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Abstract—We examine the behavior of three classes of evolu-
tionary multiobjective optimization (EMO) algorithms on many-
objective knapsack problems. They are Pareto dominance-based,
scalarizing function-based, and hypervolume-based algorithms.
NSGA-II, MOEA/D, SMS-EMOA, and HypE are examined using
knapsack problems with 2–10 objectives. Our test problems are
generated by randomly specifying coefficients (i.e., profits) in
objectives. We also generate other test problems by combining
two objectives to create a dependent or correlated objective.
Experimental results on randomly generated many-objective
knapsack problems are consistent with well-known performance
deterioration of Pareto dominance-based algorithms. That is,
NSGA-II is outperformed by the other algorithms. However, it is
also shown that NSGA-II outperforms the other algorithms when
objectives are highly correlated. MOEA/D shows totally different
search behavior depending on the choice of a scalarizing function
and its parameter value. Some MOEA/D variants work very well
only on two-objective problems while others work well on many-
objective problems with 4–10 objectives. We also obtain other
interesting observations such as the performance improvement
by similar parent recombination and the necessity of diversity
improvement for many-objective knapsack problems.

Index Terms—Evolutionary many-objective optimization, evo-
lutionary multiobjective optimization (EMO), many-objective
problems.

I. INTRODUCTION

S INCE the suggestion by Goldberg [1], Pareto domi-
nance relation has been widely used for fitness eval-

uation in evolutionary multiobjective optimization (EMO)
algorithms [2]–[4]. Whereas Pareto dominance-based algo-
rithms such as NSGA-II [5] and SPEA2 [6] usually work very
well on multiobjective problems with two or three objectives,
their search ability is often severely degraded by the increase
in the number of objectives [7]–[9]. This is because almost all
solutions in the current population become nondominated in
early generations when EMO algorithms are applied to many-
objective problems. In general, the goal of EMO algorithms is
to find a wide variety of nondominated solutions that approxi-
mate the entire Pareto front of a multiobjective problem. Thus,
it is desirable that all solutions are nondominated when the
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execution of an EMO algorithm is terminated. However, a pop-
ulation of only nondominated solutions is not desirable in early
generations. This is because those solutions are not likely to be
close to the Pareto front. It is more likely that they are similar
to randomly generated initial solutions. Thus, strong selection
pressure toward the Pareto front is needed to drive the popu-
lation to the Pareto front. However, Pareto dominance-based
fitness evaluation cannot generate such a strong selection pres-
sure when almost all solutions in the current population are
nondominated (even if they are far from the Pareto front).

Various approaches have been proposed for improving the
convergence property of Pareto dominance-based algorithms
on many-objective problems (see [10]–[15]). However, the
convergence improvement often causes a decrease in the diver-
sity of obtained nondominated solutions [16], [17]. Some
studies took into account diversity maintenance [18], [19].

Recently it has also been demonstrated that many-objective
problems are not always difficult for Pareto dominance-based
algorithms [13], [14], [20]–[22]. If most objectives of a many-
objective problem are highly correlated (i.e., objective values
of different objectives are highly correlated), it is not likely
that its Pareto front spreads over a wide range of the high-
dimensional objective space. If they are dependent on a
few objectives, the dimensionality of the Pareto front in the
objective space may be much smaller than the number of
objectives. As a result, the search for Pareto optimal solutions
of many-objective problems is not always difficult for Pareto
dominance-based algorithms.

In this paper, we examine the behavior of three classes of
EMO algorithms on many-objective knapsack problems. They
are Pareto dominance-based, scalarizing function-based, and
hypervolume-based algorithms. As their representatives, we
use NSGA-II [5], MOEA/D [23], and SMS-EMOA [24]. This
choice is based on their frequent use in the literature. Since
the application of SMS-EMOA to many-objective problems
is not always possible due to its heavy computation load,
we also examine HypE [25] with approximate hypervolume
calculation.

As test problems, we generate 500-item knapsack prob-
lems with 2–10 objectives. Our test problems are randomly
generated by randomly specifying coefficients (i.e., profits) in
objectives. Other test problems have dependent or correlated
objectives, each of which is generated as a weighted sum of
two objectives in the randomly generated test problems. We
also use knapsack problems with 100, 1000, and 10 000 items.

This paper is an extended version of our former stud-
ies [21], [26], [27] in which we examined the behavior of
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NSGA-II, MOEA/D, and SMS-EMOA. Each study addressed
only one aspect of many-objective optimization using one or
two classes of EMO algorithms. For example, we examined
the behavior of NSGA-II, SPEA2, and MOEA/D on many-
objective knapsack problems with highly correlated objectives
in [21]. NSGA-II and MOEA/D with a large population were
examined in [26]. Similar parent mating was examined for
NSGA-II and SMS-EMOA in [27]. HypE was not examined
in our previous studies. We also use knapsack problems with
100–10 000 items while 500-item problems were always used
in our previous studies.

This paper is organized as follows. In Section II, we
briefly explain difficulties of many-objective optimization. In
Section III, we explain how our many-objective test prob-
lems with various characteristics are generated from the
two-objective 500-item knapsack problem of Zitzler and
Thiele [28]. We also briefly explain NSGA-II, MOEA/D,
SMS-EMOA, and HypE in Section III. Experimental results on
randomly generated test problems are reported in Section IV,
in which the use of a large population and the recombina-
tion of similar parents are also examined. In Section V we
report experimental results on test problems with correlated or
dependent objectives. This paper is concluded in Section VI, in
which future research topics on many-objective optimization
are also suggested.

II. DIFFICULTIES IN MANY-OBJECTIVE OPTIMIZATION

Let us consider the following k-objective problem:

Maximize f (x) = (f1(x), . . . , fk(x)) subject to x ∈ X (1)

where f (x) is a k-dimensional objective vector, fi(x) is the ith
objective to be maximized (i = 1, 2, . . . , k), x is a decision
vector, and X is the set of all feasible decision vectors (i.e., X
is the feasible region in the decision space).

A solution y of the maximization problem is said to be
dominated by another solution x if the following relations
hold:

∀i, fi(y) ≤ fi(x) and ∃i, fi(y) < fi(x). (2)

If y in X is not dominated by any other solution x in X, y
is called a Pareto optimal solution. A multiobjective problem
usually has a large number of Pareto optimal solutions. The
Pareto optimal solution set is the set of all Pareto optimal
solutions. The projection of the Pareto optimal solution set
onto the objective space is called the Pareto front. We also
use the concept of nondominated solutions in a population
(which is not equal to X). If y is not dominated by any other
solution x in a population, y is said to be nondominated in the
population.

Difficulties in the handling of many-objective problems can
be roughly classified into the following five categories.

1) Difficulties in the search for Pareto optimal solutions.
2) Difficulties in the approximation of the entire Pareto

front.
3) Difficulties in the presentation of obtained solutions.
4) Difficulties in the choice of a single final solution.
5) Difficulties in the evaluation of search algorithms.

Fig. 1. Approximation of a tradeoff curve using 20 solutions.

Fig. 2. Approximation of a tradeoff surface using 200 solutions.

Difficulties in 1) have been repeatedly reported. When our
k-objective problem in (1) includes many objectives, the Pareto
dominance relation in (2) is not likely to hold for many pairs of
solutions x and y. This is because fi(y) ≤ fi(x) is not likely to
hold simultaneously for all of the k objectives when k is large.
When all solutions in the current population are nondominated,
strong selection pressure toward the Pareto front cannot be
generated by the Pareto dominance relation in (2). As shown
later in this paper, all solutions actually become nondominated
in an early generation when EMO algorithms are applied to
many-objective problems. As a result, the search ability of
Pareto dominance-based algorithms is severely deteriorated.

Difficulties in 2) are related to the dimensionality of the
Pareto front. If the Pareto front is a tradeoff curve in a 2-D
objective space, less than 100 solutions may be enough for its
good approximation as shown in Fig. 1 with 20 solutions. If
it is a tradeoff surface in a 3-D objective space, hundreds of
solutions may be needed as shown in Fig. 2 with 200 solu-
tions. A huge number of solutions may be needed for a good
approximation of the entire Pareto front in the k-dimensional
objective space when k is large.

Difficulties in 3) and 4) are related to the interface between
an EMO algorithm and a human decision maker. Solution visu-
alization [29] is an important research topic for the handling
of these difficulties. In this paper, we do not discuss the han-
dling of the difficulties in 3) and 4) because the behavior of
EMO algorithms is our main focus.
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In EMO algorithms, the Pareto front is approximated by
a fixed number of solutions. However, due to the difficulties
in 2), it is almost impossible to obtain a dense distribution
of nondominated solutions over the entire Pareto front in the
case of many-objective optimization. Such a dense distribution
may need an impractically huge number of solutions. Thus,
the practical search strategy is somewhere between the fol-
lowing two extremes. One is the focused search for densely
distributed nondominated solutions around a small part of the
Pareto front. The other one is the global search for sparsely
distributed nondominated solutions over the entire Pareto front.
Preference-based search (see [30]–[34]) can be viewed as
the focused search. Convergence improvement attempts for
many-objective problems (see [10]–[15]) often change the
behavior of EMO algorithms from the global search toward the
focused search. Objective reduction [35] can be also viewed
as the focused search. Scalarizing function-based algorithms
(see MOEA/D) try to search for solutions over the entire Pareto
front.

