the solutions with a quite poor value in at least one of the
objectives but with (near) optimal values in the others, which Pareto-based
algorithms have difficulty in getting rid of [18], [30], [36].
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Fig. 17. Final solution set of (a) MOEA/D+TCH and (b) BCE-
MOEA/D+TCH on DTLZ1.

fronts, such as DTLZ1 and DTLZ3. Fig. 17 shows the
final solution set obtained by MOEA/D+TCH and BCE-
MOEA/D+TCH in one typical run on DTLZ1. Clearly, in
contrast to MOEA/D+TCH whose solutions all converge into
the Pareto front, there exist two solutions far away from the
optimal front in BCE-MOEA/D+TCH. Such solutions typi-
cally have a low crowding degree and will be preferred since
no individual in the population dominates them.

The existence of DRSs in the PC population is detrimen-
tal not only to population maintenance but also to individual
exploration. In the individual exploration operation, DRSs are
always considered since there is no NPC individual located in
their niche. Exploring them could have very little contribution
to the algorithm’s performance in view of their poor perfor-
mance in terms of convergence. A straightforward approach
to remove DRSs is to increase the selection pressure of Pareto
dominance; however, this will lead to nondominated individu-
als to be treated differently, and thus will probably affect their
distribution uniformity over the Pareto front. We leave this for
our future study.

D. Comparison With State-of-the-Art Algorithms

The previous experimental results have demonstrated the
effectiveness of the BCE framework in improving three non-
Pareto algorithms. In this section, we further investigate the
competitiveness of the BCE framework by comparing the three
BCE algorithms with two state-of-the-art EMO algorithms,
NSGA-III [16] and SMS-EMOA [7].

NSGA-III and SMS-EMOA use both PC and NPC in their
selection mechanism. NSGA-III combines the Pareto nondom-
inated sorting with a decomposition-based niching technique
to balance solutions’ convergence and diversity in the evo-
lutionary process. NSGA-III has shown its advantage over
the two decomposition-based algorithms MOEA/D-TCH and
MOEA/D-PBI in its original paper [16] and has been found to
significantly outperform IBEA in a recent study [69]. Working
with the Pareto nondominated sorting, SMS-EMOA maxi-
mizes the HV contribution of nondominated solutions during
the evolutionary process. SMS-EMOA has also been demon-
strated to generally outperform IBEA and MOEA/D in a very
recent study [39].

The intention that we introduce NSGA-III and SMS-EMOA
as peer algorithms is to 1) verify the competitiveness of BCE
in comparison with hybrid algorithms based on both PC and

NPC and 2) see how the three BCE algorithms would per-
form against state-of-the-art algorithms that outperform their
original non-Pareto versions.

Note that the execution of SMS-EMOA with a large pop-
ulation size and a large number of objectives can take unac-
ceptable time. Therefore, for some MOPs [i.e., UF8–UF10,
many-objective DTLZ2 and DTLZ5(I, m)], we approximately
estimate the HV indicator in SMS-EMOA by the Monte Carlo
sampling method used in [4]. Following the practice in
HypE [4], 10 000 sampling points are used. In addition, all
configurations in this experiment were kept the same as in
previous studies.

Table VI gives the experimental results of the three BCE
algorithms against NSGA-III and SMS-EMOA. As can be seen,
the three BCE algorithms generally outperform NSGA-III and
SMS-EMOA. Specifically, BCE-IBEA, BCE-MOEA/D+TCH,
and BCE-MOEA/D+PBI perform statistically better than, equal
to, or worse than NSGA-III on 28/8/6, 27/6/9, and 21/5/16
problems, respectively. BCE-IBEA, BCE-MOEA/D+TCH, and
BCE-MOEA/D+PBI perform statistically better than, equally
to, or worse than SMS-EMOA on 21/6/15, 23/3/16, and 21/3/18
problems, respectively.

It is worth mentioning that actually the original versions of
the three non-Pareto algorithms (i.e., IBEA, MOEA/D+TCH,
and MOEA/D+PBI) are significantly outperformed by
NSGA-III and SMS-EMOA. From the comparison of the IGD
results, IBEA, MOEA/D+TCH, and MOEA/D+PBI perform
statistically better than, equal to, or worse than NSGA-III on
11/4/27, 15/3/24, and 13/4/25 problems, respectively; IBEA,
MOEA/D+TCH, and MOEA/D+PBI perform statistically bet-
ter than, equally to, or worse than SMS-EMOA on 5/3/34,
13/4/25, and 11/8/23 problems, respectively. This contrast
clearly indicates the effectiveness of the BCE framework—
when working under the BCE framework, all three non-Pareto
algorithms have a significant performance improvement and
now are very competitive with or even generally outperform
the state-of-the-art NSGA-III and SMS-EMOA.

VI. DISCUSSION

One important issue in the proposed BCE framework is
the setting of the niche radius since both the population
maintenance and individual exploration operations involve the
niche-based density estimation. BCE considers the average of
the Euclidean distance from all the individuals to their kth
nearest individual in the population as the niche radius. A large
k will result in a large radius. However, how to set k cannot
be treated as trivial.