Difficulties in 5) are related to such a wide variety of search
strategies for many-objective optimization. It may be inappro-
priate to use the same performance measure when we evaluate
the performance of different EMO algorithms with different
search strategies. In this paper, we examine the global search
behavior of EMO algorithms. That is, we examine their search
behavior when they search for sparsely distributed nondom-
inated solutions over the entire Pareto front. In this case,
the performance of an EMO algorithm is the quality of the
obtained solution set to approximate the entire Pareto front.
However, it is not easy to evaluate the difference between the
obtained solution set and the Pareto front using distance-based
performance measures such as the generational distance and
the inverted generational distance (IGD) for many-objective
optimization. This is because 1) Pareto optimal solutions of
many-objective problems are usually unknown and 2) a huge
number of Pareto optimal solutions are needed to calculate
those measures in a reliable manner. In this paper, we use the
hypervolume measure for performance evaluation because we
do not know Pareto optimal solutions of our many-objective
test problems.

Let us explain the difficulty in measuring the distance
between an obtained solution set and the Pareto front using
a limited number of Pareto optimal solutions on the Pareto
front. For simplicity of visual explanation, we use a two-
objective maximization problem whose Pareto front is the line
between two points (0, 10) and (10, 0) in a 2-D objective
space in Fig. 3 (see [36], [37] for more general discus-
sions on distance-based measures). We also assume the use
of the six Pareto optimal solutions (0, 10), (2, 8), (4, 6),
(6, 4), (8, 2), and (10, 0) in Fig. 3(d) as a reference set to
evaluate three solution sets A, B, and C in Fig. 3(a)–(c).
In Fig. 3(a)–(c), solutions in each solution set are denoted
by closed circles while open circles show solutions in the
reference set in Fig. 3(d). The IGD is the average dis-
tance from each solution in the reference set to the nearest
solution in a solution set, which is calculated for each of
the three solution sets A, B, and C using the reference
set D as

Fig. 3. Three solution sets A, B, and C to be evaluated using a reference
set D.

IGD(A) = (
√

8 + 0 + 0 + 0 + 0 + √
8)/6 ∼= 0.94

IGD(B) = (
√

2 + √
2 + √

2 + √
2 + √

2 + √
2)/6 ∼= 1.41

IGD(C) = (1 + 1 + 1 + 1 + 1 + √
5)/6 ∼= 1.21.

These calculation results show that B is evaluated as the
worst among the three solution sets. However, B may be intu-
itively viewed as being the best among the three solution
sets. From Fig. 3(b) and (c), we can see that the solution
set C is dominated by the solution set B. Thus, B should be
evaluated as being better than C. However, C has a smaller
value of IGD than B. With respect to the comparison between
A and B, B looks better than A since B has larger diver-
sity than A on the Pareto front. However, A is evaluated as
being better than B by the above-mentioned IGD values. That
is, IGD is inconsistent with not only our intuition but also
the Pareto dominance relation. These inconsistencies appear
since the calculation of IGD is based on the reference set D
with only six solutions. For example, if we use 11 Pareto
optimal solutions (10, 0), (9, 1), . . . , (0, 10) as the refer-
ence set D, IGD is calculated as follows for each solution set
in Fig. 3(a)–(c)

IGD(A) ∼= 1.16, IGD(B) ∼= 0.77, IGD(C) ∼= 1.11.

In this case, B is evaluated as the best solution set. However,
it is counter-intuitive that C is evaluated as being better than A.

As shown by this simple example, a large number of Pareto
optimal solutions are needed in the reference set to obtain
more reliable results. The question is how many solutions are
needed to obtain reliable results from the distance calculation
for many-objective problems. If we need 20 solutions for a
single-dimensional Pareto front of a two-objective problem,
we may need 202 solutions for a 2-D Pareto front of a three-
objective problem in order to realize a similar resolution in
the 3-D objective space. This discussion can be extended to
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the case of a k-objective problem as 20(k−1) solutions (see 209

for a 10-objective problem is 512 billion). As we have already
explained using Figs. 1 and 2, a huge number of nondom-
inated solutions are needed to approximate the entire Pareto
front of a many-objective problem. As a result, a huge number
of solutions are also needed as the reference set to calculate
the distance between a solution set and the Pareto front in a
reliable manner.

III. TEST PROBLEMS AND EMO ALGORITHMS

A. Test Problems

As a two-objective test problem, we use the following
two-objective 500-item knapsack problem of Zitzler and
Thiele [28]:

Maximize f (x) = (f1(x), f2(x)) (3)

subject to
500∑

j=1

bijxj ≤ ci, i = 1, 2 (4)

xj = 0 or 1, j = 1, 2, . . . , 500 (5)

where fi(x) =
500∑

j=1

aijxj, i = 1, 2. (6)

In this formulation, x is a 500-dimensional binary vector,
aij is the profit of item j according to knapsack i, bij is the
weight of item j according to knapsack i, and ci is the capacity
of knapsack i (i = 1, 2 and j = 1, 2, . . ., 500). The values of
aij and bij were randomly specified as integers in the interval
[10, 100] in [28]. The capacity ci was specified as 50% of the
sum of all weights related to each knapsack i in [28]. This
two-objective 500-item knapsack problem is referred to as the
2–500 problem.

Test Problems with Randomly Generated Objectives: By
randomly specifying the profit aij of each item j for each objec-
tive i as an integer in the interval [10, 100], we generate other
eight objectives as

fi(x) =
500∑

j=1

aijxj, i = 3, 4, . . . , 10. (7)

Using the randomly generated eight objectives and the two
objectives of the 2–500 problem in (6), we generate 500-item
knapsack problems with four, six, eight, and ten objectives
(i.e., 4–500, 6–500, 8–500, 10–500). A k-objective 500-item
problem has the first k objectives in (7): fi(x), i = 1, 2, . . . ,
k. All of our 500-item test problems have the same con-
straint conditions in (4) and (5) independent of the number
of objectives. This means that our 500-item problems have
exactly the same feasible solution set. Moreover, their first
and second objectives are the same as the two objectives of
the 2–500 problem in (3)–(6). Thus, the Pareto optimal solu-
tions of the 2–500 problem are also Pareto optimal in all the
other 500-item problems in this paper.

In a similar manner, we generate test problems with 100,
1000, and 10 000 items. Each profit aij and each weight bij

are randomly specified as integers in [10, 100] to generate ten
objectives and two constraint conditions. The capacity ci of
each knapsack is specified as 50% of the total weight.

We also generate other types of k-objective 500-item test
problems of the following form for k = 4, 6, 8, 10:

Maximize g(x) = (g1(x), g2(x), . . . , gk(x)) (8)

subject to (4) and (5).

This problem has the same constraint conditions as the other
500-item problems. In the following, we explain how gi(x) is
specified in different types of test problems.

Test Problems with Correlated Objectives: Using a real
number parameter α in [0, 1], correlated objectives gi(x) are
specified from the randomly generated objectives fi(x) as

gi(x) = fi(x), i = 1, 2 (9)

gi(x) = α · f1(x) + (1 − α) · fi(x), i = 3, 5, 7, 9 (10)

gi(x) = α · f2(x) + (1 − α) · fi(x), i = 4, 6, 8, 10. (11)

The value of α can be viewed as the correlation strength.
The minimum correlation strength is 0 (i.e., α = 0) where gi(x)
is the same as the randomly generated objective fi(x). The
maximum correlation strength is 1 (i.e., α = 1) where gi(x) is
the same as f1(x) or f2(x). We examine four specifications of
α: α = 0.2, 0.4, 0.6, 0.8.

Test Problems With Dependent Objectives: A k-objective
problem with dependent objectives is generated from f1(x) and
f2(x) as follows (k = 4, 6, 8, 10):

gi(x) = fi(x), i = 1, 2 (12)

gi(x) = αik · f1(x) + (1 − αik) · f2(x), i = 3, 4, . . . , k (13)

where αik is specified as follows:

αik = (i − 2)
/

k − 1, i = 3, 4, . . . , k; k = 4, 6, 8, 10. (14)

For example, the four-objective problem is specified as

g1(x) = f1(x), g2(x) = f2(x) (15)

g3(x) = 1
/

3 · f1(x) + 2
/

3 · f2(x) (16)

g4(x) = 2
/

3 · f1(x) + 1
/

3 · f2(x). (17)

B. Examined EMO Algorithms

We examine the behavior of NSGA-II [5], MOEA/D [23],
SMS-EMOA [24], and HypE [25] through computational
experiments on the above-mentioned test problems.

NSGA-II is the most frequently-used Pareto dominance-
based EMO algorithm in the literature. Its fitness evaluation is
based on a rank assignment mechanism called “nondominated
sorting” and a secondary measure for diversity maintenance
called “crowding distance.” An offspring population of size
μ is generated by binary tournament selection, crossover, and
mutation from a current population of size μ. These two popu-
lations are combined into a merged population of size (μ+μ).
The next population is constructed by choosing the best μ

solutions from the merged population. In NSGA-II, the same
fitness evaluation mechanism is used in mating selection and
environmental selection.

MOEA/D is an efficient scalarizing function-based EMO
algorithm. A multiobjective problem is decomposed into a
number of single-objective problems. Each single-objective
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problem is defined by the same scalarizing function with a dif-
ferent weight vector. The number of the weight vectors is the
same as the number of the single-objective problems, which
is also the same as the population size. A single solution is
stored for each single-objective problem.

A set of weight vectors w = (w1, w2, . . . , wk) is specified
by the following relations for our k-objective problem:

w1 + w2 + · · · + wk = 1 (18)

wi ∈
{

0,
1

H
,

2

H
, . . . ,

H

H

}
, i = 1, 2, . . . , k (19)

where H is a user defined positive integer. MOEA/D uses all
weight vectors satisfying the relations in (18) and (19). For
further discussions on weight vector specifications, see [38].

MOEA/D can be viewed as a cellular algorithm. Each cell
has a different weight vector (i.e., a different single-objective
problem). For each cell, a prespecified number of the nearest
cells are defined as its neighbors. The number of neighbors is
a user defined parameter called the neighborhood size. The
distance between cells is measured by the Euclidean dis-
tance between their weight vectors, which is used to define
neighbors.

A new solution at each cell is generated by applying
crossover and mutation to a pair of parent solutions, which
are randomly selected from its neighbors. Local mating is a
feature of MOEA/D. The generated new solution for a cell is
compared with the current solution at the cell. Only when the
new solution is better, the current solution is replaced with
the new one. The new solution is also compared with the cur-
rent solution at each of its neighbors. The single-objective
problem at each neighbor is used for this comparison. Local
replacement is another feature of MOEA/D.

An important issue is the choice of a scalarizing function.
As in the original paper of MOEA/D [23], we examine the
weighted sum, the weighted Tchebycheff and the penalty-
based boundary intersection (PBI) function.

The weighted sum is written for our k-objective problem
using a weight vector w = (w1, w2, . . . , wk) as

f WS(x|w) = w1 · f1(x) + · · · + wk · fk(x) (20)

which is to be maximized in MOEA/D.
The weighted Tchebycheff is written using the weight vector

w and a reference point z∗ = (z∗
1, z∗

2, . . . , z∗
k) as

f TE(x|w, z∗) = max
i=1,2,...,k

{wi · |z∗
i − fi(x)|} (21)

which is to be minimized in MOEA/D.
Zhang and Li [23] specified the reference point z∗ in their

computational experiments on knapsack problems as

z∗
i = 1.1 · max{fi(x)|x ∈ �(1) ∪ �(2) ∪ · · · ∪ �(t)},

i = 1, 2, . . . , k (22)

where �(t) is the population at the tth generation. In this
paper, we mainly use this specification while we also examine
other specifications such as a fixed point (30 000, 30 000, . . . ,
30 000).

Fig. 4. Contour lines of the three scalarizing functions.

Using the weight vector w and the reference point z∗, which
are the same as in (21), the PBI function [23] is written as

f PBI(x|w, z∗) = d1 + θ d2 (23)

where θ is a user defined penalty parameter, and d1 and d2
are defined as

d1 =
∥∥ (z∗ − f (x))Tw

∥∥
||w|| (24)

d2 =
∥∥∥∥ f (x) − (z∗ − d1

w
||w|| )

∥∥∥∥ . (25)

The penalty parameter θ was specified as θ = 5 in Zhang and
Li [23]. We also examine the use of smaller penalty parameter
values such as 0.01, 0.1, and 1 in addition to θ = 5. The PBI
function is to be minimized in MOEA/D. The definition of
d2 in (25) is slightly different from [23] where ||w|| was miss-
ing. However, (25) was used in the computational experiments
in [23]. In this paper, we use the definition of d2 in (25).

In Fig. 4, we show the contour lines of each scalarizing
function for three weight vectors (0.8, 0.2), (0.5, 0.5), and (0.2,
0.8). The arrow in each plot in Fig. 4 shows the weight vector
used in the plot. A scalarizing function with a different weight
vector is used as the objective function in a different single-
objective problem in MOEA/D. The contour lines in each plot
in Fig. 4 show the landscape of the objective function in each
single-objective problem. We can see from Fig. 4 that different
scalarizing functions have totally different contour lines.

We can also see from Fig. 4 that each contour line of the
weighted Tchebycheff has a right angle at its bottom-left cor-
ner. Let us assume that a current solution is on the corner
of a contour line of the weighted Tchebycheff as shown by
the open circle “A” in the top plot under “Tchebycheff” in
Fig. 4. In this case, all solutions in the upper-right region of
the current solution A are evaluated as being better than A
by the weighted Tchebycheff. This is similar to the Pareto
dominance-based evaluation. As a result, MOEA/D with the
weighted Tchebycheff shows a similar behavior to Pareto
dominance-based EMO algorithms as shown later in this paper.
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Fig. 5. Hypervolume contribution of each solution for different settings of
the reference point z*.

Recently, various ideas have been proposed to improve the
search ability of MOEA/D. One idea is adaptive weight vector
specifications [39]–[41]. Another idea is the decomposition
into a number of simpler multiobjective problems [42]. While
these ideas look promising for many-objective problems, we
use the above-mentioned basic MOEA/D in this paper.

SMS-EMOA is a hypervolume-based EMO algorithm with
a (μ+1)ES-style generation update framework. Its high search
ability for many-objective problems has been demonstrated in
the literature [43]. The basic idea of SMS-EMOA is to search
for a solution set with the maximum hypervolume.

In SMS-EMOA, two parents are randomly selected from a
current population of size μ to generate a single solution by
crossover and mutation. The next population with μ solutions
is constructed by removing the worst solution from the merged
population with (μ+1) solutions.

In the same manner as in NSGA-II, a rank is assigned to
each solution in the merged population. Each solution with the
same rank is evaluated by its hypervolume contribution. Let
S be a set of solutions with the same rank. We denote the set
of all solutions in S excluding a solution xi in S by S\xi. We
also denote the hypervolume of the solution set S by HV(S).
The hypervolume contribution of xi to HV(S) is defined as

Contribution(xi|S) = HV(S) − HV(S\xi). (26)

As shown in Fig. 5, we need a reference point z* for the
calculation of the hypervolume contribution of each solution.
In the case of two-objective optimization, the location of the
reference point z* has no effects on the hypervolume contri-
bution of each solution except for the two extreme solutions
(i.e., A and E in Fig. 5) if z* is dominated by all solutions.
However, its location has significant effects on more solutions
in many-objective optimization. In this paper, we examine
some different specifications of the reference point.

If all solutions are nondominated in the merged population,
each solution is evaluated by the hypervolume contribution. In
this case, the removal of the worst solution from the merged
population is the same as the selection of μ solutions with the
maximum hypervolume.

We use a fast hypervolume calculation method by While
et al. [44] in SMS-EMOA (see [44], [45] for fast hyper-
volume calculation). However, it is still difficult to apply
SMS-EMOA to many-objective problems with more than six
objectives due to its heavy computation load. Thus, we also

Fig. 6. Hypervolume contribution-based fitness evaluation of each solution
in HypE.

use HypE [25] as another hypervolume-based EMO algo-
rithm. HypE and SMS-EMOA have similar but different fitness
evaluation mechanisms as explained in the following.

In HypE, Monte Carlo simulation is used for approximate
hypervolume calculation. The number of sampling points is
a user defined parameter. In computational experiments, we
always use the approximate hypervolume calculation in HypE-
independent of the number of objectives.

In SMS-EMOA, mating selection is performed randomly.
The hypervolume contribution of each solution is calculated
as shown in Fig. 5 for environmental selection in SMS-EMOA.
In HypE, a different definition of the hypervolume contribution
is used for mating selection. When a region is dominated by
n solutions, 1/n of its hypervolume is assigned to each of the
n solutions as shown in Fig. 6. Such a hypervolume sharing
mechanism is applied to not only nondominated solutions but
also dominated ones (see E in Fig. 6). The nondominated sort-
ing is not used for mating selection. The sum of the shared
hypervolume values assigned to each solution is used as its
fitness value in binary tournament selection in HypE.