In population maintenance, the crowding degree estimation
of an individual is affected by the number of other indi-
viduals in its niche (called its neighbors). A large k would
make outer individuals of the population to be preferred
since the number of their neighbors is generally fewer than
that of inner ones. A too small k would make many indi-
viduals have no neighbor residing in their niche, thereby
leading to the failure of differentiating them. In fact, the BCE
algorithms can work well in terms of diversity maintenance
when k ∈ [3, 6]. Fig. 18 plots the solution sets obtained by
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TABLE VI
IGD RESULTS (MEAN AND SD) OF THE THREE BCE ALGORITHMS, NSGA-III, AND SMS-EMOA. THE TWO MARKS

ASSOCIATED WITH EACH BCE ALGORITHM INDICATE ITS STATISTICAL COMPARISON (ACROSS 30 RUNS) AGAINST

NSGA-III AND SMS-EMOA, RESPECTIVELY. “<,” “≈,” AND “>” INDICATE THAT THE BCE ALGORITHM

STATISTICALLY PERFORMS BETTER, EQUALLY, AND WORSE, RESPECTIVELY, AT A 0.05 LEVEL

BY THE WILCOXON’S RANK SUM TEST

Fig. 18. Solution sets obtained by BCE-MOEA/D+TCH with different k values in the niche radius setting on DTLZ2. (a) k = 2. (b) k = 3. (c) k = 4.
(d) k = 6. (e) k = 10.

BCE-MOEA/D+TCH with different k values on DTLZ2. As
shown, BCE-MOEA/D+TCH with k = 3, 4, 6 performs well,
whereas the algorithm with k = 2 struggles to maintain uni-
formity, and more boundary solutions are obtained when k is
set to 10.

In individual exploration, the niche size affects the num-
ber of individuals to be explored. A large niche can lead
to very few (or even none of) individuals in the PC popu-
lation to be explored. Table VII gives the experimental results

of BCE-MOEA/D+TCH with different k values on the nine
WFG problems. Similar results can also be observed on other
problems. As can be seen from the table, setting a small
k can generally lead to a better result of the algorithm.
BCE-MOEA/D+TCH with k = 2 performs best or second
best in seven out of the nine problems, and the algorithm with
k = 3 in eight out of the nine problems. This indicates that
setting k to 2 or 3 is suitable for the individual exploration
operation.
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TABLE VII
IGD RESULTS (MEAN AND SD) OF BCE-MOEA/D+TCH WITH DIFFERENT k VALUES ON THE

WFG PROBLEMS. THE BEST AND SECOND BEST MEANS FOR EACH PROBLEM ARE

SHOWN WITH DARK AND LIGHT GRAY BACKGROUNDS, RESPECTIVELY

From the above observations, the BCE algorithm with k set
to 3 can work well in both the population maintenance and
individual exploration operations.

Finally, it is worth mentioning that the previous experi-
ments are all about the test of comprehensive performance of
BCE (i.e., combined performance of convergence and diver-
sity). Then, how does the BCE algorithm perform in terms of
separate convergence or diversity? In fact, BCE is designed
to use a non-Pareto algorithm (as a driver) to lead the PC
evolution forward and at the same time use the PC evolution
to compensate for the possible diversity loss during the search
process of this non-Pareto algorithm. Thus, the BCE algorithm
usually performs worse than the embedded non-Pareto algo-
rithm in terms of convergence but better in terms of diversity.
However, if the NPC used in the embedded algorithm strug-
gles to steer the evolution forward, Pareto dominance would
drive the evolution instead. In this case, the BCE algorithm has
better convergence than the embedded non-Pareto algorithm.
Fig. 7 in Section IV is precisely such a case.

VII. CONCLUSION

This paper has presented a BCE framework of PC and NPC
to deal with MOPs. In BCE, the two criteria work collabora-
tively, attempting to use their strengths to facilitate each other’s
evolution. In general, the NPC evolution drives the PC evolu-
tion forward, whereas the PC evolution compensates for the
possible diversity loss of the NPC evolution. In the proposed
framework, the two populations communicate constantly, with
their information being fully shared and compared in a genera-
tional manner. Any new individual produced in one population
will be tested and applied in the other. The information com-
parison of the two populations reflects the current status of the
NPC evolution, thus making the search more focused on some
undeveloped (or not well-developed) but promising regions.

Systematic experiments have been carried out by investigat-
ing three representative non-Pareto EMO algorithms on seven
categories of 42 test problems. The results have revealed the
effectiveness of the BCE approach in providing a good balance
between convergence and diversity. The three BCE algorithms
work well, whether on problems in which NPC could struggle,
such as MOPs with a highly irregular or a discontinuous Pareto
front, or on problems in which the PC is likely to fail, such
as MOPs with a complex PS or a high-dimensional objective
space.

Moreover, the performance verification of the embedded
non-Pareto algorithms indicates that both the PC and the NPC
evolutions benefit from the information share and exchange
under the BCE framework. In addition, two key operations of
BCE, individual exploration and population maintenance, have
been investigated and analyzed. The variation of the num-
ber of explored individuals during the evolutionary process
has shown the adaptiveness of individual exploration, depend-
ing on the performance of the embedded algorithm. As to
population maintenance, despite clear differences having been
observed from the results in comparison with Pareto-based
algorithms, the Pareto dominance and density-based mainte-
nance strategy could have an impact on the performance of
the BCE algorithm. Finally, a comparison with NSGA-III and
SMS-EMOA has verified the competitiveness of the three BCE
algorithms as independent algorithms to deal with MOPs.

The BCE of Pareto and non-Pareto criteria is a gen-
eral framework in EMO. It can be especially of practical
value in the area, given its applicability for any non-Pareto
algorithm, no requirement of parameter tuning in the imple-
mentation, and the reliability on various problems with distinct
characteristics.

Finally, note that the study in this paper focuses on the
design of the BCE framework and the implementation of selec-
tion operations, whereas the variation operation is not fixed
and it uses the same search operators from the embedded non-
Pareto algorithm. In the subsequent work, we will attempt
to introduce other search operators into BCE. This includes
integrating existing operators (such as those from MO-CMA-
ES [29], MTS [65], MTS2 [11], and SBS [46]) or designing
new operators specially for the individual exploration in the
PC evolution.
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