HypE has a (μ+μ) ES-style generation update mechanism.
As in NSGA-II, first the nondominated sorting is applied to the
(μ+μ) solutions in the merged population. The best μ solu-
tions are selected according to the rank of each solution. When
a part of solutions with the same rank should be selected,
selection is performed so that the hypervolume of the selected
solutions is maximized. That is, the nondominated sorting and
the hypervolume maximization are used as the primary and
the secondary criterion in environmental selection. Solution
selection for the hypervolume maximization is performed in
an approximate manner in HypE (see [25] for details).

In Table I, we summarize the characteristics of each EMO
algorithm. As shown in Table I, NSGA-II uses the same
fitness evaluation mechanism for mating selection and envi-
ronmental selection. However, MOEA/D and SMS-EMOA
use their fitness evaluation mechanisms only for environmen-
tal selection. Random mating selection is performed locally
in MOEA/D while it is performed globally in SMS-EMOA.
In HypE, different fitness evaluation mechanisms are used
for mating selection and environmental selection. As shown
in Table I, the four algorithms are different in their basic
structures, mating selection mechanisms and environmental
selection mechanisms.
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TABLE I
CHARACTERISTICS OF EACH EMO ALGORITHM

For comparison, we examine the performance of multiple
runs of the focused search by NSGA-II with a small pop-
ulation. This approach searches for nondominated solutions
around the center of the Pareto front and around the best
solution with respect to each objective. For our k-objective
problem, the population is divided into (k+1) subpopulations
of the same size. One subpopulation is used for the search
around the center of the Pareto front. Each of the other k sub-
populations is used for the search around the best solution of
each objective.

For the search around the center of the Pareto front, we
apply NSGA-II to a k-objective problem with the follow-
ing k objectives and the original constraint conditions in (4)
and (5):

hi(x) =
k∑

j=1

fj(x) + ε fi(x), i = 1, 2, . . . , k (27)

where ε is a small positive real number parameter. The ith
objective hi(x) is slightly biased toward the original ith objec-
tive fi(x) from the sum of all objectives. The value of ε is
specified as ε = 0.1 in our computational experiments. For
example, hi(x) is specified as h1(x) = 1.1 f1(x) + f2(x) and
h2(x) = f1(x) + 1.1f2(x) for two-objective optimization.

The following relation holds from (27), which shows that
the focused search is performed toward the best solution with
respect to the sum of the original k objectives:

k∑

j=1

hj(x) = (k + ε)

k∑

j=1

fj(x). (28)

For the search around the best solution of fi(x), we apply
NSGA-II to a k-objective problem with the following k
objectives (ε = 0.1) and the constraint conditions in (4) and (5):

hi(x) = fi(x) − ε

k∑

j = 1
j �= i

fj(x) (29)

hj(x) = fi(x) + ε fj(x) , j = 1, 2, . . . , k (j �= i). (30)

For example, the four objectives are specified for the search
around the best solution of f4(x) as h1(x) = f4(x) + 0.1f1(x),
h2(x) = f4(x)+0.1f2(x), h3(x) = f4(x)+0.1f3(x), and h4(x) =
f4(x) − 0.1f1(x) − 0.1f2(x) − 0.1f3(x) for the case of k = 4.

The following relation holds from (29) and (30), which
shows that the focus of the search is the best solution of fi(x),
as follows:

k∑

j=1

hj(x) = k fi(x). (31)

This approach is referred to as F-NSGA-II (focused NSGA-
II) in this paper. We examine its two versions. In one version,
NSGA-II is independently executed at each subpopulation.
The subpopulations after the execution of NSGA-II are merged
into a single population, which is handled as the obtained final
population. This version is called F100-NSGA-II since 100%
of the computation time is used for the focused search. In the
other version, the execution of NSGA-II at each subpopulation
is terminated when 90% of the computation time is used. Then
NSGA-II is applied to the merged population for the remaining
computation time. This version is called F90-NSGA-II.

IV. RESULTS ON RANDOMLY GENERATED

TEST PROBLEMS

A. Setting of Computational Experiments

We use the following parameter specifications in all the four
EMO algorithms for our 500-item test problems.

1) Coding: Binary string of length 500.
2) Termination condition: 400 000 solution evaluations.
3) Crossover probability: 0.8 (Uniform crossover).
4) Mutation probability: 2/500 (Bit-flip mutation).
5) Population size: 100 (2–500), 120 (4–500), 126 (6–500),

120 (8–500), 220 (10–500).

These specifications of the population size are based on
the combinatorial nature of the possible number of weight
vectors in MOEA/D in (18) and (19). As a result, a differ-
ent specification of the population size is used for each test
problem.

In MOEA/D, we use the following specifications.

1) Neighborhood size: 10 neighbors.
2) Scalarizing function: Weighted sum, Weighted

Tchebycheff, PBI (θ = 0.01, 0.05, 0.1, 0.5, 1, 5).
3) Reference point: z∗ in (22).

In SMS-EMOA and HypE, the origin of the objective
space is used as the reference point. In HypE, the number
of sampling points is specified as 10 000.

During the execution of each EMO algorithm on the 2–500
problem, an infeasible solution is transformed to a feasible
one by removing items in an ascending order of the following
values until the two constraint conditions in (4) are satisfied:

qj = max{aij
/

bij|i = 1, 2}, j = 1, 2, . . . , 500. (32)

This constraint handling is the same as the greedy repair
used in Zitzler and Thiele [28] on the 2–500 problem. Exactly
the same greedy repair based on (32) is used for all the other
500-item test problems in this paper independent of the num-
ber of objectives. That is, a feasible solution is generated from
an infeasible one by removing items using the order of items
specified by (32). We can use the same greedy repair for all
500-item test problems because they have the same constraint
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Fig. 7. Results of a single run on the 2–500 problem.

conditions in (4) and (5). We also use the greedy repair for the
other test problems. The removing order of items is specified
in the same manner as in (32) independent of the number of
items.

B. Visual Examination of Each EMO Algorithm

In Fig. 7, we show all solutions in the final generation in
a single run of each EMO algorithm on the 2–500 problem.
The dotted line in each plot shows the true Pareto front of
the 2–500 problem. A single run in each plot in Fig. 7 is
selected from 100 runs of each EMO algorithm in the follow-
ing manner. First the hypervolume of all solutions in the final
generation is calculated for each run using the origin (0, 0)
of the objective space as a reference point. Next the average
hypervolume value is calculated over 100 runs. Then a sin-
gle run with the closest hypervolume to the average value is
selected for Fig. 7. When we choose a single run from multi-
ple runs in this paper, we always use this hypervolume-based
criterion.

With respect to the convergence of solutions toward the
Pareto front (dotted line) in Fig. 7, we can observe that

Fig. 8. Results on the 10–500 problem (population size 220).

MOEA/D with PBI (θ = 5), F-100-NSGA-II, and F-90-
NSGA-II are somewhat inferior to the other EMO algorithms.
However, extreme nondominated solutions around the two
edges of the Pareto front are obtained only by those three
EMO algorithms. These observations show the convergence-
diversity tradeoff relation in evolutionary multiobjective search
by EMO algorithms.

Experimental results of NSGA-II in Fig. 7 are consistent
with reported results in the literature (see Sato et al. [10]).
The search behavior of NSGA-II with strong convergence
and weak diversification on the 2–500 problem is due to the
dominant effect of the nondominated sorting on the fitness
evaluation. Experimental results by F100-NSGA-II show that
the focused search works as expected. That is, F100-NSGA-
II focuses its multiobjective search on the center and the
two edges of the Pareto front. In F90-NSGA-II, the standard
NSGA-II is used in the final 10% generations. As a result,
many solutions are found by F90-NSGA-II between the center
and the two edges of the Pareto front in Fig. 7.

In Fig. 8, we show all solutions in the final generation in a
single run of each EMO algorithm on our randomly generated
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Fig. 9. Results on the 10–500 problem (large population).

10-objective test problem (10–500) in the 2-D subspace with
f 1(x) and f 2(x). HypE is used in Fig. 8 instead of SMS-EMOA.
Solutions in each plot in Fig. 8 can be viewed as the projection
of solutions in the ten-dimensional objective space onto the
2-D subspace.

As we explained in Section III-A, the Pareto front of the
2–500 problem (i.e., the dotted line in Fig. 7) is a part of
the Pareto front of the 10–500 problem since the 2–500 and
10–500 problems have the same constraint conditions and the
same first and second objectives f 1(x) and f 2(x). However, no
solutions close to the dotted line are obtained by the three
EMO algorithms in Fig. 8. From this observation, we can see
that it is very difficult to search for the entire Pareto front of
the 10–500 problem. In Fig. 8, the largest diversity of solu-
tions is obtained by F90-NSGA-II. This observation suggests
the potential usefulness of the focused search for many-
objective knapsack problems with respect to the diversity of
solutions.

One may think that a much larger population is needed for
the 10–500 problem. In Fig. 9, the population size is specified
as 5005 for MOEA/D and 5000 for the other algorithms (it
was 220 in Fig. 8). The neighborhood size in MOEA/D is 100
in Fig. 9. It should be noted that we always use the same ter-
mination condition (i.e., 400 000 solution evaluations). Thus,
a larger population means a smaller number of generations.

Except for MOEA/D (Tchebycheff) and HypE, we cannot
observe a clear increase in the diversity of solutions in Fig. 9
from Fig. 8. Many solutions seem to concentrate around the
center of each population in Fig. 9. These observations suggest

Fig. 10. Average number of nondominated solutions in the merged population
in NSGA-II (population size 100).

the necessity of a strong diversification mechanism in EMO
algorithms even on many-objective knapsack problems.

For examining the number of nondominated solutions at
each generation, we apply NSGA-II with population size 100
to the 2–500, 6–500, and 10–500 problems. In NSGA-II with
this setting, an offspring population of size 100 is generated
from the current population of size 100. The next population
is the best 100 solutions in the merged population with 200
solutions.

As in Sato et al. [10], we show the average number of non-
dominated solutions in the merged population in Fig. 10 over
1000 runs. The number of nondominated solutions becomes
more than 100 in very early generations when NSGA-II
is applied to the 10–500 problem. In this situation, Rank 1
is assigned to all solutions. As a result, no selection pressure
is given toward the Pareto front in mating selection.

It is not easy to visually demonstrate the deterioration of
the convergence property of NSGA-II by the increase in the
number of objectives in a high-dimensional objective space.
Since we do not know the true Pareto fronts of our test prob-
lems, the use of distance-based measures is also difficult. We
use the following simple measure to evaluate the convergence
of solutions toward the center of the Pareto front since its
meaning is clear even for many-objective problems:

MaxSum(�) = max
x∈�(t)

k∑

i=1

fi(x) (33)

where �(t) is a population at the tth generation.
MaxSum(�(t)) is the maximum sum of the k objectives
over all solutions at the tth generation, which shows the
progress of search toward the Pareto front along the direction
(1, 1, . . . , 1).

We normalize it as 100 × MaxSum(�(t))/MaxSum(�(1))
where MaxSum(�(1)) is the value at the first generation.
Experimental results corresponding to Fig. 10 are shown in
Fig. 11 where the convergence property of NSGA-II seems to
be degraded by the increase in the number of objectives.

For comparison, we also apply NSGA-II to the three test
problems in Fig. 11 after modifying their objectives as

hi(x) =
k∑

j=1

fj(x) + fi(x), i = 1, 2, . . . , k. (34)
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Fig. 11. Normalized MaxSum at each generation of NSGA-II.

Fig. 12. Results of the focused search using NSGA-II.

This modification is to focus the search around the cen-
ter of the Pareto front. Experimental results are shown in
Fig. 12 where the calculation is performed using the original
objectives. Comparison between Figs. 11 and 12 shows clear
deterioration of the convergence property of NSGA-II by the
increase in the number of the randomly generated objectives.

We compare 100 solutions from each run in Fig. 11 with
those in Fig. 12. That is, we examine whether each solution
in Fig. 11 is dominated by at least one solution in Fig. 12.
Average results over 1000 runs are as follows: 15.23 (2–500),
53.58 (6–500), and 65.43 (10–500) solutions in Fig. 11 are
dominated by at least one solution in Fig. 12 on average.
We also obtain the following results: 24.70 (2–500), 0.00
(6–500), and 0.00 (10–500) solutions in Fig. 12 are dominated
by at least one solution in Fig. 11 on average. These results
show that the convergence property of NSGA-II is deterio-
rated in Fig. 11 by the increase in the number of the randomly
generated objectives.

We also examine the number of nondominated solutions
in the merged population for a large population of size 5000.
Average results over 10 runs are shown in Fig. 13. Whereas we
use a very large population, all solutions in the current pop-
ulation become nondominated within 100 generations when
NSGA-II is applied to the 6–500 and 10–500 problems.

C. Performance Examination of Each EMO Algorithm

In this subsection, we examine the performance of each
EMO algorithm using the hypervolume. As the reference point
for hypervolume calculation, we use two specifications. One

Fig. 13. Average number of nondominated solutions in the merged population
in NSGA-II (population size 5000).

is the origin (0, 0, . . . , 0) of the objective space, which is
far from the Pareto front. Thus, the diversity of solutions has
a large effect on hypervolume calculation. The other one is
(15 000, 15 000, . . . , 15 000), which is much closer to the
Pareto front. Thus, both convergence and diversity have large
effects.

Tables II and III show average results over 100 runs (except
for HypE due to its heavy computation load). The same param-
eter specifications as in Figs. 7 and 8 are used. In each
table, the average hypervolume is normalized using the aver-
age result of MOEA/D with the weighted sum. The origin
(0, . . . , 0) is used as the reference point in Table II while
(15 000, . . . , 15 000) is used in Table III. It should be noted
that the origin is always used as the reference point for fitness
evaluation in SMS-EMOA and HypE in both tables. The best
result for each problem is shown by bold face.

In Tables II and III, we can observe clear performance
deterioration of NSGA-II by the increase in the number
of objectives. The deterioration is more clearly observed in
Table III where the reference point is close to the Pareto front.
This observation shows that the convergence is severely dete-
riorated. We can also observe performance deterioration of
MOEA/D with the weighted Tchebycheff and PBI (θ = 5). It
is interesting to note that good results on the 2–500 prob-
lem are obtained from these two versions of MOEA/D in
Tables II and III.

When we use a very small value for the penalty parameter
in MOEA/D with PBI [i.e., MOEA/D: PBI (0.01) in Tables
II and III], its experimental results become similar to those of
MOEA/D with the weighted sum (i.e., MOEA/D: WS). This
is because the PBI function becomes similar to the weighted
sum by decreasing the penalty parameter θ to zero [see the
formulation of PBI in (23)–(25)]. In Table III, good results
are obtained from MOEA/D with PBI when θ is specified as
θ = 0.1. In the remaining of this paper, we use θ = 0.1 in
addition to the original setting θ = 5 in MOEA/D with PBI.

Fig. 14 shows the distribution (histogram) of the obtained
100 hypervolume values before the normalization in Table II
on the 10–500 problem by NSGA-II, MOEA/D with the
weighted sum and the weighted Tchebycheff and HypE. Clear
differences exist among the four algorithms in Fig. 14. For
example, all the 100 hypervolume values by the MOEA/D
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TABLE II
RELATIVE AVERAGE HYPERVOLUME. THE REFERENCE POINT

(0, 0, . . ., 0) IS FAR FROM THE PARETO FRONT

TABLE III
RELATIVE AVERAGE HYPERVOLUME. THE REFERENCE POINT (15 000,

15 000, . . ., 15 000) IS CLOSE TO THE PARETO FRONT

with the weighted sum are larger than all the 100 values by
HypE.

In Table II, the best results are obtained by MOEA/D with
the weighed sum for the problems with 4–10 objectives. In
Table III, the best results are obtained by MOEA/D with PBI
(θ=0.1 and θ=0.5) for those problems. These observations sug-
gest that PBI (θ=0.1 and θ=0.5) has high convergence ability
while the weighted sum has high diversification ability. Good
results are also obtained by HypE in Table III, which sug-
gests its high convergence ability. In many cases, better results
are obtained from the focused search (i.e., F100-NSGA-II and
F90-NSGA-II) than the original NSGA-II.

We also examine the performance of each EMO algorithm
using large population size: 5000 (2–500), 4960 (4–500), 4368
(6–500), 6435 (8–500), and 5005 (10–500). The neighborhood
size is specified as 100 in MOEA/D. Except for these spec-
ifications, we use the same setting as in Tables II and III.
Average results over 100 runs are summarized in Tables IV
and V (except for SMS-EMOA and HypE). Bold face results

Fig. 14. Distribution of the obtained 100 hypervolume values for the 10–500
problem. The reference point is the origin.

TABLE IV
RELATIVE AVERAGE HYPERVOLUME (LARGE POPULATION). THE

REFERENCE POINT IS (0, 0, . . ., 0)

TABLE V
RELATIVE AVERAGE HYPERVOLUME (LARGE POPULATION). THE

REFERENCE POINT IS (15 000, 15 000, . . ., 15 000)

show the performance improvement by the use of a large pop-
ulation from Tables II and III. In Tables IV and V, the number
of runs of SMS-EMOA and HypE is limited due to their heavy
computation load with a large population: 2 runs (2–500) of
SMS-EMOA, and 100 runs (2–500), 36 runs (4–500), 12 runs
(6–500), 4 runs (8–500), and 3 runs (10–500) of HypE.

As in Tables II and III, the performance of NSGA-II is
deteriorated by the increase in the number of objectives in
Tables IV and V with large populations. Since the total num-
ber of solution examinations is prespecified as 400 000 in
our computational experiments, a larger population leads to a
smaller number of generations, which has negative effects on
the search ability of the EMO algorithms. At the same time,
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TABLE VI
COMPUTATION TIME FOR SMALL POPULATION (SEC.)

TABLE VII
COMPUTATION TIME FOR LARGE POPULATION (SEC.)

the increase in the population size has positive effects. As a
result, the use of large populations deteriorates some exper-
imental results in Tables IV and V while it improves other
results.

In Table VI, we show the average computation time in our
computational experiments in Tables II and III with small
populations. We also show the average computation time in
Table VII for the case of large populations. It should be noted
that the same number of solutions were always examined in
each algorithm in Tables VI and VII. We can see from Table VI
that the increase in the number of objectives severely increases
the computation time of SMS-EMOA and HypE. The use of
large populations also increases their computation time. The
computation time of NSGA-II is also increased by the use of
large populations. This is because a larger population needs a
longer computation time for the nondominated sorting. Thanks
to the use of scalarizing functions, the computation time of
MOEA/D is not severely increased by the increase in the
number of objectives or the increase in the population size.

To examine the effect of the reference point specification,
we examine three settings for MOEA/D: (21 000, . . . , 21 000),
(30 000, . . . , 30 000), and (40 000, . . . , 40 000). The first
setting is close to the Pareto front, and the third one is far
from the Pareto front. For SMS-EMOA and HypE, we also
examine three settings: (10 000, . . . , 10 000), (0, . . . , 0),
and (−10000, . . . ,−10000). The first setting is close to the
Pareto front, and the third one is far from the Pareto front.
Experimental results are summarized in Tables VIII and IX
where the best result among the three settings is shown by

TABLE VIII
RELATIVE AVERAGE HYPERVOLUME BY THE EMO ALGORITHMS WITH

VARIOUS SETTINGS OF THE REFERENCE POINT. THE REFERENCE POINT

FOR PERFORMANCE EVALUATION IS (0, 0, . . . , 0)

TABLE IX
RELATIVE AVERAGE HYPERVOLUME BY THE EMO ALGORITHMS WITH

VARIOUS SPECIFICATIONS OF THE REFERENCE POINT. THE REFERENCE

POINT FOR PERFORMANCE EVALUATION IS (15 000, 15 000, . . ., 15 000)

bold face. It should be noted that the reference point for fitness
evaluation is different from that for performance evaluation of
each algorithm in each table.

In Table VIII, we cannot observe any large differences in
the experimental results of each algorithm among the three set-
tings of the reference point. Similar observations were reported
for other test problems by Judt et al. [46].

In Table IX, we can observe large differences in the
experimental results by HypE among the three settings. The
differences among the three settings in HypE are much larger
than those in SMS-EMOA. This is because the use of a refer-
ence point close to the Pareto front improves the hypervolume
approximation quality in HypE. We can observe this effect in
Table VIII where the hypervolume for the performance evalua-
tion is calculated using the origin of the objective space. Even
in this case, the best results on the 2–500, 4–500, and 6–500
problems are obtained by HypE (10 000) among the three set-
tings in HypE whereas the worst results on the same three
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TABLE X
RELATIVE AVERAGE HYPERVOLUME FOR THE SIX-OBJECTIVE PROBLEMS

WITH 100, 500, 1000, AND 10 000 ITEMS. THE REFERENCE POINT IS

(0, 0, . . ., 0) FOR HYPERVOLUME CALCULATION

test problems are obtained by SMS-EMOA (10 000) among
the three settings in SMS-EMOA.

In HypE, the hypervolume contribution of each solution
can be accurately approximated when the reference point is
close to the current population. This is because the approx-
imation in HypE is performed by the random sampling in
the area between the reference point and the current popula-
tion. If the reference point is far from the current population,
many sampling points are not likely to be fallen near the cur-
rent population. This deteriorates the approximation quality
for each solution, which deteriorates the performance of HypE
(−10000) in Tables VIII and IX.

We also examine the effect of the problem size (i.e., the
number of items) on each EMO algorithm. Using the same
parameter specifications as in Table II, each EMO algorithm
is applied to the six-objective test problems with 100, 500,
1000, and 10 000 items. Average experimental results over
100 runs (except for SMS-EMOA and HypE) are summarized
in Table X where bold face shows the best result for each
problem. From the comparison between Tables II and X, we
can observe that the effect of the problem size on the relative
average hypervolume in Table X is much smaller than that of
the number of objectives in Table II. For example, the rela-
tive average hypervolume values of NSGA-II in Table II are
decreased by the increase in the number of objectives from
96.5 to 65.5. However, they are between 75.6 and 88.0 in
Table X. Of course, it is much more difficult to search for the
true Pareto front of the 10 000-item problem than that of the
100-item problem. This is because the size of the search space
(i.e., the total number of different strings) is totally different.
The size of the search space of the 10 000-item problem is
210 000 while that of the 100-item problem is 2100. However,
this does not always mean that the search for good approxi-
mate solution sets is much more difficult for the 10 000-item
problem.

We can also see from Table X that good results are obtained
from F90-NSGA-II for large problems (see the best result
for the 10 000-item problem is obtained by F90-NSGA-
II). However, good results are not obtained from NSGA-II
for large problems. These observations suggest the potential
usefulness of the focused search.

TABLE XI
RELATIVE AVERAGE HYPERVOLUME BY MOEA/D WITH VARIOUS

SPECIFICATIONS OF THE NEIGHBORHOOD SIZE. THE REFERENCE POINT

FOR PERFORMANCE EVALUATION IS (0, 0, . . ., 0)

TABLE XII
RELATIVE AVERAGE HYPERVOLUME BY MOEA/D WITH VARIOUS

SPECIFICATIONS OF THE NEIGHBORHOOD SIZE. THE REFERENCE POINT

FOR PERFORMANCE EVALUATION IS (15 000, 15 000, . . ., 15 000)

D. Recombination of Similar Parents

In our computational experiments, good results are obtained
from MOEA/D. One feature of MOEA/D is local mating
where two parents are selected at each cell from its neigh-
borhood.

To check the importance of local mating, we examine
four settings of the neighborhood size in MOEA/D: 5, 10,
50, and “Pop” where “Pop” means that the entire popula-
tion is used as the neighborhood. When the neighborhood
size is “Pop,” parents are selected randomly from the entire
population. Except for the neighborhood size, computational
experiments are performed in the same manner as in Tables
II and III. Experimental results are summarized in Tables
XI and XII where the best result among the four settings is
shown by bold face for each test problem. The best results are
obtained from the neighborhood size 5 or 10 in many cases
in Tables XI and XII. Moreover, the worst results are almost
always obtained from the setting of “(Pop).”

Our experimental results in Tables XI and XII suggest the
possibility of performance improvement of other algorithms
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TABLE XIII
RELATIVE AVERAGE HYPERVOLUME BY EMO ALGORITHMS WITH

SIMILAR PARENT RECOMBINATION. THE REFERENCE

POINT IS (0, 0, . . ., 0)

by local mating. We examine the use of the following simple
local mating in each of NSGA-II, SMS-EMOA, and HypE.

Step 1: Parent A is chosen by the parent selection mechanism
of the EMO algorithm.
Step 2: The parent selection mechanism of the EMO algorithm
is iterated β times to choose β candidates.
Step 3: The most similar candidate to Parent A is chosen from
the β candidates as a mate of Parent A. The similarity between
Parent A and each candidate is measured by the Euclidean
distance between them in the objective space.

This is a simplified version of our similarity-based mating
scheme [47]. If β = 1, this similarity-based mating scheme
has no effect. By increasing the value of β, a more similar
solution to Parent A is chosen as a mate of Parent A.

We examine three settings of β: 1, 5, 20. Experimental
results are shown in Tables XIII and XIV. It should be noted
that the experimental results with β = 1 in Tables XIII and
XIV are the same as those in Tables II and III where no mat-
ing scheme was used, respectively. The best result among the
three settings in each algorithm is shown by bold face for each
test problem.

In Table XIII with a distant reference point from the Pareto
front, the increase of β always improves experimental results.
The best results are always obtained from β = 20. However, in
Table XIV with a close reference point to the Pareto front, the
best results of HypE are obtained from β = 5. This observa-
tion suggests that the local mating has a larger positive effect
on the diversity of solutions than their convergence toward
the Pareto front. The positive effect of the local mating on
the diversity of solutions was also suggested by experimental
results in our former study [48] where it was demonstrated
that the use of crossover decreases the diversity of solu-
tions of multiobjective knapsack problems. The decrease in
the diversity of solutions by crossover can be also explained
by the fact that binary crossover operators such as one-point
crossover and uniform crossover are geometric. Geometric
crossover always generates offspring between its two
parents [49], [50].

The increase in the number of objectives often increases the
diversity of solutions in the current population of each EMO

TABLE XIV
RELATIVE AVERAGE HYPERVOLUME BY EMO ALGORITHMS WITH

SIMILAR PARENT RECOMBINATION. THE REFERENCE POINT IS

(15 000, 15 000, . . ., 15 000)

TABLE XV
AVERAGE HAMMING DISTANCE BETWEEN TWO SOLUTIONS IN THE

FINAL POPULATION OF EACH EMO ALGORITHM

algorithm as pointed out by Sato et al. [51]. In Table XV, we
show the average Hamming distance between all pairs of solu-
tions in the final population of each EMO algorithm on each
test problem. From the experimental results by F100-NSGA-II
in Table XV, we can see that the diversity of solutions over
the entire Pareto front is clearly increased by the increase in
the number of objectives. However, it is not likely that good
solutions are obtained from the recombination of totally differ-
ent solutions. Thus, the search ability of each EMO algorithm
is improved by the use of the local mating for our knapsack
problems as shown in Tables XIII and XIV.

The convex shape of the Pareto fronts of our knapsack prob-
lems is strongly related to the performance improvement by
the local mating. In Fig. 15, we show 100 offspring by uni-
form crossover from two totally different parents (two bold
circles in Fig. 15) which are two extreme solutions in the
final population by MOEA/D with PBI (5) in Fig. 7.

In Fig. 15, all offspring are generated by uniform crossover
around the center of the two parents. We can see in Fig. 15
that no offspring are close to the Pareto front. That is,
good solutions close to the Pareto front are not generated
by uniform crossover of the totally different parents whereas
they are close to the Pareto front. This observation sup-
ports the usefulness of the local mating in our computational
experiments.
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Fig. 15. Two extreme solutions and their 100 offspring.

Fig. 16. Randomly generated 100 solutions for 10–500 (0.8).

V. RESULTS ON OTHER TEST PROBLEMS

A. Results on Test Problems with Correlated Objectives

A correlated objective gi(x) with the correlation strength α

is generated from the randomly generated objectives fi(x) in
the form of α · f1(x) + (1 − α) · fi(x) for i = 3, 5, 7, 9, and
α · f2(x) + (1 − α) · fi(x) for i = 4, 6, 8, 10. The first objective
g1(x) and g2(x) are the same as f1(x) and f2(x), respectively.
Four values of α are used: α = 0.2, 0.4, 0.6, 0.8. The k-
objective 500-item problem with the correlation strength α is
referred to as the k-500 (α) problem in this paper.

In Fig. 16, we show 100 solutions randomly generated for
the 10–500 problem with α = 0.8 [i.e., 10–500 (0.8)]. The
nine plots in Fig. 16 show the same 100 solutions in different
2-D subspaces. The top three plots show strong correlation
among the five objectives gi(x), i = 1, 3, 5, 7, 9. The mid-
dle three plots show strong correlation among the other five
objectives gi(x), i = 2, 4, 6, 8, 10. The bottom three plots show
that the correlation is not strong between these two groups of
objectives.

Computational experiments are performed in the same
manner as in Tables II and III. Experimental results are sum-
marized in Tables XVI and XVII. The penalty parameter value

Fig. 17. Average number of nondominated solutions in the merged popula-
tion when NSGA-II is applied to the 2–500, 6–500 (0.8), and 10–500 (0.8)
problems (population size 100).

θ is specified as θ = 0.1 in MOEA/D with PBI. The best results
are shown by bold face.

When the correlation strength α is small in Tables XVI and
XVII, we observe severe performance deterioration of NSGA-
II by the increase in the number of objectives. However, its
performance is not deteriorated when the correlation strength
α is large (i.e., α = 0.8). For example, the best results are
obtained by NSGA-II on the 8–500 and 10–500 problems
with α = 0.8. An interesting observation is that good results
are not obtained by HypE while it showed very good perfor-
mance in Section IV on randomly generated many-objective
problems.

In Fig. 17, we show the average number of nondominated
solutions in the merged population when NSGA-II is applied
to the 2–500, 6–500 (0.8), and 10–500 (0.8) problems in the
same manner as in Fig. 10 in Section IV. When NSGA-II is
applied to the randomly generated 10–500 problem in Fig. 10,
almost all solutions in the current population become non-
dominated around the 10th generation (i.e., the number of
nondominated solutions becomes more than 100). However,
in Fig. 17, the average number of nondominated solutions is
smaller than 100 even at the 100th generation when NSGA-II
is applied to the 10–500 (0.8) problem with high correlation
among objectives. This leads to high convergence property of
NSGA-II on the 10–500 (0.8) problem, which is demonstrated
by high relative average hypervolume values in Tables XVI
and XVII.

High convergence performance of NSGA-II on the 6–500
(0.8), 8–500 (0.8), and 10–500 (0.8) test problems in Table
XVII is explained by a small number of nondominated solu-
tions in the current population before the 100th generation
in Fig. 17. High convergence performance of SMS-EMOA
on 4–500 (0.8) and 6–500 (0.8) in Table XVII can be
explained by the utilization of the exact hypervolume-based
fitness evaluation together with the use of the nondominated
sorting.

On the contrary, relatively poor performance of MOEA/D
and HypE on 8–500 (0.8) and 10–500 (0.8) in Table XVII
is explained by the performance improvement of NSGA-II.
When objectives are highly correlated, it is likely that solutions
can be compared by Pareto dominance (see Fig. 17). This leads
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TABLE XVI
RELATIVE AVERAGE HYPERVOLUME ON TEST PROBLEMS WITH

CORRELATED OBJECTIVES. THE REFERENCE POINT IS (0, 0, . . ., 0)

TABLE XVII
RELATIVE AVERAGE HYPERVOLUME ON TEST PROBLEMS WITH

CORRELATED OBJECTIVES. THE REFERENCE POINT IS (15 000, 15 000,
. . ., 15 000)

to the increase in the effectiveness of the Pareto dominance-
based fitness evaluation. In MOEA/D, high correlation is not
taken into account in the weight vector generation. In HypE,
high correlation is not taken into account in the random sam-
pling. Since there is a large difference in the performance on
6–500 (0.8) in Table XVII between SMS-EMOA and HypE,
it is possible that the highly correlated objectives have a neg-
ative effect on the hypervolume approximation mechanism in
HypE.

In Fig. 18, we show all solutions in the final population of a
single run of NSGA-II on the correlated 10–500 problems for
α = 0.2, 0.4, 0.6, 0.8 in the 2-D objective space with the first

Fig. 18. Results of a single run of NSGA-II on the four correlated 10–500
problems with α = 0.2, 0.4, 0.6, 0.8.

Fig. 19. Results of a single run of each algorithm on the correlated 10–500
problem with a = 0.8.

two objectives. In Fig. 18, we can see that good nondominated
solutions close to the Pareto front of the 2–500 problem are
obtained from the application of NSGA-II to the correlated
10–500 problem with α = 0.8. As shown in Tables XVI, XVII
and Fig. 18, many-objective problems with highly correlated
objectives are not difficult for NSGA-II.

For comparison, we also show experimental results by a sin-
gle run of each of the other algorithms on the 10–500 problem
with α = 0.8 in Fig. 19. We can see in Fig. 19 that clustered
solutions with wide gaps are obtained by all the three variants
of MOEA/D. This is because the uniformly distributed 220
weight vectors are very sparse in the ten-dimensional objec-
tive space. As a result, solutions look clustered when they are
projected into the 2-D subspace in Fig. 19.

From the comparison between the bottom-right plot in
Fig. 18 by NSGA-II and the results by HypE in Fig. 19 on
the 10–500 (0.8) problem, we can see that more solutions with
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TABLE XVIII
RELATIVE AVERAGE HYPERVOLUME ON TEST PROBLEMS WITH

DEPENDENT OBJECTIVES. THE REFERENCE POINT IS (0, 0, . . ., 0)

TABLE XIX
RELATIVE AVERAGE HYPERVOLUME ON TEST PROBLEMS WITH

DEPENDENT OBJECTIVES. THE REFERENCE POINT IS

(15 000, 15 000, . . ., 15 000)

better convergence are obtained by NSGA-II than HypE. This
observation is consistent with their results in Tables XVI and
XVII on the 10–500 (0.8) problem.

B. Results on Test Problems with Dependent Objectives

A dependent objective gi(x) is generated in the form of
αik · f1(x) + (1 − αik) · f2(x) for k = 3, 4, . . . , 10. In the
same manner as in Tables II and III, we perform computa-
tional experiments on the dependent 4–500, 6–500, 8–500,
and 10–500 problems. Experimental results are summarized
in Tables XVIII and XIX. In MOEA/D with PBI, the penalty
parameter value is specified as θ = 0.1. These tables show that
the inclusion of the dependent objectives increases the relative
advantages of NSGA-II (while the inclusion of the randomly
generated objectives severely deteriorates its performance in
Section IV).

Among the three versions of MOEA/D in Tables XVIII and
XIX, the best results are obtained by the weighted Tchebycheff
for almost all cases. When all objectives are randomly gener-
ated in Section IV, MOEA/D with the weighted Tchebycheff
works well only on the 2–500 problem in Tables II and III.
These observations are consistent because all objectives in our
dependent problems are generated from the two objectives
of the 2–500 problem. Actually, all of the dependent 4–500,
6–500, 8–500, and 10–500 test problems have the same Pareto
optimal solution set as the 2–500 test problem. However, all
EMO algorithms solve the dependent 4–500, 6–500, 8–500,
and 10–500 test problems as many-objective test problems.
Experimental results in Tables XVIII and XIX can be viewed
as showing bad effects of the inclusion of dependent objec-
tives on the search behavior of each EMO algorithm. In all
EMO algorithms (except for NSGA-II), dependent objectives
have bad effects. The search ability of MOEA/D and HypE is
severely degraded by the inclusion of dependent objectives.
Whereas the search ability of SMS-EMOA is not severely

Fig. 20. Results of a single run of each algorithm on the dependent 10–500
problem.

degraded, its computation load is heavily increased by the
inclusion of dependent objectives.

Fig. 20 shows all solutions in the final generation of a single
run of each algorithm. We can observe that the distribution of
obtained solutions by the two versions of MOEA/D is sparse
in comparison with the results by NSGA-II. This is due to the
use of the coarsely distributed ten-dimensional weight vectors.
From the comparison between the results by NSGA-II and
HypE in Fig. 20, more solutions are obtained by NSGA-II
along the Pareto front of the 2–500 problem.

VI. CONCLUDING REMARKS AND FUTURE RESEARCH

In this paper, we examined the search behavior of well-
known EMO algorithms (NSGA-II, MOEA/D, SMS-EMOA,
and HypE) on many-objective knapsack problems with 2–10
objectives. Our experimental results on many-objective knap-
sack problems with randomly generated objectives were con-
sistent with frequently-reported results: The performance of
Pareto dominance-based algorithms was severely deteriorated
by the increase in the number of objectives. However, we also
demonstrated that NSGA-II worked well on many-objective
knapsack problems with highly correlated objectives. It was
also shown that the inclusion of dependent objectives clearly
increased the relative advantage of NSGA-II over the other
algorithms. Whereas HypE showed its high search ability on
many-objective knapsack problems with randomly generated
objectives, it did not work well on many-objective knapsack
problems with highly correlated objectives. MOEA/D worked
well on a wide range of test problems. However, as we demon-
strated in this paper, its performance heavily depended on the
choice of a scalarizing function.

With respect to the choice of an appropriate scalarizing
function in MOEA/D, we obtained the following interest-
ing observations: 1) MOEA/D with good specifications for
the two-objective knapsack problem such as the weighted
Tchebycheff and PBI with θ = 5 did not work well on
many-objective knapsack problems; 2) MOEA/D with good
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specifications for the 10-objective knapsack problem with ran-
domly generated objectives such as the weighted sum and PBI
with θ = 0.1 did not work well on the two-objective knap-
sack problem; and 3) the best choice of a scalarizing function
for hypervolume maximization depended on the specification
of a reference point for hypervolume calculation in perfor-
mance evaluation. The last observation suggests that some
scalarizing functions in MOEA/D are beneficial for conver-
gence improvement while others are beneficial for diversity
improvement.

We also demonstrated that the performance of NSGA-II,
SMS-EMOA, and HypE on many-objective knapsack prob-
lems was improved by recombining similar parents. This
observation suggests that the choice of parents from the entire
population is not a good strategy for many-objective knap-
sack problems. This was also supported by our experimental
results on MOEA/D where the use of a large neighborhood
for mating selection degraded the performance of MOEA/D
on many-objective knapsack problems.

While NSGA-II did not work well on many-objective knap-
sack problems with randomly generated test problems, it
worked very well when objectives were highly correlated.
Using this feature of NSGA-II, we also examined the use
of multiple NSGA-II subpopulations to search for different
regions of the Pareto front. That is, each NSGA-II subpopula-
tion with highly correlated objectives was used for the focused
search toward a small region of the Pareto front. The best
results were obtained from the focused search by NSGA-II on
the six-objective 10 000-item knapsack problem. This obser-
vation suggests the potential usefulness of multiple runs of the
focused search for many-objective optimization.

Through computational experiments, we also showed that
the performance evaluation results of the same solution sets
by the hypervolume measure were totally different depending
on the specification of the reference point. For example, when
the origin (0, 0, . . . , 0) of the objective space was used, the
relative average hypervolume values were calculated over 100
solution sets for the 10–500 problem as follows (see Table II):

Weighted Sum: 100.0, PBI (0.l): 95.9, HypE: 92.5.

However, the relative average hypervolume values for the
reference point (15 000, 15 000, . . . , 15 000) were calculated
over the same 100 solution sets as follows (see Table III):

Weighted Sum: 100.0, PBI (0.l): 169.5, HypE: 166.1.

These results suggest the differences in the distribution of
solutions obtained by the three algorithms. The solution sets
obtained by MOEA/D with the weighed sum may have a larger
diversity over the Pareto front than the solution sets by the
other algorithms (since MOEA/D with the weighted sum had
better hypervolume values than the other algorithms when the
reference point was far from the Pareto front). However, more
solutions with better convergence toward the Pareto front may
be obtained by MOEA/D with PBI (0.1) and HypE around the
center of the Pareto front than the MOEA/D with the weighted
sum [since MOEA/D with PBI (0.1) and HypE had better
hypervolume values when the reference point was close to the
Pareto front]. These discussions are consistent with the visual

examination of the obtained solution sets in the 2-D objec-
tive subspace in Fig. 8 in Section IV. From these discussions,
we can see that the hypervolume measure for different refer-
ence points can be used for examining the behavior of EMO
algorithms on many-objective problems.

All experimental results in this paper showed that solu-
tion sets with totally different characteristics were obtained by
different EMO algorithms. This may suggest the potential use-
fulness of ensemble approaches of different EMO algorithms.
Experimental results in this paper suggest the ensemble of
the weighted sum and PBI (0.1). Another promising com-
bination is PBI with different penalty parameter values (see
θ = 5 with the best results on the 2–500 problem and θ = 0.1
with the best results on the 10–500 problem). As a sim-
ilar idea, ensemble of the weighed sum and the weighted
Tchebycheff in MOEA/D was used in [52]. Ensemble of
MOEA/D with different neighborhood structures was also
proposed in [53].

In this paper, we observed high search ability of HypE on
many-objective problems with randomly generated objectives.
However, it did not work well on many-objective problems
with highly correlated objectives. Its experimental results on
6–500 (0.8) were clearly inferior to those by SMS-EMOA.
These observations suggest the necessity of improving its
hypervolume approximation mechanism. Utilization of the
characteristics of each objective and the relation among differ-
ent objectives may be an interesting future research topic with
respect to the improvement of the hypervolume approximation
mechanism in HypE.

Utilization of the characteristics of each objective and
the relation among different objectives is also an interest-
ing future research topic with respect to the specification of
the weight vectors in MOEA/D for many-objective problems
(see [38]–[41] for further discussions on the specification and
the adaptation of the weight vectors in MOEA/D). More stud-
ies are needed for appropriate weight vector specifications in
MOEA/D for many-objective problems. Of course, the choice
of an appropriate scalarizing function or an appropriate scalar-
izing function ensemble is also an interesting future research
topic.

The best results were obtained by the focused search of
NSGA-II on the six-objective 10 000-item problem. That is,
NSGA-II worked very well on many-objective problems with
modified objectives. An interesting future research topic is
to develop a more sophisticated mechanism to efficiently use
multiple NSGA-II subpopulations for the focused search to
different regions of the Pareto front. It would be interesting
if we could achieve high search ability for many-objective
problems by using standard NSGA-II together with modified
objectives instead of implementing highly-tailored compli-
cated EMO algorithms.

Our focus in this paper was the search behavior of EMO
algorithms when they search for a solution set to approxi-
mate the entire Pareto front (i.e., global search). A promis-
ing approach to the improvement of approximation quality
of a solution set is the hybridization of single-objective
optimization methods such as local search into EMO algo-
rithms [54]–[57]. Implementation of many-objective hybrid
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algorithms is another interesting research direction. However,
the approximation of the entire Pareto front using a limited
number of nondominated solutions is impractical in many
cases of many-objective optimization. Thus, the hybridiza-
tion of the focused search toward a part of the Pareto front
and the global search for the entire Pareto front seems
to be a practically useful research direction. In this sense,
NSGA-III [58], [59] can be viewed as such a hybrid search
algorithm.
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